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Abstract

The main objective of this work is to present a multitask, e�cient and automatic approach to
estimate thresholds for a generalized Pareto distribution, aiming at high-performance prediction
of extremes in multiple precipitation time series. Based on Extreme Value Theory, the only infor-
mation used to model the heavy tail distribution by maximum likelihood estimation is given by
the samples of the time series exceeding a user-de�ned threshold. This approach su�ers from two
fundamental drawbacks: (1) the subjectivity of the threshold de�nition, even when resorting to
some graphical guidance, (2) the inherent sparse nature of the above-threshold samples, which, by
de�nition, belong to the tail of the distribution. The proposal presented here for multitask learn-
ing automatically creates a hierarchical relationship among the prediction tasks and uses a nested
cross-validation to automatize the choice of the optimal thresholds. Given the obtained hierar-
chical relationship among the prediction tasks, the multitask learning explores data from multiple
related prediction tasks toward a more robust maximum likelihood estimation of the parameters
that characterize the generalized Pareto distribution. The proposed methodology was applied to
precipitation time series of South America and its performance was compared to a single-task
learning method and to the traditional graphical approach, indicating a consistent performance
improvement. Another advantage of the approach is the possibility of performing a qualitative
interpretation of the obtained hierarchical relationship among the tasks, when associated with the
geographical locations of the precipitation time series.

Keywords : Extreme Value Theory; Multitask Learning; Hierarchical Clustering; Automatic
Threshold Estimation in Pareto Distributions



Resumo

O principal objetivo deste trabalho é apresentar uma abordagem multitarefa, e�ciente e automática
para estimar limiares de uma distribuição generalizada de Pareto, visando uma previsão de alto
desempenho de extremos em várias séries temporais de precipitação. Com base na teoria dos val-
ores extremos, as únicas informações usadas para modelar uma distribuição de cauda pesada por
estimação por máxima verossimilhança são fornecidas pelas amostras da série temporal que exce-
dem um limiar de�nido pelo usuário. Essa abordagem sofre de duas desvantagens fundamentais:
(1) a subjetividade na de�nição do limiar, mesmo quando se recorre a alguma orientação grá�ca;
(2) a natureza esparsa inerente das amostras acima do limiar, que, por de�nição, pertecem à cauda
da distribuição. A proposta aqui apresentada para aprendizado multitarefa cria automaticamente
um relacionamento hierárquico entre as tarefas de predição e usa uma validação cruzada aninhada
para automatizar a escolha dos limiares mais indicados. Dada a relação hierárquica obtida entre
as tarefas de predição, o aprendizado multitarefa explora os dados de várias tarefas de predição
relacionadas para uma estimativa de máxima verossimilhança dos parâmetros que caracterizam a
distribuição generalizada de Pareto mais robusta. A metodologia proposta foi aplicada em séries
temporais de precipitação da América do Sul e sua performance foi comparada a um método de
aprendizado monotarefa e à abordagem grá�ca tradicional, indicando uma melhoria consistente de
desempenho. Outra vantagem da abordagem é a possibilidade de realizar uma interpretação qua-
litativa da relação hierárquica obtida entre as tarefas, quando associada às localizações geográ�cas
das séries temporais de precipitação.

Palavras-chave : Teoria do Valor Extremo; Aprendizado Multitarefa; Clusterização Hierárquica;
Seleção Automática de Limiar em Distribuições de Pareto.
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Chapter 1

Introduction 1

Extreme climate events, such as intense precipitation, extended droughts, and excessive increase
of temperature, are, by de�nition, rare and potentially of high impact (Seneviratneet al. , 2012).
Its occurrence tends to produce a wide range of consequences in �elds such as economy (Hallegatte
et al. , 2007) and civil defense (Valverde, 2017). That is why more and more attention has been
devoted to investigating the statistical behavior and to properly forecasting these events (Chandra,
2017; Hu & Ayyub, 2019; Iglesiaset al. , 2015; McGovernet al. , 2017), so that the damage and
impact that they may cause are prevented/attenuated.

Despite the high potential impact of extreme events, de�ning them is not an easy task. There
are two main methods de�ning extremes: (1) Generalized Extreme Value (GEV) (Fisher & Tip-
pett, 1928) consists in dividing the observation period into blocks and analyzing only the most
extreme value in each block; and (2) Peaks Over Threshold (POT) (Balkema & de Haan, 1974;
Pickands, 1975) uses the peaks above a certain threshold to �t a Pareto Distribution (Pareto,
1898). Selecting only the peaks of each block makes GEV simpler, but results in a low number
of samples, impairing the generalization performance of resultant �tted models. POT overcomes
the disadvantage of GEV since it makes better use of the available data. However, the selection
of an appropriate threshold is usually made by visual methods (Coles, 2001), which incorporates
errors and uncertainties (Thompsonet al. , 2009). Additionally, these procedures require prior
experience while interpreting threshold choice plots to achieve a satisfactory model �t (Coles &
Tawn, 1994).

This subjective and expert-dependent approach to select the threshold motivates the proposi-
tion of automatic methods to select the threshold. Thompsonet al. (2009) presented a method
that is based on the di�erence of the parameter estimates when the threshold is changed, and Fuku-
tome et al. (2015) adopted the automation of an existing graphical method to select the threshold
that will guide to a proper parameter choice, resorting to a measure of clustering in data. Here we
are going to present a more robust and data-intensive proposal based on the joint application of
multitask learning and extreme value theory to automatically estimate an appropriate threshold.
The use of this technique allows the analysis of multiple time series simultaneously without any
previous knowledge on the data or any additional parameter. Furthermore, the structural rela-
tionship involving multiple learning tasks can support a qualitative analysis of the joint behavior

1The content of this manuscript is essentially based on the content of the submitted paper Aguiaret al. (2019).
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of the prediction models. The main advantage of a multitask learning algorithm, especially when
focused on climate forecasting, is that it allows the information sharing of locations characterized
by similar climate events. With a more robust estimation of the threshold, an extreme event that
had already happened in some location may in�uence the prediction of an upcoming extreme in
another related location.

In the context of climate forecasting, multitask learning was already applied to predict extreme
events with distinguished performance gain when compared to single-task learning. As presented
in Chandra (2017), a co-evolutionary algorithm, which incorporates features from distinct models
and multitask learning (MTL), is used to predict tropical cyclone wind-intensity. Also related
to climate prediction, Gonçalveset al. (2015) presented a multitask learning-based method to
build high-performance Earth System Models (ESM), based on the joint learning of the structural
relationship among the tasks (each point in the Earth surface grid is taken as a distinct prediction
task) and of the parameters of the learning models.

In this work, a hierarchical multitask learning approach is proposed to automatically select a
threshold in Pareto distributions. The novel proposal automatically conceives a hierarchical struc-
tural model involving the prediction of all tasks and uses a nested cross-validation to automatize
the choice of the optimal thresholds. This method aims at improving the performance of each
task by taking into account the data from other related prediction tasks; the clustering procedure
�nds similar tasks to construct the hierarchical structure and to suggest which tasks should be
held together to improve generalization performance. This method is tested with precipitation
time series, aiming at predicting extreme events, taking as contenders the equivalent single-task
learning procedure and the traditional graphical approach.

The next chapters are organized as follows. Chapter 2 presents an overview of the theoretical
basis of Extreme Value Theory, Cross-Validation, Multitask Learning and Hierarchical Clustering,
focusing on key aspects to better understand the proposed method. Chapter 3 introduces the
proposed automatic method to threshold selection in Pareto distributions. Chapter 4 describes the
experimental setup and discusses the results of two experiments on real-world datasets. Chapter
5 presents �nal considerations and future perspectives of the research.
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Chapter 2

Conceptual background

This chapter will present the main technical concepts used throughout this work. Initially, basic
aspects of the Extreme Value Theory and the main approaches usually applied to model the tail of
a distribution will be explained in Section 2.1. Next, a machine learning technique, called Cross-
Validation, generally applied to evaluate the inherent quality of a learning model is presented in
Section 2.2. A literature overview of Multitask Learning, an approach that exploits commonalities
across tasks to improve e�ciency and prediction accuracy of learning models, is presented in
Section 2.3. Finally, the hierarchical clustering model adopted in the proposed methodology to be
presented in Chapter 3 is formally described in Section 2.4.

2.1 Extreme Value Theory

The Extreme Value Theory (EVT) was created as a branch of Statistics that aims to estimate
extreme events and its impacts in diverse �elds, such as �nancial market, insurance coverage and
climate forecasting.

When forecasting extreme events, the focus is in modeling the events of the tail of a distribution,
i.e., those that have low probability and high impact. However, tail events data are rare, which
justi�es the necessity to derive asymptotic properties of the tail, by analogies to the Central Limit
Theorem.

In this context, two main approaches are usually applied: Generalized Extreme Value (GEV),
which uses the Block Maxima, that consists in dividing the observation period into blocks and
analyzes only the most extreme value in each block; and Peaks Over Threshold (POT), which uses
the exceedances above a threshold to �t a Pareto Distribution.

The second approach is generally taken as an alternative to the �rst one, since the main
disadvantage of GEV takes place in the presence of few data in a series and/or when series have
many missing values.

When the distribution is �tted, it is possible to �nd the return levels and their periods, which
are important to the forecast of extreme events. As illustrated in Figure 1, a high-quality model for
a given time series (black) is the starting point to achieve a competent estimation of the subsequent
values of this time series (blue). The estimated values,x̂ t , are the return levels, that will be further
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explained. More details of these approaches are given in Sections 2.1.2 and 2.1.3.

Figure 1: Time series with estimation in blue.

2.1.1 Brief historical context

One of the �rst investigations devoted to the statistics of extremes was conducted by Bernoulli
and in 1709 he answered the following open question: "ifn men of equal age die withint years,
what is the mean duration of life of the last survivor?". This question can be reduced to "n points
are randomly situated in a straight line of sizet, what is the largest mean distance to origin?".

Extreme values are necessarily associated with small probabilities. Therefore, the Poisson law
must be mentioned, since it considers these probabilities. For 60 years, the Poisson distribution was
nothing but a mathematical curiosity, until Von Bortkiewicz (1898) demonstrated its statistical
meaning and its relevance to explain natural events. In the next year, R. Von Mises introduced the
fundamental notion of the highest characteristic value and indicated its asymptotic relation with
the mean of the greatest normal values. In 1925, L. H. C. Tippett calculated the probabilities of
the greatest normal values for sizes of di�erent samples until 1000 and the mean normal interval
for samples from 2 until 1000.

In 1990, trying to solve an estimation problem of dikes height, after a �ood in Netherlands that
killed almost two thousand people in 1953, de Haan (1990) formulated a statistical methodology
that was the basis for extreme event analysis.

2.1.2 Generalized Extreme Value

Let X 1; X 2; : : : ; X n be a sequence of independent and identically distributed random variables
with a common distribution function F . For m = 1; 2; : : : and i = 1; 2; : : : ; k the Block Maxima is
de�ned as:

M i = max
(i � 1)m<j � im

X j (2.1)
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The m � k observations are divided intok blocks of sizem. The distribution function of the
maximum M k can be described as:

P(M k � x) = P(X 1 � x; : : : ; X k � x) = F k(x); x 2 R; k 2 N (2.2)

The problem is that such distribution depends on the distribution of the underlying random
variables, which is not known in practice. Thus, having access to a proper cumulative asymptotic
distribution for a high value of n, would help in modeling extreme events. For a block maxima, the
cumulative asymptotic distribution exists and it is described by the Theorem of Fisher & Tippett
(1928).

Theorem 1 (Fisher-Tippett theorem, Extreme Value theorem). Let X 1; X 2; : : : ; X n be a sequence
of independent and identically distributed random variables. If there are norming constantscn > 0,
dn 2 R and a non-degenerated distribution functionH such as

c� 1
n (M n � dn ) d�! H; (2.3)

in which d�! means convergence in distribution, thenH belongs to one of the following three dis-
tribution functions:

Fréchet:

� � (x) =

8
<

:
0; x � 0;

expf� x � � g; x > 0
� > 0: (2.4)

Weibull:

	 � (x) =

8
<

:
expf� (� x)� g; x � 0;

1; x > 0
� > 0: (2.5)

Gumbell:
�( x) = expf� e� xg; x 2 R: (2.6)

Proof: See Fisher & Tippett (1928).

Consequently, the generalized distribution is described by the following equation:

H �;�; =

8
><

>:

exp
n

�
�
1 + � x� �

 

� � 1
�

o
; 1 + � x� �

 > 0 ; � 6= 0;

exp
n

� exp
�

� x� �
 

�o
; � = 0

(2.7)

in which � is called shape parameter,� location parameter and scale parameter. The set
� = ( �; �;  ) can be called the set of model parameters.
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For � > 0, the distribution is called heavy-tailed with polynomial decay and in�nity right
endpoint (Fréchet); for � = 0, it is called exponential (Gumbell); and for� < 0, it is called light-
tailed with �nite right endpoint (Weibull). Figure 2 illustrates how the process of �tting values of
a distribution tail works for GEV distributions.

(a) Time series of monthly values with annual
block size.

(b) GEV distribution with di�erent � (shp)
values. The parameters (scl) and � (ctr) are
1 and 0, respectively. Extracted from NCAR
(2019).

Figure 2: (a)The blue dots in the time series are selected by the Block Maxima approach and
represent the tail of the distribution. (b)Then, the blue dots are modeled in a GEV distribution
that can be Fréchet, Gumbell or Weibull.

Maximum Likelihood Estimation

Intuitively, the maximum likelihood method selects parameters that makes the observed data
more likely.

Equation 2.7 corresponds to the standard parametric case of statistical inference and, therefore,
can be solved by maximum likelihood. Suppose that the generalized distribution functionH � has
density function h� :

h� (x) =
1
�

h
1 + �

� x � �
�

�i (� 1
� � 1)

exp
n

�
h
1 + �

� x � �
�

�i � 1
�
o
;

for 1 + �
�

x� �
�

�
> 0. The likelihood function, then, based on dataX = ( X 1; : : : ; X N ), is given by

L(� ; X ) =
NY

i =1

h� (X i ):
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Let `(� ; X ) = ln L(� ; X ) be the log-likelihood function, in which:

`(� ; X ) = � N ln � �
NX

i =1

h
1 + �

� X i � �
�

�i � 1
� �

� 1
�

+ 1
� NX

i =1

ln
h
1 + �

� X i � �
�

�i
(2.8)

The maximum likelihood estimator for� is:

�̂ N = arg max
� 2 �

`(� ; X ) (2.9)

The numerical calculation of the maximum likelihood estimator,̂� N , for H � no longer represents
a challenge since the existence of a FORTRAN algorithm published by Hosking (1985) and further
investigated by Macleod (1989).

Return Level

The return level is the maximum amplitude, on average, after everyt observations. For a GEV
distribution, it is described by

ẑt =

8
<

:

�̂ + �̂
�̂
[(� ln (1 � t)) � �̂ � 1]; �̂ 6= 0

�̂ + �̂ [ln (1 � t)]; �̂ = 0
; (2.10)

in which �̂ , �̂ and �̂ are the parameters estimated by the maximum likelihood method.

2.1.3 Peaks Over Threshold

The Pareto (1898) distribution is one of the heavy-tailed distributions. So its generalization
can be used to model extreme events.

The Generalized Pareto Distribution (GPD) can be de�ned by:

G�;� (x) =

8
<

:
1 � (1 + �x

� )� 1
� ; � 6= 0;

1 � e
� x
� ; � = 0;

(2.11)

in which
8
<

:

x � 0; � � 0;

0 � x � � �
� ; � < 0;

(2.12)

for � > 0 and � 2 R.
Let X be a random variable and a thresholdu. Then, the random variableX � u is the excess

values and its distribution function, denoted byFu, can be calculated by:

Fu = P(X � u � xjX > u ) =
P(X � u � x ^ X > u )

P(X > u )
=

F (x + u) � F (u)
1 � F (u)

(2.13)

It follows that Fu can be approximated by a GPD:
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Theorem 2 (Balkema & de Haan (1974); Pickands (1975)). For a class of distributions, an
appropriate positive function� (u) can be found such that:

lim sup
u! xF ; 0� x <x F � u

jFu(x) � G�;� (x)j= 0

The class of distributions for which this theorem is valid includes most of standard distributions,
i.e., Normal, Log-normal, Beta, Exponential, Uniform, etc.

Based on this result, for a large value ofu, the following approximation is possible:

Fu(x) � G�;� (x) (2.14)

Thus, the GPD can be used to model distribution tails for data that exceed a threshold, as
shown in Figure 3.

(a) Time series with exceedances above thresh-
old u = 220 in blue.

(b) GPD distribution with di�erent values of
�; � . Extracted from Wikipedia (2019).

Figure 3: (a) The blue dots in the time series are selected by the Peaks Over Threshold approach
and represent the tail of the distribution. (b)The blue dots are modeled in a GPD distribution.

Maximum Likelihood Estimation

AssumingF is GPD with parameters�; � , so that the density function is

f �;� (x) =
1
�

�
1 + �

x
�

� � 1
� � 1

Using the likelihood function, based on dataX = ( X 1; : : : ; X N ),

L(( �; � ); X ) =
NY

i =1

f �;� (X i ) (2.15)
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Then, the log-likelihood function is

`(( �; � ); X ) = � N ln � �
� 1

�
+ 1

� NX

i =1

ln
�
1 +

�
�

X i

�
(2.16)

Thus, likelihood equations can be derived and solved numerically, obtaining the estimated
parameters�̂; �̂ .

Return Level

The return level is the maximum amplitude, on average, after everyt observations. For a
Pareto distribution, it is described as

ẑt =

8
<

:

u + �̂
�̂
[(t �̂ u) �̂ � 1]; �̂ 6= 0

u + �̂ (t �̂ u); �̂ = 0
; (2.17)

in which u is the chosen threshold,̂� and �̂ are the scale and shape parameters, respectively,t is
the number of observations and̂� u is the rate of observations above the threshold.

2.1.4 Graphical Approaches to Threshold Selection

Hill Estimator

The � parameter, also known as tail index, is determinant when inferring rare events, such
as, the estimation of a high quantile non-usual (in �nance, Value at Risk) or the dual problem of
estimating the probability of exceeding a high value.

The Hill (1975) estimator is given by:

�̂ k =
1

�̂ k

=
� 1

k

kX

j =1

ln X j � ln X k

� � 1
(2.18)

with X 1; : : : ; X n independent and identically distributed. It is important to notice that the esti-
mator depends on thek-th upper order statistics, in whichk ! 1 , k=n ! 0 with n ! 1 .

In this scenario, the upper order statistics are samples from the time series sorted in descending
order.

The crucial aspect in using Hill estimator is the choice ofk, that is directly connected to
the threshold u. A value of u too high results in too few exceedances and, consequently, high
variance estimators. Foru too small, estimators become biased. To determine the value ofk to be
considered, it is advised to plot(k; �̂ k) and �nd a plateau region. This region is identi�ed as the
one with the values of�̂ k closer to the original value� .

In Figure 4, it is exhibited the Hill plot of Fort Collins (Colorado, USA) precipitation time series.
Data were provided by the R package "extRemes" Gilleland (n.d.). In this plot, an adequate choice
of threshold is in the region delimited by the 774 and the 873 order statistics. It is also worth
mentioning that the two red lines are the con�dence interval withp = 0:95.
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Figure 4: Hill plot of Fort Collins precipitation data.

Mean Excess Plot

De�nition 1 (Mean excess function). Let X be a random variable with right endpointxF , then

e(u) = E(X � ujX > u ); 0 � u � xF (2.19)

is called mean excess function ofX .

In the previous de�nition, the right endpoint concept was applied. Therefore,

xF = supf x 2 R : F (x) < 1g:

being F the distribution function.
The mean excess function exerts an important role due to the fact that, for variableu, it is

linear in the GPD case.

e(u) =
� + �u
1 � �

(2.20)

It is possible to verify in what region the mean excess function is linear foru, by calculating it
for di�erent values of thresholdu and plotting the results. In this region, then, the approximation
2.14 is considered to be reasonable.

To �nd an optimal threshold u, in Figure 5b, a linear region must be searched and the starting
point of the linear part represents the optimal threshold. In this case, the chosen threshold is
u = 0:395, highlighted by the red horizontal line.
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(a) Mean Excess plot for Fort Collins precipita-
tion data.

(b) Mean Excess plot pruned with threshold
u = 0 :395 highlighted.

Figure 5: Example of mean excess plot.

2.1.5 Applications

Extreme Value Theory has been widely applied in countless �elds to assess risk and predict the
probabilities of extreme events. Here, a focus on applications of EVT in climate areas is provided.

EVT was employed to describe maximum monthly distributions of heavy precipitation in a
certain location in Towler et al. (2010). The model presented also considered that there is non-
stationarity, i.e., no concurrent information that indicates climate change needed to be used. With
the statistics provided by the EVT application, it was possible to reconstruct �ow quantiles and
to project it to the year 2100. The paper also extended the analysis to changes in the quality of
the water. Results show that, in the case study location, it will be an increase in the variability
and magnitude of stream�ow extremes and an increase in risk of turbidity exceedance was also
quanti�ed.

Another application of EVT was made by Cooley (2009), which produced a commentary of
another paper about how slowly changing climate could a�ect the frequency of extreme events.
The main objective was to discuss the advantages of an EVT approach and review techniques that
were already used to describe the impact of climate changes in extreme phenomena. An analysis of
temperatures of central England was also done, comparing a time-varying model with a stationary
one.

In Naveau et al. (2005), three case studies were presented to show that EVT can provide a
solid foundation when considering the uncertainty associated with extreme events. One of these
studies focused on characterizing magnitudes of large volcanic eruptions, and it is shown that the
e�ects of volcanic activity in climate should be modeled by a heavy-tailed distribution.
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