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Abstract
Biclustering has proved to be a powerful data analysis technique due to its wide success
in various application domains. However, the existing literature presents efficient solu-
tions only for enumerating maximal biclusters with constant values, or heuristic-based
approaches which cannot find all biclusters or even ensure the maximality of the obtained
biclusters. Here, we present a general family of biclustering algorithms for enumerating
all maximal biclusters with (𝑖) constant values on rows, (𝑖𝑖) constant values on columns,
or (𝑖𝑖𝑖) coherent values. Versions for perfect and for perturbed biclusters are provided.
Our algorithms have four key properties (only the algorithm for perturbed biclusters with
coherent values fails to exhibit the first property): they are (1) efficient (take polynomial
time per pattern), (2) complete (find all maximal biclusters), (3) correct (all biclusters
attend the user-defined measure of similarity), and (4) non-redundant (all the obtained
biclusters are maximal and the same bicluster is not enumerated twice). They are based
on a generalization of an efficient formal concept analysis algorithm called In-Close2.
Experimental results point to the necessity of having efficient enumerative biclustering
algorithms and provide a valuable insight into the scalability of our family of algorithms
and its sensitivity to user-defined parameters. Our algorithms were successfully applied in
two real-world problems: (𝑖) the gene ontology enrichment analysis, and (𝑖𝑖) the analysis
and identification of biomarkers. In the first application, we show how pseudo enumera-
tive biclustering algorithms (that miss at least one of the three last key properties) fail
in finding all enriched biclusters and all genes that belong to these biclusters. In the sec-
ond application, we show the usefulness of our algorithms in testing the discriminatory
capability of proposed biomarkers, and in proposing biomarkers from scratch. We also
present a way of extracting associative classification rules from our biclusters, guiding to
the possibility of building classifiers based on our solutions.

Keywords: Efficient enumeration; Maximal biclusters; Numerical datasets; Multiple types
of biclusters; Perfect and perturbed biclusters.



Resumo
A biclusterização provou ser uma poderosa técnica de análise de dados devido ao seu am-
plo sucesso em vários domínios de aplicação. No entanto, a literatura existente apresenta
soluções eficientes apenas para enumerar biclusters maximais com valores constantes, ou
abordagens baseadas em heurísticas que não podem encontrar todos os biclusters ou nem
mesmo garantir a maximalidade dos biclusters obtidos. Nesta tese, nós apresentamos
uma família genérica de algoritmos de biclusterização para enumerar todos os biclusters
maximais com (𝑖) valores constantes nas linhas, (𝑖𝑖) valores constantes nas colunas, ou
(𝑖𝑖𝑖) valores coerentes. Fornecemos versões para biclusters perfeitos e perturbados. Nossos
algoritmos têm quatro propriedades-chave (apenas o algoritmo para biclusters pertur-
bados com valores coerentes não possui a primeira propriedade): eles são (1) eficientes
(têm tempo polinomial por bicluster), (2) completos (encontram todos os biclusters ma-
ximais), (3) corretos (todos os biclusters atendem a medida de similaridade definida pelo
usuário), e (4) não-redundantes (todos os biclusters obtidos são maximais e o mesmo
bicluster não é enumerado mais de uma vez). Os algoritmos propostos são baseados em
uma generalização de um eficiente algoritmo de análise de conceitos formais, chamado
In-Close2. Os resultados experimentais apontam para a necessidade de termos algoritmos
enumerativos de biclusterização eficientes, e nos fornecem informações valiosas sobre a
escalabilidade de nossa família de algoritmos, como também de sua sensibilidade aos
parâmetros definidos pelo usuário. Nossos algoritmos foram aplicados com sucesso em
dois problemas do mundo real: (𝑖) a análise de enriquecimento de ontologias gênicas, e
(𝑖𝑖) a análise e identificação de biomarcadores. Na primeira aplicação, mostramos como
algoritmos pseudo enumerativos de biclusterização (que não possuem pelo menos uma
das três últimas propriedades-chave) falham em encontrar todos os biclusters enriqueci-
dos, bem como todos os genes que pertencem a esses biclusters. Na segunda aplicação,
mostramos a utilidade de nossos algoritmos para testar a capacidade discriminatória de
biomarcadores propostos na literatura, bem como para propor biomarcadores a partir do
zero. Apresentamos também uma maneira de extrair regras de classificação associativas
dos nossos biclusters, apontando para a possibilidade de construção de classificadores com
base em nossas soluções.

Palavras-chaves: Enumeração eficiente; Biclusters maximais; Conjuntos de dados numéri-
cos; Múltiplos tipos de biclusters; Biclusters perfeitos e perturbados.
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1 Introduction

The fields of machine learning and data mining have been attracting a lot of
attention due to the increasing necessity of extracting useful information from a huge
amount of available data.

Clustering is one of the most popular data mining techniques to knowledge dis-
covery in datasets [53]. It consists in grouping the data into clusters, such that the data
points inside a cluster are more similar to each other, or at least to a subset of them,
than they are with the data points outside the cluster. Usual clustering techniques assign
a data point to a cluster based on global similarities, i.e., similarity measures computed
across all attributes. These similarity measures are usually based on distance functions,
such as Euclidean distance or Manhattan distance. Besides, most of the clustering meth-
ods are only capable of assigning a data point to a single cluster. These characteristics
are undesirable in many scenarios, such as analysis of gene expression, text mining, fraud
detection, and market basket analysis. For instance, in the analysis of gene expression,
a gene could be co-expressed considering only a subset of the conditions. The distance
functions are also not suitable for measuring the coherence between genes, because there
may be strong coherence between a set of genes even when their expression levels are too
far apart from each other when we measure them by a distance function [106]. Further-
more, a gene can belong to none, one, or more than one group. Therefore, the traditional
clustering is very inflexible in scenarios like this one.

Biclustering is a local approach for clustering that overcomes these clustering limi-
tations. It operates simultaneously over the set of objects and attributes of a data matrix,
looking for submatrices constituted of subsets of objects that have a highly consistent
pattern across a subset of attributes. Biclustering methods are able to consider coherence
measures which are more general than distance functions, such as Euclidean and Man-
hattan distances, and hence are going to find biclusters supporting more general affinities
than conventional numerical proximity of elements [106].

Given that the concept behind the biclustering approach is appealing in bio-
sciences, biclustering has great value in finding interesting patterns in microarray ex-
pression data [86, 111]. Indeed, the application of biclustering is fully disseminated and
not limited to biological data. For instance, we can mention: dimensionality reduction [2],
text mining [13, 33], collaborative filtering [7, 30, 98, 99], and treatment of missing data
[13, 28, 31, 104]. Moreover, the importance of biclustering continues to increase, as re-
searchers are (i) finding new applications in scientific and commercial domains, including
bioinformatics, social network analysis, and text mining; and (ii) unveiling the connection
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between biclustering and several other important problems, including subspace clustering
[63], frequent pattern mining (FPM) [43], and formal concept analysis (FCA) [39].

Biclustering may be interpreted as a hard combinatorial optimization problem.
The more flexible the bicluster structure, the more complex the problem, and we are
considering the most flexible structure in this thesis: arbitrarily positioned overlapping
biclusters [79]. Thereby, an object/attribute can belong to none, one, or more than one
bicluster. In this scenario, finding all maximal biclusters in a data matrix is an NP-hard
problem [80]. Due to this, most of the proposed algorithms are heuristic-based [79], and
many of them consider an inflexible bicluster structure and mine a number of biclusters
defined a priori. The heuristic-based algorithms potentially produce sub-optimal solutions,
missing important biclusters and not guaranteeing the maximality of the identified ones.
Some examples of well-known heuristic-based biclustering algorithms are: CC [23], FLOC
[107], ROCC [32], ISA [52], Plaid [69], and OPSM [14]. For surveys, refer to Madeira and
Oliveira [79], Busygin et al. [18] and Pontes et al. [96].

In FCA and related areas, such as FPM and graph theory, we have plenty of al-
gorithms for enumerating all maximal biclusters with constant values (CTV) in a binary
dataset. These maximal CTV biclusters are called formal concepts in FCA, closed fre-
quent itemsets (or patterns) in FPM 1 , and maximal bicliques in graph theory (for more
details about the connection of these areas, see Chapter 3, Section 3.2). Some examples
of algorithms are: Makino and Uno [81], Eppstein et al. [35], Close-by-One (CbO) [65],
In-Close [8], In-Close2 [9], FCbO [62], CHARM [109], and LCM [101]. Their enumeration
process is characterized by being:

1. Efficient: it takes polynomial time per pattern, i.e., it takes polynomial time to
enumerate the first bicluster and takes polynomial time between enumerating two
consecutive biclusters. It is the best one can computationally do in such scenario.
If done properly, such algorithm will have time complexity linear in the number of
biclusters and polynomial in the input size. Moreover, if the number of maximal
biclusters is polynomial in the input size, the overall algorithm will be a polynomial
time algorithm.

2. Complete: it finds all maximal biclusters. A complete enumeration guarantees to
include the results produced by any other biclustering solution (given the same
restrictions of similarity and size). So, such biclustering solution is at least of equal
quality, but probably of better quality, when compared with the solution provided
by any other contender.

3. Correct: all found biclusters attend the user-defined measure of similarity. For in-
stance, in the case of the aforementioned algorithms, all biclusters are submatrices

1 Being more specific, a closed frequent itemset corresponds to the column-set of a bicluster.
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of ones. Complete and correct enumerators are crucial for some applications such as
the identification of biological indicators [76] and classification based on associations
[74].

4. Non-redundant: all biclusters are maximal and it does not enumerate the same max-
imal bicluster twice. It is very important because the number of biclusters produced
from a dataset can be very large. So, it is useful to identify the smallest representa-
tive set of biclusters from which all other biclusters can be derived [92]. The set of all
maximal biclusters is necessary and sufficient to capture all the information about
the biclusters, and has a much smaller cardinality than the set of all attainable bi-
clusters [108]. It is important to note that the algorithm must have a smart solution
to avoid redundancy, otherwise it will not be efficient. For instance, a procedure to
be avoided is to check if a new bicluster is not redundant by comparing with all
previously mined biclusters.

Once the researchers found the link between these related areas and biclustering,
many algorithms have been proposed to deal with numerical (not only binary, but also
integer or real-valued) datasets and other types of biclusters. In fact, nowadays the state-
of-the-art biclustering algorithms are based on FPM [49]. Many proposals, such as [49,
80, 82, 87, 88, 97], binarize the data and apply the aforementioned algorithms. However,
binarizing the dataset leads to loss of information, and guides to the necessity of tedious
Boolean property encoding phases [16]. Therefore, there are also proposals to deal directly
with numerical datasets, such as [16, 57, 91, 95, 111]. Without binarizing the numerical
dataset, we are going to show in Chapter 4 that there is no proposal in the literature able
to enumerate biclusters with (𝑖) constant value on columns (CVC), (𝑖𝑖) constant values
on rows (CVR), or (𝑖𝑖𝑖) coherent values (CHV) (see definitions in Chapter 2), so that the
aforementioned four properties are preserved in this extended scenario (not only binary
values in the dataset). Although some authors claim that their proposals do preserve these
four properties, a more careful analysis to be presented in Chapter 4 shows that they all
fail to exhibit one or more of these four properties. So, the main aim of this thesis is to fill
these gaps. In fact, we are proposing algorithms capable of preserving these four properties
when enumerating perfect CVC biclusters, perturbed CVC biclusters, and perfect CHV
biclusters. The problem of enumerating CVR biclusters is equivalent to enumerating CVC
biclusters. We are also proposing an algorithm with the last three of these properties to
enumerate perturbed CHV biclusters. Note that CVC, CVR and CHV biclusters are a
generalization of CTV biclusters [79] (for more details see Chapter 2, Section 2.1.1). We
call our family of algorithms RIn-Close because they are generalizations of the FCA
algorithm In-Close2 [9]. Tables 7 and 8 (see Chapter 4) show a technical comparison
between our proposals and the competitors, attesting that we are proposing a number of
improvements when enumerating biclusters from numerical datasets.
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1.1 Goals
Due to the complexity of the biclustering problems, most of the proposed bicluster-

ing algorithms are heuristic-based, leading to sub-optimal solutions. The majority of the
enumerative biclustering approaches requires the binarization of the data matrix, which
leads to loss of information. The existent enumerative algorithms that deal directly with
numerical datasets do not have all the four key properties of an enumerative biclustering
algorithm (i.e., (1) efficiency, (2) completeness, (3) correctness, and (4) non-redundancy).
The main goal of this thesis is to fill these gaps. For this, we are proposing a family of enu-
merative biclustering algorithms, called RIn-Close, that are the most complete from the
literature. Our algorithms to enumerate perfect or perturbed CVC (or CVR) biclusters,
and our algorithm to mine perfect CHV biclusters, are the first ones with these four key
properties. Our algorithm to enumerate perturbed CHV biclusters is the first one with
these last 3 key properties. An algorithm to enumerate perturbed CHV biclusters with
all four key properties remains an open problem.

Still regarding to enumerative biclustering algorithms, we show how (𝑖) it is pos-
sible to use our algorithms in datasets with categorical attributes, (𝑖𝑖) the procedure to
enumerate CHV biclusters can be easily adapted to enumerate other types of biclusters,
such as OPSM biclusters, and (𝑖𝑖𝑖) the missing data can be easily handled when using
RIn-Close.

We also made several experiments with our family of enumerative biclustering
algorithms in order to:

∙ Test RIn-Close’s scalability when varying some characteristics of the datasets. These
experimental results indicate to the user when it is feasible to use our family of
algorithms in data analysis.

∙ Test RIn-Close’s sensitivity to its main parameters, which indicates to the user how
to set RIn-Close’s parameters.

∙ Test RIn-Close’s sensitivity to missing values in the dataset.

∙ Indicate the distinct aspects of enumerative biclustering algorithms when compared
to heuristic-based biclustering algorithms.

∙ Indicate the distinct aspects of an actual enumerative biclustering algorithm when
compared to a pseudo enumerative biclustering algorithm.

∙ Indicate the usefulness of RIn-Close algorithms to solve real-world problems.

∙ Indicate the main advantages of applying enumerative biclustering algorithms to
the gene ontology enrichment analysis.
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∙ Indicate the potential of using enumerative biclustering algorithms to test the dis-
criminatory capability of proposed biomarkers.

∙ Indicate the potential of using enumerative biclustering algorithms to propose biomark-
ers.

∙ Show how we can extract associative classification rules from biclusters that are not
binary.

1.2 Thesis Organization
The remaining content of the thesis is organized as follows:

Chapter 2 introduces definitions and mathematical formulations for biclustering. It re-
views the main types of bicluters and the links between them. It also presents the
main bicluster structures and the methods used to identify the biclusters. The con-
cept of maximal biclusters and properties of our bicluster definitions are presented.
Some bicluster metrics and indices are also outlined.

Chapter 3 reviews main concepts of FCA. The algorithm In-Close2, which was gener-
alized to propose the RIn-Close family of algorithms, is presented. It also outlines
the links between FCA, biclustering, association mining (more specifically, frequent
itemset mining), and graph theory.

Chapter 4 places the RIn-Close family of algorithms before the existing biclustering al-
gorithms in the literature. It also highlights common strategies used by enumerative
biclustering algorithms to handle missing data and categorical attributes.

Chapter 5 presents the main contributions of this thesis, more specifically the RIn-
Close family of enumerative algorithms for mining maximal CVC, CVR, or CHV
biclusters. It also presents our proposal of handling missing data when using RIn-
Close, and presents how to mine other types of biclusters (in addition to CVC,
CVR, and CHV biclusters) by means of adapting the procedure to enumerate CHV
biclusters.

Chapter 6 presents and discusses experimental results. These experiments include the
analysis of RIn-Close’s scalability, the analysis of RIn-Close’s sensitivity to its main
parameters and to missing data, the comparison between an enumerative algorithm
and heuristics, the comparison of a true enumerative algorithm against a pseudo enu-
merative algorithm when applied to gene ontology enrichment analysis, and analysis
and identification of biomarkers.
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Chapter 7 presents conclusions, limitations, and suggestions of future research avenues
supported by our family of biclustering algorithms.
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2 Biclustering

The term biclustering was introduced by Mirkin [83] to describe the simultaneous
clustering of the sets of rows and columns of a data matrix. More recently, the term was
used in the analysis of gene expression data [23]. Cheng and Church [23] significantly
contributed to the popularization of biclustering techniques with their heuristic-based
algorithm called CC. However, Hartigan [48] was the first one to propose an algorithm
for biclustering, using the term direct clustering. Other terms that are found in literature
are: co-clustering, two-way clustering and bidimensional clustering, among others [79].

2.1 Definitions and Taxonomy of Biclusters
Let A𝑛×𝑚 be a data matrix with the row index set 𝑋 = {1, 2, ..., 𝑛} and the column

index set 𝑌 = {1, 2, ...,𝑚}. Each element 𝑎𝑖𝑗 ∈ A represents the relationship between row
𝑖 and column 𝑗. We use (𝑋, 𝑌 ) to denote the entire matrix A. Considering that 𝐼 ⊆ 𝑋

and 𝐽 ⊆ 𝑌 , A𝐼𝐽 = (𝐼, 𝐽) denotes the submatrix of A with the row index subset 𝐼 and
column index subset 𝐽 .

Definition 2.1. A bicluster is a submatrix (𝐼, 𝐽) of the data matrix A𝑛×𝑚 such that the
rows in the index subset 𝐼 = {𝑖1, ..., 𝑖𝑘} (𝐼 ⊆ 𝑋 and 𝑘 ≤ 𝑛) exhibits similar behavior across
the columns in the index subset 𝐽 = {𝑗1, ..., 𝑗𝑠} (𝐽 ⊆ 𝑌 and 𝑠 ≤ 𝑚), and vice-versa.

Thus, a bicluster (𝐼, 𝐽) is a 𝑘× 𝑠 submatrix of the matrix A, with not necessarily
contiguous rows and columns, such that it meets a certain homogeneity criterion. A bi-
clustering algorithm looks for a set of biclusters B = (𝐼𝑙, 𝐽𝑙)𝑞

𝑙=1, such that each bicluster
(𝐼𝑙, 𝐽𝑙), 𝑙 = 1, ..., 𝑞, satisfies some specific characteristics of homogeneity [79]. Consider-
ing these characteristics, there are four major types of biclusters [79]: (𝑖) biclusters with
constant values (CTV), (𝑖𝑖) biclusters with constant values on columns (CVC) or rows
(CVR), (𝑖𝑖𝑖) biclusters with coherent values (CHV), and (𝑖𝑣) biclusters with coherent
evolutions (CHE). The total number of biclusters, 𝑞, will depend on the features of the
selected biclustering algorithm, on the constraints imposed, and on the structure of the
dataset being analyzed.

Table 1 shows an example of a data matrix A9×8 with two perfect CTV biclusters
highlighted: (𝑖) one bicluster is formed by the elements in red; and (𝑖𝑖) the second bicluster
is formed by the elements in blue. In turn, Table 2 shows an example of a data matrix
A10×10 with three perfect CHV biclusters highlighted: (𝑖) one bicluster is formed by the
elements in red; (𝑖𝑖) a second bicluster is formed by the elements in blue; and (𝑖𝑖𝑖) the third
bicluster is formed by the elements with the gray background. The second and the third
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Table 1 – Example of a data matrix A9×8 with two perfect CTV biclusters highlighted.

33 39 32 16 39 20 5 39
37 7 37 37 13 18 37 36
6 39 27 7 39 26 39 39

37 39 37 37 39 29 37 39
26 20 34 2 18 31 24 6
4 33 38 12 16 12 9 6

12 6 28 2 31 28 31 11
22 39 31 4 39 27 11 39
39 37 30 33 8 7 21 11

Table 2 – Example of a data matrix A10×10 with three perfect CHV biclusters highlighted.

31 28 11 43 30 22 42 23 30 25
23 2 30 9 7 18 31 14 19 11
16 39 28 24 27 4 29 1 25 6
12 10 15 26 15 31 25 21 13 8
1 4 4 20 9 20 19 10 11 11
3 33 6 31 31 22 30 12 18 13

15 29 7 12 27 19 18 4 34 31
3 7 6 23 12 22 22 12 10 5
2 13 5 29 18 21 28 11 33 21

31 13 27 14 16 40 26 19 11 6

biclusters overlaps. Figure 1 and 2 show examples of the types of biclusters. In Figure 1,
the biclusters do not have any residue, i.e., they are perfect biclusters. In Figure 2, the
biclusters have some residue, i.e., they are perturbed. We will define all these types of
biclusters in Subsection 2.1.1.

In addition to the type of the biclusters, other two important aspects to consider
when choosing a biclustering algorithm are the admissible bicluster structure and the
method used to identify the biclusters.

Madeira and Oliveira [79] pointed out nine types of bicluster structures. Among
them, non-overlapping biclusters with checkerboard structure, and arbitrarily positioned
overlapping biclusters are the most common structures. Basically, the algorithms that
look for the first structure just reorder the rows and columns of the data matrix aiming at
identifying 𝑒×𝑓 biclusters arranged in a grid structure. The second one is the most flexible
structure among all nine possibilities. Note that if we consider the checkboard structure,
all objects will necessarily belong to 𝑓 biclusters, and all attributes will necessarily belong
to 𝑒 biclusters. On the other hand, with arbitrarily positioned overlapping biclusters, an
object/attribute may belong to none, one, or more than one bicluster. Typically, some
stopping criterion, such as the maximum number of biclusters to be identified, is one of
the parameters of the heuristics that look for this type of structure. In turn, enumerative
algorithms do not receive this kind of parameter and look for all the biclusters that meet
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2.0 2.0 2.0 2.0 2.0 3.7 3.7 3.7 3.7 3.7 1.5 9.0 3.2 8.6 5.4

2.7 11.7 1.7 9.7 4.2 7.1 35.5 21.3 42.6 14.2 7.1 1.3 1.9 1.0 8.7

4.0 13.0 3.0 11.0 5.5 4.0 20.0 12.0 24.0 8.0 4.9 4.0 4.9 3.5 5.0
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8.0 17.0 7.0 15.0 9.5 2.2 11.0 6.6 13.2 4.4 9.0 1.5 2.0 1.2 9.9
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(a) Numerical example.
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(b) Graphical example.

Figure 1 – Examples of different types of biclusters. These biclusters are perfect, i.e., they
do not have any residue.
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(b) Graphical example.

Figure 2 – Examples of different types of biclusters. These biclusters are perturbed, i.e.,
they have some residue.
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the restrictions of similarity and size. Table 2 shows an example of arbitrarily positioned
overlapping biclusters.

Among the methods to identify the biclusters, we have [79]:

∙ Iterative row and column clustering combination: standard clustering algorithms
are applied separately on the column and row dimensions of the data matrix, and
then the results are combined, using some kind of iterative procedure, to obtain the
biclusters.

∙ Divide and conquer: the problem is divided into several sub-problems that are similar
to the original, but smaller. These sub-problems are solved recursively, and then the
solutions are combined to create a unique solution to the original problem.

∙ Greedy iterative search: these algorithms create biclusters by adding or removing
rows / columns of the biclusters, using a criterion that maximizes the local gain, in
the hope that this choice will lead to a good global solution.

∙ Distribution parameter identification: these algorithms consider that the biclusters
are generated using a statistical model, and try to identify the distribution pa-
rameters that fit the available data by iteratively minimizing certain optimization
criteria.

∙ Exhaustive bicluster enumeration: these algorithms mine all biclusters of the data
matrix that meet some restrictions, usually of similarity and size.

2.1.1 Types of Biclusters

Although perfect biclusters can be found in some data matrices, they are usually
masked by noise in real data. Therefore, we will define the perfect and the perturbed cases
for all types of biclusters. The perturbed case is always a generalization of the perfect
case. A user-defined parameter 𝜖 ≥ 0 determines the maximum residue (perturbation)
allowed in a bicluster.

Let |𝜁| be (𝑖) the absolute value (or modulus) of 𝜁 if 𝜁 is a scalar; or (𝑖𝑖) the number
of elements in 𝜁 if 𝜁 is a set.

Definition 2.2 (CTV biclusters). A perfect CTV (constant value) bicluster is a submatrix
(𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that 𝑎𝑖𝑗 = 𝑎𝑘𝑙, ∀𝑖, 𝑘 ∈ 𝐼 and ∀𝑗, 𝑙 ∈ 𝐽 . A perturbed
CTV bicluster is a submatrix (𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that |𝑎𝑖𝑗 − 𝑎𝑘𝑙| ≤ 𝜖,
∀𝑖, 𝑘 ∈ 𝐼 and ∀𝑗, 𝑙 ∈ 𝐽 , i.e.,

max
𝑖∈𝐼,𝑗∈𝐽

(𝑎𝑖𝑗)− min
𝑖∈𝐼,𝑗∈𝐽

(𝑎𝑖𝑗) ≤ 𝜖. (2.1)
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Figure 1 shows a perfect CTV bicluster, and Figure 2 shows a perturbed CTV
bicluster that can be obtained using 𝜖 ≥ 1.

Definition 2.3 (CVR biclusters). A perfect CVR (constant value on rows) bicluster is
a submatrix (𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that 𝑎𝑖𝑗 = 𝑎𝑖𝑙, ∀𝑖 ∈ 𝐼 and ∀𝑗, 𝑙 ∈ 𝐽 . A
perturbed CVR bicluster is a submatrix (𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that |𝑎𝑖𝑗−𝑎𝑖𝑙| ≤
𝜖, ∀𝑖 ∈ 𝐼 and ∀𝑗, 𝑙 ∈ 𝐽 , i.e.,

max
𝑗∈𝐽

(𝑎𝑖𝑗)−min
𝑗∈𝐽

(𝑎𝑖𝑗) ≤ 𝜖,∀𝑖 ∈ 𝐼. (2.2)

Figure 1 shows a perfect CVR bicluster, and Figure 2 shows a perturbed CVR
bicluster that can be obtained using 𝜖 ≥ 1.

Definition 2.4 (CVC biclusters). A perfect CVC (constant value on columns) bicluster
is a submatrix (𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that 𝑎𝑖𝑗 = 𝑎𝑘𝑗, ∀𝑖, 𝑘 ∈ 𝐼 and ∀𝑗 ∈ 𝐽 .
A perturbed CVC bicluster is a submatrix (𝐼, 𝐽) such that |𝑎𝑖𝑗 − 𝑎𝑘𝑗| ≤ 𝜖, ∀𝑖, 𝑘 ∈ 𝐼 and
∀𝑗 ∈ 𝐽 , i.e.,

max
𝑖∈𝐼

(𝑎𝑖𝑗)−min
𝑖∈𝐼

(𝑎𝑖𝑗) ≤ 𝜖,∀𝑗 ∈ 𝐽. (2.3)

Figure 1 shows a perfect CVC bicluster, and Figure 2 shows a perturbed CVC
bicluster that can be obtained using 𝜖 ≥ 1.

Note that the definition of a CVR bicluster is the equivalent transpose of the
definition of a CVC bicluster. So, we can mine CVR biclusters by transposing the original
data matrix and using an algorithm to mine CVC biclusters [91].

There are two perspectives for CHV (coherent value) biclusters: (i) additive model,
and (ii) multiplicative model. Biclusters based on the additive model are called shifting
biclusters. Biclusters based on the multiplicative model are called scaling biclusters. Any
row (column) of a perfect shifting bicluster can be obtained by adding a constant value
to any other row (column) of the bicluster. For instance, in the shifting (additive CHV)
bicluster of Figure 1: the second row is equal to the first row plus 1.3, the third column
is equal to the second column plus −10, and so on. Similarly, any row (column) of a
perfect scaling bicluster can be obtained by multiplying a constant value to any other row
(column) of the bicluster. For instance, in the scaling (multiplicative CHV) bicluster of
Figure 1: the third row is equal to the fourth row times 2.73, the second column is equal
to the first column times 5, and so on.

Definition 2.5 (CHV biclusters - additive model). Let 𝑍𝑗𝑙 = {𝑎𝑖𝑗 − 𝑎𝑖𝑙}𝑖∈𝐼 , 𝑗, 𝑙 ∈ 𝐽 .
For instance, consider the shifting bicluster of Figure 2, and let 𝑗 = 2 and 𝑙 = 3, then
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𝑍23 = {10.5, 9.5, 10, 10}. A perfect shifting bicluster is a submatrix (𝐼, 𝐽) of a data matrix
A𝑛×𝑚 such that all elements of the set 𝑍𝑗𝑙, ∀𝑗, 𝑙 ∈ 𝐽 , are equal, i.e., 𝑧 = 𝑤, ∀𝑧, 𝑤 ∈ 𝑍𝑗𝑙,
∀𝑗, 𝑙 ∈ 𝐽 . A perturbed shifting bicluster is a submatrix (𝐼, 𝐽) such that |𝑧 − 𝑤| ≤ 𝜖,
∀𝑧, 𝑤 ∈ 𝑍𝑗𝑙, ∀𝑗, 𝑙 ∈ 𝐽 , i.e.,

max(𝑍𝑗𝑙)−min(𝑍𝑗𝑙) ≤ 𝜖,∀𝑗, 𝑙 ∈ 𝐽. (2.4)

Figure 1 shows a perfect shifting bicluster, and Figure 2 shows a perturbed shifting
bicluster that can be obtained using 𝜖 ≥ 1.8.

Definition 2.6 (CHV biclusters - multiplicative model). Let 𝑍𝑗𝑙 = {𝑎𝑖𝑗/𝑎𝑖𝑙}𝑖∈𝐼 , 𝑗, 𝑙 ∈ 𝐽 .
A perfect scaling bicluster is a submatrix (𝐼, 𝐽) of a data matrix A𝑛×𝑚 such that all
elements of the set 𝑍𝑗𝑙, ∀𝑗, 𝑙 ∈ 𝐽 , are equal, i.e., 𝑧 = 𝑤, ∀𝑧, 𝑤 ∈ 𝑍𝑗𝑙, ∀𝑗, 𝑙 ∈ 𝐽 . A
perturbed scaling bicluster is a submatrix (𝐼, 𝐽) such that

max(𝑍𝑗𝑙)/min(𝑍𝑗𝑙)− 1 ≤ 𝜖,∀𝑗, 𝑙 ∈ 𝐽. (2.5)

Figure 1 shows a perfect scaling bicluster, and Figure 2 shows a perturbed scaling
bicluster that can be obtained using 𝜖 ≥ 0.47.

The problems of mining shifting and scaling biclusters are equivalent. Using an
algorithm to mine shifting (scaling) biclusters, we can mine scaling (shifting) biclusters
by previously taking the logarithm (exponential) of all entries of the data matrix (see
Lemmas 2.1 and 2.2). Therefore, we are going to focus only on the additive model in the
remainder of this thesis.

Lemma 2.1. If (𝐼, 𝐽) is a scaling bicluster in the data matrix A with residue less or equal
to 𝜖, then (𝐼, 𝐽) is a shifting bicluster in log(A) with residue less or equal to log(𝜖 + 1)
(where log(A) is a data matrix obtained by applying the logarithm function to each value
𝑎𝑖𝑗 ∈ A).

Proof. Without loss of generality, let 𝑎𝑖𝑗, 𝑎𝑖𝑙, 𝑎𝑘𝑗 and 𝑎𝑘𝑙 be any four elements of the
scaling bicluster (𝐼, 𝐽). So, we have:

𝑎𝑖𝑗/𝑎𝑖𝑙

𝑎𝑘𝑗/𝑎𝑘𝑙

− 1 ≤ 𝜖

𝑎𝑖𝑗/𝑎𝑖𝑙

𝑎𝑘𝑗/𝑎𝑘𝑙

≤ 𝜖+ 1

Applying the logarithm function, we have:
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log( 𝑎𝑖𝑗/𝑎𝑖𝑙

𝑎𝑘𝑗/𝑎𝑘𝑙

) ≤ log(𝜖+ 1)

log(𝑎𝑖𝑗/𝑎𝑖𝑙)− log(𝑎𝑘𝑗/𝑎𝑘𝑙) ≤ log(𝜖+ 1)

(log(𝑎𝑖𝑗)− log(𝑎𝑖𝑙))− (log(𝑎𝑘𝑗)− log(𝑎𝑘𝑙)) ≤ log(𝜖+ 1)

Lemma 2.2. If (𝐼, 𝐽) is a shifting bicluster in the data matrix A with residue less or
equal to 𝜖, then (𝐼, 𝐽) is a scaling bicluster in 𝑒A with residue less or equal to 𝑒𝜖−1 (where
𝑒A is a data matrix obtained by applying the exponential function to each value 𝑎𝑖𝑗 ∈ A).

Proof. Without loss of generality, let 𝑎𝑖𝑗, 𝑎𝑖𝑙, 𝑎𝑘𝑗 and 𝑎𝑘𝑙 be any four elements of the
shifting bicluster (𝐼, 𝐽). So, we have:

(𝑎𝑖𝑗 − 𝑎𝑖𝑙)− (𝑎𝑘𝑗 − 𝑎𝑘𝑙) ≤ 𝜖

Applying the exponential function, we have:

𝑒(𝑎𝑖𝑗−𝑎𝑖𝑙)−(𝑎𝑘𝑗−𝑎𝑘𝑙) ≤ 𝑒𝜖

𝑒(𝑎𝑖𝑗−𝑎𝑖𝑙)

𝑒(𝑎𝑘𝑗−𝑎𝑘𝑙)
≤ 𝑒𝜖

𝑒𝑎𝑖𝑗/𝑒𝑎𝑖𝑙

𝑒𝑎𝑘𝑗/𝑒𝑎𝑘𝑙
− 1 ≤ 𝑒𝜖 − 1

Another interesting property of mining CHV biclusters is that it is a symmetric
problem. The CHV biclusters are fully preserved when rows become columns and columns
become rows of the matrix (see Lemma 2.3).

Lemma 2.3. If (𝐼, 𝐽) is a CHV bicluster in the data matrix A with residue less or equal
to 𝜖, then (𝐽, 𝐼) is a CHV bicluster in Aᵀ with residue less or equal to 𝜖.

Proof. Let

⎡⎣𝑥 𝑦

𝑤 𝑧

⎤⎦
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be any arbitrary 2× 2 submatrix of the bicluster (𝐼, 𝐽). So, |(𝑥− 𝑦)− (𝑤 − 𝑧)| ≤ 𝜖, and

⎡⎣𝑥 𝑤

𝑦 𝑧

⎤⎦
is an arbitrary 2× 2 submatrix of the bicluster (𝐽, 𝐼). So, we must prove that |(𝑥−𝑤)−
(𝑦 − 𝑧)| ≤ 𝜖. In fact, reorganizing the elements of the summation produces

|(𝑥− 𝑦)− (𝑤 − 𝑧)| = |(𝑥− 𝑤)− (𝑦 − 𝑧)|

and the demonstration is concluded.

Biclustering algorithms for finding CHE (coherent evolution) biclusters address
the problem of finding coherent evolutions across the rows and/or columns of the data
matrix regardless of their exact values [79]. There are many subtypes of CHE biclusters,
and the order-preserving submatrix (OPSM) biclusters are the most famous among them.
Figure 1 shows an example of an OPSM bicluster.

Definition 2.7 (OPSM biclusters). An OPSM bicluster is a submatrix (𝐼, 𝐽) of a data
matrix A𝑛×𝑚 such that there is a permutation 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑠} of the set of columns
𝐽 , where 𝑎𝑖𝑝1 ≤ 𝑎𝑖𝑝2 ≤ ... ≤ 𝑎𝑖𝑝𝑠, ∀𝑖 ∈ 𝐼.

Figure 1 shows an OPSM bicluster, where 𝑃 = {4, 2, 3, 1, 5}.

We can easily notice that, in the perfect case, CVR and CVC biclusters are gen-
eralizations of CTV biclusters. Similarly, CHV biclusters are generalizations of CVR and
CVC biclusters. Conformably, OPSM biclusters are generalizations of CHV biclusters.
Those inferences are also true for the perturbed cases, as shown by Lemmas 2.4 to 2.6.

Lemma 2.4. A CTV bicluster with residue 𝜖 is a CVC (CVR) bicluster with residue 𝜖′

such that 𝜖′ ≤ 𝜖.

Proof. If a CTV bicluster has residue 𝜖, it means that the variation inside it is 𝜖. Conse-
quently, the maximum variation in a bicluster column is 𝜖. Therefore, 𝜖′ ≤ 𝜖.

The proof for a CVR bicluster is equivalent.

Lemma 2.5. A CVC (CVR) bicluster with residue 𝜖 is a CHV bicluster with residue 𝜖′

such that 𝜖′ ≤ 2𝜖.
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Proof. Without loss of generality, let pick any two columns 𝑗 and 𝑙 of the CVC bicluster
(𝐼, 𝐽). So, we have that

max
𝑖

(𝑎𝑖𝑗 − 𝑎𝑖𝑙)−min
𝑖

(𝑎𝑖𝑗 − 𝑎𝑖𝑙) ≤ (max
𝑖

(𝑎𝑖𝑗)−min
𝑖

(𝑎𝑖𝑙))− (min
𝑖

(𝑎𝑖𝑗)−max
𝑖

(𝑎𝑖𝑙))

= max
𝑖

(𝑎𝑖𝑗)−min
𝑖

(𝑎𝑖𝑙) + max
𝑖

(𝑎𝑖𝑙)−min
𝑖

(𝑎𝑖𝑗)

≤ 2𝜖.

The proof for a CVR bicluster is equivalent.

Lemma 2.6. A bicluster is an OPSM when the differences between all its pairs of columns
have the same signal.

Proof. If the difference between two columns of a bicluster has the same signal for all
elements, then we know the order between these two columns. If we have this for all pairs
of columns, then we can assemble a permutation so that all columns are rearranged from
the column with the lowest values to the column with the highest values. So, we have an
OPSM by definition.

In Appendix A, we will exemplify the usage of biclustering in a kind of dataset
that is very popular nowadays: a dataset containg ratings from users on movies. We will
demonstrated some limitations of the traditional clustering techniques when applied to
this kind of dataset, and we will provide examples of mining different types of biclusters
from this dataset.

2.2 Metrics and indices
Here, we will outline some bicluster metrics and indices to ease the reading of this

work.

The volume of a bicluster (𝐼, 𝐽) is given by |𝐼| × |𝐽 |.

The overlap between two biclusters (𝐼, 𝐽) and (𝐼 ′, 𝐽 ′) is given by:

𝑜𝑣𝑒((𝐼, 𝐽), (𝐼 ′, 𝐽 ′)) = |𝐼 ∩ 𝐼 ′| × |𝐽 ∩ 𝐽 ′|
min(|𝐼 × 𝐽 |, |𝐼 ′ × 𝐽 ′|) (2.6)

Let B = (𝐼𝑙, 𝐽𝑙), 𝑙 = 1, ..., 𝑞, be a biclustering solution, composed of 𝑞 biclusters.
The span of the solution B is given by:

𝑠𝑝𝑎𝑛(B) =
⋃︁

(𝐼𝑙,𝐽𝑙)
𝐼𝑙 × 𝐽𝑙, (2.7)

The coverage of the solution B is given by:

𝑐𝑜𝑣(B) = |𝑠𝑝𝑎𝑛(B)|, (2.8)
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i.e, the number of cells of the data matrix covered by at least one bicluster. It is more
usual to present the coverage in terms of percentage, i.e, 100× 𝑐𝑜𝑣(B)/(𝑛×𝑚).

The global overlap of the solution B is given by:

𝑜𝑣𝑒𝑔(B) =
∑︀

(𝐼𝑙×𝐽𝑙) |𝐼𝑙 × 𝐽𝑙| − 𝑐𝑜𝑣(B)
𝑐𝑜𝑣(B) . (2.9)

If we have a reference bicluster solution Ḃ, we can measure how good is a found
bicluster solution B by means of an external evaluation [50]. We will use precision and
recall to this end:

𝑝𝑟𝑒𝑐(B, Ḃ) = |𝑠𝑝𝑎𝑛(B) ∩ 𝑠𝑝𝑎𝑛(Ḃ)|
𝑐𝑜𝑣(B) (2.10)

𝑟𝑒𝑐(B, Ḃ) = 𝑝𝑟𝑒𝑐(Ḃ,B) (2.11)

2.3 Maximality and Properties
Definition 2.8 (Maximal bicluster). Given the desired characteristics of homogeneity, a
bicluster (𝐼, 𝐽) is called a maximal bicluster if and only if:

∙ ∀𝑥 ∈ 𝑋 ∖ 𝐼, (𝐼 ∪ {𝑥}, 𝐽) is not a (valid) bicluster, and

∙ ∀𝑦 ∈ 𝑌 ∖ 𝐽 , (𝐼, 𝐽 ∪ {𝑦}) is not a (valid) bicluster.

It means that a bicluster is maximal if we cannot add any object/attribute to it without
violating the desired characteristics of homogeneity. For instance, a CTV bicluster (𝐼, 𝐽)
is called a maximal CTV bicluster iff:

∙ ∀𝑥 ∈ 𝑋 ∖ 𝐼, max𝑖∈𝐼∪{𝑥},𝑗∈𝐽(𝑎𝑖𝑗)−min𝑖∈𝐼∪{𝑥},𝑗∈𝐽(𝑎𝑖𝑗) > 𝜖, and

∙ ∀𝑦 ∈ 𝑌 ∖ 𝐽 , max𝑖∈𝐼,𝑗∈𝐽∪{𝑦}(𝑎𝑖𝑗)−min𝑖∈𝐼,𝑗∈𝐽∪{𝑦}(𝑎𝑖𝑗) > 𝜖.

For all bicluster definitions given in Subsection 2.1.1, we have the following prop-
erties.

Property 2.1 (Anti-Monotonicity). Let (𝐼, 𝐽) be a bicluster. Any submatrix (𝐼 ′, 𝐽 ′),
where 𝐼 ′ ⊆ 𝐼 and 𝐽 ′ ⊆ 𝐽 , is also a bicluster.

Property 2.2 (Monotonicity). Let (𝐼, 𝐽) be a maximal bicluster. Any supermatrix of
(𝐼, 𝐽) is not a valid bicluster.
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Usually, the efficient algorithms for enumerating CTV biclusters of ones from bi-
nary datasets are based on the monotonicity and anti-monotonicity properties [16]. In
fact, we do not know any efficient algorithm for this task that is not based on these
properties. RIn-Close (see Chapter 5), in turn, also considers these properties, but now
in the context of numerical datasets. Any definition of a bicluster type that meets these
properties can be used in our framework. For instance, our definition of a CVC bicluster
considers the same maximum residue 𝜖 for all attributes. However, it is possible to use a
different maximum residue for each attribute. Suppose that we are analyzing a dataset
where the attributes have different range values. In this case, we could use a different
value of 𝜖 for each column, or we could normalize / scale the domain of the attributes
and use the same value of 𝜖 for all of them. Another example of bicluster’s definition that
meets the monotonicity and anti-monotonicity properties is the OPSM [14]. On the other
hand, among the definitions of bicluster that do not meet these two properties are the
ones based on correlation measures, such as Pearson or Spearman (see the proposal of
Flores et al. [36] for an example). In this case, a bicluster (𝐼, 𝐽) that meets a correlation
threshold can have submatrices (𝐼 ′, 𝐽 ′) that do not meet the correlation threshold, thus
violating these two crucial properties used in the enumerative algorithms of FCA and
FPM areas.

One of the first shifting biclusters definitions, which is based on the mean squared
residue (MSR) [23], is also an example of definition that does not meet the monotonicity
and anti-monotonicity properties. The MSR is given by

𝐻(𝐼, 𝐽) = 1
|𝐼||𝐽 |

∑︁
𝑖∈𝐼,𝑗∈𝐽

(𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)2, (2.12)

where

𝑎𝑖𝐽 = 1
|𝐽 |

∑︁
𝑗∈𝐽

𝑎𝑖𝑗, 𝑎𝐼𝑗 = 1
|𝐼|

∑︁
𝑖∈𝐼

𝑎𝑖𝑗, and 𝑎𝐼𝐽 = 1
|𝐼||𝐽 |

∑︁
𝑖∈𝐼,𝑗∈𝐽

𝑎𝑖𝑗.

Biclustering algorithms that are based on this definition look for biclusters (𝐼, 𝐽) where
𝐻(𝐼, 𝐽) ≤ 𝛿, where 𝛿 is a user-defined parameter. The biclusters are called 𝛿-biclusters.
The problem with this definition is that a bicluster (𝐼, 𝐽) that is a 𝛿-bicluster (for some
value of 𝛿 specified by the user) can have submatrices (𝐼 ′, 𝐽 ′), where 𝐼 ′ ⊆ 𝐼 and 𝐽 ′ ⊆ 𝐽 ,
that are not 𝛿-biclusters. Only when we use 𝛿 = 0, we will have that all submatrices
(𝐼 ′, 𝐽 ′) of a 𝛿-bicluster (𝐼, 𝐽) are also 𝛿-biclusters. For this reason, we can only establish a
one-to-one correspondence between our definition and this one when we are talking about
perfect biclusters.

Property 2.3. If there is a bicluster (𝐼, 𝐽) with maximum residue 𝜖 in the data matrix
A, then there is a bicluster (𝐼 ′, 𝐽 ′), where 𝐼 ′ ⊇ 𝐼 and 𝐽 ′ ⊇ 𝐽 , with maximum residue
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𝜖′ ≥ 𝜖 in the data matrix A.

Property 2.4. Let B be an enumerative bicluster solution without restrictions on the
minimum number of rows and columns of the biclusters. In this case, we have 𝑐𝑜𝑣(B) =
100%.

Property 2.4 is supported by the fact that every single element of matrix A𝑛×𝑚 is
a valid bicluster by itself.

Property 2.5. Let B𝜖 be an enumerative bicluster solution with maximum perturbation 𝜖,
and B𝜖′ be an enumerative bicluster solution with maximum perturbation 𝜖′, where 𝜖 > 𝜖′.
Both, B𝜖 and B𝜖′, share the same restrictions on the minimum number of rows and
columns of the biclusters. In this case, 𝑠𝑝𝑎𝑛(B𝜖) ⊇ 𝑠𝑝𝑎𝑛(B𝜖′), and therefore 𝑐𝑜𝑣(B𝜖) ≥
𝑐𝑜𝑣(B𝜖′).

Property 2.5 states that the coverage is a monotonic function with respect to
the parameter 𝜖. However, it does not indicate that the number of biclusters will always
increase with 𝜖. With an increase in 𝜖, new biclusters tend to be found, but it is not always
valid. For example, two biclusters found with 𝜖 = 𝑥 can be merged into one with some
𝜖 > 𝑥. In fact, if 𝜖 is high enough, the entire dataset will be considered a single valid
bicluster.

2.4 Chapter Overview
This chapter presented the main concepts of biclustering, which is a local approach

for clustering and overcomes many limitations of the traditional clustering techniques .
Briefly, a bicluster is a submatrix of the data matrix that meets a certain homogeneity
criterion. In respect of this homogeneity criterion, we define the five main types of biclus-
ters, and show the links between them. We also outlined some important properties with
respect to our bicluster definitions, and define the concept of maximal bicluster. Bicluster
metrics and indices was also presented to facilitate the reading of this thesis.

In the next chapter, we will provide an overview about Formal Concept Analysis
(FCA), and its correlated areas. We also will present the In-Close2 algorithm, which we
generalized to develop our family of enumerative biclustering algorithms.
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3 Formal Concept Analysis

Formal Concept Analysis (FCA) is a field of applied mathematics based on mathe-
matical order theory, in particular on the theory of complete lattices. Here, we will explain
the basic principles of FCA. For more details refer to Ganter and Wille [39].

Definition 3.1 (Formal Context). A formal context is a triple (𝐺,𝑀, 𝐼) of two sets 𝐺
and 𝑀 , and a relation 𝐼 ⊆ 𝐺 ×𝑀 . Each 𝑔 ∈ 𝐺 is interpreted as an object, and each
𝑚 ∈𝑀 is interpreted as an attribute. In order to express that an object 𝑔 is in a relation
𝐼 with an attribute 𝑚, we write (𝑔,𝑚) ∈ 𝐼 or 𝑔𝐼𝑚. We read it as “the object 𝑔 has the
attribute 𝑚”.

Notice that a formal context can be easily represented by a binary matrix D,
where rows represent objects, and columns represent attributes. We will have 𝑑𝑔𝑚 = 1 if
the object 𝑔 has the attribute 𝑚, and we will have 𝑑𝑔𝑚 = 0 otherwise. Table 3 shows an
example of a formal context represented by a binary matrix.

For a subset 𝐴 ⊆ 𝐺 of objects, we define

𝐴′ = {𝑚 ∈𝑀 |∀𝑔 ∈ 𝐴 : 𝑔𝐼𝑚} (3.1)

as the set of attributes common to the objects in 𝐴. Similarly, for a subset 𝐵 ⊆ 𝑀 , we
define:

𝐵′ = {𝑔 ∈ 𝐺|∀𝑚 ∈ 𝐵 : 𝑔𝐼𝑚} (3.2)

as the set of objects common to the attributes in 𝐵.

Definition 3.2 (Formal Concept). A formal concept of the formal context (𝐺,𝑀, 𝐼) is a
pair (𝐴,𝐵) with 𝐴 ⊆ 𝐺, 𝐵 ⊆𝑀 , 𝐴′ = 𝐵, and 𝐵′ = 𝐴. The subset 𝐴 of a formal concept
(𝐴,𝐵) is called extent, and the subset 𝐵 is called intent.

Table 3 – Example of a formal context with a formal concept highlighted.

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7
𝑔1 0 0 1 1 1 0 1
𝑔2 0 0 1 0 0 0 0
𝑔3 1 1 1 1 1 1 1
𝑔4 1 0 0 0 1 1 1
𝑔5 1 0 1 0 0 1 0
𝑔6 0 0 1 1 0 0 1
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By the definition, we see that though many subsets 𝐴 can generate the same subset
𝐵, only the largest (closed) subset 𝐴 is part of a formal concept (and vice versa). See
the example of the formal concept highlighted in Table 3. The common attributes to the
objects 𝑔1, 𝑔3, and 𝑔6 are: 𝑚3, 𝑚4, and 𝑚7. In turn, the common objects to the attributes
𝑚3, 𝑚4, and 𝑚7 are: 𝑔1, 𝑔3, and 𝑔6.

The set of all formal concepts of the context (𝐺,𝑀, 𝐼) is denoted by B(𝐺,𝑀, 𝐼).

Proposition 3.1. If (𝐺,𝑀, 𝐼) is a formal context, 𝐴,𝐴1, 𝐴2 ⊆ 𝐺 are sets of objects and
𝐵,𝐵1, 𝐵2 ⊆𝑀 are sets of attributes, then

1. 𝐴1 ⊆ 𝐴2 ⇒ 𝐴′
2 ⊆ 𝐴′

1,

2. 𝐴 ⊆ 𝐴′′,

3. 𝐴′ = 𝐴′′′,

4. 𝐵1 ⊆ 𝐵2 ⇒ 𝐵′
2 ⊆ 𝐵′

1,

5. 𝐵 ⊆ 𝐵′′,

6. 𝐵′ = 𝐵′′′, and

7. 𝐴 ⊆ 𝐵′ ⇔ 𝐵 ⊆ 𝐴′ ⇔ 𝐴×𝐵 ⊆ 𝐼.

This proposition shows that the two derivation operators {(.)′, (.)′} form a Galois
connection between the power sets of 𝐺 and 𝑀 [39]. For the proof of the proposition,
refer to Ganter and Wille [39].

Definition 3.3 (Galois Connection). Let 𝜙 : 𝑃 → 𝑄 and 𝜓 : 𝑄 → 𝑃 be maps between
two ordered sets (𝑃,≤) and (𝑄,≤). Such a pair of maps is called a Galois Connection
between the ordered sets if:

1. 𝑝1 ≤ 𝑝2 ⇒ 𝜙𝑝1 ≥ 𝜙𝑝2

2. 𝑞1 ≤ 𝑞2 ⇒ 𝜓𝑞1 ≥ 𝜓𝑞2

3. 𝑝 ≤ 𝜓𝜙𝑝 and 𝑞 ≤ 𝜙𝜓𝑞

The two maps then are called dually adjoint to each other.

For every set 𝐴 ⊆ 𝐺, 𝐴′ is an intent of some formal concept, since (𝐴′′, 𝐴′) is always
a formal concept. 𝐴′′ is the smallest extent containing 𝐴. Consequently, a set 𝐴 ⊆ 𝐺 is an
extent if and only if 𝐴 = 𝐴′′. The union of extents generally does not result in an extent,
but the intersection of any number of extents is always an extent. The same applies to
intents [39].
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Formal concepts are partially ordered by (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2)⇔ 𝐴1 ⊆ 𝐴2(⇔ 𝐵2 ⊆
𝐵1). With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (𝐺,𝑀, 𝐼).

There are several algorithms in the literature that are able to extract the concept
lattice of a formal context. Some examples are: Close-by-One (CbO) [65], In-Close [8], In-
Close2 [9], and FCbO [62]. As the algorithms that we will propose are based on In-Close2,
Subsection 3.1 is devoted to its formalization.

3.1 The main aspects of In-Close2 algorithm
In-Close2 [9] and its precursor In-Close [8] are based conceptually on Close-By-

One [65]. These algorithms use the lexicographic approach for mining formal concepts,
thus avoiding the discovery of the same formal concept multiple times. In-Close2 [9] is a
computationally faster version of In-Close [8]. To achieve a better performance than the
one produced by In-Close, In-Close2 (i) allows all elements of an intent to be inherited,
and (ii) implements some optimization and data preprocessing techniques for efficient
use of cache memory. This second improvement is only applicable to binary matrices,
therefore we will not use it here.

Ganter [37] showed how the lexicographical order of concepts can be used to avoid
the search of repeated results. In the mathematical order theory, combinations have a
lexicographical order, for instance, {1, 2, 3} comes before {1, 2, 4}, and also before {1,
3} [8]. In-Close and In-Close2 maintain a current attribute. The concept next generated
is new (canonical) if its intent contains no attribute preceding the current attribute.
Therefore, to verify canonicity, In-Close/In-Close2 does the following: supposing that 𝐵
is the current intent, 𝑗 is the current attribute, and 𝑅𝑊 is the resulting extent, 𝑅𝑊 is
not canonical if

∃𝑘 ∈𝑀 ∖𝐵|[𝑘 < 𝑗] ∧ [∀𝑔 ∈ 𝑅𝑊 : 𝑔𝐼𝑘]. (3.3)

i.e., if there is an attribute 𝑘 < 𝑗 where 𝑘 /∈ 𝐵 and 𝑅𝑊 ⊆ {𝑘}′. See Eq. 3.2 for a definition
of {𝑘}′. The concept of canonicity was introduced in Kuznetsov [66].

Algorithm 3.1 shows In-Close2 pseudocode. It is an adaptation of the pseudocode
proposed by Andrews [9] in order to facilitate the reading and the understanding of the
algorithm In-Close2. When we use 𝐴𝑟 and 𝐵𝑟, it means the extent and the intent of the
𝑟-th formal concept, respectively. When we write 𝐽𝑘 it means the element of the set 𝐽 at
position 𝑘, for instance, if 𝐽 = {2, 5, 7, 8, 13} and 𝑘 = 2, 𝐽2 = 5. The same for 𝑅𝑘.

In a main function, we set (𝐴1, 𝐵1)← ({1, ..., 𝑛}, {}) (which is called supremum),
and 𝑟𝑛𝑒𝑤 ← 1. Then, we call the function In-Close2 to incrementally close the formal
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concept (𝐴1, 𝐵1), starting at attribute index 1. Thereafter, all formal concepts will be
found recursively. During the closure of a formal concept, In-Close2 iterates across the
attributes (line 3). If the current attribute 𝑗 is not an inherited attribute (line 4), In-
Close2 computes the candidate to a new extent 𝑅𝑊 (line 5). The size of 𝑅𝑊 must be
greater than or equal to the value of the parameter 𝑚𝑖𝑛𝑅𝑜𝑤 (line 6). If the extent 𝑅𝑊 is
the same as the current extent 𝐴𝑟 (line 7), then attribute 𝑗 is added to the current intent
𝐵𝑟 (line 8). If the extent 𝑅𝑊 is not the same as the current extent 𝐴𝑟, In-Close2 tests
if 𝑅𝑊 is canonical (line 9). If yes, the current formal concept (𝐴𝑟, 𝐵𝑟) will give rise to
a child formal concept (lines 10 to 13). After the closure of the current formal concept
(𝐴𝑟, 𝐵𝑟), In-Close2 starts to close its children (lines 19 to 22).

Algorithm 3.1 In-Close2 (adapted from [9])
Input: Binary data matrix D𝑛×𝑚, minimum number of rows 𝑚𝑖𝑛𝑅𝑜𝑤, index of the formal

concept to be closed 𝑟, index of the initial attribute 𝑦
1: 𝐽 ← {}
2: 𝑅← {}
3: for 𝑗 ← 𝑦 to 𝑚 do
4: if 𝑗 /∈ 𝐵𝑟 then
5: 𝑅𝑊 ← 𝐴𝑟 ∩ {𝑗}′
6: if |𝑅𝑊 | ≥ 𝑚𝑖𝑛𝑅𝑜𝑤 then
7: if |𝑅𝑊 | = |𝐴𝑟| then
8: 𝐵𝑟 ← 𝐵𝑟 ∪ {𝑗}
9: else if 𝑅𝑊 is canonical then

10: 𝑟𝑛𝑒𝑤 ← 𝑟𝑛𝑒𝑤 + 1 // global variable
11: 𝐽 ← 𝐽 ∪ {𝑗}
12: 𝑅← 𝑅 ∪ {𝑟𝑛𝑒𝑤}
13: 𝐴𝑟𝑛𝑒𝑤 ← 𝑅𝑊
14: end if
15: end if
16: end if
17: end for
18: Store (𝐴𝑟, 𝐵𝑟) in the solution B
19: for 𝑘 ← 1 to |𝐽 | do
20: 𝐵𝑅𝑘

← 𝐵𝑟 ∪ {𝐽𝑘} // 𝑅𝑘 and 𝐽𝑘 are the 𝑘-th elements of 𝑅 and 𝐽 , respectively
21: In-Close2(D, 𝑚𝑖𝑛𝑅𝑜𝑤, 𝑅𝑘, 𝐽𝑘 + 1)
22: end for

The worst-case processing time of In-Close2 is 𝑂(𝑘𝑛𝑚2), where 𝑘 is the number
of formal concepts. The difference between In-Close and In-Close2 pseudocodes is just
that in In-Close the recursive call happens after the test of canonicity. Therefore the
descendant formal concepts inherits only the current attributes of the parent.

If 𝑚𝑖𝑛𝑅𝑜𝑤 = 1, In-Close2 mines the concept lattice of the formal context repre-
sented by the binary matrix D. Otherwise, if 𝑚𝑖𝑛𝑅𝑜𝑤 > 1, In-Close2 mines the set of all
frequent concepts for the threshold 𝑚𝑖𝑛𝑅𝑜𝑤, called the iceberg concept lattice. The param-
eter 𝑚𝑖𝑛𝑅𝑜𝑤 helps to prune the search space, together with the verification of canonicity.
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Table 4 – Closure of the supremum formal concept (𝐴1, 𝐵1) for the data in Table 3.

𝑅𝑊 Situation
𝑗 = 1 {3, 4, 5} is canonical
𝑗 = 2 {3} |𝑅𝑊 | < 𝑚𝑖𝑛𝑅𝑜𝑤
𝑗 = 3 {1, 2, 3, 5, 6} is canonical
𝑗 = 4 {1, 3, 6} is not canonical
𝑗 = 5 {1, 3, 4} is canonical
𝑗 = 6 {3, 4, 5} is not canonical
𝑗 = 7 {1, 3, 4, 6} is canonical

A candidate to a new extent 𝑅𝑊 does not even start to be an actual extent of a formal
concept when it fails to meet both conditions.

In addition to the minimum number of rows𝑚𝑖𝑛𝑅𝑜𝑤, we can easily add a minimum
number of columns 𝑚𝑖𝑛𝐶𝑜𝑙 to In-Close2. While In-Close2 loops through the attributes,
a formal concept (𝐴𝑟, 𝐵𝑟) can be discarded if, even adding all remaining attributes to
its intent, it will not meet the minimum number of columns 𝑚𝑖𝑛𝐶𝑜𝑙 (therefore, its next
descendants will not meet the minimum number of columns 𝑚𝑖𝑛𝐶𝑜𝑙 as well). Although
this restriction can be checked only during the closure of a formal concept, it will also
prune the search space and save computational resources because (𝑖) it stops the con-
struction of a formal concept that will be discarded later, given that it does not meet
the restriction 𝑚𝑖𝑛𝐶𝑜𝑙, and (𝑖𝑖) it avoids generating descendants that will not meet the
restriction 𝑚𝑖𝑛𝐶𝑜𝑙 as well.

3.1.1 Example of In-Close2 Operation

Now, we will provide an example to illustrate the In-Close2 operation. Let D be the
binary matrix in Table 3. The supremum is initialized as (𝐴1 = {1, 2, 3, 4, 5, 6}, 𝐵1 = {}).
Supposing that 𝑚𝑖𝑛𝑅𝑜𝑤 = 2, Table 4 shows all the extents 𝑅𝑊 computed during the
closure of the supremum formal concept (𝐴1, 𝐵1) (lines 3 to 17 of Algorithm 3.1). Thus,
the descendants of (𝐴1, 𝐵1) are:

∙ (𝐴2 = {3, 4, 5}, 𝐵2 = {1}),

∙ (𝐴3 = {1, 2, 3, 5, 6}, 𝐵3 = {3}),

∙ (𝐴4 = {1, 3, 4}, 𝐵4 = {5}), and

∙ (𝐴5 = {1, 3, 4, 6}, 𝐵5 = {7}).

The next step of In-Close2 is to close the descendants of (𝐴1, 𝐵1) recursively (lines 19 to
22 of Algorithm 3.1).
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Table 5 – Closure of the formal concept (𝐴2, 𝐵2) for the data in Table 3.

𝑅𝑊 Situation
𝑗 = 2 {3} |𝑅𝑊 | < 𝑚𝑖𝑛𝑅𝑜𝑤
𝑗 = 3 {3, 5} is canonical
𝑗 = 4 {3} |𝑅𝑊 | < 𝑚𝑖𝑛𝑅𝑜𝑤
𝑗 = 5 {3, 4} is canonical
𝑗 = 6 {3, 4, 5} 𝑅𝑊 = 𝐴2
𝑗 = 7 {3, 4} is not canonical

Table 6 – Formal concepts of the binary data matrix of Table 3 (using 𝑚𝑖𝑛𝑅𝑜𝑤 = 2 and
𝑚𝑖𝑛𝐶𝑜𝑙 = 1).

# Extent Intent
1 {3, 4, 5} {1, 6}
2 {1, 2, 3, 5, 6} {3}
3 {1, 3, 4} {5, 7}
4 {1, 3, 4, 6} {7}
5 {3, 5} {1, 3, 6}
6 {3, 4} {1, 5, 6, 7}
7 {1, 3, 6} {3, 4, 7}
8 {1, 3} {3, 4, 5, 7}

To illustrate, let’s compute the closure of the formal concept (𝐴2, 𝐵2). Table 5
shows all the extents 𝑅𝑊 computed during its closure. After its closure, the formal
concept (𝐴2, 𝐵2) is equal to ({3, 4, 5}, {1, 6}). Remember that the descendants inherit the
columns in the intent of their parent. Thus, the descendants of (𝐴2, 𝐵2) are:

∙ (𝐴6 = {3, 5}, 𝐵6 = {1, 6, 3}), and

∙ (𝐴7 = {3, 4}, 𝐵7 = {1, 6, 5}).

The next step of In-Close2 is to closure the descendants of (𝐴2, 𝐵2).

This process continues until In-Close2 computes the closure of all formal concepts
satisfying 𝑚𝑖𝑛𝑅𝑜𝑤. The final result is presented in Table 6.

3.2 Related areas of research in the literature
The problem of extracting the concept lattice from a formal context is the same

as extracting all maximal CTV biclusters of ones from a binary data matrix [59]. Table 3
shows an example of a formal context with a formal concept highlighted. As we can see,
a formal concept is a maximal CTV bicluster of ones. Extent 𝐴 and intent 𝐵 are the set
of rows (objects) and columns (attributes) that compose a bicluster, respectively.
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The association mining problem is also closely related to FCA. This problem is
divided in two sub-problems: (i) the frequent itemset (pattern) mining problem, and (ii)
the problem of mining the association rules (see Subsection 3.2.1 for the basic concepts
of association rules) from these itemsets. As the first sub-problem of association mining
is the most computationally expensive, almost all researches have been focused on the
frequent itemset generation phase.

In terms of FCA, the problem of mining all frequent itemsets (patterns) can be
described as follows. Given a formal context (𝐺,𝑀, 𝐼), determine all subsets 𝐵 ⊆ 𝑀

such that the support of 𝐵 (see Subsection 3.2.1 for the definition of support) is above
a user-defined parameter [68]. Examples of algorithms that perform this task are Apriori
[3] and Eclat [110].

To reduce the computational cost of the frequent pattern mining problem, some
algorithms, such as GenMax [55], mine only the maximal frequent itemsets, i.e., those
frequent itemsets from which all supersets are infrequent and all subsets are frequent.
The problem of this approach is that it leads to a loss of information since the supports
of the subsets are not available.

An option to reduce the computational cost without loss of information is to mine
only the closed frequent itemsets. A frequent itemset 𝐵 is called closed if there exists
no superset 𝐷 ⊃ 𝐵 with 𝐵′ = 𝐷′, i.e., a closed frequent itemset is the intent of a
formal concept. The closed frequent itemsets are also called frequent concept intents. For
any itemset 𝐵, its concept intent is given by 𝐵′′. Note that this approach is the most
closely related to FCA. Remarkably, a concept lattice contains all necessary information
to derive the support of all (frequent) itemsets [68]. Indeed, the set of closed frequent
itemsets uniquely determines the exact frequency of all itemsets, and it can be orders of
magnitude smaller than the set of all frequent itemsets [109]. Moreover, this approach
drastically reduces the number of rules that have to be presented to the user, without any
information loss [68]. CHARM [109] is a well-known algorithm to mine all closed frequent
itemsets. It exploits the fact that the extents of the formal concepts are irrelevant in the
frequent pattern mining problem (just the intents and the cardinality of the extents are
relevant). Thus, it drastically cuts down the size of memory required [109].

To exemplify the difference between frequent itemset, maximal frequent itemset
and closed frequent itemset, let us use the data matrix of Table 3 and assume that the min-
imum support is equal to 2. The intent of the formal concept highlighted, {𝑚3,𝑚4,𝑚7},
is a closed frequent itemset. {𝑚3,𝑚4,𝑚5,𝑚7} is a maximal frequent itemset and all its
subsets are frequent itemsets. Figure 3 exemplifies this relation.

The problem of enumerating all maximal bicliques from a bipartite graph is also
closely related to FCA. Madeira and Oliveira [79] stated that in the simplest case of
biclustering, where we are looking for CTV biclusters of ones in a binary data matrix
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Figure 3 – The relation between frequent itemsets, closed frequent itemsets, and maximal
frequent itemsets.

D, a bicluster corresponds to a biclique in the corresponding bipartite graph. Rows and
columns of the matrix D correspond, respectively, to the first and second sets of ver-
tices of a bipartite graph. For example, in Table 3, the first set of vertices is given by
{𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6}, and the second one is given by {𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6,𝑚7}. Each
element 𝑑𝑖𝑗 is equal to 1 if vertex 𝑖 is connected to vertex 𝑗, and 0 otherwise. In this
scenario, a formal concept from the binary matrix D is equivalent to a maximal biclique
(bicluster). So, finding a concept lattice is also equivalent to finding all maximal bicliques
of a bipartite graph. The connection between FCA and the problem of enumerating all
maximal bicliques from a bipartite graph is explored in several papers [1, 40, 41]. More-
over, Gély et al. [41] pointed out several algorithms to find all maximal bicliques from a
bipartite graph, most of them are from the area of FCA.

For an undirected graph without self-loops, each maximal biclique is generated
twice if we apply FCA algorithms, i.e., each maximal biclique corresponds to a pair of
formal concepts [72]. In fact, Li et al. [72] proved the correspondence between maximal
bicliques and closed itemsets. However, the authors did not realize that a closed itemset is
the intent of a formal concept. Li et al. [72] also modified the LCM [101] (an algorithm for
finding closed frequent itemsets) to develop the LCM-MBC algorithm, tailored to produce
a non-redundant enumeration of all maximal bicliques. For an undirected graph with self-
loops, the problem of using FCA is that it may happen that the extent 𝐴 and the intent 𝐵
of a formal concept (𝐴,𝐵) will not be disjoint , i.e., 𝐴∩𝐵 ̸= ∅. But in the graph literature,
we can find specialized algorithms that exploit the specific nature of particular classes of
graphs, leading to highly efficient solutions [6]. For example, Eppstein’s algorithm [34] is
a linear time algorithm for the class of graphs with bounded arboricity.
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We also want to emphasize that it may be possible to adapt FCA algorithms to
find all maximal cliques of an undirected graph. A clique is a subset of vertices of an
undirected graph, such that every two distinct vertices in the clique are adjacent. As
FCA algorithms looks for blocks of ones, the adjacency matrix must necessarily have
all its diagonal elements equal to 1 (even if the graph does not have self-loops). With
this, every formal concept whose extent is equal to the intent represents a clique of the
undirected graph. However, there are more efficient methods to enumerate all maximal
cliques in the graph theory literature [20].

3.2.1 Basic concepts of association rules

Let (𝐺,𝑀, 𝐼) be a formal context, where 𝐺 is a set of objects, 𝑀 is a set of items
(or attributes), and 𝐼 ⊆ 𝐺 × 𝑀 is a binary relation between the objects 𝐺 and the
attributes 𝑀 .

Definition 3.4. A set 𝐵 = {𝑚1,𝑚2, ...,𝑚𝑘} ⊆ 𝑀 is called an itemset (or a 𝑘-itemset
since it contains 𝑘 items).

The support of an itemset 𝐵 is given by

𝑠𝑢𝑝(𝐵) = |𝐵′|, (3.4)

where 𝐵′ is defined in Eq. 3.2 and |𝜁| is the number of elements in the set 𝜁. The relative
support or frequency of an itemset 𝐵 is given by

𝑟𝑠𝑢𝑝(𝐵) = 𝑠𝑢𝑝(𝐵)
|𝐺|

. (3.5)

Definition 3.5. An itemset 𝐵 is a frequent itemset if 𝑠𝑢𝑝(𝐵) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝, where 𝑚𝑖𝑛𝑆𝑢𝑝
is a user-defined threshold.

Definition 3.6. An association rule is an expression of the form 𝑋 ⇒ 𝑌 , where 𝑋 and
𝑌 are itemsets and they are disjoint, i.e., 𝑋, 𝑌 ⊆ 𝑀 and 𝑋 ∩ 𝑌 = {}. 𝑋 is called the
body or antecedent, and 𝑌 is called the head or consequent of the rule.

The support of a rule 𝑋 ⇒ 𝑌 is given by the number of objects common to the
itemset 𝑋 ∪ 𝑌 :

𝑠𝑢𝑝(𝑋 ⇒ 𝑌 ) = 𝑠𝑢𝑝(𝑋 ∪ 𝑌 ) = |(𝑋 ∪ 𝑌 )′|. (3.6)
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Thus, the relative support of a rule 𝑋 ⇒ 𝑌 provides an estimate of the joint probability
of the occurrence of 𝑋 and 𝑌 :

𝑟𝑠𝑢𝑝(𝑋 ⇒ 𝑌 ) = 𝑠𝑢𝑝(𝑋 ∪ 𝑌 )
|𝐺|

= 𝑃 (𝑋 ∧ 𝑌 ). (3.7)

The confidence of a rule 𝑋 ⇒ 𝑌 is the conditional probability that an object
contains the items 𝑌 given that it contains the items 𝑋:

𝑐𝑜𝑛𝑓(𝑋 ⇒ 𝑌 ) = 𝑃 (𝑌 |𝑋) = 𝑃 (𝑋 ∧ 𝑌 )
𝑃 (𝑋) = 𝑠𝑢𝑝(𝑋 ∪ 𝑌 )

𝑠𝑢𝑝(𝑋) . (3.8)

Definition 3.7. A rule 𝑋 ⇒ 𝑌 is a frequent rule if 𝑠𝑢𝑝(𝑋 ⇒ 𝑌 ) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝, where
𝑚𝑖𝑛𝑆𝑢𝑝 is a user-defined threshold.

Definition 3.8. A rule 𝑋 ⇒ 𝑌 is a strong rule if 𝑐𝑜𝑛𝑓(𝑋 ⇒ 𝑌 ) ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓 , where
𝑚𝑖𝑛𝐶𝑜𝑛𝑓 is a user-defined threshold.

Definition 3.9. A rule 𝑋 ⇒ 𝑌 is a class association rule (CAR) if its consequent 𝑌 is
a 1-itemset 𝑌 = {𝑐}, where 𝑐 is a class label. We use 𝑋 ⇒ 𝑐 instead of 𝑋 ⇒ {𝑐} for
simplicity.

The completeness of a CAR 𝑋 ⇒ 𝑐 is given by

𝑐𝑜𝑚𝑝(𝑋 ⇒ 𝑐) = 𝑠𝑢𝑝(𝑋 ∪ 𝑐)
𝑠𝑢𝑝(𝑐) . (3.9)

Thus completeness is the proportion of instances that are predicted by the CAR 𝑋 ⇒ 𝑐,
while confidence is the fraction of correct predictions made by the rule.

3.3 Chapter Overview
This chapter presented the main concepts of FCA, and also described its con-

nections with biclustering, association mining, and graph theory. It also presented the
algorithm In-Close2 and gave an example of its operation. Our family of enumerative
biclustering algorithms, RIn-Close, are conceptually based on In-Close2.

In the next chapter, we will provide a literature review and face RIn-Close algo-
rithms with their competitors.
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4 Related Works

Due to the inherent computational complexity of the problem of finding all max-
imal biclusters, most of the proposed algorithms are heuristic-based [79]. Some relevant
heuristics in the literature are: CC [23], FLOC [107], ROCC [32], ISA [52], Plaid [69], and
OPSM [14]. CC looks for biclusters with mean squared residue (MSR) below a user-defined
threshold 𝛿. It mines one bicluster at each iteration, and performs random perturbations
to the data to mask the already discovered biclusters. FLOC is also based on the MSR,
but performs simultaneous bicluster identification. Briefly, the goal of CC and FLOC is
to mine a set of biclusters with high average volume given the residue limit 𝛿. ROCC is
scalable and very versatile because it can be parametrized to mine several types of biclus-
ters. It works in two steps: (i) find 𝑘 × 𝑙 biclusters arranged in a grid structure, keeping
only the 𝑠𝑟 rows and 𝑠𝑐 columns with the lowest residue associated with them, and (ii)
filter out the biclusters with the largest residue values, and merge similar biclusters. ISA
looks for biclusters where their rows have an average value above a threshold 𝑡𝑔, and their
columns have an average value above a threshold 𝑡𝑐. ISA starts with 𝑛𝑠𝑒𝑒𝑑 biclusters,
and iteratively updates the columns and rows of the biclusters until convergence. Plaid
fits parameters of a generative model of the data iteratively by minimizing the mean
squared error between the modeled data and the true data. OPSM is a deterministic
greedy algorithm dedicated to find large OPSM biclusters.

Clearly, even the best heuristics potentially lead to sub-optimal solutions, thus
motivating the existence of many proposals of exhaustive bicluster enumeration, guiding
to the optimal solution. Most of the work in this area is designed to mine all maximal CTV
biclusters of ones from a binary dataset. In FCA, FPM and graph theory, there are several
efficient algorithms able to perform this task. Proposals such as [49, 80, 82, 87, 88, 97]
binarize the dataset and use FCA, FPM or graph theory algorithms to enumerate the
biclusters. To avoid the loss of information of tedious Boolean property encoding phases
[16], many proposals deal directly with numerical datasets, as the ones to be described in
what follows.

The proposals in [11, 16, 58, 59] are dedicated to enumerate CTV biclusters from
numerical datasets.

The RCB algorithm [11] is based on an FPM algorithm called Apriori [4], which
has a worst-case time exponential on the number of attributes. Thus, Apriori and the
algorithms based on it are not efficient. It is also noteworthy that Apriori mines frequent
itemsets, not closed frequent itemsets. Thus, it produces many redundant biclusters. RCB
adopts a two step process. First, all the square submatrices that qualify to be a CTV
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bicluster are enumerated. Second, these square CTV biclusters are merged to form rect-
angular CTV biclusters of arbitrary sizes.

The NBS-Miner algorithm [16] mines all maximal CTV biclusters of a numerical
dataset. The algorithm starts with the lattice (({}, {}), (𝐺,𝑀)) (whose bottom is ({}, {})
and top is (𝐺,𝑀)), i.e, the lattice containing all possible biclusters. Then, NBS-Miner
explores its sublattices using three functions: enumeration, pruning, and propagation. The
enumeration function splits recursively the current sublattice into two new sublattices.
The prune function is responsible for pruning the sublattices that do not attend to the re-
striction of similarity (imposed by 𝜖, see Eq. 2.1) or maximality. The propagation function
implements the reduction of the size of the search space of a sublattice, not considering
the entire current sublattice. The algorithm finds a bicluster when it finds a sublattice
whose top is equal to the bottom.

Kaytoue et al. [59] proposed two FCA-based methods to enumerate CTV biclus-
ters. The former is based on the discretization of the numerical data matrix using con-
ceptual scaling [39]. Let 𝑊 be the set of values that an object 𝑔 ∈ 𝐺 can take for an
attribute 𝑚 ∈𝑀 . First of all, they compute all tolerance classes [56] from 𝑊 . Then, they
create one formal context for each class of tolerance and use FCA standard algorithms to
enumerate the formal concepts from them. Each formal concept corresponds to a maximal
CTV bicluster. The formal contexts are created in a way that avoids finding redundant
CTV biclusters, but at a cost of not finding some biclusters. Since the resulting binary
tables may be aplenty depending on the number of elements of 𝑊 and the parameter 𝜖,
this method is not feasible in many real-world scenarios. The second method is divided in
two phases. In the first one, it enumerates all the CVC biclusters using interval pattern
structures (IPS) [38]. It is noteworthy that this method returns redundant CVC biclus-
ters. It happens because the pattern concepts are maximal by definition, but we lose this
property when we convert a pattern concept in a CVC bicluster. In the second phase,
CTV biclusters are extracted from the CVC biclusters, but this process is not so clear,
because a CVC bicluster can give rise to many CTV biclusters.

In [58], the authors also use tolerance classes over the set of numbers 𝑊 , and
create one formal context for each class of tolerance. They proposed a new algorithm
called TriMax to mine the CTV biclusters from these formal contexts. TriMax is able to
perform a complete, correct and non-redundat enumeration of all maximal CTV biclusters
in a numerical dataset. But due to the scaling process, TriMax may be not feasible in
many real-world scenarios too.

In the next two subsections, we highlight the competitors of the algorithms that
we are proposing, and compare them with RIn-Close algorithms. This comparison was
based on a theoretical study of the competitors, and we also tested the implementations
that were made available by the authors.
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Table 7 – Comparison of RIn-Close_CVC_P, RIn-Close_CVC and their competitors.

Complete Correct Non-Redundant Efficient
RIn-Close_CVC_P X X X X

RIn-Close_CVC X X X X
RAP X X
PPS ∘ X X
IPS X X

TCA X X

The symbol X indicates that the algorithm has the property. The symbol ∘ indicates
that the authors claim their algorithm has the property, but it fails to exhibit the

property.

4.1 Enumerating CVC (or CVR) biclusters
RAP [91] is an algorithm created to mine CVC biclusters that is also based on

Apriori [4]. The authors did not describe their strategy to avoid redundancy, but we
conjecture that the best that can be done is a pairwise comparison of biclusters with 𝑘

and 𝑘 + 1 columns.

In [26, 27], the authors proposed a method based on partition pattern structure
(PPS) [12]. Their proposal is not able to perform a complete enumeration because the
components of the partition of the set 𝐺 must be disjunct. They proposed a strategy
based on a lattice to remove the redundancy, which is much faster than to compare one
bicluster against all the others. But it is necessary to mine the redundant biclusters to
make this verification, so it is not an efficient method.

In [57], the authors revisited the proposals of mining CVC biclusters using IPS
[59] and PPS [26, 27]. They also proposed an approach based on Triadic Concept Anal-
ysis (TCA) [71]. From a numerical dataset, they derivate a triadic context given by
(𝑀,𝐺,𝐺, 𝑌 ) such that (𝑚, 𝑔1, 𝑔2) ∈ 𝑌 iif |𝑑𝑔1𝑚 − 𝑑𝑔2𝑚| ≤ 𝜖. Then, they use standard
TCA algorithms to enumerate the triadic concepts, but not all triadic concepts are max-
imal CVC biclusters.

Table 7 shows a conceptual comparison of these proposals and the algorithms that
we are proposing in Chapter 5 to enumerate CVC biclusters. Notice that our proposals
are the only algorithms that are able to perform an efficient, complete, correct and non-
redundant enumeration of all maximal CVC biclusters.

4.2 Enumerating CHV biclusters
pCluster [106] was the first deterministic algorithm with an enumerative approach

to mine CHV biclusters. pCluster computes all row-maximal biclusters with two columns
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and all column-maximal biclusters with two rows, prunes the unpromising biclusters, and
stores the remaining column-maximal biclusters in a prefix tree. Then, pCluster makes a
depth-first search in this prefix tree in order to mine larger biclusters. pCluster has the
following shortcomings: it does not find all biclusters, can find biclusters that do not attend
the user-defined measure of similarity, and returns redundant biclusters. Furthermore,
pCluster’s computational complexity is exponential w.r.t. the number of attributes.

Maple [95] is an improved version of pCluster and it is closer to an actual enu-
merative algorithm. It returns only non-redundant biclusters, but it does not have an
efficient approach to do this: for each possible new bicluster, Maple must look at all pre-
viously generated biclusters to avoid redundancy. Besides, there are two scenarios where
Maple fails to perform a complete and correct enumeration of all maximal biclusters. If
two biclusters have the same set of objects and share some attributes, Maple would re-
turn only one bicluster containing both of them (thus violating the user-defined measure
of similarity). Maple also may miss biclusters due to its routine of pruning unpromising
biclusters: Maple keeps an attribute-list ordered by some criterion. If a bicluster has a
subset of objects and a superset of attributes of another bicluster, and its extra attributes
are subsequently considering Maple’s attribute-list, Maple would prune it incorrectly. The
worst-case time of Maple’s search is also exponential w.r.t. the number of attributes.

MicroCluster [111] constructs a multigraph that represents all row-maximal bi-
clusters with two columns, where nodes represent attributes and edges represent sets
of objects. It uses a depth-first search on the multigraph to mine the biclusters. We
tested the authors’ MicroCluster implementation1, and we observed that MicroCluster
can fail to enumerate all maximal biclusters and can return biclusters that violate the
user-defined measure of similarity. Its worst-case time is also exponential w.r.t. the num-
ber of attributes. As Maple, MicroCluster must look at all previously generated biclusters
to avoid redundancy, which is always a strategy to be avoided due to the high computa-
tional cost. After mining a CHV bicluster, MicroCluster verifies if its columns and rows
attends user-defined measures of similarity too, in an attempt to mine biclusters that are
at the same time CHV, CVC, and CVR biclusters. If this verification fails, the bicluster
is discarded. Note that this verification can be done in any biclustering solution.

To reduce computational cost, algorithms such as SeqClus [105] and CPT [44]
relaxed the definition of CHV biclusters. Instead of looking for every pair of attributes
(or objects), they use a pivot attribute to compute the CHV biclusters. Thus, given
a user-defined parameter 𝜖, their biclusters will have residue below or equal to 2𝜖 (see
Lemma 4.1). The biclustering solution of these algorithms depends on the choices of the
pivot attributes. So, we can say that this strategy yields an approximate result for the
actual enumeration. A genuine complete and correct enumeration of CHV biclusters would
1 http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/Software

http://www.cs.rpi.edu/~ zaki/www-new/pmwiki.php/Software/Software
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provide the same solution when dealing with the original matrix or with its transpose
version. The CHV biclusters are fully preserved when rows become columns and columns
become rows of the matrix, see Lemma 2.3. But unfortunately, when resorting to the pivot
attribute, those techniques are prone to lose this fundamental property. Accordingly, these
algorithms are not able to perform a complete and correct enumeration. As SeqClus and
CPT are based on algorithms to mine frequent itemset, not closed frequent itemsets, they
return redundant biclusters and are not efficient to mine maximal biclusters. So, this idea
of mining CHV biclusters using a pivot attribute could have been better explored. In
fact, we could have used this idea in RIn-Close_CHV (as we used in RIn-Close_CHVP
because of Lemma 4.1: in this case, if a new candidate attribute is coherent with any
attribute of the current bicluster, it will be coherent with all other attributes of the current
bicluster), which would lead to an efficient algorithm. But our main goal is to provide
an algorithm able to perform a complete and correct enumeration of all maximal CHV
biclusters. Moreover, despite our algorithm RIn-Close_CHV does not have polynomial
delay, it has good computational performance as we can see with the experimental results
in Chapter 6.

Lemma 4.1. Let (𝐼, 𝐽) be a CHV bicluster, 𝑗, 𝑙 ∈ 𝐽 , and 𝑑𝑖𝑠𝑡𝑗𝑙 = max(𝑍𝑗𝑙) −min(𝑍𝑗𝑙).
If we have a pivot column 𝑝 ∈ 𝐽 such that 𝑑𝑖𝑠𝑡𝑗𝑝 ≤ 𝜖 and 𝑑𝑖𝑠𝑡𝑙𝑝 ≤ 𝜖, then 𝑑𝑖𝑠𝑡𝑗𝑙 ≤ 2𝜖.

Proof.

𝑑𝑖𝑠𝑡𝑗𝑙 ≤ 𝑑𝑖𝑠𝑡𝑗𝑝 + 𝑑𝑖𝑠𝑡𝑙𝑝

≤ 2𝜖

Table 8 shows a conceptual comparison of these proposals and the algorithms
that we are proposing in Chapter 5 to enumerate CHV biclusters. Notice that we are
proposing algorithms with a number of additional features that are able to support a wider
range of application scenarios, including the identification of biological indicators [76] and
classification based on associations [74]. Moreover, a bicluster solution provided by these
competitors is contained in the RIn-Close’s solution, given an adequate parameter 𝜖. For
instance, if a user parameterizes CPT with 𝜖 = 1, it would obtain a biclustering solution
composed of biclusters with residue up to 2. Parameterizing RIn-Close with 𝜖 = 2, a user
would obtain a biclustering solution containing all the maximal versions of the biclusters
of the CPT’s solution, and possibly containing additional biclusters.

4.3 Other Considerations
There are some strategies that the RIn-Close family of algorithms and its direct

competitors can apply to handle missing values. The simplest one is to remove the rows
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Table 8 – Comparison of RIn-Close_CHV_P, RIn-Close_CHV and their competitors.

Complete Correct Non-Redundant Efficient
RIn-Close_CHV_P X X X X

RIn-Close_CHV X X X
pCluster ∘ ∘
Maple ∘ ∘ X

MicroCluster ∘ ∘ X
SeqClus ∘ ∘

CPT ∘ ∘
The symbol X indicates that the algorithm has the property. The symbol ∘ indicates

that the authors claim their algorithm has the property, but it fails to exhibit the
property.

or columns (usually the ones with smaller dimension) containing missing values, at the
cost of information loss. Another simple strategy is the previous estimation of the missing
values using some imputation technique of the literature. The problem with this approach
is that it generally will introduce additional noise to the dataset, which may significantly
reduce the biclusters’ homogeneity, thus promoting unnecessary bicluster partitioning.
Essentially, a single large original bicluster with some missing elements may be recovered
as dozens of smaller biclusters, possibly with a high overlap among them. Henriques and
Madeira [49] proposed the use of additional attributes handled according to a level of
relaxation defined by the user. We are going to propose a similar strategy in Chapter 5,
adopting its more restrictive version where the missing items are removed (not the entire
rows or columns). The advantages of this approach are that it has a low computational
cost, avoids information loss, and does not introduce additional noise to the dataset.

The algorithms described here to deal with numerical attributes can promptly be
adapted to handle categorical attributes too. For instance, grouping together identical
values of a numerical attribute in a CVC bicluster is the same as grouping together iden-
tical values of a non-ordinal categorical attribute. Moreover, the case of ordinal categorical
attributes can be essentially treated as a numerical attribute, but with discrete values for
the parameter 𝜖. In both cases, the monotonicity and anti-monotonicity properties are
preserved.

4.4 Chapter Overview
This chapter reviewed some well-known heuristic-based biclustering algorithms,

together with enumerative biclustering algorithms to mine CTV, CVC (or CVR), and
CHV biclusters. It also placed RIn-Close algorithms against its competitors, showing its
distinctive aspects and advantages.

We also highlighted how the enumerative biclustering algorithms can handle miss-



Chapter 4. Related Works 53

ing values and categorical attributes in the data matrix.

In the next chapter, we will present the main contribution of this work: our family
of enumerative biclustering algorithms, RIn-Close.
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5 Generalizations of In-Close2 to numerical
datasets: RIn-Close

In-Close2 has been specifically designed to extract all maximal CTV biclusters
of ones from a binary data matrix. Now, we will propose generalizations of In-Close2 to
enumerate other types of biclusters from numerical (not only binary, but also integer or
real-valued) matrices. We call our family of algorithms RIn-Close.

We chose to adapt In-Close2 because: (i) it is easy to understand; (ii) it is one
of the fastest algorithms of FCA; (iii) it has support to the desired minimum number of
rows in a bicluster (the parameter 𝑚𝑖𝑛𝑅𝑜𝑤); (iv) it is easy to incorporate a support to
the desired minimum number of columns in a bicluster (the parameter 𝑚𝑖𝑛𝐶𝑜𝑙); and (v)
In-Close2 starts with all objects in the extent of a formal concept. This latter aspect of
In-Close2 is very important when working with integer or real-valued data matrices. For
instance, when finding CVC biclusters, given the current attribute, we can look for the
subsets of rows of the extent that accomplish the similarity restriction 𝜖.

The name of a algorithm of our family is given by the word RIn-Close plus the type
of bicluster that it enumerates. For instance, RIn-Close_CVC enumerates all maximal
CVC biclusters. If the algorithm is specialized in enumerating perfect biclusters, its name
ends with the letter ’P’. For instance, RIn-Close_CVC_P enumerates all maximal perfect
CVC biclusters

5.1 Finding biclusters with constant values on columns (CVC bi-
clusters)
The algorithms of this section compute an efficient, complete, correct and non-

redundant enumeration of all maximal CVC biclusters. First, we will show how to extract
perfect biclusters, because it is the easiest case. After that, given a user-defined parameter
𝜖 > 0, we will show how to extract non-perfect CVC biclusters with maximum residue 𝜖,
as defined in Eq. 2.3.

5.1.1 Perfect Biclusters

The adaptation of In-Close2 to enumerate all maximal perfect CVC biclusters,
called RIn-Close_CVC_P, is straightforward. We have only one major difference. In In-
Close2, each bicluster (𝐴𝑟, 𝐵𝑟) can generate just one descendant per attribute, whereas
in RIn-Close_CVC_P, each bicluster (𝐴𝑟, 𝐵𝑟) can generate multiple descendants per at-
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tribute. It happens because In-Close2 looks for blocks of 1s, whereas RIn-Close_CVC_P
looks for any blocks of constant values on columns. Figure 4 illustrates this difference. In
Figure 4(a), In-Close2 is closing the bicluster (𝐴𝑟 = {𝑔2, 𝑔3, 𝑔4, 𝑔8, 𝑔9, 𝑔10, 𝑔11, 𝑔15}, 𝐵𝑟 =
{𝑚1,𝑚3,𝑚7}). When it tries to add the attribute 𝑚8, bicluster (𝐴𝑟, 𝐵𝑟) gives rise to a new
bicluster (𝐴 = {𝑔3, 𝑔4, 𝑔9, 𝑔15}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}). In Figure 4(b), RIn-Close_CVC_P
is closing the same bicluster (𝐴𝑟, 𝐵𝑟), but when it tries to add the attribute 𝑚8, biclus-
ter (𝐴𝑟, 𝐵𝑟) gives rise to four new perfect CVC biclusters without overlap between their
extents:

∙ (d1) (𝐴 = {𝑔11}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}),

∙ (d2) (𝐴 = {𝑔2, 𝑔15}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}),

∙ (d3) (𝐴 = {𝑔8, 𝑔9, 𝑔10}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}), and

∙ (d4) (𝐴 = {𝑔3, 𝑔4}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}).

Algorithm 5.1 shows the pseudocode of RIn-Close_CVC_P. Notice that it is al-
most the same as In-Close2. There are basically two differences. The first one is that the
current attribute 𝑗 is added to the current intent 𝐵𝑟 if all values of attribute 𝑗 and ob-
jects 𝐴𝑟 are equal. And the second one occurs by the fact that the bicluster (𝐴𝑟, 𝐵𝑟) can
generate multiple descendants. So, RIn-Close_CVC_P computes all the possible extents
and loops across them.

Let 𝐴 be the current extent, and 𝑗 be the current attribute, the possible extents
are given by

{𝑅𝑊 |[𝑅𝑊 ⊆ 𝐴] ∧ [max
𝑖∈𝑅𝑊

({𝑑𝑖𝑗})− min
𝑖∈𝑅𝑊

({𝑑𝑖𝑗}) ≤ 𝜖] ∧ [𝑅𝑊 is maximal]}. (5.1)

In the case of mining perfect CVC biclusters, we have 𝜖 = 0. Note in the example of
Figure 4(b) that the elements of the current attribute, 𝑚8, were sorted in order to easily
identify all possible new extents.

The test of canonicity is also essentially the same as in In-Close2. Let 𝐵 be the
current intent, 𝑗 be the current attribute, and 𝑅𝑊 be a possible extent of a bicluster, it
is not canonical if

∃𝑘 ∈𝑀 ∖𝐵|[𝑘 < 𝑗] ∧ [max
𝑖∈𝑅𝑊

(𝑑𝑖𝑘)− min
𝑖∈𝑅𝑊

(𝑑𝑖𝑘) = 0], (5.2)

i.e., if there is an attribute 𝑘 < 𝑗 that we can add to the bicluster (𝑅𝑊,𝐵) and it remains
a valid perfect CVC bicluster.
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m 1 m 3 m 7 m 8

g 2 1 1 1 0 m 1 m 3 m 7 m 8

g 3 1 1 1 1 g 3 1 1 1 1

g 4 1 1 1 1 g 4 1 1 1 1g 4 1 1 1 1 g 4 1 1 1 1

g 8 1 1 1 + 0 = g 9 1 1 1 1

g 9 1 1 1 1 g 15 1 1 1 1

g 10 1 1 1 0

g 11 1 1 1 0g 11 1 1 1 0

g 15 1 1 1 1

(a) Generation of a single descendant by In-Close2.
m 1 m 3 m 7 m 8 m 1 m 3 m 7 m 8

g 2 3 1 4 2 g 11 3 1 4 1 d1

g 3 3 1 4 4 g 2 3 1 4 2

g 4 3 1 4 4 g 15 3 1 4 2

g 8 3 1 4 + 3 = g 8 3 1 4 3

g 9 3 1 4 3 g 9 3 1 4 3

g 10 3 1 4 3 g 10 3 1 4 3

g 11 3 1 4 1 g 3 3 1 4 4

g 15 3 1 4 2 g 4 3 1 4 4

d2

d3

d4

(b) Generation of multiple descendants, d1, d2, d3
and d4, by RIn-Close_CVC_P.

m 1 m 3 m 7 m 8 m 1 m 3 m 7 m 8

g 2 1 2 1 2 g 11 1 1 2 1

g 3 2 2 1 4 g 2 1 2 1 2

g g

d1

d2

g 4 2 1 1 4 g 15 2 1 1 2

g 8 1 2 1 + 3 = g 8 1 2 1 3

g 9 2 1 1 3 g 9 2 1 1 3

g 10 1 1 2 3 g 10 1 1 2 3

d2

d3

10 10

g 11 1 1 2 1 g 16 2 1 1 3

g 15 2 1 1 2 g 19 2 1 2 3

g 16 2 1 1 3 g 22 2 2 1 3

g 19 2 1 2 3 g 3 2 2 1 4g 19 2 1 2 3 g 3 2 2 1 4

g 20 1 2 2 4 g 4 2 1 1 4

g 22 2 2 1 3 g 20 1 2 2 4

g 23 2 2 2 4 g 23 2 2 2 4

(c) Generation of multiple descendants, d1, d2 and
d3, by RIn-Close_CVC (considering 𝜖 = 1).

Figure 4 – Examples of the generation of descendants by (a) In-Close2, (b) RIn-
Close_CVC_P, and (c) RIn-Close_CVC.

The worst-case time of RIn-Close_CVC_P is almost the same as the one for In-
Close2: 𝑂(𝑘𝑛𝑚(log 𝑛 + 𝑚)). The difference is due to the use of a sorting algorithm to
compute the possible extents.

5.1.2 Non-Perfect Biclusters

This adaptation of In-Close2, called RIn-Close_CVC, is significantly more elabo-
rate than RIn-Close_CVC_P because, besides a bicluster (𝐴𝑟, 𝐵𝑟) being able to generate
multiple descendants per attribute, there may be overlaps between their extents. For
instance, in Figure 4(c), RIn-Close_CVC is closing the bicluster

(𝐴𝑟 = {𝑔2, 𝑔3, 𝑔4, 𝑔8, 𝑔9, 𝑔10, 𝑔11, 𝑔15, 𝑔16, 𝑔19, 𝑔20, 𝑔22, 𝑔23}, 𝐵𝑟 = {𝑚1,𝑚3,𝑚7}),
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Algorithm 5.1 RIn-Close_CVC_P
Input: Data matrix D𝑛×𝑚, minimum number of rows 𝑚𝑖𝑛𝑅𝑜𝑤, index of the bicluster to be

closed 𝑟, index of the initial attribute 𝑦
1: 𝐽 ← {}
2: 𝑅← {}
3: for 𝑗 ← 𝑦 to 𝑚 do
4: if 𝑗 /∈ 𝐵𝑟 then
5: if max𝑖∈𝐴𝑟 (𝑑𝑖𝑗)−min𝑖∈𝐴𝑟 (𝑑𝑖𝑗) = 0 then
6: 𝐵𝑟 ← 𝐵𝑟 ∪ {𝑗}
7: else
8: Compute the possible extents // Eq. 5.1
9: for each possible extent 𝑅𝑊 do

10: if |𝑅𝑊 | ≥ 𝑚𝑖𝑛𝑅𝑜𝑤 and 𝑅𝑊 is canonical then
11: 𝑟𝑛𝑒𝑤 ← 𝑟𝑛𝑒𝑤 + 1
12: 𝑅← 𝑅 ∪ {𝑟𝑛𝑒𝑤}
13: 𝐽 ← 𝐽 ∪ {𝑗}
14: 𝐴𝑟𝑛𝑒𝑤 ← 𝑅𝑊
15: end if
16: end for
17: end if
18: end if
19: end for
20: Store (𝐴𝑟, 𝐵𝑟) in the solution B
21: for 𝑘 ← 1 to |𝐽 | do
22: 𝐵𝑅𝑘

← 𝐵𝑟 ∪ {𝐽𝑘} // 𝑅𝑘 and 𝐽𝑘 are the 𝑘-th elements of 𝑅 and 𝐽 , respectively
23: RIn-Close_CVC_P(D, 𝑚𝑖𝑛𝑅𝑜𝑤, 𝑅𝑘, 𝐽𝑘 + 1)
24: end for

when it tries to add the current attribute 𝑚8, bicluster (𝐴𝑟, 𝐵𝑟) gives rise to three new
biclusters with overlap between their extents (considering 𝜖 = 1):

1. (𝐴 = {𝑔11, 𝑔2, 𝑔15}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}),

2. (𝐴 = {𝑔2, 𝑔15, 𝑔8, 𝑔9, 𝑔10, 𝑔16, 𝑔19, 𝑔22}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}), and

3. (𝐴 = {𝑔8, 𝑔9, 𝑔10, 𝑔16, 𝑔19, 𝑔22, 𝑔3, 𝑔4, 𝑔20, 𝑔23}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8}).

Notice again that the elements of the current attribute were sorted to facilitate the iden-
tification of all possible extents.

In this scenario, since a bicluster (𝐴𝑟, 𝐵𝑟) is able to generate multiple descendants
per attribute, with overlap between them, it is necessary to take some actions to avoid
the generation of duplicate and non-maximal biclusters. In fact, these challenging issues
can occur if two descendant biclusters share 𝑚𝑖𝑛𝑅𝑜𝑤 rows or more in their extents.

Assuming 𝑚𝑖𝑛𝑅𝑜𝑤 = 3, in our example in Figure 4(c), biclusters (d1) and (d2)
cannot generate duplicate biclusters because they share only 2 rows in their extents. But
biclusters (d2) and (d3) can generate duplicate biclusters with extent
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𝐴 ⊆ {𝑔8, 𝑔9, 𝑔10, 𝑔16, 𝑔19, 𝑔22}

and |𝐴| ≥ 𝑚𝑖𝑛𝑅𝑜𝑤, when adding a new attribute. To solve this problem, we added one
more verification on the test of canonicity. This new verification is based on the fact
that two distinct CVC biclusters must have two distinct extents in order to be maximal.
So, we track the extents that have already been generated using efficient symbol table
implementations, such as hash tables (HTs) or balanced search trees (BSTs). So, symbol
table’s keys are given by the extents, in such way that the rows in an extent are in their
ascending (or descending) order. The worst-case time to insert and search in a BST is
𝑂(log 𝑘), where 𝑘 is its number of elements. The worst-case time to insert and search in a
HT is 𝑂(1) and 𝑂(𝑘), respectively. However, under reasonable assumptions, the average
time to search in a HT is 𝑂(1). The remainder of the test of canonicity is again essentially
the same as in In-Close2. Supposing that 𝐵 is the current intent, 𝑗 is the current attribute,
and 𝑅𝑊 is a possible extent of a bicluster, it is not canonical if

∃𝑘 ∈𝑀 ∖𝐵|[𝑘 < 𝑗] ∧ [max
𝑖∈𝑅𝑊

(𝑑𝑖𝑘)− min
𝑖∈𝑅𝑊

(𝑑𝑖𝑘) ≤ 𝜖], (5.3)

i.e., if there is an attribute 𝑘 < 𝑗 that we can add to the bicluster (𝑅𝑊,𝐵) and it remains
a valid CVC bicluster.

But even with this new verification on the test of canonicity, we still have the
undesirable possibility of generating non-maximal biclusters. For instance, in Figure 4(c),
bicluster (d3) can give rise to the bicluster

(𝐴 = {𝑔4, 𝑔8, 𝑔9, 𝑔10}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8,𝑚11,𝑚16}),

and bicluster (d2) can give rise to the bicluster

(𝐴 = {𝑔8, 𝑔9, 𝑔10}, 𝐵 = {𝑚1,𝑚3,𝑚7,𝑚8,𝑚11,𝑚16}),

which is clearly non-maximal. So, when two biclusters share 𝑚𝑖𝑛𝑅𝑜𝑤 rows or more in their
extents, we need to verify if their descendants are maximal in their extents (row-maximal).
Therefore, the descendants of biclusters (d2) and (d3), whose extents are contained in the
shared rows, need to check if they are row-maximal. Suppose that 𝑅𝑀 is the set of rows
that the bicluster (𝐴,𝐵) must check to find out if it is row-maximal. The bicluster (𝐴,𝐵)
is not row-maximal if there is an object 𝑔 ∈ 𝑅𝑀 that we can add to the bicluster and it
remains a valid CVC bicluster, i.e.,

∃𝑔 ∈ 𝑅𝑀 |[ max
𝑖∈{𝐴∪{𝑔}}

(𝑑𝑖𝑗)− min
𝑖∈{𝐴∪{𝑔}}

(𝑑𝑖𝑗) ≤ 𝜖],∀ 𝑗 ∈ 𝐵. (5.4)
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g a g b g c g d g e g f g g g h g i g j g k g l

m x 0 0 0 3 3 4 5 5 6 8 9 9m x 0 0 0 3 3 4 5 5 6 8 9 9

(d1)
(d2)

(d3)
(d4)

Figure 5 – Example of how to find 𝑅𝑀 (considering 𝜖 = 3 and 𝑚𝑖𝑛𝑅𝑜𝑤 = 2).

To explain how to compute 𝑅𝑀 , let us see the example in Figure 5, which considers
𝜖 = 3 and 𝑚𝑖𝑛𝑅𝑜𝑤 = 2. Suppose that when adding attribute 𝑚𝑥, a bicluster generated
four biclusters: (d1), (d2), (d3) and (d4), whose extents are highlighted in Figure 5. Let
us compute the set of rows 𝑅𝑀 that the descendants of the bicluster (d2) must check
to verify their maximality, i.e., 𝑅𝑀(𝑑2). As the problem occurs when biclusters share
𝑚𝑖𝑛𝑅𝑜𝑤 rows or more in their extents, the pivot elements to compute 𝑅𝑀(𝑑2) are 𝑔𝑒 and
𝑔ℎ because they are the 𝑚𝑖𝑛𝑅𝑜𝑤-𝑡ℎ first and last elements of (d2), respectively. Their
values are 𝑔𝑒 = 3 and 𝑔ℎ = 5. Rows with values greater than or equal to 0 (𝑔𝑒 − 𝜖) or less
than or equal to 8 (𝑔ℎ + 𝜖) must comprise 𝑅𝑀(𝑑2), so 𝑅𝑀(𝑑2) = {𝑔𝑎, 𝑔𝑏, 𝑔𝑐, 𝑔𝑗}.

Back to our example in Figure 4(c), 𝑅𝑀(𝑑2) = {𝑔3, 𝑔4, 𝑔20, 𝑔23}. So, all descendants
of the bicluster (d2) with extent 𝐴 ⊆ {𝑔8, 𝑔9, 𝑔10, 𝑔16, 𝑔19, 𝑔22} must test the rows in 𝑅𝑀(𝑑2)

to verify if they are row-maximal. For simplicity, the result will be correct if we implement
this verification for all descendants of a bicluster.

It is very important to note that biclusters also need to inherit the set 𝑅𝑀 of
their parents. For instance, suppose that the bicluster (d2) of Figure 4(c) gives rise to
a bicluster (𝐴𝑥 = {𝑔8, 𝑔9, 𝑔19, 𝑔22}, 𝐵𝑥). So, we must have 𝑅𝑀𝑥 ⊇ 𝑅𝑀(𝑑2) because the
descendants of (𝐴𝑥, 𝐵𝑥) must test the rows in 𝑅𝑀(𝑑2) to verify if they are maximal.

Algorithm 5.2 shows the pseudocode of RIn-Close_CVC. The worst-case time of
RIn-Close_CVC is 𝑂(𝑘𝑚𝑛(𝑚𝑛 + 𝑥)), where 𝑥 is the worst-case time of searching in the
symbol table, so 𝑥 = 𝑂(log 𝑘) for BSTs and 𝑥 = 𝑂(𝑘) for HTs. But recall that HTs have
a much better computational cost on average: 𝑂(1).

5.2 Finding biclusters with coherent values (CHV biclusters)
Once again, we will first show how to enumerate perfect CHV biclusters. We named

this algorithm RIn-Close_CHV_P. It it is very similar to RIn-Close_CVC_P. Secondly,
we will show how to enumerate non-perfect CHV biclusters. We named this algorithm
RIn-Close_CHV.
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Algorithm 5.2 RIn-Close_CVC
Input: Data matrix D𝑛×𝑚, minimum number of rows 𝑚𝑖𝑛𝑅𝑜𝑤, index of the bicluster to be

closed 𝑟, index of the initial attribute 𝑦, similarity constraint 𝜖
1: 𝐽 ← {}
2: 𝑅← {}
3: for 𝑗 ← 𝑦 to 𝑚 do
4: if 𝑗 /∈ 𝐵𝑟 then
5: if max𝑖∈𝐴𝑟 (𝑑𝑖𝑗)−min𝑖∈𝐴𝑟 (𝑑𝑖𝑗) ≤ 𝜖 then
6: 𝐵𝑟 ← 𝐵𝑟 ∪ {𝑗}
7: else
8: Compute the possible extents // Eq. 5.1
9: for each possible extent 𝑅𝑊 do

10: if |𝑅𝑊 | ≥ 𝑚𝑖𝑛𝑅𝑜𝑤 and 𝑅𝑊 is canonical and 𝑅𝑊 is row-maximal then
11: Sort the elements of 𝑅𝑊
12: 𝑟𝑛𝑒𝑤 ← 𝑟𝑛𝑒𝑤 + 1
13: 𝑅← 𝑅 ∪ {𝑟𝑛𝑒𝑤}
14: 𝐽 ← 𝐽 ∪ {𝑗}
15: 𝐴𝑟𝑛𝑒𝑤 ← 𝑅𝑊
16: Set 𝑅𝑀𝑟𝑛𝑒𝑤

17: Update the symbol table
18: end if
19: end for
20: end if
21: end if
22: end for
23: Store (𝐴𝑟, 𝐵𝑟) in the solution B
24: for 𝑘 ← 1 to |𝐽 | do
25: 𝐵𝑅𝑘

← 𝐵𝑟 ∪ {𝐽𝑘} // 𝑅𝑘 and 𝐽𝑘 are the 𝑘-th elements of 𝑅 and 𝐽 , respectively
26: RIn-Close_CVC(D, 𝑚𝑖𝑛𝑅𝑜𝑤, 𝑅𝑘, 𝐽𝑘 + 1, 𝜖)
27: end for

5.2.1 Perfect Biclusters

When we are looking for CVC or CVR biclusters, we look directly to the values of
the data matrix. But when we are looking for CHV biclusters, we need to check if there is
coherence (additive or multiplicative) between each pair of columns (or rows) of the data
matrix. For this, in RIn-Close_CHV_P, a bicluster starts with one column in its intent,
which we call pivot column. Then, RIn-Close_CHV_P mines all biclusters that have this
pivot column in their intents. Algorithm 5.3 shows this procedure. At the first iteration of
the loop, RIn-Close_CHV_P will find all biclusters that have column 1 in their intents;
at the second iteration, RIn-Close_CHV_P will find all biclusters that have column 2
and do not have column 1 in their intents; at the third iteration, RIn-Close_CHV_P will
find all biclusters that have column 3 and do not have columns 1 and 2 in their intents;
and so on.

RIn-Close_CHV_P exploits the fact that for mining perfect CHV biclusters it is
not necessary to check if there is coherence between all pair of columns in an intent. Note
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that in RIn-Close_CHV_P pseudocode, Algorithm 5.4, we just compute the difference
between the current attribute 𝑗 and the pivot column of the current intent 𝐵𝑟, i.e., 𝐵𝑟1 .
If the current attribute 𝑗 matches perfectly the pivot column, it will match perfectly the
other columns of the intent 𝐵𝑟 as well.

Algorithm 5.3 Main_RIn-Close_CHV_P
Input: Data matrix D𝑛×𝑚, minimum number of rows 𝑚𝑖𝑛𝑅𝑜𝑤
Output: A set of biclusters B

1: 𝑟𝑛𝑒𝑤 ← 0 // global variable
2: for 𝑎𝑡𝑟 ← 1 to 𝑚− 1 do
3: 𝑟𝑛𝑒𝑤 ← 𝑟𝑛𝑒𝑤 + 1
4: 𝐴𝑟𝑛𝑒𝑤 ← {1, ..., 𝑛}
5: 𝐵𝑟𝑛𝑒𝑤 ← {𝑎𝑡𝑟}
6: RIn-Close_CHV_P(D, 𝑚𝑖𝑛𝑅𝑜𝑤, 𝑟𝑛𝑒𝑤, 𝑎𝑡𝑟 + 1)
7: end for

Algorithm 5.4 RIn-Close_CHV_P
Input: Data matrix D𝑛×𝑚, minimum number of rows 𝑚𝑖𝑛𝑅𝑜𝑤, index of the bicluster to be

closed 𝑟, index of the initial attribute 𝑦
1: 𝐽 ← {}
2: 𝑅← {}
3: for 𝑗 ← 𝑦 to 𝑚 do
4: if 𝑗 /∈ 𝐵𝑟 then
5: 𝑍 ← {𝑑𝑖𝐵𝑟1

− 𝑑𝑖𝑗}𝑖∈𝐴𝑟

6: if max(𝑍)−min(𝑍) = 0 then
7: 𝐵𝑟 ← 𝐵𝑟 ∪ {𝑗}
8: else
9: Compute the possible extents // Eq. 5.5

10: for each possible extent 𝑅𝑊 do
11: if |𝑅𝑊 | ≥ 𝑚𝑖𝑛𝑅𝑜𝑤 and 𝑅𝑊 is canonical then
12: 𝑟𝑛𝑒𝑤 ← 𝑟𝑛𝑒𝑤 + 1
13: 𝑅← 𝑅 ∪ {𝑟𝑛𝑒𝑤}
14: 𝐽 ← 𝐽 ∪ {𝑗}
15: 𝐴𝑟𝑛𝑒𝑤 ← 𝑅𝑊
16: end if
17: end for
18: end if
19: end if
20: end for
21: Store (𝐴𝑟, 𝐵𝑟) in the solution B
22: for 𝑘 ← 1 to |𝐽 | do
23: 𝐵𝑅𝑘

← 𝐵𝑟 ∪ {𝐽𝑘} // 𝑅𝑘 and 𝐽𝑘 are the 𝑘-th elements of 𝑅 and 𝐽 , respectively
24: RIn-Close_CHV_P(D, 𝑚𝑖𝑛𝑅𝑜𝑤, 𝑅𝑘, 𝐽𝑘 + 1)
25: end for

The computation of the possible extents is essentially the same as in the case of
mining CVC biclusters (Eq. 5.1). The only difference is that we check if there is coherence
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between the pivot column and the current column. So, let 𝐴 be the current extent, and 𝑗
be the current attribute, the possible extents are given by

{𝑅𝑊 |[𝑅𝑊 ⊆ 𝐴] ∧ [max
𝑖∈𝑅𝑊

({𝑧𝑖})− min
𝑖∈𝑅𝑊

({𝑧𝑖}) = 0] ∧ [𝑅𝑊 is maximal]}, (5.5)

where 𝑧𝑖 = 𝑑𝑖𝑝 − 𝑑𝑖𝑗 and 𝑝 is the current pivot column.

The test of canonicity is also essentially the same as in In-Close2. Let 𝐵 be the
current intent, 𝑗 be the current attribute, and 𝑅𝑊 be a possible extent of a bicluster. It
is not canonical if

∃𝑘 ∈𝑀 ∖𝐵|[𝑘 < 𝑗] ∧ [max(𝑍)−min(𝑍) = 0], (5.6)

where 𝑍 ← {𝑑𝑖𝑝− 𝑑𝑖𝑘}𝑖∈𝑅𝑊 and 𝑝 is the current pivot column, i.e., if there is an attribute
𝑘 < 𝑗 that we can add to the bicluster (𝑅𝑊,𝐵) and it remains a valid perfect CHV
bicluster.

The worst-case time of RIn-Close_CHV_P is the same as that of RIn-Close_CVC_P:
𝑂(𝑘𝑛𝑚(log 𝑛+𝑚)).

5.2.2 Non-Perfect Biclusters

Now, we will explain how to perform a complete, correct and non-redundant enu-
meration of all maximal perturbed CHV biclusters, given a similarity constraint deter-
mined by the user-defined parameter 𝜖 > 0, as defined in Definition 2.5.

To achieve this goal, we cannot simply apply to RIn-Close_CHV_P the same
adaptations that we have made in RIn-Close_CVC_P to achieve RIn-Close_CVC. First
of all, if RIn-Close_CHV computed the set 𝑍 considering only the current pivot column
𝐵𝑟1 and the current column 𝑗, it could occur a difference up to 2𝜖 between any other two
columns of 𝐵𝑟. Besides, the order of choice of the pivot columns interferes in the outcome
in this scenario. In this way RIn-Close_CHV would yield just an approximate result of an
actual enumeration (as SeqClus [105] and CPT [44] do), and this is not the case here. Also,
RIn-Close_CHV could not simply verify if the current attribute 𝑗 fits all the attributes
in the current intent 𝐵𝑟. An example of a problem that could happen is that: if the data
matrix has two biclusters with the same extent 𝐴, but different intents 𝐵𝑥 = {𝑚1,𝑚3,𝑚5}
and𝐵𝑦 = {𝑚1,𝑚3,𝑚6,𝑚8}, a naive procedure would find just the first one because it loops
through the attributes in its sequential order and the attribute 𝑚5 is not coherent with
attributes 𝑚6 and 𝑚8 (considering the rows in extent 𝐴). In addition, it would be quite
difficult to define the possible new extents. Another challenging issue of this approach is
to determine when a bicluster is canonical or not. For instance, if the data matrix has
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two biclusters with the same extent 𝐴, but different intents 𝐵𝑥 = {𝑚1,𝑚2,𝑚3,𝑚4} and
𝐵𝑦 = {𝑚2,𝑚3,𝑚4,𝑚5}, a naive procedure would discard the second because the attributes
𝑚2, 𝑚3 and 𝑚4 are coherent with attribute 𝑚1. Moreover, a non-canonical bicluster could
give rise to canonical biclusters, so it could not be discarded until all its descendant were
generated.

To avoid all these undesired scenarios, RIn-Close_CHV uses the following proce-
dure with three steps:

∙ Compute the augmented matrix of the data matrix D, denoted D𝑎. D𝑎 is a matrix
with the difference between all pairs of columns of D. For instance, the augmented
matrix D𝑎 of the data matrix D in Table 9 is illustrated in Table 10. The first
column of D𝑎 is the difference between columns 1 and 2 of D, the second column of
D𝑎 is the difference between columns 1 and 3 of D, the third column of D𝑎 is the
difference between columns 1 and 4 of D, and so on for all combinations of pairs of
columns.

∙ Apply RIn-Close_CVC to the augmented matrix D𝑎. To illustrate, Figure 6(a)
shows all maximal CVC biclusters found by RIn-Close_CVC when applied to the
data matrix of Table 10 (using 𝑚𝑖𝑛𝑅𝑜𝑤 = 2 and 𝜖 = 1).

∙ Extract all maximal CHV biclusters from the maximal CVC biclusters found by
RIn-Close_CVC (see the pseudocode in Algorithm 5.5).

Table 9 – Example of a numerical dataset.

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5
𝑔1 1 2 2 1 6
𝑔2 2 1 1 0 6
𝑔3 2 2 1 7 6
𝑔4 8 9 2 6 7

Table 10 – Augmented matrix of the data matrix in Table 9.

1 2 3 4 5 6 7 8 9 10
1 -1 -1 0 -5 0 1 -4 1 -4 -5
2 1 1 2 -4 0 1 -5 1 -5 -6
3 0 1 -5 -4 1 -5 -4 -6 -5 1
4 -1 6 2 1 7 3 2 -4 -5 -1

Algorithm 5.5 shows the pseudocode of the procedure to process each CVC biclus-
ter. Steps in lines 2 to 5 are illustrated in Figure 6(b). In this illustrative scheme, we are
extracting CHV biclusters from the CVC bicluster (D6) of Figure 6(a).

The first step is to get the corresponding columns in D of the intent of bicluster
(D6). For instance, column 9 of D𝑎 corresponds to the difference between columns 3 and
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9 9 1 9 1 2 4 5 7 9 3

1 -4 1 -4 -1 3 -5 0 1 -4 1 -4 2 -5 2

2 -5 4 -5 -1 2 -5 1 1 -4 0 -5 4 -5 2

3 -5 3 -5 0

4 -5

(D1)

9 4 5 7 9 1 4 5 7 9 4 5 7 6 8 10

1 -4 -5 0 -4 1 -4 -1 -5 0 -4 1 -4 -5 0 -4 1 1 -5

2 -5 -4 0 -5 3 -5 0 -4 1 -4 2 -5 -4 0 -5 1 1 -6

3 -5 -4 1 -4

(D2)

(D3) (D4)

(D5)

(D6) (D7)

(a) All CVC biclusters found in the data matrix of Table 10 (using
𝑚𝑖𝑛𝑅𝑜𝑤 = 2 and 𝜖 = 1).

 3 - 5  1 - 2  1 - 5  2 - 3  2 - 5 

2. Create an undirected graph.

1. Get the 

1

2 3

5
3. Extract the

9 1 4 5 7 maximal cliques

1 -4 -1 -5 0 -4

3 -5 0 -4 1 -4

(D6)

1. Get the 
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columns in D.

2 3

5

1

1 2 5

1 1 2 6

3 2 2 6

(D6)
1

2

5

2 3

5

3 2 2 6

2 3 5

1 2 2 6

3 2 2 6

CHV bicluster

5 5

(b) Illustrative scheme to show how a CVC bicluster is processed by RIn-
Close_CHV.

Figure 6 – RIn-Close_CHV’s framework.

5 of D. Therefore, columns 3 and 5 are coherent with each other considering the extent
{1, 3} and 𝜖 = 1. Let us name this corresponding set of columns as 𝐵2. In this example,
we have 𝐵2 = {1, 2, 3, 5}.

The second step is to create an undirected graph, in which the nodes represent 𝐵2,
and the edges represent the columns that the CVC bicluster indicated that are coherent
with each other. So, we have 5 edges in this example: 3− 5, 1− 2, 1− 5, 2− 3, and 2− 5.

Since all pairs of columns of a CHV bicluster must be coherent with each other
(see Definition 2.5), the third step is to find all maximal cliques from this undirected
graph. A clique is a subset of vertices of an undirected graph such that every two distinct
vertices in the clique are adjacent. Thus, each clique indicates the subsets of 𝐵2 in which
all columns are coherent with each other considering the rows determined by the CVC
bicluster and the user-defined parameter 𝜖. So, the CHV biclusters generated by the CVC
bicluster (D6) are: ({1, 3}, {1, 2, 5}) and ({1, 3}, {2, 3, 5}).
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Lines 7 and 8 of the pseudocode in Algorithm 5.5 verify if the CHV bicluster (𝐴,𝐷)
is new and, if so, store it in the set of CHV biclusters. A CHV bicluster (𝐴,𝐷) is new if
(i) its intent 𝐷 is equal to 𝐵2, or (ii) (𝐴,𝐷) is row-maximal (there is no object 𝑔 that
we can add to its extent 𝐴), i.e.,

@𝑔 ∈ 𝐺 ∖ 𝐴|[max(𝑍𝑗𝑙)−min(𝑍𝑗𝑙) ≤ 𝜖], ∀𝑗, 𝑙 ∈ 𝐷, (5.7)

where 𝑍𝑗𝑙 = {𝑑𝑖𝑗 − 𝑑𝑖𝑙}𝑖∈𝐴∪{𝑔}. When the intent 𝐷 is equal to 𝐵2, (𝐴,𝐷) is mandatorily
row-maximal. We can affirm it because we are manipulating maximal CVC biclusters,
and we are using all columns indicated by it.

The worst-case time of verifying if a CHV bicluster is row-maximal is 𝑂(𝑚𝑛).
Makino and Uno [81] proved that all maximal cliques of a graph containing 𝑣 vertices
can be enumerated with time delay 𝑂(𝑀(𝑣)), where 𝑀(𝑣) is the cost of multiplying two
𝑣 × 𝑣 matrices. As stated in Section 5.1.2, each CVC bicluster can be enumerated with
time delay 𝑂(𝑚𝑎𝑛(𝑚𝑎𝑛 + 𝑥)), where 𝑚𝑎 = 𝑚(𝑚− 1)/2 is the number of columns of the
augmented matrix D𝑎.

Algorithm 5.5 Mining CHV biclusters from CVC biclusters
Input: Set of CVC biclusters 𝑙𝑏𝐶𝑉 𝐶
Output: Set of CHV biclusters

1: for each (𝐴, 𝐵) in 𝑙𝑏𝐶𝑉 𝐶 do
2: Compute 𝐵2
3: Create an undirected graph
4: Find all maximal cliques
5: Compute the CHV biclusters
6: for each CHV bicluster (𝐴, 𝐷) do
7: if 𝐷 = 𝐵2 or (𝐴, 𝐷) is row-maximal then
8: Store (𝐴, 𝐷) in the set of CHV biclusters
9: end if

10: end for
11: end for

5.3 Finding other types of biclusters
The procedure of three steps used by RIn-Close_CHV, described in Subsection 5.2.2,

can be easily adapted to mine other types of biclusters, such as the OPSM biclusters. The
only required adaptation is on the computation of the augmented matrix D𝑎.

To mine OPSM biclusters, the augmented matrix D𝑎 must be a matrix with a
comparison between all pairs of columns of the matrix D. This comparison must return:

∙ 1, if 𝑎𝑖𝑗 < 𝑎𝑖𝑙,

∙ 2, if 𝑎𝑖𝑗 = 𝑎𝑖𝑙, and
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∙ 3, if 𝑎𝑖𝑗 > 𝑎𝑖𝑙,

for 𝑗 < 𝑙. For instance, the augmented matrix D𝑎 of the data matrix D in Table 9 is
illustrated in Table 11.

Table 11 – Augmented matrix of the data matrix in Table 9 with a CVC bicluster high-
lighted.

1 2 3 4 5 6 7 8 9 10
1 1 1 2 1 2 3 1 3 1 1
2 3 3 3 1 2 3 1 3 1 1
3 2 3 1 1 3 1 1 1 1 3
4 1 3 3 3 3 3 3 1 1 1

In this way, we just use RIn-Close_CVC with 𝜖 = 1 in the second step of the pro-
cedure. As the data matrix has only 3 different values, we can implement RIn-Close_CVC
in a more efficient way. There are only two possible new extents: one with the values 1
and 2, and other with the values 2 and 3. We do not need to sort the elements to compute
these two extents (line 8 of the Algorithm 5.2) or to compute the set 𝑅𝑀 (line 16 of the
Algorithm 5.2).

As an example, we have a CVC bicluster highlighted in Table 11. It tells us that,
considering the set of rows {1, 2, 3}, there is an order relation between the following
columns of the data matrix D in Table 9: 𝑚1 ≤ 𝑚5, 𝑚3 ≤ 𝑚2, 𝑚2 ≤ 𝑚5, 𝑚3 ≤ 𝑚5. Thus,
the maximal cliques (in the third step of the procedure) correspond to the column-sets of
column-maximal OPSM biclusters. It means that we can assemble a permutation so that
all columns are rearranged from the column with the lowest values to the column with
the highest values (see Lemma 2.6).

Other example of biclusters that can be mined using the procedure of three steps
used by RIn-Close_CHV is the error-tolerated OPSM biclusters [24]. To mine them, the
augmented matrix D𝑎 must also be a matrix with a comparison between all pairs of
columns of the data matrix D. This comparison must return:

∙ 1, if 𝑎𝑖𝑗 + 𝜖 < 𝑎𝑖𝑙,

∙ 2, if |𝑎𝑖𝑗 − 𝑎𝑖𝑙| ≤ 𝜖, and

∙ 3, if 𝑎𝑖𝑗 − 𝜖 > 𝑎𝑖𝑙,

for 𝑗 < 𝑙 and where 𝜖 > 0 is a user-defined parameter that controls the tolerated error in
the OPSM biclusters.

In these two examples, the values 1, 2, and 3 are not mandatory. We can use any
three consecutive values, such as 10, 11, and 12. We can even use three values in a series
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with step other than 1, such as 5, 7, and 9, and set 𝜖 equal to the step (in this example,
𝜖 = 2).

Thus, we have shown that this procedure of 3 steps can be used for mining other
types of biclusters. The main challenge is that the more flexible the definition of biclusters,
the greater tends to be the number of biclusters in the dataset, and it can lead the
enumeration to become impractical.

5.4 Handling missing values
There are some strategies that we can apply to treat missing values. The simplest

one is to remove the rows or columns (usually the ones with smaller dimension) containing
missing values, at the cost of information loss. Another strategy, which is simple in the
biclustering’s point of view, is the previous estimation of the missing values using some
technique, such as k-NN [19] or rSVD [93]. The problem with this approach is that it
introduces additional noise to the dataset which may significantly reduce the biclusters’
homogeneity.

Henriques and Madeira [49] proposed the use of additional attributes handled
according to a level of relaxation defined by the user. Our proposal to handle the missing
data is similar to this when considering its more restrictive way, where the missing items
are removed (not the entire rows or columns). In our case, we will look for biclusters in the
regions of the dataset without missing values, ignoring the regions with missing values.
In the following, we describe the required adaptations in RIn-Close algorithms to handle
the missing values in this way.

In the Algorithms 5.1, 5.2 and 5.4, we must do the following adaptations:

∙ If the attribute 𝑗 has missing values in the objects 𝐴𝑟, it cannot be added to the
intent 𝐵𝑟.

∙ When computing the possible new extents, we must simply ignore the objects with
missing values.

∙ When verifying if 𝑅𝑊 is not canonical (see Eqs. 5.2, 5.3 and 5.6), we also test if
the attribute 𝑘 ∈𝑀 ∖𝐵 does not have missing values in the objects 𝑅𝑊 .

When testing if a bicluster is row-maximal (see Eq. 5.4) in the Algorithm 5.2, we
also must test if the object 𝑔 has missing values in one or more of the attributes 𝐵. If the
object 𝑔 has missing values in one or more of the attributes 𝐵, it cannot be added to the
bicluster.
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In Algorithm 5.3, 𝐴𝑟𝑛𝑒𝑤 must have only the objects where the attribute 𝑎𝑡𝑟 does
not have missing values.

For the algorithm RIn-Close_CHV, when computing the augmented matrix, we
must simply compute the difference between the non-missing data. A missing value minus
a non-missing value, or vice versa, or a missing value minus a missing value, results in a
missing value in the augmented matrix D𝑎.

When testing if a bicluster is row-maximal (see Eq. 5.7) in the Algorithm 5.5, we
also must test if the object 𝑔 has missing values in one or more of the attributes 𝐷. If the
object 𝑔 has missing values in one or more of the attributes 𝐷, it cannot be added to the
bicluster.

Thereby, we are mining the biclusters in all the regions of the dataset without
missing values. According to Property 2.4, the coverage of our bicluster solution (without
restrictions in the minimum number of rows and columns of the biclusters) will be equal
to the percentage of non-missing values in the dataset.

5.5 Chapter Overview
This chapter presented the main contribution of this thesis, i.e., our family of

enumerative biclustering algorithms, which is called RIn-Close. The first two algorithms,
RIn-Close_CVC_P and RIn-Close_CVC, are able to perform an efficient, complete, cor-
rect, and non-redundant enumeration of all maximal perfect and perturbed, respectively,
CVC biclusters. The definition of a CVR bicluster is the equivalent transpose of the def-
inition of a CVC bicluster. So, we can mine CVR biclusters by transposing the original
data matrix and using an algorithm to mine CVC biclusters. Our proposed algorithm
to enumerate all maximal perfect CHV biclusters, RIn-Close_CHV_P, has these four
properties too. Our algorithm to enumerate all maximal perturbed CHV biclusters, RIn-
Close_CHV, has the last three properties, i.e., it is able to perform a complete, correct,
and non-redundant enumeration, but not a enumeration with polynomial delay. As far as
we know, RIn-Close are the most complete biclustering algorithms from the literature.

We also showed how the procedure of three steps used by RIn-Close_CHV can be
adapted to enumerate other types of biclusters, such as OPSM and error-tolerated OPSM
biclusters.

Finally, this chapter presented our proposal to handle missing data using RIn-
Close. Basically, the idea is to mine the biclusters in regions of the dataset without missing
values, ignoring the regions with missing values.

In the next chapter, we will present the performed experiments as well as the
obtained results.
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6 Experimental Results

We evaluated the RIn-Close family of algorithms on both synthetic and real
datasets. We highlight various practicalities in the usage of RIn-Close, and outline the
advantages and distinct aspects of (𝑖) an enumerative algorithm when compared to heuris-
tics, and (𝑖𝑖) having an enumerative algorithm with the key properties of being correct,
complete and non-redundant. We also apply RIn-Close in two real-world problems: (𝑖) the
gene ontology enrichment analysis, and (𝑖𝑖) the analysis and identification of biomarkers.

We implemented RIn-Close using C++ 1. For the third step of RIn-Close_CHV,
we implemented the BK algorithm [17] with the I. Koch’s pivot selection strategy [61],
because it is the best one in practice [20]. We compile RIn-Close using the following
command: g++ -std=gnu++11 -O3. For the heuristics, we used the MTBA toolbox [45].
The only exception was ROCC’s implementation that was obtained from the authors.
MicroCluster’s implementation were obtained from the authors’ website. The experiments
were carried out on a PC Intel(R) Core(TM) i7-4770K CPU @ 3.5 GHz, 32 GB of RAM,
and running under Ubuntu 14.04.

6.1 RIn-Close: scalability issues
The results of this section were first reported in [103].

This experiment aims to test RIn-Close’s performance when varying (𝑖) the number
𝑛 of rows of the dataset, (𝑖𝑖) the number 𝑚 of columns of the dataset, (𝑖𝑖𝑖) the number of
biclusters in the dataset, (𝑖𝑣) the bicluster row size, (𝑣) the bicluster column size, (𝑣𝑖) the
overlap, and (𝑣𝑖𝑖) the noise in the dataset. For this purpose, we created synthetic datasets
with controlled number, size, shape and level of noise of the existing biclusters and, then,
we tested how RIn-Close performs when varying each one of the parameters in isolation.

The default parameters used in the synthetic data generator were: 𝑛 = 5000,
𝑚 = 60, number of biclusters = 10, bicluster row size = 200, bicluster column size = 8,
overlap = 0.2, and Gaussian noise with 𝜇 = 0 and 𝜎2 = 0.01. The synthetic data generator
creates the biclusters and assigns random values to the other regions of the dataset. Then,
it adds the Gaussian noise and shuffles the rows and columns of the dataset. Therefore,
the generator creates arbitrarily positioned overlapping biclusters, so that the resulting
biclusters are usually non-contiguous. The amount of noise was chosen in such a way that
the original biclusters were preserved. For each configuration, we created 50 synthetic
datasets to compute the average runtimes. RIn-Close_CVC_P and RIn-Close_CHV_P,
1 https://sourceforge.net/projects/rinclose/

https://sourceforge.net/projects/rinclose/
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that mine perfect biclusters, were applied to datasets without noise.

Figures 7 to 10 show, respectively, the sensitivity to distinct datasets’ configura-
tions of RIn-Close_CVC_P, RIn-Close_CVC, RIn-Close_CHV_P, and RIn-Close_CHV.
The runtime growth rates were defined visually by the shape of the curve, being easy to
discover the coefficients of the curve using some fit tool.

The results revealed that the runtime increased linearly with 𝑛, except for RIn-
Close_CHV, for which it increased logarithmically. But for all algorithms, without ex-
ception, the runtime growth rate was significantly more favorable than their worst-case
time complexities (see Chapter 5). For variable 𝑚, the runtime increased linearly for RIn-
Close_CVC_P and RIn-Close_CVC, which is better than their worst-case time complex-
ities. For RIn-Close_CHV_P and RIn-Close_CHV, the runtime increased polynomially
with 𝑚, which coincides with their worst-case time complexities. For all algorithms, the
runtime decreased linearly with the overlap, and the noise level did not greatly affect the
runtime.

Except for RIn-Close_CHV, the runtime increased linearly with the number of
biclusters. For RIn-Close_CHV, we can notice a tendency of a logarithmic growth, which
is good news because, due to its worst-case time complexity, we expected a linear growth
too. For the bicluster row size, we had a linear growth of the runtime, except for RIn-
Close_CHV, for which we had a smooth polynomial growth. RIn-Close_CVC_P and RIn-
Close_CVC had the same behavior for the bicluster column size: the runtime increased
logarithmically, but saturates and started to decrease linearly. With the increase in the
bicluster column size, the coverage of the dataset increases, and it seemed to help these
algorithms to find the biclusters more quickly. With more columns in the biclusters, more
the inheritance of the columns tends to have a positive effect, and also less columns tend
to be tested in the canonicity function. For the RIn-Close_CHV_P and RIn-Close_CHV,
the runtime increased logarithmically and polynomially with the bicluster column size,
respectively.

The variations presented in the boxplots are due to two main reasons: (𝑖) an intrin-
sic variation due to the machine; and (𝑖𝑖) some characteristics of the synthetic datasets,
more specifically, due to the arrangement of the biclusters and the noise level in the
datasets. The arrangement of the biclusters in the datasets impacts in the heritage of
the columns, in the number of times that the canonicity function is called, and in the
number of columns that are tested in the canonicity function. The noise in the datasets
influences the computation of the possible extents as well as the number of times that
the canonicity function is called. A note on these results is that the runtime of Steps 1
and 3 of RIn-Close_CHV was negligible. Therefore, the results for RIn-Close_CHV are
basically the runtime of the Step 2 of the algorithm, which is devoted to mine the CVC
biclusters from the augmented matrix D𝑎.
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Figure 7 – Results of the performance of RIn-Close_CVC_P when varying (a) the num-
ber 𝑛 of rows of the dataset, (b) the number 𝑚 of columns of the dataset,
(c) the number of biclusters in the dataset, (d) the bicluster row size, (e) the
bicluster column size, and (f) the overlap.

6.2 RIn-Close: sensitivity analysis
The results of this section were first reported in [103].

This experiment aims to test RIn-Close’s sensitivity to the parameters 𝜖 and
𝑚𝑖𝑛𝑅𝑜𝑤. We ran RIn-Close for four microarray gene expression datasets: Yeast2 [25],
GDS2323 [78], GDS7503 [70] and GDS40853 [54]. The former dataset, Yeast, was prepro-
cessed by Cheng and Church [23], we just threw away the two genes with missing values.
The last three datasets were preprocessed by us. For each one of them, we remove the
empty spots; we threw away the data for any genes where one or more expression levels
2 http://arep.med.harvard.edu/biclustering, last accessed 04/09/2015
3 http://www.ncbi.nlm.nih.gov, last accessed 04/09/2015
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Figure 8 – Results of the performance of RIn-Close_CVC when varying (a) the number
𝑛 of rows of the dataset, (b) the number 𝑚 of columns of the dataset, (c) the
number of biclusters in the dataset, (d) the bicluster row size, (e) the bicluster
column size, (f) the overlap, and (g) the noise level.
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Figure 9 – Results of the performance of RIn-Close_CHV_P when varying (a) the num-
ber 𝑛 of rows of the dataset, (b) the number 𝑚 of columns of the dataset,
(c) the number of biclusters in the dataset, (d) the bicluster row size, (e) the
bicluster column size, and (f) the overlap.

were not measured; we filtered out genes with small variance over time; and we scale the
data of each column to integers between 0 and 1000. Table 12 shows more information
about these datasets. We ran RIn-Close 50 times to compute the average runtime, and
we looked for biclusters with at least 3 columns.

The parameters 𝜖 and𝑚𝑖𝑛𝑅𝑜𝑤 were set empirically according to the characteristics
of each dataset, so that the number of biclusters were not so high and considering the
relation between coverage and global overlap.

Figures 11 and 12 show respectively the sensitivity of RIn-Close_CVC and RIn-
Close_CHV to the parameter 𝜖. Usually, the number of biclusters, the runtime, the cov-
erage, and the global overlap increases with 𝜖. The only exception is the global overlap
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Figure 10 – Results of the performance of RIn-Close_CHV when varying (a) the number
𝑛 of rows of the dataset, (b) the number 𝑚 of columns of the dataset, (c)
the number of biclusters in the dataset, (d) the bicluster row size, (e) the
bicluster column size, (f) the overlap, and (g) the noise level.
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Table 12 – Datasets description.

Name Dimension Organism
Yeast 2882× 17 Saccharomyces cerevisiae
GDS232 589× 23 Homo sapiens
GDS750 3456× 13 Saccharomyces cerevisiae
GDS4085 1133× 19 Homo sapiens

of the dataset Yeast in Figure 11(d). The coverage will always increase with 𝜖, because
all portions of the dataset explored with 𝜖 = 𝑥, will be explored with 𝜖 > 𝑥, as stated
in Property 2.5 (see Chapter 2.3). However, as we stated in Chapter 2.3, the number of
biclusters will not always increase with 𝜖. The global overlap depends on the coverage
and on the number of biclusters. If we increase 𝜖 and find more biclusters, but we explore
pretty much the same portions of the dataset, the global overlap will increase. On the
other hand, if these new biclusters bring a significant gain in coverage, the global over-
lap tends to decrease. Therefore, when the global overlap’s growth rate is higher than
the coverage’s growth rate, it indicates that we are finding new biclusters in portions of
the dataset explored with lower values of 𝜖. Oliveira et al. [89] illustrated how the noise
is responsible for fragmenting each true bicluster into many with high overlapping. As it
complicates the analysis of the results, the aggregation of these biclusters is recommended
[89, 111]. Given that the runtime is proportional to the number of biclusters, the choice of
𝜖 must consider the gain in the coverage and the gain in the global overlap. If we only have
a considerable gain in the global overlap, then it might be more convenient to use a lower
value of 𝜖. Moreover, the smaller the value 𝜖, the lower the accepted perturbation in the
biclusters. In practical applications, usually we look for biclusters with little perturbation,
which favors saving resources.

Figures 13 and 14 shows respectively the sensitivity of RIn-Close_CVC and RIn-
Close_CHV to the parameter 𝑚𝑖𝑛𝑅𝑜𝑤. The number of biclusters, the runtime, the cov-
erage, and the global overlap decreased with the increase in the value of 𝑚𝑖𝑛𝑅𝑜𝑤 in all
cases. We observe that the parameter 𝑚𝑖𝑛𝑅𝑜𝑤 has also a strong influence in the computa-
tional cost of RIn-Close. The higher its value, the smaller the search space for enumerating
biclusters. Again, we see that the choice of 𝑚𝑖𝑛𝑅𝑜𝑤 must consider the relation between
coverage and global overlap. If a larger value of 𝑚𝑖𝑛𝑅𝑜𝑤 has a small impact on the cov-
erage and a significant impact on the global overlap, keeping the current value seems to
be a reasonable choice.

As we observed with this experiment, RIn-Close parameters can be set to avoid or
at least to better control the explosion in the number of biclusters, with similar impact
on the computational cost.
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Figure 11 – Results of RIn-Close_CVC’s sensitivity to the parameter 𝜖. The parameter
𝑚𝑖𝑛𝑅𝑜𝑤 was set to: 57 for Yeast; 59 for GDS232; 795 for GDS750; and 23
for GDS4085.

6.3 RIn-Close: handling missing values
In Section 5.4, we propose a strategy to handle datasets with missing values. Now,

we will provide an insight about the impact of this strategy in the enumeration results.

We again used the four microarray gene expression datasets described in Table 12.
We imputed artificially missing values on them in different percentages, creating various
datasets with missing values. For each percentage of missing values, we created 50 datasets
based on each one of the four datasets. So, each one of our results is the mean of 50
executions of RIn-Close algorithms. The parameters used in this experiment are reported
in Table 13.

Figures 15 and 16 show the results for RIn-Close_CVC and RIn-Close_CHV,



Chapter 6. Experimental Results 77

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

er
 o

f 
B

ic
lu

st
er

s

ε

Yeast

(a)
1 2 3 4 5

0

2

4

6

8

10

12

14

R
u

n
ti

m
e 

(s
)

ε

Yeast

 

 

Total
Step 2
Step 3

(b)
1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

C
o

ve
ra

g
e 

(%
)

ε

Yeast

(c)
1 2 3 4 5

0

10

20

30

40

50

60

70

80

G
lo

b
al

 O
ve

rl
ap

ε

Yeast

(d)

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
x 10

4

N
u

m
b

er
 o

f 
B

ic
lu

st
er

s

ε

GDS232

(e)
1 2 3 4 5

0

50

100

150

200

250

300

350

400

450

500

R
u

n
ti

m
e 

(s
)

ε

GDS232

 

 

Total
Step 2
Step 3

(f)
1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

C
o

ve
ra

g
e 

(%
)

ε

GDS232

(g)
1 2 3 4 5

0

200

400

600

800

1000

1200

1400

1600

G
lo

b
al

 O
ve

rl
ap

ε

GDS232

(h)

2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u

m
b

er
 o

f 
B

ic
lu

st
er

s

ε

GDS750

(i)
2 3 4 5 6

0

500

1000

1500

R
u

n
ti

m
e 

(s
)

ε

GDS750

 

 

Total
Step 2
Step 3

(j)
2 3 4 5 6

0

10

20

30

40

50

60

70

80

90

100

C
o

ve
ra

g
e 

(%
)

ε

GDS750

(k)
2 3 4 5 6

0

100

200

300

400

500

600

700

800

900

G
lo

b
al

 O
ve

rl
ap

ε

GDS750

(l)

5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
x 10

4

N
u

m
b

er
 o

f 
B

ic
lu

st
er

s

ε

GDS4085

(m)
5 6 7 8 9

0

10

20

30

40

50

60

R
u

n
ti

m
e 

(s
)

ε

GDS4085

 

 

Total
Step 2
Step 3

(n)
5 6 7 8 9

0

10

20

30

40

50

60

70

80

90

100

C
o

ve
ra

g
e 

(%
)

ε

GDS4085

(o)
5 6 7 8 9

0

50

100

150

200

250

300

350

400

450

G
lo

b
al

 O
ve

rl
ap

ε

GDS4085

(p)

Figure 12 – Results of RIn-Close_CHV’s sensitivity to the parameter 𝜖. The parameter
𝑚𝑖𝑛𝑅𝑜𝑤 was set to: 144 (5%) for Yeast; 59 (10%) for GDS232; 795 (23%) for
GDS750; and 23 (2%) for GDS4085.

Table 13 – Parameters of the experiments with missing values.
CVC CHV

𝑚𝑖𝑛𝑅𝑜𝑤 𝑚𝑖𝑛𝐶𝑜𝑙 𝜖 𝑚𝑖𝑛𝑅𝑜𝑤 𝑚𝑖𝑛𝐶𝑜𝑙 𝜖
Yeast 57 3 20 144 3 4
GDS232 59 3 6 59 3 5
GDS750 795 3 10 795 3 6
GDS4085 23 3 36 23 3 9
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Figure 13 – Results of RIn-Close_CVC’s sensitivity to the parameter 𝑚𝑖𝑛𝑅𝑜𝑤. The pa-
rameter 𝜖 was set to: 5 for Yeast; 4 for GDS232; 4 for GDS750; and 37 for
GDS4085.

respectively. Invariably, the number of biclusters, the runtime, the coverage, and the global
overlap decreased with the increase of missing values in the datasets. These results meet
completely our expectations because of two reasons: (𝑖) higher percentages of missing data
means that we have fewer portions of the dataset to look for biclusters; and (𝑖𝑖) biclusters
that meets the restrictions of minimum number of rows and columns cannot meet one
or both of these restrictions with more missing values embedded in the dataset. The less
the number of biclusters in a solution, the smaller tends to be the runtime, coverage, and
global overlap. Logically, a missing value can partition a bicluster in two, increasing the
number of biclusters in the solution. But the more the biclusters are close to these lower
bounds (minimum number of rows and columns), the less it happens. It was certainly our
case in this experiment.
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Figure 14 – Results of RIn-Close_CHV’s sensitivity to the parameter 𝑚𝑖𝑛𝑅𝑜𝑤. The pa-
rameter 𝜖 was set to: 5 for Yeast; 3 for GDS232; 3 for GDS750; and 9 for
GDS4085.

6.4 Comparison with Heuristics
The results of this section were first reported in [103].

With this experiment, we are going to demonstrate that well-known heuristic-
based approaches can fail noticeably when trying to identify the existing biclusters in a
dataset. We claim that the results to be presented turn to be a strong motivation for
adopting enumerative algorithms, such as the ones proposed in this work. The dataset is
also carefully designed so that we can propose a suitable set of parameters for the heuristic-
based approaches, given that we are aware of the main attributes of the existing biclusters.
So, the disastrous behavior of the heuristic-based approaches cannot be attributed to an
unfortunate parameterization. We tested three heuristics that are specialized to mine CHV
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Figure 15 – Results of RIn-Close_CVC’s sensitivity to the percentage of missing values
in the dataset.

biclusters: CC, FLOC, and ROCC. These contenders were briefly described in Chapter 4.
We chose to perform this experiment with the CHV type of biclusters because this is the
most general type addressed in this work.

For this experiment, we used the 50 synthetic datasets described in Section 6.1
with the default parameters (i.e., 𝑛 = 5000, 𝑚 = 60, number of biclusters = 10, bicluster
row size = 200, bicluster column size = 8, overlap = 0.2, and Gaussian noise with 𝜇 = 0
and 𝜎2 = 0.01). These datasets represent a particular and controlled scenario, i.e., there
is a very clear boundary between what should and what should not be part of a bicluster.
Possibly, the boundaries are not so accurate in real-world applications. But in this way
these dataset allows us to clearly determine the parameters of the biclustering algorithms,
and find out what they are able to mine when looking for the original biclusters. For CC
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Figure 16 – Results of RIn-Close_CHV’s sensitivity to the percentage of missing values
in the dataset.

and FLOC, we set the value of 𝛿 for each dataset considering its largest bicluster MSR.
For both, the number of biclusters to be mined were set to 10. CC’s threshold for multiple
node deletion 𝛼 was set to 1.2 (the value suggested by the authors). For FLOC, we set the
probability to add a row/column to a seed (initial) bicluster based on the proportion of the
minimum number of rows/columns of a bicluster and the total number of rows/columns
in the dataset. So, we set these parameters to 0.04 and 0.13, respectively. For ROCC, we
set 𝑠𝑟 = 1586 and 𝑠𝑐 = 17 because these are the number of distinct rows/columns covered
by the biclusters. Based on the fraction of the number of rows/columns of a dataset over
the number of rows/columns of a bicluster, we set 𝑘 = 25 and 𝑙 = 8.

Table 14 shows the results of this experiment. CC completely failed to find the
original biclusters. As the values of the parameter 𝛿 were very low, though adequate for
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Table 14 – Results of the comparison with heuristics.

Precision Recall
RIn-Close 1.0000 (0.0000) 1.0000 (0.0000)
CC - 0.0000 (0.0000)
FLOC 0.0768 (0.0241) 0.0874 (0.0252)
ROCC 0.1831 (0.0355) 0.3845 (0.0655)

the task, CC was unable to find so accurate submatrices. FLOC had a very poor result
with low Precision and Recall. As the initial biclusters are generated at random, it is very
unlike that FLOC can improve them to the original ones. There is a very clear boundary
between what should and what should not be part of a bicluster, thus guiding to a very
low MSR for the existing biclusters. ROCC produced better results than CC and FLOC.
ROCC starts with a checkboard biclustering structure containing all rows and columns,
so it is expected that ROCC would achieve a better Recall than the others. But its routine
to refine this initial solution was not accurate, which led to a low Precision, even though
its Precision was better than the one produced by the others.

As we have seen, although we knew how to choose suitable parameters for the
heuristic-based algorithms, this case study was very challenging to them. On the other
hand, RIn-Close easily accomplished this task.

6.5 Comparison with a baseline - Applying enumerative biclustering
algorithms to gene ontology enrichment analysis
This experiment aims to demonstrate the usefulness of performing a complete,

correct, and non-redundant enumeration. RIn-Close_CHV algorithm is the only one in
the literature with these three key properties to enumerate perturbed CHV biclusters.
Its competitors, such as MicroCluster, miss some biclusters and do not find the maximal
version of others. Our motivation in this section is to answer the question: does the absence
of these three properties together lead to information loss to the data analyst? Note that
our goal is not to provide a biological analysis of the biclustering solutions, but only
to emphasize that the solutions provided by actual enumerative algorithms have more
information that should be considered in a biological analysis. We intend to establish
partnerships with researchers of the biology field to make us able to provide biological
analysis of our biclustering solutions in the future.

We compared RIn-Close_CHV and MicroCluster algorithms in a real-world ap-
plication, more specifically in Gene Ontology enrichment analysis (GOEA). The GOEA
indicates if the gene-sets delivered by some method are enriched with respect to some
gene ontology (GO) aspect. Given that the concept behind the biclustering approach is



Chapter 6. Experimental Results 83

appealing in biosciences, biclustering became a popular tool for discovering local patterns
on gene expression data. Also for this reason, GOEA is a usual way for the comparison
of biclustering algorithms.

The GO project aims to unify the representation of gene and gene product at-
tributes in a wide variety of organisms. The process of assigning GO terms to gene prod-
ucts is called annotation. The use of a consistent vocabulary allows genes from different
species to be compared based on their GO annotations. GO covers three aspects: Molec-
ular Function, Biological Process, and Cellular Component. The terms are structured as
a directed acyclic graph, where each term has defined relationships to other terms in the
same aspect, and sometimes in other aspects.

For this experiment, we used the Yeast dataset and verified whether the gene-sets
of the biclusters delivered by the algorithms show significant enrichment with respect to
Biological Process and Molecular Function annotations. The gene annotations were down-
loaded from the GO Website4. For the Saccharomyces cerevisiae organism, the number of
annotated genes related to biological process and molecular function is 6380; the number
of unique GO terms associated with annotated genes is 4483; and the number of gene-GO
term associations is 58812.

We used the Matlab Bioinformatics Toolbox 5 to verify the biological significance
of the biclustering results. The first step is to count the GO terms. So, for each gene of
the microarray dataset, we get the GO terms associated with it, and add 1 to its count.
We also have a count of the GO terms for each bicluster. We followed the instructions
of the toolbox, and propagated the counting to the neighboring GO terms. It is done to
alleviate the problem wherein the gene sets are not accurately annotated. The second
step is, for each bicluster, to look at the probabilities that the GO terms are counted by
chance. It is done by means of a hypergeometric probability distribution function, which
calculates the statistical significance of having drawn a specific number of successes out of
a total number of draws from a population. So, this function returns the p-value associated
with each GO term, which is the probability of obtaining such test statistics. The most
significant GO terms of a bicluster are the ones with the lowest p-values. A bicluster was
considered enriched if at least one of its GO terms has a p-value less or equal to 𝛼 = 0.05.

MicroCluster looks for scaling biclusters by default, so we chose to mine this type
of bicluster. As RIn-Close_CHV was implemented to mine shifting biclusters, we took
the logarithm of the values of the dataset. The adopted parameters are described in
Table 15. As SeqClus and CPT, MicroCluster returns biclusters that violate the user-
defined parameter 𝜖, so that its biclusters have residue below 2𝜖. Thereby, we set the
4 http://geneontology.org/page/download-annotations, last accessed 05/13/2015
5 http://www.mathworks.com/help/bioinfo/examples/gene-ontology-enrichment-in-microarray-

data.html, last accessed 05/13/2015
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Table 15 – Parameters of the algorithms in the experiment of GOEA.

𝜖 𝑚𝑖𝑛𝑅𝑜𝑤 𝑚𝑖𝑛𝐶𝑜𝑙

RIn-Close 0.02 100 5
MicroCluster 0.01 100 5

Table 16 – Results of the algorithms in the experiment of GOEA.

RIn-Close MicroCluster
Number of biclusters 19 11
Number of maximal biclusters 19 4
Number of enriched biclusters 19 11

parameter 𝜖 to log(2× 0.01 + 1) for RIn-Close_CHV.

Table 16 shows the results of this experiment. MicroCluster misses 8 of the 19
biclusters that could have been found in the Yeast dataset with this parametrization,
which represents a loss of more than 40% of the biclusters. All these 8 missed biclusters
are enriched and are, therefore, of great importance to the data analyst. Only 4 biclusters
from MicroCluster are maximal, i.e., more than 60% of its biclusters did not include
all possible genes in their gene-sets. Moreover, all the maximal versions found by RIn-
Close are also enriched. Logically, these 4 maximal biclusters found by MicroCluster are
identical to 4 biclusters found by RIn-Close, but it represents only 21% of the total number
of biclusters.

We made a more detailed analysis of one of the biclusters found only by RIn-Close,
and of one of the maximal versions provided by RIn-Close. Their gene-sets are exhibited
in Table 17.

Bicluster bic_max has 2 more genes than its non-maximal version found by Mi-
croCluster, that are:

∙ YDR091C: Essential Fe-S protein; required for ribosome biogenesis, translation ini-
tiation/termination; facilitates binding of multifactor complex (MFC) of initiation
factors to small ribosomal subunit; Dom34-Hbs1 complex and Rli1p work in dis-
sociating inactive ribosomes, thereby facilitating translation restart; forms complex
with Lto1p and Yae1p; dependency on ROS-labile FeS clusters, activity in nuclear
ribosomal-subunit export impaired by mild oxidative stress.

∙ YGR214W: Ribosomal 40S subunit protein S0A; required for maturation of 18S
rRNA along with Rps0Bp; deletion of either RPS0 gene reduces growth rate, deletion
of both genes is lethal; homologous to human ribosomal protein SA and bacterial
S2; RPS0A has a paralog, RPS0B, that arose from the whole genome duplication
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Table 17 – Gene-sets of one of the biclusters found only by RIn-Close (bic_novel), and of
one of the maximal versions provided by RIn-Close (bic_max)

Bicluster Genes
bic_novel YAL065C, YAL067C, YAR061W, YBL065W, YBL066C, YBR021W, YBR032W,

YBR051W, YBR072W, YBR090C, YBR116C, YBR240C, YBR250W, YBR298C,
YCL026C-A, YCR022C, YCR032W, YCR063W, YCR081W, YCR091W,
YCR107W, YDL071C, YDL109C, YDL113C, YDL206W, YDL208W, YDL210W,
YDL216C, YDL239C, YDL247W, YDR118W, YDR171W, YDR241W, YDR247W,
YDR256C, YDR259C, YDR274C, YDR401W, YEL004W, YEL006W, YEL016C,
YEL052W, YEL070W, YEL073C, YER054C, YER060W, YER096W, YER142C,
YER179W, YER187W, YFL030W, YFL043C, YFL054C, YFR023W, YFR032C,
YGL006W, YGL063W, YGL096W, YGL155W, YGL170C, YGL229C, YGL230C,
YGL249W, YGL250W, YGR043C, YGR058W, YGR065C, YGR088W, YGR122W,
YGR150C, YGR197C, YGR249W, YGR271W, YGR288W, YHL042W, YHR014W,
YHR044C, YHR048W, YHR157W, YIL013C, YIL015C-A, YIL097W, YIL120W,
YIR007W, YJL038C, YJL045W, YJL083W, YJL147C, YJR119C, YJR123W,
YKL086W, YKL107W, YKL173W, YKL222C, YKR076W, YKR097W, YLL016W,
YLR054C, YLR081W, YLR411W, YLR434C, YML066C, YMR034C, YMR234W,
YMR251W, YNL034W, YNL191W, YNL269W, YNL279W, YNR063W, YOL023W,
YOL091W, YOL104C, YOR160W, YOR173W, YPL194W, YPR001W, YPR007C,
YPR064W

bic_max YAL028W, YAL065C, YAL067C, YAR061W, YBL065W, YBL066C, YBR032W,
YBR051W, YBR090C, YBR174C, YBR240C, YBR250W, YBR298C, YCL003W,
YCR022C, YCR056W, YCR063W, YCR081W, YCR091W, YCR107W, YDL071C,
YDL109C, YDL113C, YDL206W, YDL210W, YDL216C, YDL239C, YDL242W,
YDL247W, YDR091C, YDR118W, YDR204W, YDR247W, YDR256C, YDR259C,
YDR273W, YDR274C, YDR362C, YDR401W, YDR436W, YDR506C, YEL004W,
YEL006W, YEL052W, YEL070W, YEL073C, YER054C, YER060W, YER096W,
YER179W, YFL030W, YFL054C, YFR023W, YGL006W, YGL063W, YGL170C,
YGL229C, YGL249W, YGL250W, YGR058W, YGR065C, YGR088W, YGR122W,
YGR197C, YGR212W, YGR214W, YGR249W, YGR288W, YHL042W,
YHR014W, YHR015W, YHR044C, YHR048W, YHR157W, YIL013C, YIL015C-A,
YIL097W, YIL120W, YIR007W, YJL038C, YJL045W, YJL053W, YJL083W,
YJL147C, YJR119C, YKL086W, YKL107W, YKL222C, YKR076W, YLL016W,
YLR312C, YML066C, YMR034C, YMR251W, YNL034W, YNL035C, YNL083W,
YNL146W, YNL191W, YNL194C, YNL203C, YNL269W, YNL279W, YNR062C,
YNR063W, YOL023W, YOL101C, YOL163W, YOR173W, YOR181W, YOR292C,
YOR300W, YOR358W, YPL194W, YPR001W, YPR007C, YPR026W, YPR064W,
YPR095C
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Tables 18 and 19 show a list of the ten most significant GO terms associated with
the bilcusters bic_novel and bic_max. To find out more about the terms that appear on
these lists, Figures 17 and 18 show a sub-ontology including the ancestors of these terms.
The sub-ontology on the left refers to the biological process and the sub-ontology on the
right refers to the molecular function. The nodes were colored in a way where bright red
is the most significant and bright green is the least significant. These sub-ontology was
created simply by getting the ancestors of the ten most significant GO terms, and getting
the relationships between them. It is easily done because each GO term has fields for is_a
and part_of. These fields represent the relationships between the GO terms. As GO terms
can be seen as nodes in an acyclic graph, we can traverse such relationships looking for
the ancestors, descendants, and relatives of a term.

The ancestors of a GO term are its parents in the graph. So, these two figures are
showing the relations between less specific GO terms that represent the terms highlighted
in Tables 18 and 19. It is usual to use less specific GO terms to facilitate the understanding
of the relationships exhibited by the gene-set.

The sub-ontology in Figure 17 has 90 nodes and 176 edges, and the sub-ontology
in Figure 18 has 88 nodes and 174 edges. Both of the sub-ontologies are very connected,
mainly in the subgraph representing biological process. Thus, the GO terms provided
by the two biclusters, bic_novel and bic_max, may contain relevant information about
biological processes and molecular functions of the yeast organism.
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Table 18 – The ten most significant GO terms of a bicluster found only by RIn-Close.

GO Term p-value Counts Definition
GO:0000122 0.0010 3 / 5 Any process that stops, prevents, or reduces the fre-

quency, rate or extent of transcription from an RNA
polymerase II promoter.

GO:0006366 0.0010 3 / 5 The synthesis of RNA from a DNA template by RNA
polymerase II, originating at an RNA polymerase II
promoter. Includes transcription of messenger RNA
(mRNA) and certain small nuclear RNAs (snRNAs).

GO:0045892 0.0010 3 / 5 Any process that stops, prevents, or reduces the fre-
quency, rate or extent of cellular DNA-templated tran-
scription.

GO:0006357 0.0031 3 / 7 Any process that modulates the frequency, rate or extent
of transcription from an RNA polymerase II promoter.

GO:0000083 0.0130 2 / 4 Any process that regulates transcription such that the
target genes are involved in the transition between G1
and S phase of the mitotic cell cycle.

GO:0000117 0.0130 2 / 4 Any process that regulates transcription such that the
target genes are transcribed as part of the G2/M tran-
sition of the mitotic cell cycle.

GO:0000182 0.0130 2 / 4 Interacting selectively and non-covalently with DNA se-
quences encoding ribosomal RNA.

GO:0000429 0.0130 2 / 4 A transcription regulation process in which the presence
of one carbon source leads to the modulation of the fre-
quency, rate, or extent of transcription, from an RNA
polymerase II promoter, of specific genes involved in the
metabolism of other carbon sources.

GO:0000976 0.0130 2 / 4 Interacting selectively and non-covalently with a specific
sequence of DNA that is part of a regulatory region that
controls transcription of that section of the DNA. The
transcribed region might be described as a gene, cistron,
or operon.

GO:0000981 0.0130 2 / 4 Interacting selectively and non-covalently with a spe-
cific DNA sequence in order to modulate transcription
by RNA polymerase II. The transcription factor may
or may not also interact selectively with a protein or
macromolecular complex.
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Table 19 – The ten most significant GO terms of a maximal version of a MicroCluster’s
bicluster.

GO Term p-value Counts Definition
GO:0003824 0.0000 19 / 298 Catalysis of a biochemical reaction at physiological tem-

peratures. In biologically catalyzed reactions, the reac-
tants are known as substrates, and the catalysts are nat-
urally occurring macromolecular substances known as
enzymes. Enzymes possess specific binding sites for sub-
strates, and are usually composed wholly or largely of
protein, but RNA that has catalytic activity (ribozyme)
is often also regarded as enzymatic.

GO:0000122 0.0023 3 / 5 Any process that stops, prevents, or reduces the fre-
quency, rate or extent of transcription from an RNA
polymerase II promoter.

GO:0006366 0.0023 3 / 5 The synthesis of RNA from a DNA template by RNA
polymerase II, originating at an RNA polymerase II
promoter. Includes transcription of messenger RNA
(mRNA) and certain small nuclear RNAs (snRNAs).

GO:0045892 0.0023 3 / 5 Any process that stops, prevents, or reduces the fre-
quency, rate or extent of cellular DNA-templated tran-
scription.

GO:0006357 0.0072 3 / 7 Any process that modulates the frequency, rate or extent
of transcription from an RNA polymerase II promoter.

GO:0000083 0.0227 2 / 4 Any process that regulates transcription such that the
target genes are involved in the transition between G1
and S phase of the mitotic cell cycle.

GO:0000117 0.0227 2 / 4 Any process that regulates transcription such that the
target genes are transcribed as part of the G2/M tran-
sition of the mitotic cell cycle.

GO:0000182 0.0227 2 / 4 Interacting selectively and non-covalently with DNA se-
quences encoding ribosomal RNA.

GO:0000429 0.0227 2 / 4 A transcription regulation process in which the presence
of one carbon source leads to the modulation of the fre-
quency, rate, or extent of transcription, from an RNA
polymerase II promoter, of specific genes involved in the
metabolism of other carbon sources.

GO:0000976 0.0227 2 / 4 Interacting selectively and non-covalently with a specific
sequence of DNA that is part of a regulatory region that
controls transcription of that section of the DNA. The
transcribed region might be described as a gene, cistron,
or operon.
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As we have seen, the RI-Close_CHV algorithm is able to (𝑖) find biclusters that its
competitors are unable to find, and (𝑖𝑖) find the maximal versions of the biclusters found
by its competitors. Given that biclusters not found by MicroCluster and the maximal
versions of MicroCluster’s biclusters are enriched, we may conclude that there is loss
of useful information when we are using biclustering algorithms without the three key
properties of being correct, complete and non-redundant.

6.6 Applying enumerative biclustering algorithms to the analysis
and identification of biomarkers
In genetics, biomarkers are defined as a set of genes that are associated with a

disease or are associated with the susceptibility to develop a specific disease. To improve
treatments of cancer, several biomarkers have been proposed for risk prognosis and treat-
ment response [5, 29]. The disturbances in central processes in cancer cells are often due
to abnormalities in gene expression. It is known that tumor cells show different gene ex-
pression profiles compared to normal tissue but also to tissue obtained from metastases
[84]. Recent published biomarkers in many types of cancer contain numerous genes and
are mainly based on gene expression, generated using microarray profiling or RNA-Seq
technologies [5]. The identification of biomarkers, i.e, set of genes whose expression change
is highly correlated with the disease, poses a great challenge to data analysis approaches
[84].

Usually, identified biomarkers are developed to a specific cancer tissue and sub-
types. In breast cancer, for example, more than 40 biomarkers have been proposed con-
taining between 3 and 512 genes and whose prognostic or predictive performance depends
on therapy, hormone receptor status, and the number of genes [5]. Here, we will analyze
biomarkers in the small, round blue cell tumors (SRBCTs) of childhood, which include
neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and
the Ewing family of tumors (EWS). Accurate diagnosis of SRBCTs is essential because
the treatment options, responses to therapy and prognoses vary widely depending on the
diagnosis [60]. These cancers are difficult to distinguishing by light microscopy, and cur-
rently no single test can precisely distinguish these cancers [60]. The biomarkers may be
useful in distinguish between these four types of cancer. We use an enumerative biclus-
tering algorithm, more specifically RIn-Close_CVC, to (𝑖) analyze two sets of biomarkers
proposed in the literature to classify these four types of cancer, and (𝑖𝑖) propose a set
of biomarkers from scratch. Our proposals lead to simple human interpretable rules for
distinguishing between these four cancers.

Our rules are based on class association rules (CARs), defined in Subsection 3.2.1,
with one major difference: those concepts considers a binary relation 𝐼 ⊆ 𝐺×𝑀 between
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the objects 𝐺 and attributes 𝑀 of the data matrix. So, the rules are extracted from
CTV biclusters of ones. But, we are handling numerical datasets in our case, and we will
extract the rules from CVC biclusters. Therefore, the rules require one more information
in their antecedent: a range of values associated with each attribute of the antecedent.
So, the antecedent of a rule 𝑋 ⇒ 𝑐 will be a set of attributes associated with ranges:
𝑋 = {𝑥1[𝑙1, 𝑢1], 𝑥2[𝑙2, 𝑢2], ...}. For instance, a CAR 𝑥1[𝑙1, 𝑢1], 𝑥2[𝑙2, 𝑢2] ⇒ 1 means that
if an object has the attribute 𝑥1 ∈ [𝑙1, 𝑢1] and the attribute 𝑥2 ∈ [𝑙2, 𝑢2], then the class
label of the object is equal to 1. Despite this extra information, the concepts described
in Subsection 3.2.1 remains valid when we consider a closure operator adapted to handle
CVC biclusters in numerical datasets:

𝑋 ′ = {𝑔 ∈ 𝐺|∀𝑥[𝑙, 𝑢] ∈ 𝑋 : 𝑔𝑥 ∈ [𝑙, 𝑢]}, (6.1)

where 𝑋 = {𝑥1[𝑙1, 𝑢1], 𝑥2[𝑙2, 𝑢2], ...} is a set of attributes associated with ranges, and 𝑔𝑥

means the value of the object 𝑔 on the attribute 𝑥.

We perform our analysis on the same dataset used by Khan et al. [60] and by Pal et
al. [90]. The dataset consists of expression levels of 2,308 genes, which were obtained from
glass-slide cDNA microarrays, prepared in accordance with the standard protocol of the
National Human Genome Research Institute [90]. The dataset has 88 samples (EWS:29,
BL:11, NB:18, RMS:25, and 5 non-SRBCT samples). Rows of the dataset refer to the
samples and columns refer to the genes. Each gene has an Image Id associated with it.
We will report the Image Id to ease the reading of our results. The description of the
genes is available on the web 6.

Khan et al. [60] proposed a set of 96 genes as biomarkers, and Pal et al. [90]
proposed a set of only 7 genes as biomarkers to identify SRBCTs, see Table 20. There are
only four genes that are common to these two sets of biomarkers: 325182, 784224, 812105,
814260. Therefore, these two biomarkers are very different in size and composition. The
smaller the set of genes, the easier it is to be assessed in real scenarios. However, few
genes may not be sufficient to distinguish between the four types of SRBCTs.

We will analyze these two sets of biomarkers and provide some insights about
them. First of all, we will answer the following questions:

∙ Are the proposed biomarkers sufficient to generate rules that discriminate all the
SRBCTs?

If yes, are all the genes necessary to generate such rules?

If no, how many genes do we need to add to generate such rules?
6 http://research.nhgri.nih.gov/microarray/Supplement/, last accessed 05/01/2016

http://research.nhgri.nih.gov/microarray/Supplement/
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Table 20 – Biomarkers proposed by Khan et al. [60] and by Pal et al. [90] to identify
SRBCTs.

Ref. Proposed Biomarkers
[60] 21652 39093 41591 42558 43733 44563 45291 45542 52076 80109 80338 82225 122159

135688 183337 200814 204545 207274 208718 212542 233721 241412 244618 245330
246377 289645 291756 292522 293500 295985 296448 297392 298062 308163 308231
308497 323371 324494 325182 357031 364934 365826 377048 377461 377671 377731
383188 395708 416959 417226 461425 486110 486787 504791 563673 609663 629896
714453 745343 755599 755750 756556 767183 768370 769959 770394 782503 784224
784257 784593 788107 796258 809901 809910 811000 812105 812965 813266 814260
814526 824602 839736 840942 841620 841641 854899 859359 866702 868304 878280
897788 1409509 1416782 1435862 1469292 1473131

[90] 143306 325182 745019 770868 784224 812105 814260

Then, we will provide new gene-sets and human interpretable rules based on our analysis
of the biomarkers proposed by Khan et al. [60] and by Pal et al. [90] to identify SRBCTs.
After that, we will propose biomarkers from scratch and compare then with these two
proposals. Note that once more, our goal is not to provide a biological analysis of the
results, but we intend to be able to provide such analysis in the future.

RIn-Close_CVC were applied in this experiment. We set𝑚𝑖𝑛𝑅𝑜𝑤 = 3 and𝑚𝑖𝑛𝐶𝑜𝑙 =
1. We scale the values of each column of the data matrix to the interval [0, 10,000] in
order to use the same value of 𝜖 for all columns. Our analysis considers only the biclusters
composed of samples from the same class, named here pure biclusters. We discarded the
biclusters that have samples from more than one class. Nevertheless, the number of pure
biclusters was high. Therefore, we filtered our results in order to have a small set of biclus-
ters that represents the original result without loss. The purpose of our filter is to get few
biclusters that cover the same samples as the original result. With few biclusters, we can
produce a small set of rules for distinguishing between EWS, BL, NB, and RMS tumors,
making it more simple and interpretable for humans. As our biclusters are maximal and
pure, all the rules have 100% of confidence. We could have resorted to other filters,
in consonance with the main purpose of the research, for example, obtaining the smallest
set of biomarkers. In our case, we choose to have few biclusters capable of describing the
four types of cancers. Briefly, our filter works as described in Algorithm 6.1.

Algorithm 6.1 Filter of biclustering solutions
while not reaching the original coverage do

Select the bicluster yielding the greatest coverage
end while

We start by analyzing the biomarkers proposed in [60]. For it, we only consider
the 96 columns of the dataset that correspond to the proposed biomarkers, so we ran
RIn-Close_CVC in a dataset with 88 rows and 96 columns. Table 21 shows the results.
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Table 21 – Analysis of the RIn-Close_CVC’s solution considering the biomarkers pro-
posed in [60].

𝜖 = 100 𝜖 = 200 𝜖 = 300 𝜖 = 400 𝜖 = 500

Original solution

# of bics 3,641 11,166 24,355 50,237 86,904
Avg. Ext. 4.03 ± 1.20 4.37 ± 1.39 4.80 ± 1.52 5.44 ± 1.78 5.92 ± 1.92
Avg. Int. 7.79 ± 5.39 11.20 ± 8.81 11.98 ± 8.61 12.98 ± 8.14 14.24 ± 7.67
Avg. Vol. 31.58 ± 22.08 50.09 ± 45.49 55.88 ± 43.38 67.27 ± 42.48 79.83 ± 40.29
# of genes 96 96 96 96 96

Filtered solution

# of bics 17 14 13 10 9
Avg. Ext. 6.47 ± 2.27 8.93 ± 2.34 10.69 ± 3.01 11.90 ± 3.21 14.44 ± 3.57
Avg. Int. 2.88 ± 1.50 4.57 ± 3.86 6.69 ± 6.88 7.90 ± 8.99 10.56 ± 13.21
Avg. Vol. 20.06 ± 16.53 43.43 ± 44.41 73.77 ± 78.07 92.80 ± 98.42 133.78 ± 138.51
# of genes 27 29 41 44 57

% of Coverage 100.00 100.00 100.00 100.00 100.00
[# of bics.] Number of biclusters; [Avg. Ext] Average and standard deviation of the size of the biclusters’ extents; [Avg.
Int.] Average and standard deviation of the size of the biclusters’ intents; [Avg. Vol.] Average and standard deviation of

the biclusters’ volume; [# of genes] Number of genes presented in at least one bicluster.

For all values of 𝜖 that we tested, all the genes were present in at least one bicluster of the
solution. The size of the extents, the size of the intents, and the volume of the biclusters
increased with the value of 𝜖. All solutions cover 100% of the SRBCT samples. The filtered
solution has a much smaller number of biclusters, being much easier to be analyzed by
humans. The filtered biomarkers are of a smaller size when compared to the original ones,
which indicates that we need less than 96 genes to distinguish between the four types of
SRBCTs. The filtered biomarkers are exhibited in Table 22. As in the original solution,
the smaller the value of 𝜖, the smaller the size of the extents and intents, which has a
direct impact on the resulting rules. Tables 23 and 24 show the rules corresponding to
the filtered solutions with 𝜖 = 200 and 𝜖 = 500, respectively. With smaller values of 𝜖,
the trend is to have smaller biclusters, requiring a larger number of biclusters to cover all
SRBCT samples. On the other hand, the number of genes in the biomarker is smaller.
The best options is a trade-off between number of rules and number of genes acting as
biomarkers.

To exemplify one of the human interpretable rules presented here, let us observe
the third rule in Table 23: 41591[0.27,0.35], 714453[0.10,0.32] ⇒ EWS. It indicates that
if the expression of the gene 41591 is in the interval [0.27, 0.35] and the expression of the
gene 714453 is in the interval [0.10, 0.32], then the sample is from the class EWS. The
rules are exhibiting the original values of the dataset in the intervals.

Table 25 shows the results corresponding to the analysis of the seven biomarkers
proposed in [90]. We only consider the 7 columns of the dataset that correspond to the
proposed biomarkers, so we ran RIn-Close_CVC in a dataset with 88 rows and 7 columns.
With only these 7 genes, we were not able to cover all SRBCT samples, although we have
a high coverage. The highest coverages were achieved considering 𝜖 = 600 and 𝜖 = 1000.
We tested values of 𝜖 < 600, but the coverage was even smaller. With 𝜖 = 1000, we have
less biclusters than with 𝜖 = 900, and the size of the extents was smaller in average. It
happens because with a too loose value of 𝜖, it becomes increasingly more difficult to find
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Table 22 – Biomarkers corresponding to the filtered solutions of Table 21.

𝜖 Biomarkers
100 41591 42558 44563 80109 80338 82225 204545 233721 246377 292522 295985 324494

325182 364934 377461 377671 383188 486787 714453 756556 769959 770394 784224
784593 840942 841641 878280

200 41591 43733 44563 45542 80109 82225 183337 233721 245330 246377 292522 324494
325182 357031 364934 377461 377671 461425 486787 714453 756556 769959 770394
782503 784593 812105 814526 859359 1435862

300 41591 43733 44563 45542 52076 80109 82225 183337 207274 233721 246377 292522
295985 298062 308163 323371 324494 357031 364934 377461 461425 486787 563673
629896 714453 756556 770394 782503 784224 784593 809910 811000 812105 814526
840942 841641 854899 859359 868304 878280 1435862

400 21652 41591 43733 44563 45542 52076 80109 82225 183337 200814 207274 233721
245330 246377 292522 297392 298062 308163 323371 324494 325182 357031 364934
377461 461425 486787 563673 609663 629896 714453 755750 756556 769959 770394
782503 784224 809910 811000 814526 824602 840942 854899 859359 1435862

500 21652 41591 43733 44563 45542 52076 80109 82225 122159 183337 207274 233721
244618 245330 246377 291756 292522 293500 295985 297392 298062 308163 323371
324494 325182 357031 364934 365826 377461 417226 461425 486787 563673 609663
629896 714453 745343 755750 756556 768370 769959 770394 782503 784224 784593
809910 811000 814526 824602 840942 854899 859359 866702 868304 878280 1409509
1435862

Table 23 – Rules corresponding to the filtered solution of Table 21 considering 𝜖 = 200.

# Rule 𝐶𝑜𝑚𝑝(𝑅)

1 1714453[0.05,0.31], 82225[0.05,0.13], 44563[0.05,0.40], 324494[0.10,0.28] ⇒ EWS 44.83%
2 770394[0.10,0.31], 714453[0.05,0.30], 82225[0.10,0.18], 324494[0.10,0.24], 325182[0.09,0.18], 292522[0.10,0.24] ⇒ EWS 31.03%
3 41591[0.27,0.35], 714453[0.10,0.32] ⇒ EWS 34.48%
4 377461[0.09,0.66], 714453[0.05,0.31], 82225[0.01,0.09], 44563[0.03,0.28], 324494[0.06,0.28], 756556[0.13,0.30] ⇒ EWS 34.48%
5 82225[0.05,0.13], 324494[0.10,0.32], 756556[0.13,0.32] ⇒ EWS 44.83%
6 486787[0.05,0.12], 770394[0.05,0.25], 233721[0.08,0.25], 80109[0.07,0.42], 782503[0.06,0.13], 377461[0.08,0.36],

183337[0.04,0.14], 714453[0.05,0.23], 44563[0.04,0.17], 324494[0.06,0.25], 461425[0.05,0.21], 859359[0.10,0.20],
45542[0.10,0.25], 1435862[0.07,0.17], 364934[0.13,0.24], 246377[0.07,0.31], 292522[0.05,0.24] ⇒ BL

100.00%

7 461425[0.08,0.26], 784593[0.04,0.16], 756556[0.11,0.27], 364934[0.09,0.39], 292522[0.06,0.21] ⇒ NB 55.56%
8 324494[0.06,0.29], 756556[0.13,0.32], 325182[0.16,0.23], 364934[0.31,0.65] ⇒ NB 38.89%
9 812105[0.12,0.18], 714453[0.03,0.19], 324494[0.06,0.16], 461425[0.10,0.27], 245330[0.08,0.13] ⇒ NB 38.89%
10 814526[0.17,0.46], 246377[0.34,0.63] ⇒ RMS 32.00%
11 486787[0.17,0.34], 770394[0.15,0.29], 43733[0.33,0.48] ⇒ RMS 28.00%
12 770394[0.14,0.32], 357031[0.16,0.22], 769959[0.09,0.18] ⇒ RMS 24.00%
13 377671[0.12,0.19], 769959[0.17,0.29] ⇒ RMS 24.00%
14 814526[0.42,0.72], 246377[0.36,0.66] ⇒ RMS 32.00%
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Table 24 – Rules corresponding to the filtered solution of Table 21 considering 𝜖 = 500.

# Rule 𝐶𝑜𝑚𝑝(𝑅)

1 714453[0.05,0.31], 82225[0.03,0.19], 324494[0.10,0.43], 756556[0.14,0.62], 325182[0.09,0.35] ⇒ EWS 75.86%
2 183337[0.05,0.34], 714453[0.05,0.41], 324494[0.06,0.32], 756556[0.13,0.35], 293500[0.44,0.69] ⇒ EWS 48.28%
3 365826[0.15,0.41], 770394[0.11,0.67], 714453[0.08,0.41], 298062[0.18,0.44], 324494[0.10,0.39], 756556[0.18,0.49],

292522[0.06,0.45] ⇒ EWS
55.17%

4 207274[0.03,0.12], 486787[0.05,0.12], 770394[0.05,0.25], 244618[0.09,0.49], 233721[0.08,0.25], 629896[0.08,0.23],
840942[0.04,0.21], 80109[0.07,0.42], 41591[0.05,0.14], 782503[0.06,0.13], 377461[0.08,0.36], 52076[0.06,0.19],
811000[0.02,0.13], 308163[0.07,0.55], 183337[0.04,0.14], 714453[0.05,0.23], 298062[0.04,0.17], 44563[0.04,0.17],
324494[0.06,0.25], 563673[0.03,0.09], 417226[0.03,0.33], 122159[0.05,0.34], 609663[0.06,0.25], 461425[0.05,0.21],
809910[0.13,0.53], 824602[0.04,0.21], 245330[0.08,0.24], 1409509[0.08,0.25], 756556[0.12,0.34], 21652[0.06,0.36],
745343[0.05,0.45], 859359[0.10,0.20], 45542[0.10,0.25], 323371[0.10,0.21], 293500[0.08,0.30], 1435862[0.07,0.17],
814526[0.05,0.39], 364934[0.13,0.24], 246377[0.07,0.31], 291756[0.07,0.25], 769959[0.08,0.33], 854899[0.06,0.16],
755750[0.06,0.22], 292522[0.05,0.24], 768370[0.12,0.32] ⇒ BL

100.00%

5 714453[0.03,0.61], 324494[0.06,0.51], 461425[0.08,0.47], 756556[0.13,0.42], 784224[0.25,0.51], 325182[0.11,0.33],
814526[0.79,1.59], 364934[0.09,0.65], 292522[0.03,0.21] ⇒ NB

72.22%

6 486787[0.08,0.50], 295985[0.05,0.21], 866702[0.07,0.21], 714453[0.05,0.25], 324494[0.07,0.51], 878280[0.05,0.14],
122159[0.05,0.28], 756556[0.11,0.31], 297392[0.28,0.88], 1435862[0.03,0.17], 364934[0.17,0.50], 868304[0.06,0.35] ⇒
NB

55.56%

7 486787[0.13,0.55], 770394[0.12,0.40], 43733[0.14,0.55], 814526[0.17,0.81], 246377[0.04,0.68] ⇒ RMS 68.00%
8 770394[0.12,0.65], 357031[0.08,0.23], 769959[0.14,0.44] ⇒ RMS 52.00%
9 486787[0.13,0.55], 770394[0.14,0.40], 43733[0.14,0.55], 784593[0.16,0.47] ⇒ RMS 56.00%

Table 25 – Analysis of the RIn-Close_CVC’s solution considering the biomarkers pro-
posed in [90]

𝜖 = 600 𝜖 = 700 𝜖 = 800 𝜖 = 900 𝜖 = 1000

Original solution

# of bics 194 230 264 318 285
Avg. Ext. 3.84 ± 1.28 4.17 ± 1.51 4.44 ± 1.47 5.11 ± 2.31 4.87 ± 2.30
Avg. Int. 3.45 ± 0.88 3.63 ± 0.90 3.84 ± 0.90 4.01 ± 0.94 4.19 ± 0.97
Avg. Vol. 12.79 ± 3.43 14.75 ± 5.02 16.59 ± 5.40 19.87 ± 8.73 19.79 ± 9.04
# of genes 7 7 7 7 7

Filtered solution

# of bics 24 27 23 10 20
Avg. Ext. 4.62 ± 2.02 4.74 ± 2.14 4.83 ± 1.80 5.71 ± 2.35 6.25 ± 2.86
Avg. Int. 2.96 ± 0.75 3.11 ± 0.75 3.13 ± 0.76 3.19 ± 0.87 3.45 ± 1.28
Avg. Vol. 13.04 ± 4.35 14.44 ± 6.20 14.65 ± 5.31 17.90 ± 8.28 20.65 ± 10.16
# of genes 7 7 7 7 7

% of Coverage 97.59 96.39 95.18 95.18 97.59
[# of bics.] Number of biclusters; [Avg. Ext] Average and standard deviation of the size of the biclusters’ extents; [Avg.
Int.] Average and standard deviation of the size of the biclusters’ intents; [Avg. Vol.] Average and standard deviation of

the biclusters’ volume; [# of genes] Number of genes presented in at least one bicluster.

pure biclusters. The filtered biomarkers has the same number of genes when compared to
the original solutions, being possible only to significantly reduce the number of biclusters
(consequently also the number of rules).

Analyzing the samples not covered in the solution of Table 25 with 𝜖 = 600, and
the important genes to cover these samples in the solutions of Table 21, we decided to add
the gene of Image Id. 324494 to the set of genes proposed in [90]. The result is showed in
Table 26. With only this extra gene, we were able to cover all SRBCT samples. Table 27
shows the rules corresponding to this solution. We note that these rules have a small
completeness when compared to the rules in Tables 23 and 24. It is expected, given that
we have small biclusters due to a very restrict number of genes to classify the cancers.

We also worked in proposing biomarkers from scratch. So, we applied our biclus-
tering algorithm in the entire dataset (with 88 samples and 2,308 genes). To reduce the
number of biclusters in the final solution, we parametrized RIn-Close_CVC as follows:
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Table 26 – Analysis of the RIn-Close_CVC’s solution considering the biomarkers pro-
posed in [90] plus the gene 324494.

𝜖 = 600

Original solution

# of bics 286
Avg. Ext. 3.85± 1.23
Avg. Int. 3.77± 1.10
Avg. Vol. 14.09± 4.69
# of genes 8

Filtered solution

# of bics 23
Avg. Ext. 5.00± 2.15
Avg. Int. 3.00± 0.95
Avg. Vol. 14.43± 6.14
# of genes 8

% of Coverage 100.00
[# of bics.] Number of biclusters; [Avg. Ext] Average and standard deviation of the size
of the biclusters’ extents; [Avg. Int.] Average and standard deviation of the size of the

biclusters’ intents; [Avg. Vol.] Average and standard deviation of the biclusters’ volume;
[# of genes] Number of genes presented in at least one bicluster.

Table 27 – Rules corresponding to the filtered solution of Table 26.

# Rule 𝐶𝑜𝑚𝑝(𝑅)

1 143306[0.19,0.61], 814260[0.27,0.61]⇒ EWS 37.93%
2 812105[0.01,0.18], 770868[0.10,0.28], 325182[0.34,0.41], 143306[0.35,0.53]⇒ EWS 24.14%
3 770868[0.14,0.33], 325182[0.36,0.45], 143306[0.48,0.92]⇒ EWS 20.69%
4 770868[0.11,0.26], 325182[0.25,0.35], 143306[0.25,0.61]⇒ EWS 20.69%
5 143306[0.18,0.51], 324494[2.98,3.38]⇒ EWS 13.79%
6 770868[0.04,0.22], 143306[0.35,0.79], 324494[1.47,1.75]⇒ EWS 17.24%
7 784224[0.45,0.72], 770868[0.15,0.33], 143306[0.46,0.92]⇒ EWS 13.79%
8 812105[0.06,0.14], 814260[0.10,0.26], 324494[0.29,0.51]⇒ BL 72.73%
9 812105[0.08,0.23], 770868[0.11,0.16], 143306[0.50,0.77], 324494[0.78,1.14]⇒ BL 27.27%
10 812105[0.01,0.07], 770868[1.09,1.27], 143306[0.25,0.51], 324494[0.48,0.63]⇒ NB 33.33%
11 812105[0.05,0.14], 325182[0.28,0.37], 745019[0.30,0.43], 143306[0.17,0.60]⇒ NB 22.22%
12 812105[0.07,0.21], 143306[0.36,0.40], 814260[3.74,4.00], 324494[0.58,0.90]⇒ NB 22.22%
13 812105[0.06,0.15], 143306[0.17,0.59], 814260[2.87,3.08]⇒ NB 27.78%
14 784224[0.51,0.72], 812105[0.07,0.21], 770868[0.90,1.09], 143306[0.37,0.51], 324494[0.31,0.62]⇒ NB 16.67%
15 812105[0.06,0.17], 745019[0.43,0.52], 143306[0.36,0.60], 324494[0.87,1.24]⇒ NB 16.67%
16 812105[0.13,0.21], 325182[0.76,0.86], 143306[0.38,0.59]⇒ NB 16.67%
17 814260[0.33,0.68], 324494[0.47,1.02]⇒ RMS 36.00%
18 745019[0.27,0.35], 814260[0.86,1.10], 324494[0.38,0.92]⇒ RMS 16.00%
19 784224[1.62,1.89], 324494[0.31,0.82]⇒ RMS 24.00%
20 784224[2.79,2.89], 324494[0.19,0.66]⇒ RMS 12.00%
21 745019[1.02,1.13], 814260[0.70,0.86], 324494[0.35,0.77]⇒ RMS 12.00%
22 770868[0.38,0.54], 143306[1.01,1.43]⇒ RMS 12.00%
23 812105[1.38,1.45]⇒ RMS 20.00%
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Table 28 – Analysis of the RIn-Close_CVC’s solution considering the entire dataset.

𝜖 = 300

Original solution

# of bics 76,554
Avg. Ext. 8.73± 1.03
Avg. Int. 11.52± 4.00
Avg. Vol. 99.39± 32.18
# of genes 641

Filtered solution

# of bics 9
Avg. Ext. 12.67± 3.28
Avg. Int. 11.00± 14.32
Avg. Vol. 130.33± 154.62
# of genes 62

% of Coverage 100.00
[# of bics.] Number of biclusters; [Avg. Ext] Average and standard deviation of the size
of the biclusters’ extents; [Avg. Int.] Average and standard deviation of the size of the

biclusters’ intents; [Avg. Vol.] Average and standard deviation of the biclusters’ volume;
[# of genes] Number of genes presented in at least one bicluster.

Table 29 – Biomarkers corresponding to the filtered solution of Table 28.

𝜖 Biomarkers
300 39093 40643 43733 44563 45542 78353 82225 110503 122159 124605 135688

138672 196992 204545 207274 208718 212542 214990 233721 244618 245330
246377 263716 283751 284001 292171 295985 296448 298062 300051 307532
307660 308163 345553 361974 365826 460487 461425 491692 502055 628357
714106 741831 755750 756556 768443 769890 769959 784224 796475 809694
809901 812033 813254 813266 813823 839736 841641 878280 1323448 1409509
1474174

𝑚𝑖𝑛𝑅𝑜𝑤 = 8, 𝑚𝑖𝑛𝐶𝑜𝑙 = 1, and 𝜖 = 300. Table 28 shows the result. The number of filtered
biclusters are much smaller than the number of original biclusters, and the same can be
said about the number of genes in the biomarkers. The genes in the biomarkers is shown
in Table 29. It has 31 genes in common with the biomarker proposed by Khan et al. [60],
and 1 gene in common with the biomarker proposed by Pal et al. [90] (this gene is also
part of the biomarkers proposed by Khan et al. [60]). These 31 genes are highlighted in
Table 29. The rules from this solution are presented in Table 30.

The 31 genes in common to the solution in [60], being 1 in common to the solution
in [90] too, indicates that our methodology is coherent in defining biomarkers. It is difficult
to know, without a biological analysis, what is the best gene-set, among those presented
here, to discriminate the SRBCTs, but different methodologies share 31 genes. It is a
evidence for us of the importance of these genes, mainly the gene 784224 that appears
in [60], [90], and in our solution from scratch. Moreover, these 31 genes are sufficient to
discriminate between all the SRBCT samples.
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Table 30 – Rules corresponding to the filtered solution of Table 28.

# Rule 𝐶𝑜𝑚𝑝(𝑅)

1 138672[0.07,0.40], 245330[0.05,0.41], 298062[0.10,0.39], 461425[0.20,0.49], 628357[0.15,0.42] ⇒ EWS 65.52%
2 207274[0.09,1.05], 245330[0.05,0.41], 295985[0.01,0.13], 296448[0.03,0.46], 298062[0.06,0.32], 461425[0.13,0.35] ⇒

EWS
58.62%

3 44563[0.15,0.36], 110503[0.10,0.21], 245330[0.05,0.32], 298062[0.10,0.43], 502055[0.15,0.55], 769890[0.19,0.32],
784224[0.25,0.49] ⇒ EWS

37.93%

4 39093[0.03,0.12], 40643[0.05,0.20], 43733[0.05,0.12], 44563[0.05,0.25], 45542[0.08,0.25], 82225[0.04,0.21],
122159[0.07,0.42], 124605[0.09,0.20], 135688[0.05,0.14], 196992[0.04,0.13], 204545[0.06,0.13], 207274[0.08,0.36],
208718[0.06,0.19], 212542[0.02,0.13], 214990[0.10,0.37], 233721[0.07,0.55], 244618[0.04,0.14], 245330[0.05,0.23],
246377[0.04,0.17], 263716[0.19,0.45], 284001[0.10,0.29], 292171[0.33,0.62], 296448[0.04,0.17], 298062[0.06,0.25],
307660[0.05,0.14], 308163[0.03,0.09], 345553[0.07,0.20], 361974[0.04,0.18], 365826[0.05,0.21], 460487[0.09,0.16],
461425[0.12,0.34], 491692[0.09,0.16], 502055[0.09,0.30], 628357[0.07,0.17], 714106[0.05,0.14], 741831[0.16,0.38],
755750[0.10,0.20], 756556[0.10,0.25], 769959[0.10,0.21], 809694[0.09,0.33], 809901[0.07,0.17], 813254[0.04,0.14],
813266[0.05,0.39], 813823[0.05,0.15], 839736[0.13,0.24], 841641[0.07,0.31], 878280[0.06,0.16], 1409509[0.05,0.24],
1474174[0.14,0.34] ⇒ BL

100.00%

5 40643[0.24,0.43], 245330[0.03,0.25], 307660[0.04,0.21], 345553[0.05,0.24], 365826[0.08,0.34], 460487[0.06,0.22],
796475[0.25,0.62], 1323448[0.12,0.51] ⇒ NB

72.22%

6 292171[0.21,0.64], 300051[0.07,0.50], 460487[0.06,0.22], 768443[0.04,0.13], 796475[0.29,0.65], 812033[0.04,0.72],
839736[0.17,0.65] ⇒ NB

66.67%

7 43733[0.16,0.35], 44563[0.14,0.39], 135688[0.12,0.21], 307532[0.13,0.36], 809694[0.20,0.48] ⇒ RMS 48.00%
8 44563[0.12,0.40], 78353[0.23,0.37], 292171[0.16,0.53], 841641[0.22,0.68] ⇒ RMS 40.00%
9 138672[0.20,0.47], 283751[0.13,0.32], 307532[0.23,0.42], 345553[0.10,0.28], 460487[0.03,0.17], 502055[0.11,0.46],

628357[0.10,0.24], 813266[0.18,0.66] ⇒ RMS
36.00%

6.7 Chapter Overview
This chapter presented the experimental results and discussed them.

The first experiment was devoted to analyzing RIn-Close’s scalability when varying
several characteristics of the dataset. It provides to the user an insight into when it is
feasible to use an enumerative biclustering algorithm.

The second experiment analyzed RIn-Close’s sensitivity to its main parameters,
helping the user to set them.

The third experiment showed the difficulty that heuristics have to find out biclus-
ters even in simple and controlled scenarios, encouraging the use of enumerative algo-
rithms.

In the fourth and fifth experiments, we applied RIn-Close to two real-world prob-
lems involving gene expression data: the GOEA, and the analysis and identification of
biomarkers, respectively. The fourth experiment also showed how a pseudo-enumerative
algorithm misses useful information when analyzing the data, encouraging the use of enu-
merative algorithms. In our fifth experiment, we also showed how to extract CARs from
CVC biclusters of an enumerative solution.

In the next chapter, we will conclude our thesis and outline limitations and sug-
gestions of future works.
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7 Conclusion

Biclustering is a very powerful data mining technique that overcomes several draw-
backs of the well-known clustering technique. Due to its complexity, most of the proposed
biclustering algorithms are heuristic-based. Nonetheless, there are several algorithms able
to perform (𝑖) efficient, (𝑖𝑖) complete, (𝑖𝑖𝑖) correct, and (𝑖𝑣) non-redundant enumeration
of all maximal CTV biclusters of ones from a binary data matrix. These enumerative al-
gorithms proved to be very useful and have been applied in various application domains.
However, the raw data matrix admits integer and/or real values in several other applica-
tion domains, and to transform it into binary data leads to loss of information. Hence,
there are some proposals capable of dealing directly with numerical data matrices. Unfor-
tunately, these already available algorithms to enumerate CVC, CVR, or CHV biclusters
in numerical datasets are not capable of keeping one or more of these four properties.

In this thesis, we proposed a family of algorithms, called RIn-Close, capable of
preserving these four properties when enumerating perfect CVC (or CVR) biclusters,
perturbed CVC (or CVR) biclusters, and perfect CHV biclusters. Additionally, in the
case of perturbed CHV biclusters, the last three of the aforementioned properties are
preserved.

7.1 Discussion
The four key properties of an enumerative bicluster algorithm are: (1) efficiency,

(2) completeness, (3) correctness, and (4) non-redundancy.

Regarding the enumeration of CVC and CVR biclusters in numerical data matri-
ces, our algorithms, RIn-Close_CVC_P and RIn-Close_CVC, are the only ones in the
literature with these four properties. As shown in Table 7, their competitors have no
more than two of these four properties. Most of their competitors do not have the first
and the fourth properties. The only exception is the PPS algorithm, which has the fourth
property, but does not have the second one. Thus, our main contribution with respect to
the enumeration of CVC and CVR biclusters is to propose algorithms that, in addition to
performing a complete and correct enumeration, they do not return redundant biclusters
and are computationally efficient.

RIn-Close_CHV_P is the only algorithm to enumerate CHV biclusters with these
four properties. Its limitation is that it is only able to enumerate perfect CHV biclus-
ters. Our algorithm to enumerate perturbed CHV biclusters, RIn-Close_CHV, has the
last three properties. Although some authors claim that their proposals are enumerative
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biclustering algorithms, all RIn-Close_CHV’s competitors are pseudo-enumerative algo-
rithms because they are not able to perform a complete and correct enumeration (see
Table 8). Thus, our main contribution with respect to the enumeration of CHV biclusters
is to propose algorithms that are fully enumerative biclustering algorithms.

Our experimental results provided a valuable insight into the scalability of RIn-
Close and its sensitivity to the user-defined measure of similarity and minimum number
of rows allowed in a bicluster. As the dataset becomes larger, the greater tends to be
the number of biclusters, so that these parameters are critical to the feasibility of the
biclustering solution. We suggest to start the parametrization with the intended value
for 𝑚𝑖𝑛𝑅𝑜𝑤 and a small value for the parameter 𝜖, or even with the algorithms for
enumerating perfect biclusters. Analyzing the number of encountered biclusters, coverage
and global overlap, we can refine the parameter values.

RIn-Close algorithms are capable of enumerating thousands of biclusters within
minutes. The runtime growth rates were, in general, more favorable than their worst-
case time complexities. Our most time consuming algorithm is RIn-Close_CHV, which
had a polynomially growth in the number of columns of the dataset in our experiments.
Besides that, RI-Close_CHV requires the construction of an augmented matrix that has
𝑚−1

2 times more columns than the original data matrix. Thus, this is the algorithm with
more limitations to be used in real-world applications, thus requiring more attention when
setting its parameters.

With our experimental results, we also showed that well-known heuristic-based al-
gorithms can have a poor performance when trying to identify the existing biclusters in a
simple and controlled scenario, thus emphasizing the necessity of having efficient enumer-
ative biclustering algorithms. Moreover, in our experiment with GOEA, we showed how a
pseudo-enumerative algorithm may miss useful information when analyzing the data, thus
showing the importance and distinct aspects of a fully enumerative algorithm. In GOEA
and other studies, such as gene-network construction or association-rules discovery, we
highlighted the importance of finding all biclusters in their maximal versions.

In addition to GOEA, we also applied RIn-Close in other biological application: the
analysis and identification of biomarkers. We showed that, by means of our biclustering
solutions, we can test the discriminatory capability of proposed biomarkers, pointing when
we have more or less genes than necessary. In addition, we were able to easily point extra
or missing genes to discriminate all the types of cancer. Moreover, we showed that we can
use RIn-Close to easily find biomarkers from scratch.

In our experiments with biomarkers, we also indicated how we can extend the idea
of mining CARs from binary data. With simple modifications, it is possible to extract
CARs from CVC biclusters of an enumerative solution, opening the possibility to use our
biclustering solutions to provide sophisticated classifiers based on rules.
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7.2 Suggestions of Further Research
Even though we proposed a number of improvements when we talk about the

enumeration of biclusters in numerical datasets, there are still two major improvements
that would bring many benefits to the users of our algorithms. The first one is with respect
to the RIn-Close_CVC algorithm. This algorithm is very efficient in terms of runtime,
but has a high computational cost in terms of memory usage. It must keep a symbol
table in memory, whose keys are the sets of rows of each found bicluster, to prevent a
maximal bicluster to be found more than once. Thus, the first challenge is to find some
alternative to this symbol table, characterized by a lower computational cost in terms of
memory, but without losing the algorithm efficiency. The second major improvement is
associated with the RIn-Close_CHV algorithm, the only one without polynomial delay
in our family of enumerative biclustering algorithms. An efficient, complete, correct, and
non-redundant algorithm to enumerate all maximal perturbed CHV biclusters remains an
open problem. Anyway, it is possible to improve the runtime of all RIn-Close algorithms
by implementing parallelized versions of them.

Another initiative that may promote gain in computational performance is to
incorporate the distinctive aspects of the recently proposed In-Close3 algorithm [10] into
our RIn-Close family of algorithms.

The application of biclustering is fully disseminated, but the majority of the pub-
lished works uses heuristic-based algorithms. As we showed in Section 6.4, heuristics
can provide poor biclusters solutions. It motivates the use of enumerative algorithms in
successfully conducted applications of biclustering of the literature. Moreover, new appli-
cations can be conceived with the use of enumerative biclustering algorithms, especially
the RIn-Close family of algorithms that deal directly with numerical datasets.

In this thesis, we have extended some algorithms initially devoted to enumerate all
maximal biclusters in binary datasets, so that they could treat numerical datasets as well.
There are many other proposals in FCA and FPM areas restricted to binary datasets but
that can be generalized to work with numerical datasets, such as:

∙ To mine only the top 𝑘 biclusters in terms of volume [47, 46], where 𝑘 is a user-
defined parameter;

∙ To mine biclusters in data streams [42, 64, 67, 102];

∙ To mine fault-tolerant biclusters [75, 94], in an attempt to mitigate the effects of
noise and missing values in the enumeration, thus avoiding the necessity of post-
processing the bicluster solution;

∙ To mine high utility biclusters that directly support a given business objective [21,
100];
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∙ To mine only the neighborhood of a specified bicluster in the iceberg concept lattice
[15];

∙ Matrix Factorization [85];

∙ Classification based on association (also known as associative classification) [22, 73,
77]; and

∙ To mine triclusters in triadic data [71, 51].

We also intend to establish partnerships with researchers of the Biology field to
promote a functional and integrated biological analysis of our biclustering solutions in the
future.
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APPENDIX A – Exemplifying the key
concepts of biclustering to newcomers

The application of biclustering is fully disseminated. So, we are able to use many
real-world problems to illustrate its application. However, to simplify the understanding
of the main concepts of biclustering to newcomers in the area, we believe it is a good
idea to choose an example that is part of our daily life. Nowadays, it is usual to watch a
video or a movie on-line and give an opinion about it, which can be done by means of a
“like” or “dislike” opinion, by choosing a certain number of stars, among other ways. This
information that we give to the companies about our taste and opinion can be used for
several purposes, such as movies recommendations or personalized marketing campaigns.
Thus, aiming at converting those raw and unstructured information into useful knowledge,
the data must be analyzed with the goal of finding interesting patterns on it.

We will give some examples of the usefulness of applying biclustering techniques
to analyze this kind of data. Moreover, we will try to exemplify some limitations of using
traditional clustering techniques when dealing with the same problems.

Tables 31 and 32 show an example of a data matrix A60×38, where rows represent
users and columns represent movies. Each 𝑎𝑖𝑗 ∈ A is the rating given by user 𝑢𝑖 to the
movie 𝑚𝑗, ranging from 1 to 10. The symbol “?” represents missing values. The data
matrix A is exhibited in two tables because of space limitation. All examples of this
aapendix will be based on this data matrix.

A.1 Traditional clustering vs. Biclustering
One of the first questions we might want to answer is: do we have groups of users

sharing similar tastes?

One limitation of using traditional clustering techniques to answer this is to com-
pute the similarity among the users based on all movies. For instance, Figure 19(b) shows
the ratings given by five users for all the movies that they have watched. No patterns
among the five users are visibly explicit. However, if we pick a subset of the movies and
plot the ratings of these five users on these movies (see Figure 19(a)), it is easy to see that
they present similar patterns. Note that the kind of pattern exhibited on Figure 19(a)
does not depend on the distance between any two users. This is due to the fact that bi-
clustering methods are able to consider coherence measures which are more general than
distance functions.
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Table 31 – First 20 columns of a data matrix A60×38, where rows represent users and
columns represent movies. The next 18 columns are in Table 32.

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑚6 𝑚7 𝑚8 𝑚9 𝑚10 𝑚11 𝑚12 𝑚13 𝑚14 𝑚15 𝑚16 𝑚17 𝑚18 𝑚19 𝑚20
𝑢1 9 8 2 6 1 1 1 8 7 4 9 2 2 ? 2 10 9 3 5 6
𝑢2 10 3 10 3 3 7 6 5 7 ? 6 5 4 6 8 2 8 4 7 5
𝑢3 2 6 1 8 ? ? 9 1 ? 6 10 9 1 4 3 3 2 1 8 10
𝑢4 10 7 8 ? ? 1 7 3 10 ? 7 9 6 1 7 4 6 7 6 9
𝑢5 7 9 9 7 10 6 2 2 3 1 6 ? 4 8 10 1 4 2 6 5
𝑢6 ? 10 9 2 8 1 4 3 8 8 ? 3 2 4 5 7 6 ? 6 9
𝑢7 3 6 1 4 5 9 ? 5 3 3 9 6 3 7 7 5 4 8 6 2
𝑢8 6 2 4 7 6 9 ? 6 2 5 10 7 10 8 8 10 5 4 1 4
𝑢9 10 2 3 8 3 8 ? ? 7 7 ? 5 7 2 ? 5 2 7 8 10

𝑢10 10 3 9 1 5 2 9 9 ? 4 9 3 ? 2 7 7 3 4 10 10
𝑢11 2 ? 5 10 10 7 7 6 5 8 7 10 10 6 2 2 1 7 4 8
𝑢12 10 3 10 8 6 6 4 10 7 4 10 1 2 5 10 4 10 1 10 7
𝑢13 10 9 2 5 6 10 2 7 8 7 ? 2 8 9 ? 2 7 10 4 4
𝑢14 ? 3 3 5 3 7 5 ? 4 8 ? 2 ? 8 3 8 10 9 9 10
𝑢15 9 10 ? 5 5 9 5 3 7 5 9 2 6 8 8 9 2 8 5 2
𝑢16 2 4 2 ? 7 5 2 7 5 ? 3 7 2 ? 5 4 10 9 5 ?
𝑢17 5 2 9 6 7 5 6 3 9 4 5 6 6 1 8 7 ? 4 3 7
𝑢18 10 3 6 ? 4 9 3 7 9 5 10 1 ? ? 4 3 6 7 2 9
𝑢19 8 7 6 9 4 1 ? 7 3 3 6 10 2 8 ? ? 5 6 4 4
𝑢20 10 ? 2 8 10 2 6 1 7 2 ? ? 3 10 1 9 3 6 8 8
𝑢21 7 4 9 ? 1 2 ? ? 6 9 8 8 9 7 7 6 8 3 8 9
𝑢22 1 9 7 4 9 4 3 3 6 5 6 1 1 2 5 4 3 3 7 4
𝑢23 ? 6 4 9 10 9 7 7 9 9 3 9 3 8 5 3 1 5 1 6
𝑢24 10 ? 6 6 8 ? 3 9 ? 4 7 10 1 2 7 5 8 3 9 10
𝑢25 7 10 5 4 1 1 9 4 4 8 1 10 5 2 1 5 7 9 10 ?
𝑢26 8 3 1 10 3 4 10 8 2 ? 7 9 1 7 4 4 8 10 8 4
𝑢27 8 8 3 9 4 6 8 7 ? 9 7 8 9 4 8 6 7 1 1 7
𝑢28 4 8 2 6 ? 5 4 1 7 8 8 6 2 7 ? 8 ? 6 4 4
𝑢29 7 4 ? ? 2 7 6 7 5 4 9 2 1 8 2 ? 4 1 8 8
𝑢30 2 6 ? 6 8 7 2 4 7 3 10 4 4 6 2 5 9 9 ? 5
𝑢31 8 1 5 3 2 3 10 10 6 8 8 2 5 8 1 2 4 ? 3 5
𝑢32 1 1 1 4 7 5 9 1 7 10 6 1 ? 3 1 1 9 1 3 7
𝑢33 3 ? 10 5 5 1 ? 5 6 4 ? 10 10 8 5 3 8 10 7 10
𝑢34 1 8 10 3 8 10 3 5 8 7 6 4 4 10 7 4 9 1 5 4
𝑢35 1 10 5 9 8 2 6 5 6 5 1 3 3 9 8 7 6 7 7 9
𝑢36 9 2 5 2 10 ? 1 8 10 9 2 ? 1 1 6 10 7 8 3 8
𝑢37 7 6 4 3 9 4 5 4 3 ? 9 5 3 4 2 10 10 6 2 10
𝑢38 4 5 10 2 ? 2 4 8 2 2 ? 7 1 4 7 5 5 9 ? 1
𝑢39 10 1 4 3 7 5 2 5 2 9 9 1 6 7 2 3 1 9 8 ?
𝑢40 1 4 2 5 2 4 2 1 1 10 3 9 8 6 2 8 9 7 10 7
𝑢41 ? 2 8 ? 1 10 5 2 5 ? 6 6 7 8 1 8 7 ? 2 3
𝑢42 4 8 4 10 8 10 1 8 5 9 7 9 1 4 2 8 4 ? 2 3
𝑢43 ? 4 ? ? 6 1 6 5 4 6 1 4 ? 3 2 8 10 2 1 8
𝑢44 8 6 5 2 5 ? 5 2 8 2 7 5 8 1 2 2 3 1 5 7
𝑢45 2 2 1 10 10 3 7 ? 7 2 ? 1 10 8 4 7 7 2 2 6
𝑢46 5 7 2 10 7 5 7 7 8 ? 1 2 6 3 4 5 7 7 9 ?
𝑢47 5 3 10 5 7 6 7 2 10 8 ? 7 ? 4 3 3 4 10 1 1
𝑢48 7 7 10 2 9 10 1 8 10 9 2 4 9 6 3 1 2 4 1 4
𝑢49 8 7 6 3 9 5 1 3 2 8 ? 9 4 3 9 9 1 5 6 ?
𝑢50 8 8 1 5 6 10 4 10 2 4 3 ? 3 7 8 2 5 ? 8 3
𝑢51 3 5 3 ? 2 4 6 3 7 6 2 10 8 5 6 2 ? 10 ? 8
𝑢52 7 1 4 3 3 8 7 8 1 1 2 6 1 2 2 7 8 7 2 9
𝑢53 7 ? ? 7 9 7 5 2 6 2 1 8 1 8 3 9 4 10 4 3
𝑢54 2 ? 1 8 1 6 9 ? 6 2 7 10 7 2 1 6 9 ? 3 8
𝑢55 2 ? 1 3 5 7 8 1 9 7 3 3 7 3 10 8 8 4 6 2
𝑢56 5 9 ? 2 2 7 10 6 5 5 6 ? 6 3 8 ? 6 ? 10 9
𝑢57 10 ? ? 3 10 2 6 7 4 ? 7 5 8 6 6 10 2 3 7 2
𝑢58 4 10 8 4 8 ? 4 6 7 5 5 8 8 1 ? ? 10 3 2 6
𝑢59 6 1 7 5 ? 10 ? ? 8 2 6 9 8 5 2 7 3 7 4 4
𝑢60 3 5 ? 6 5 ? 7 7 6 1 5 2 3 2 ? 1 10 6 1 9
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Table 32 – Last 18 columns of a data matrix A60×38, where rows represent users and
columns represent movies. The previous 20 columns are in Table 31.

𝑚21 𝑚22 𝑚23 𝑚24 𝑚25 𝑚26 𝑚27 𝑚28 𝑚29 𝑚30 𝑚31 𝑚32 𝑚33 𝑚34 𝑚35 𝑚36 𝑚37 𝑚38
𝑢1 6 6 5 10 ? 2 6 8 6 8 2 5 9 8 3 10 2 8
𝑢2 5 7 3 6 6 3 8 4 9 10 2 7 ? ? ? 6 5 10
𝑢3 9 4 9 6 3 1 2 6 9 2 4 10 6 4 9 10 5 ?
𝑢4 4 ? 8 4 6 5 4 2 8 8 9 ? ? ? 7 8 6 3
𝑢5 5 5 9 5 2 3 2 1 4 2 5 8 1 6 10 5 9 2
𝑢6 10 4 3 5 7 3 4 10 5 ? 5 6 9 ? 3 7 8 9
𝑢7 ? 8 7 ? 6 5 5 3 8 9 2 5 5 9 9 9 9 8
𝑢8 10 8 7 9 1 2 6 6 2 5 10 9 1 ? 7 2 1 3
𝑢9 2 7 2 1 1 5 1 10 2 8 5 4 8 6 3 4 3 3

𝑢10 7 2 5 5 2 ? 6 2 3 5 9 2 2 ? 5 10 ? 4
𝑢11 6 1 3 9 1 ? 3 ? 6 9 7 7 2 7 4 5 10 9
𝑢12 7 6 8 4 ? 8 ? 4 10 4 4 7 7 8 6 ? 8 ?
𝑢13 4 4 3 ? 9 1 ? 10 8 1 ? 4 3 8 9 10 5 6
𝑢14 7 ? 9 9 7 4 2 4 4 6 8 9 4 2 2 10 4 6
𝑢15 9 10 9 9 6 ? 10 3 3 10 5 ? 5 ? 9 7 1 3
𝑢16 1 3 4 10 9 3 ? 2 9 2 9 10 5 1 9 2 8 7
𝑢17 1 9 ? 2 1 1 9 4 10 5 9 2 4 ? 4 1 6 8
𝑢18 10 9 7 3 10 2 8 4 ? 8 5 3 7 8 5 7 2 5
𝑢19 7 6 9 9 ? 2 2 ? 3 1 4 1 2 8 6 6 5 5
𝑢20 3 9 7 6 6 3 4 5 ? ? 6 7 2 4 8 10 2 5
𝑢21 5 10 6 6 2 2 2 1 9 8 10 2 1 8 8 ? 8 3
𝑢22 2 6 4 7 6 2 1 7 6 6 8 5 4 9 8 7 4 7
𝑢23 3 8 5 9 1 6 4 1 10 2 4 9 8 3 4 6 10 10
𝑢24 3 6 8 6 8 10 7 6 1 ? 8 6 ? 2 5 3 ? 10
𝑢25 4 1 9 3 9 10 ? 8 6 6 10 4 8 3 10 10 9 8
𝑢26 2 5 8 5 10 3 6 ? 3 10 ? 3 7 4 6 6 7 3
𝑢27 4 7 1 5 10 5 5 5 9 9 6 5 9 3 9 1 6 7
𝑢28 ? 6 7 10 6 4 3 6 2 10 ? 10 9 10 3 7 7 2
𝑢29 9 4 5 7 3 6 6 1 5 7 1 2 3 1 7 6 8 2
𝑢30 1 10 5 7 2 3 ? 5 4 5 2 ? 4 6 6 1 1 2
𝑢31 10 9 2 8 6 1 8 7 9 10 ? ? 6 2 10 ? ? 2
𝑢32 4 9 9 4 6 5 6 3 7 5 ? 1 4 9 1 4 1 6
𝑢33 1 4 4 6 8 2 8 9 3 3 1 7 9 2 6 3 3 1
𝑢34 4 6 3 ? 1 1 7 10 4 4 10 10 9 6 6 2 2 9
𝑢35 8 9 4 2 7 10 ? 9 ? 8 7 3 6 10 1 4 10 8
𝑢36 8 10 4 6 6 5 6 ? 7 6 1 2 3 4 10 3 ? 10
𝑢37 6 7 6 7 2 10 ? 3 6 8 1 7 7 1 9 7 6 5
𝑢38 7 3 6 5 ? 8 1 8 2 10 3 10 3 ? ? 1 7 7
𝑢39 9 7 4 9 6 1 2 3 ? 10 5 7 5 ? 8 3 7 9
𝑢40 1 1 ? 8 5 7 2 10 5 6 2 9 ? 4 2 ? 9 6
𝑢41 4 5 6 4 10 8 7 7 10 10 1 2 6 ? 7 9 1 3
𝑢42 1 7 7 5 7 7 5 ? 6 ? 8 ? ? 10 3 ? ? 10
𝑢43 ? 10 10 4 5 6 7 2 1 1 4 4 8 7 5 ? ? 1
𝑢44 8 9 8 8 9 ? 3 1 1 4 8 5 10 10 ? 7 7 4
𝑢45 ? 5 5 8 6 8 1 3 9 6 5 2 3 5 2 8 3 ?
𝑢46 ? 8 9 5 6 3 6 9 5 6 5 ? 6 10 4 2 6 4
𝑢47 6 5 2 7 7 4 ? 10 4 10 1 7 1 1 5 10 8 4
𝑢48 1 10 1 10 4 9 10 7 ? ? 1 8 8 7 ? 9 10 2
𝑢49 10 10 1 8 3 9 10 8 4 5 1 9 7 9 8 ? ? 10
𝑢50 9 9 2 8 6 ? ? ? 6 6 6 ? 9 3 10 5 1 2
𝑢51 3 4 4 2 9 4 1 6 8 8 3 10 10 10 2 4 1 4
𝑢52 ? 5 4 4 5 7 7 9 9 1 9 5 ? 8 3 7 7 9
𝑢53 10 3 ? 6 2 10 9 5 4 9 9 8 5 9 ? 3 8 5
𝑢54 8 8 6 5 5 10 10 10 7 2 10 8 1 6 4 6 7 ?
𝑢55 9 9 1 1 ? 6 1 1 ? 5 5 9 6 8 10 7 4 6
𝑢56 5 10 2 3 5 4 5 ? 1 ? 3 2 3 4 ? 6 ? 7
𝑢57 5 6 7 9 ? 9 6 6 6 ? 3 5 3 3 7 5 6 ?
𝑢58 6 6 9 1 5 5 7 1 5 7 ? 7 4 4 9 1 10 6
𝑢59 3 2 10 ? 4 10 8 8 4 2 8 ? 1 6 5 6 1 1
𝑢60 8 9 6 1 4 1 7 6 ? 3 4 9 8 9 7 5 3 ?
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(a) Biclustering (example of a CHV bi-
cluster considering 𝜖 = 2).
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(b) Clustering.

Figure 19 – Example of patterns that can be found by biclustering and cannot be found
by traditional clustering techniques.
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Figure 20 – Another example of a CHV bicluster considering 𝜖 = 2.

It is important to emphasize that clustering may also be applied to a subset of
movies. However, this subset should be known beforehand and distinct groups of users
may require completely distinct subsets of movies.

Another important aspect in answering this question is that a user may belong
to more than one group. For instance, let us suppose that the movies presented in Fig-
ure 19(a) are comedies. So, these users present a similar taste when considering comedy
movies, not necessarily exhibiting similar tastes to other genres. In fact, a user from this
group may belong to other groups when considering other genres. For instance, user 𝑢7

belongs to the groups exhibited in Figure 19(a) and Figure 20. Traditional clustering
techniques would assign user 𝑢7 just to a single group.
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Figure 21 – Example of a CTV bicluster.

A.2 Biclusters with constant values (CTV biclusters)
So far, we have seen that biclustering can help us to find interesting patterns in

this type of dataset. But what kind of bicluster is more useful? It depends on the kind of
question we want to answer, i.e, our goals with the data analysis.

Suppose we want to find groups of users who have appreciated the same collection
of movies. The first thing is to define what is to appreciate. Let us determine that if a
user 𝑢𝑖 has appreciated a movie 𝑚𝑗, then 𝑎𝑖𝑗 ≥ 8. Thus, we can solve this problem by
means of looking for perturbed CTV biclusters containing ratings from 8 to 10 (10 is the
maximum rating), so the CTV biclusters should have maximum perturbation 𝜖 = 2. As
we are not interested in CTV biclusters with values other than 8 to 10, we could simplify
the problem and binarize the dataset such that the binary value 𝑏𝑖𝑗 would be equal to 1
if 𝑎𝑖𝑗 ≥ 8, and 0 otherwise.

Figure 21 shows an example of a CTV bicluster that groups together five users
that have given high ratings for four movies. This bicluster represents the kind of pattern
that we would obtain when solving this problem in this way.

A.3 Biclusters with constant values on columns or rows (CVC or
CVR biclusters)
In the previous example, we considered that two users 𝑢𝑖 and 𝑢𝑘 are similar to each

other if they have given similar ratings to a representative set of movies. More specifically,
the same representative score is expected to occur in every element of the bicluster, thus
characterizing a CTV bicluster. This definition of similarity between users is very strict.
So, let us loose this definition and consider that a user 𝑢𝑖 is similar to a user 𝑢𝑘 if they
have given similar ratings to a common set of movies such that the users may have liked
some movies, and disliked others. Let us consider that the ratings for a movie 𝑚𝑗 given by
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Figure 22 – Example of a CVC bicluster.
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(a) Considering the original matrix.
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(b) Considering the transposed matrix.

Figure 23 – Example of a CVR bicluster.

users 𝑢𝑖 and 𝑢𝑘 are similar if |𝑎𝑖𝑗 − 𝑎𝑘𝑗| ≤ 1, i.e., the difference between the ratings given
by users 𝑢𝑖 and 𝑢𝑘 to movie 𝑚𝑗 is at most 1. In this scenario, we can group the users by
means of mining perturbed CVC biclusters with maximum perturbation 𝜖 = 1. Figure 22
shows an example of a CVC bicluster with maximum perturbation 𝜖 = 1. Observe how
the users share a pattern along a wide range of scores.

The transposed version of this problem is to assume that a movie 𝑚𝑗 is similar to
a movie 𝑚𝑙 if they have received similar ratings of a common set of users. In a similar way,
let us consider that the ratings given by a user 𝑢𝑖 to the movies 𝑚𝑗 and 𝑚𝑙 are similar if
|𝑎𝑖𝑗 − 𝑎𝑖𝑙| ≤ 1. In this scenario, we can group the movies by means of mining perturbed
CVR biclusters with maximum perturbation 𝜖 = 1. Figure 23 shows an example of a CVR
bicluster with maximum perturbation 𝜖 = 1. We plotted the graphics in two perspectives:
considering the original matrix (Figure 23(a)) and its transposed version (Figure 23(b)).
In Figure 23(a), it is easy to observe that a user has given similar ratings to the movies
of the group. In Figure 23(b), it is easy to observe how the movies share a pattern about
being liked and disliked.
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A.4 Biclusters with coherent values (CHV biclusters)
We can loose even more the definition of similarity between the users. For instance,

in Figure 20, the users present the same behavior in evaluating the movies, however their
ratings for a movie are not necessarily similar to each other. So, this kind of pattern is
a generalization of the kind of pattern presented in Figure 22. In this case, each pair of
users of a group must present a similar behavior in their evaluations. More specifically, if
the ratings given by users 𝑢𝑖 and 𝑢𝑘 to a set of movies m = {𝑚𝑎,𝑚𝑏,𝑚𝑐, ...} are similar,
then the ratings given by user 𝑢𝑖 must be explained by a shifting (or scaling) in the
ratings given by user 𝑢𝑘. So, in this case, we can group the users by means of mining
CHV biclusters.

Figures 19(a) and 20 show examples of CHV biclusters with maximum perturba-
tion 𝜖 = 2. It is clear in these examples that numerical proximity of elements does not
matter in this kind of pattern.

A.5 Heuristics or Enumeration?
In the scenarios described here, what are the differences in the biclustering so-

lutions when using heuristics or a enumeration (having the four key properties listed in
Chapter 1: efficient, complete, correct, and non-redundant)?

When we use an actual enumerative algorithm, we find all groups of users (or
movies) that attend our definition of similarity. Moreover, all the biclusters will be maxi-
mal, in the sense of incorporating all the possible users and movies without violating the
similarity criterion.

Heuristics do not give us neither of these two guarantees. On the contrary, it is
likely that a heuristic will find a small and incomplete subset of all possible biclusters, and
the biclusters themselves will be an incomplete subset of their possible maximal versions.
So, heuristics usually give us a small and twofold incomplete subset of the enumerative
solution.

The drawback of enumerative algorithms is that, even being efficient, they do
not scale well for all dataset sizes. So, enumerative algorithms become computationally
unfeasible in many cases. Therefore, the usage of enumerative algorithms is recommended
in all cases that the runtime is not prohibitive.
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