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Abstract 

Single Particle Analysis is a technique that allows the study of the three-dimensional 

structure of proteins and other macromolecular assemblies of biological interest. Its primary data 

consists of transmission electron microscopy images from multiple copies of the molecule in ran-

dom orientations. Such images are very noisy due to the low electron dose employed. Recon-

struction of the macromolecule can be obtained by averaging many images of particles in similar 

orientations and estimating their relative angles. However, heterogeneous conformational states 

often co-exist in the sample, because the molecular complexes can be flexible and may also inter-

act with other particles. Heterogeneity poses a challenge to the reconstruction of reliable 3D 

models and degrades their resolution. Among the most popular algorithms used for structural 

classification are k-means clustering, hierarchical clustering, self-organizing maps and maxi-

mum-likelihood estimators. Such approaches are usually interlaced with the reconstructions of 

the 3D models. Nevertheless, recent works indicate that it is possible to infer information about 

the structure of the molecules directly from the dataset of 2D projections. Among these findings 

is the relationship between structural variability and manifolds in a multidimensional feature 

space. This dissertation investigates whether an ensemble of unsupervised classification algo-

rithms is able to separate these ―conformational manifolds‖. Ensemble or ―consensus‖ methods 

tend to provide more accurate classification and may achieve satisfactory performance across a 

wide range of datasets, when compared with individual algorithms. We investigate the behavior 

of six clustering algorithms both individually and combined in ensembles for the task of structur-

al heterogeneity classification. The approach was tested on synthetic and real datasets containing 

a mixture of images from the Mm-cpn chaperonin in the ―open‖ and ―closed‖ states. It is shown 

that cluster ensembles can provide useful information in validating the structural partitionings 

independently of 3D reconstruction methods. 

 

Keywords: Single Particle Analysis, Transmission Electron Microscopy, Cryo-EM, Clustering 

Algorithms, Unsupervised Classification, Consensus Clustering. 
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Resumo 

Análise de Partículas Isoladas é uma técnica que permite o estudo da estrutura 

tridimensional de proteínas e outros complexos macromoleculares de interesse biológico. Seus 

dados primários consistem em imagens de microscopia eletrônica de transmissão de múltiplas 

cópias da molécula em orientações aleatórias. Tais imagens são bastante ruidosas devido à baixa 

dose de elétrons utilizada. Reconstruções 3D podem ser obtidas combinando-se muitas imagens 

de partículas em orientações similares e estimando seus ângulos relativos. Entretanto, estados 

conformacionais heterogêneos frequentemente coexistem na amostra, porque os complexos 

moleculares podem ser flexíveis e também interagir com outras partículas. Heterogeneidade 

representa um desafio na reconstrução de modelos 3D confiáveis e degrada a resolução dos 

mesmos. Entre os algoritmos mais populares usados para classificação estrutural estão o 

agrupamento por k-médias, agrupamento hierárquico, mapas autoorganizáveis e estimadores de 

máxima verossimilhança. Tais abordagens estão geralmente entrelaçadas à reconstrução dos 

modelos 3D. No entanto, trabalhos recentes indicam ser possível inferir informações a respeito da 

estrutura das moléculas diretamente do conjunto de projeções 2D. Dentre estas descobertas, está a 

relação entre a variabilidade estrutural e manifolds em um espaço de atributos multidimensional. 

Esta dissertação investiga se um comitê de algoritmos de não-supervisionados é capaz de separar 

tais ―manifolds conformacionais‖. Métodos de ―consenso‖ tendem a fornecer classificação mais 

precisa e podem alcançar performance satisfatória em uma ampla gama de conjuntos de dados, se 

comparados a algoritmos individuais. Nós investigamos o comportamento de seis algoritmos de 

agrupamento, tanto individualmente quanto combinados em comitês, para a tarefa de 

classificação de heterogeneidade conformacional. A abordagem proposta foi testada em 

conjuntos sintéticos e reais contendo misturas de imagens de projeção da proteína Mm-cpn nos 

estados ―aberto‖ e ―fechado‖. Demonstra-se que comitês de agrupadores podem fornecer 

informações úteis na validação de particionamentos estruturais independetemente de algoritmos 

de reconstrução 3D. 

 

Palavras-chave: Análise de Partículas Isoladas, Microscopia Eletrônica de Transmissão, Crio-

ME, Classificação Não-Supervisionada, Agrupamento de Dados, Agrupamento por Consenso. 
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1. Introduction 

Since the invention of the optical microscope, in the 16
th

 century, mankind has been en-

hancing the ability to observe the world in extremely small scales, down to the order of a few 

Angstroms (10
-10

 meters) nowadays. The potentials of exploring matter in such magnification are 

well described in the superb lecture by Richard Feynman called ―There’s Plenty of Room at the 

Bottom‖ (Feynman, 1960), considered by many to be a landmark of nanotechnology. Among the 

many visionary predictions made by Feynman were the advantages of an electron microscope 

―100 times better‖ than those existing at the time, thus enabling the investigation of certain prop-

erties of proteins and nucleic acids. The functional activity of these entities inside the cells de-

pends not only on their chemical composition but also on their shapes, and understanding these 

aspects is the scope of structural biology. Discoveries in this field often lead to applications in 

medicine, agriculture and renewable energy sources. 

 However, the impressive development of structural biology seen in the last decades was 

only possible thanks to the considerable expansion of our ability to store and manipulate data in 

digital form. Interestingly, the impact that nanotechnology would have on the evolution of com-

puting devices was also predicted by Feynman in the same lecture. Evidently, not only the devic-

es have evolved but also the ways we manipulate and understand data. In this work, we will in-

vestigate how images of molecules with distinct shapes recorded by transmission electron mi-

croscopy can be classified by algorithms with minimal human supervision. Thus the subject of 

this dissertation lies on the intersection of these three fields: electron microscopy, structural biol-

ogy and computer engineering. 

Feynman was right about how important the electron microscope would become for struc-

tural and molecular biology, but that did not happen in a straightforward manner. A challenge for 

observation of biological particles in the transmission electron microscope (TEM) is the radiation 

damage imposed by the beam on the sample. In order to reduce radiation damage, the sample has 

to be coated with heavy metal salts or embedded in vitreous ice, following a  groundbreaking 

preparation protocol proposed Adrian et al. (1984). Particularly, this latter method allows the 

observation of the molecules in their quasi-native states, and therefore TEM is one of the main 
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instruments used nowadays for investigation of ―molecular machines‖ (Robinson, Sali & 

Baumeister, 2007). Nevertheless, the electron dose supported by the sample is still low 

(Henderson, 1995), resulting that the signal-to-noise ratio (SNR) of the collected images is very 

poor. Therefore, it only becomes possible to perform image recognition and 3D reconstruction 

after a reasonable amount of signal processing and statistical treatment efforts (van Heel, 1984). 

The method known as ―single particle analysis‖ (SPA) allows retrieving the 3D structure 

of relatively large molecules, greater than about 300 kDa. The name of the method comes from 

the fact that the projection images used for 3D reconstruction correspond to individual particles 

in solution. This is in contrast to X-ray crystallography, perhaps the most popular structural reso-

lution technique, where particles are arranged in a crystalline lattice and the diffraction data rec-

orded correspond to the average of all particles in the crystal.  

Single particle analysis has been employed for the study of proteins, viruses and other 

complex structures, like the ribosome. Basically, the method consists on assigning a set of angles 

on the Euler sphere to each projection image. Once these hidden variables have been estimated, it 

is possible to obtain a 3D volume by applying a reconstruction algorithm such as filtered back-

projection (Harauz & van Heel, 1986). The angle assignment and reconstruction steps are iterated 

up to the convergence of the structure. However, the correct orientation for each image is missing 

and diverse interference sources hamper its estimation, making single particle analysis a genuine-

ly ill-posed inverse problem. Due to the low SNR, many images have to be used for a satisfactory 

reconstruction, typically tens of thousands.  

However, in general it is not true that all the isolated particles used in the reconstruction 

are stable copies of the macromolecule under analysis. They are flexible structures which may 

assume distinct conformational states, and adding them up on a single model implies losing reso-

lution. This problem is known since the early years of SPA (Frank & van Heel, 1982) and was 

held as an obstacle for electron microscopy of molecular assemblies. But the recent advances in 

data processing algorithms and computing power have allowed the in silico purification of the 

sample, turning SPA into a powerful technique for investigation of molecular dynamics (Klaholz; 

Myasnikov; van Heel, 2004; van Heel et al., 2012). In the general case, the separation of confor-

mational states is an unsupervised classification problem, as no reference structures are available 

for the generation of a training image set.  
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The existing methodologies aiming at the recognition and separation of structural hetero-

geneity have in common that they all approach this classification task concomitantly to the 3D 

reconstruction (van Heel et al., 2012; Scheres et al., 2007; Scheres, 2012; Chen et al., 2013; 

Spahn; Penczek, 2009). This implies a considerable computational effort, as every image must be 

evaluated somehow against the multiple existing structures in the current iteration. Considering 

that the SPA data are two-dimensional projection images, and thus are dependent on the whole 

3D structure of the object, we identify the lack of methods that can assess structural heterogeneity 

within a given dataset without the need of performing reconstructions.  

Specifically, it would be of great value to have algorithms that can inform, by directly an-

alyzing the dataset, how many meaningful structures are present and what are the structural labels 

for each image. A tool that makes such information available could be employed at the beginning 

of the SPA workflow for partitioning the dataset, at least approximately, for independent pro-

cessing of the distinct structures. Another application would be at the other end of the workflow, 

for validating the obtained structures by a method independent of the reconstruction process 

adopted. The problem of estimating the number of structures a priori in a reliable manner is 

somewhat involved, as explained in Chapter 3. For simplicity, we will focus here on how an un-

supervised classification system can be useful for validating heterogeneous reconstructions.  

In this scenario, the number of structural classes and a tentative list of labels for each im-

age are already available from one of the conventional processing methods chosen by the user, 

and can be used in comparison with our method for partitioning validation purposes. Validation 

of results obtained by SPA and associated techniques is currently a trending topic among the 

structural biology community, as they gather more and more popularity (Henderson et al., 2012). 

We observe that images belonging to different 3D volumes lie on distinct high-

dimensional manifolds, as expected from the properties of the projection operator. The projection 

data from distinct conformations clearly form characteristic ―clouds‖ when visualized in the 

proper spaces, as shown in Chapter 6.  This concept is illustrated in Figure 1.1. We then make use 

of this information to separate the images belonging to different objects. If the data clouds are 

sufficiently well separated, simple clustering algorithms should be able to discriminate them 

(Duda, Hart & Stork, 2000). However, in general the task is more complicated, due to the diversi-

ty of biological objects studied and the wide range of experimental conditions found.  
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Figure 1.1 - Projection images from different conformations of a macromolecule lie on distinct high-dimensional 

manifolds. The separability of such manifolds depends on which subset of the multidimensional feature space they 

are observed. Atomic models represent the Mm-cpn chaperonin in states ―open‖ and ―closed‖ (Zhang et al., 2010). 

 

Difficulties such as noise and the high dimensionality of the dataset (typical image sizes 

are in the order of 100×100 pixels) also must be taken into account. Even more concerning in this 

context is that the matching between datasets and optimal classification setups is unknown be-

forehand. Keeping these issues in mind, we propose that the unsupervised classification task for 

SPA datasets be performed by an ensemble of clustering algorithms (Strehl & Ghosh, 2002). The 

diagram shown in Figure 1.2 illustrates how our proposal of consensus clustering is inserted into 

the single particle analysis workflow.  

Ensembles tend to provide more accurate solutions than individual clustering algorithms, 

and have performance robustness across a wide range of dataset characteristics (Ghosh & 

Acharya, 2011). Furthermore, they can build a complex classification solution by combining re-

sults from relatively simple algorithms, which is interesting from the computational effort point 

of view. Also, the individual clusterings may be run in parallel (distributed clustering). The use 

of cluster ensembles is also known as consensus clustering, because they aim to optimize a con-

sensus measure among the available labeling solutions.  

The consensus becomes especially effective when the clustering algorithms that integrate 

the ensemble are diverse, in the sense that they work differently (robust clustering) and/or ana-

lyze the dataset from different perspectives (multiview clustering). To this end, we chose to work 

with some widely known clustering algorithms with distinct philosophies. Among them are those 

based on cluster compactness like k-means (Bishop, 2006) and hierarchical clustering (Duda et 
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al., 2000), as well as those based on cluster connectedness like spectral clustering (von Luxburg, 

2007) and METIS (Karypis & Kumar, 1998), which are graph partitioning methods.  

We note that the term ―classification‖ is used as a synonym for ―clustering‖ in the SPA 

literature (e.g. van Heel, 1989), often in the context of averaging similar images to improve SNR. 

In this text, these terms will also appear interchangeably unless explicitly distinguished. Howev-

er, the task we are approaching is to classify images in an unsupervised fashion according to the 

3D object to which they belong. A brief discussion about the formal distinction between classifi-

cation and clustering in the machine learning context can be found in Chapter 3. 
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Figure 1.2 - Diagram describing the reconstruction of heterogeneous structures with cluster ensembles. A sample 

containing macromolecules in random orientations is analyzed in the TEM, generating a set of projection images 

from isolated particles. After a pre-processing step, the data are labeled by an ensemble of unsupervised classifiers. 

Finally, the mixture is separated according to their labels for independent reconstruction of the heterogeneous struc-

ture set. 
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The results obtained in this investigation show that the structural heterogeneity may in-

deed be identified and separated, in the synthetic and real-world datasets analyzed, with minimal 

need for data pre-processing. Notably, for an experimental dataset containing images from two 

conformations of the Mm-cpn protein (Zhang et al., 2010), it was possible to achieve more than 

80% classification accuracy without any rotational alignment, which is typically an expensive 

step in the reconstruction process. 

1.1 Main goal of the research 

We aim to assess whether a mixture of transmission electron microscopy images from 

heterogeneous structures can be adequately separated by cluster ensembles. We will evaluate the 

scenarios in which this might be or not be the case, the necessary tools and the context into which 

this task is applicable. 

1.2 Structure of the dissertation 

Chapter 2 presents an overview of single particle analysis, including a brief outline of 

transmission electron microscopy and a comparison with other structural resolution techniques. 

We go through a review of the literature focusing on classification methods and the reconstruc-

tion of heterogeneous samples. 

In Chapter 3, we introduce the concept of data clustering, its relationship to the classifi-

cation task in machine learning, and a literature review of the algorithms employed or related to 

in this study. In this Chapter, we also present the problem of defining the number of clusters, and 

present some data pre-processing concepts that facilitate clustering in our application, such as 

dimensionality reduction. Special attention is given to committee and ensemble techniques. 

Chapter 4 presents in detail our classification proposal based on cluster ensembles. Con-

cepts presented in Chapters 2 and 3 will be brought together to justify our approach, its underly-

ing assumptions and performance expectations. The experiments performed will also be ex-

plained here.  
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Chapter 5 describes the synthetic and real-world datasets employed in this investigation. 

We tried to cover different degrees of challenge and to identify how the cluster ensemble pro-

posal reacts to different characteristics commonly found on SPA datasets. The pre-processing 

stages and experimental setups, as well as algorithm implementations, are also explained in this 

Section. 

Chapter 6 displays and discusses the results obtained, from initial investigations up to the 

core findings. 

Finally, in Chapter 7, we draw the conclusions of our experiments, including a discussion 

of the cases of success and the observed limitations of our proposal. We also point topics that we 

think are worth dealing with on future investigation. 
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2. Single Particle Analysis 

Single particle analysis (SPA) is a set of techniques used for retrieving the three-

dimensional (3D) structures of macromolecules of biological interest. Examples of such macro-

molecules are proteins, viruses and cell organelles. The physical dimensions of these entities 

range from a few hundred Ångström (1 Å = 10
-10 

m) to a few micrometers (1 μm = 10
-6 

m), and 

their mass is in the order of a million Daltons (1 Da = 1.66053892 × 10
-27

 kg). SPA primary data 

are images of isolated particles collected with the transmission electron microscope (TEM). Alt-

hough details are outside the scope of this text, brief descriptions of how the TEM works and 

sample preparation for SPA are outlined in Sections 2 and 2.2, respectively. In this context, Sec-

tion 2.3 will provide an insight on why TEM images of biological specimens are so noisy. We 

will then outline the general 3D reconstruction procedure in Section 2.4. Section 2.5 will explain 

what ―structural heterogeneity‖ means, and why this concept makes SPA reconstructions both 

more challenging and more interesting. After this introduction, in Section 2.6 the relation of SPA 

to other structural techniques is briefly discussed. Finally, in Section 2.7 we review the literature 

on the classification task within SPA, which is the main focus of this work. Sections 2.3 through 

2.5 and 2.7.13 are central to the comprehension of this work. 

2.1 Transmission Electron Microscopy 

The first transmission electron microscope was built in 1931 by Ernst Ruska and Max 

Knoll in Berlin, Germany. Ruska was awarded the 1986 Nobel Prize in Physics for his invention. 

The name of the instrument is due to the image being formed from the electron beam transmitted 

through the sample. Figure 2.1 displays an example of a TEM used for materials and life scienc-

es. The reason for imaging objects with electrons instead of visible light is because the de Broglie 

wavelength of high-energy electrons is much smaller than that of visible light. The wavelength of 

electrons accelerated at 100 kV is 0.0037 nm (Frank, 2006), while the smallest wavelength of 

visible light is of about 400 nm (Serway & Jewett, 2013). Therefore, in theory, electrons allow 
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the observation of the specimen in much greater detail. In practice, conventional TEMs can 

achieve a resolution around 2 Å (Frank, 2006), while the best light microscopes cannot exceed 

0.5 μm (Glaeser, 2008). 

 

 

Figure 2.1 - The JEM 2100 transmission electron microscope manufactured by JEOL (Tokyo, Japan) installed at 

LNNano. Acceleration voltage: 200 kV. The electron source is a LaB6 crystal. Source: LNNano website
1
.  

The TEM is composed of many parts, whose simplified diagram can be seen in Figure 

2.2. A thermionic or field-emission cathode acts as an electron source inside the vacuum chamber 

of the microscope. These electrons are focused onto the sample by electromagnetic condenser 

lenses. The wave function of the electron beam transmitted through the sample forms a diffrac-

tion pattern in the back focal plane of the objective lens. The wave function is composed of scat-

tered and un-scattered parts, whose recombination and magnification by further lenses can be 

visualized in the image plane (Glaeser, 2008). The image can be recorded in photographic film 

for later digitization, or directly in digital form by means of a charge-coupled device (CCD) cam-

era or by the more modern direct electron detectors (Grigorieff, 2013). Typical sizes for detector 

                                                 
1
 http://lnnano.cnpem.br/wp-content/uploads/2011/08/tem-msc.png 

http://lnnano.cnpem.br/wp-content/uploads/2011/08/tem-msc.png
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or digitized film frames range from 1,024 1,024 (older) to 4,096 4,096 (modern) pixels. Cur-

rent detectors can record events with a resolution of about 1 Å per pixel. The pixel size imposes 

the fundamental limit to the spatial resolution of information acquired in the TEM. Such limit is 

calculated from the Nyquist sampling theorem, and equals twice the pixel size (van Heel et al., 

2000).  

 

 

Figure 2.2 - Simplified schematic diagram of a transmission electron microscope. Extracted from Frank (2006). 

 

In general, the specimen is thin enough to not disturb the wave function intensity signifi-

cantly. What is dramatically affected by the interaction of the electron beam with the sample is 

the phase of the wave function, and therefore the most interesting information resides on the 

phase contrast images.  

2.1.1 Contrast Transfer Function 

An important aspect of TEM imaging is the instrument’s inherent contrast transfer func-

tion (CTF). The CTF is responsible for characteristic amplitude modulations and phase reversals 

in the image spectrum (Mindell & Grigorieff, 2003), as exemplified in Figure 2.3. The Fourier 
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transform of the CTF is the point spread function (PSF), which is defined in the pixel space and 

can be understood as how the information is spread across the image. The CTF is dependent on 

the defocus (distance from focus) applied when acquiring the image. A specific defocus condition 

called Scherzer focus maximizes the information transfer for high frequencies, which correspond 

to fine details in the image and therefore is interesting for attempting high-resolution 3D models. 

On the other hand, low frequencies are dramatically dampened at the Scherzer focus, and they are 

necessary for spotting particles or any other interesting objects registered on the micrograph (van 

Heel et al., 2000). For single particle analysis purposes, micrographs must be acquired with vary-

ing defocus values, to assure that the whole spectrum is reasonably covered in the set of images.  

CTF profiles for different defocus conditions are presented in Figure 4, and are also exemplified 

in Figure 2.5. Afterwards, the CTF parameters must be estimated by computational methods for 

correcting the images (van Heel et al., 2000; Mindell; Grigorieff, 2003). 

For further details on the principles of TEM image formation, please refer to the book by 

Reimer and Kohl (2008) and the one by Williams and Carter (2009). For specificities regarding 

biological TEM imaging, the books by Frank (2006) and Jensen (2010) can be consulted. 

 

 

Figure 2.3 - Effects of the CTF on the Siemens star image. Courtesy of Prof. Marin van Heel. 
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Figure 2.4 - Two examples of CTF profiles in Fourier space. a) At Scherzer focus there is maximal transfer of medi-

um and high frequencies, whereas very low frequencies are dampened. b) At strong defocus, transfer of low frequen-

cies is improved, at the expense of losing high frequencies. Frequency-dependent phase reversals become more pre-

sent with increasing defocus values. Extracted from van Heel et al. (2000). 

 

a) 

b) 
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Figure 2.5 – Defocus series (in μm) of ferritin molecules on a 5 nm carbon supporting film, imaged by a 100 kV 

TEM. Extracted from Reimer & Kohl (2008). 

2.2 Sample preservation 

2.2.1 Negative stain 

A challenge when imaging biological specimens with the TEM is the radiation damage 

imposed by the electron beam on the sample. In order to enhance specimen protection, special 

care must be taken when preparing the samples. A common method used for decades (Horne, 

Brenner, Waterson & Wildy, 1959) is called negative stain and consists of coating the specimen 

with heavy metal salts, such as uranyl acetate or uranyl molybdate. Negative staining provides 

high contrast images, but it comes with some downsides.  One of them is the distortion of particle 

shape and damaging of particle details (Frank, 2006). Another issue is that the images contain 
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only low resolution information, due to the large size of the saline crystals surrounding the parti-

cles. Despite these aspects, its simplicity makes this method useful in projects where high resolu-

tion is not a requirement, and for initial assessment of sample quality and imaging parameters in 

more complex experiments (Frank, 2006). 

2.2.2 Cryo-EM 

Initial developments of a transmission electron microscope with a cooling system for the 

lensens and samples took place in the 1960’s (Fernández-Morán, 1966) to observe biological 

specimens. However, it was the method proposed by Adrian, Dubochet, Lepault & McDowall 

(1984) that achieved a quantum leap in sample preservation (van Heel et al., 2000). This more 

powerful protocol consists of embedding the specimen in amorphous ice and keeping it cooled in 

cryogeny during image collection. The protocol became so popular that it originated the now 

commonplace term ―cryo-EM‖, short for ―cryoelectron microscopy‖. The vitreous ice layer is 

thin and light enough to preserve the structural shapes close to their native states, and the cooling 

severely reduces radiation damage, allowing longer beam exposure times during collection (van 

Heel et al., 2000). On the downside, cryo-EM images usually have low contrast and low signal-

to-noise ratio (SNR); they, however, contain high-resolution information and allow imaging in-

ternal particle details.  Optimizing the sample preparation parameters such as ice layer thickness 

and freezing time can be tricky, but is surely rewarding. Figure 2.6 illustrates the different condi-

tions the particles experiment in negative staining and vitreous ice, while examples of images 

obtained with the two sample preservation methods can be seen in Figure 2.7. 

 

 

Figure 2.6 – In negative stain (left), the envelope of a virus can be imaged in contrast to the heavy-metal salt crystals 

involving it. If suspended in vitreous ice, the particle is preserved in its native state and its internal details can be 

retrieved. Extracted from Saibil (2000). 
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Figure 2.7 – Micrographs of negatively-stained and vitreous ice-embedded specimens. a)  Semliki Forest viruses 

(SFV) in negative stain. Extracted from Söderlund, von Bonsdorff & Ulmanen (1979); b) SFVs embedded in vitre-

ous ice. Extracted from Adrian et al. (1984). 

  

a) 

b) 
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2.3 Electron dose and SNR 

Even with the sample preservation methods presented in the previous Section, the overall 

electron dose supported by biological specimens before disintegrating remains considerably low. 

Typical electron doses that preserve high resolution features of the molecules are in the order of 

10 e
-
/Å². In single particle analysis and related techniques, the signal-to-noise ratio (SNR) is con-

veniently defined as in 2.1: 

 

     
       

 

      
  (2.1) 

 

where         
  is the variance of the signal and       

  is the variance of the noise. 

The SNR is proportional to the electron exposure level used during data collection. As 

mentioned previously, the exposure tolerance of the samples is very low, often yielding an SNR 

  1 in the acquired micrographs. Therefore, collection of many images is necessary for a signifi-

cant statistical representation of the signal. For this reason, the sample must contain many ran-

domly-oriented copies of the macromolecule under analysis. In theory, only 12,600 images of 

such isolated particles would be necessary to achieve a 3 Å resolution three-dimensional recon-

struction of a very small protein (Henderson, 1995). Many factors prevent the realization in prac-

tice of such resolution with so few images; among them are detector quality and particle motion 

(Grigorieff & Harrison, 2011). Large and well-ordered structures such as virus envelopes can 

support higher doses, and their high symmetry implies a greater amount of information per de-

tected particle. The smaller and less symmetric the molecular assembly, the more images will be 

required, ranging from a few thousands up to a few millions depending on the target resolution 

(Rosenthal & Henderson, 2003). 

Further considerations on the electron dose and its associated effects in single particle EM 

may be found in the papers by Henderson (1990, 1995), Glaeser & Hall (2011) and the book 

Chapter by Baker & Rubinstein (2010). 
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2.4 Reconstruction procedure 

2.4.1 Particle picking 

After micrographs have been CTF corrected, one has to identify the positions where parti-

cles are located and ―box‖ them out to individual images. Typical sizes for these boxes range 

from       to         pixels, depending on the molecule dimensions and pixel size. This 

procedure is known as particle ―picking‖ and in principle can be done manually, by visually in-

specting the micrographs. However, as single particle datasets grow in size towards atomic reso-

lution, manual particle picking may become unfeasible. Remember from Section 2.3 that millions 

of boxed particles may be necessary depending on the macromolecule size and symmetry, and the 

target resolution desired for the 3D model. First efforts towards automated particle selection were 

based on cross-correlation (Saxton & Frank, 1976) and local image variance (van Heel, 1982) 

which is a reference-free method. Popular recent techniques take manual picking of a few parti-

cles as input for automated procedures, which can be based on cross-correlation (Ludtke, 

Baldwin & Chiu, 1999) or edge detection (Woolford et al., 2007), for example. Figure 2.8 dis-

plays the screen of a particle picking program. Automated picking can produce frustrating results 

depending on the size and variability of particle views, as well as the defocus of the micrograph. 

At close to focus (Scherzer) conditions, low frequencies are effectively absent. Most picking al-

gorithms rely on low frequencies because they are related to the particle size. Straightforward 

template matching methods must be used with care due to the noise level, which can lead to false 

positives and severe reference bias (Henderson, 2013; Sigworth, 1998).  
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Figure 2.9 – Example of automated particle picking with the SIGNATURE software. Red dots indicate the selected 

particles. Extracted from Chen & Grigorieff (2007). 

 

 

Automation of particle picking procedures is an active research topic and overviews of 

commonly used algorithms may be found in review papers by Nicholson and Glaeser (2001) and  

Zhu et al. (2004). Among recent proposals for reference-free particle selection are the use of neu-

ral networks (Ogura & Sato, 2004), support vector machines (Arbeláez et al., 2011) and semi-

supervised learning (Langlois, Pallesen & Frank, 2011). 

2.4.2 Angle assignment 

After selecting and boxing particles, they are commonly masked, filtered and normalized 

(van Heel et al., 2000). Masking is applied to reduce the influence of the background noise. Soft 

masks are preferred to avoid introduction of high frequency artifacts in Fourier space. Band-pass 

filtering is applied basically to remove pixel intensity offsets and to suppress high-frequency 
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noise (van Heel, Portugal & Schatz, 2009). Each image is then set to a mean value of zero, as 

pixel intensities of phase-contrast images are modulations in relation to a constant background 

(Borland & van Heel, 1990). Variance normalization is also necessary to assure that all images 

are within a comparable intensity range, as they are projections from allegedly identical objects 

(Unser, Trus & Steven, 1989; van Heel & Stöffler-Meilicke, 1985). Finally, the stack of selected 

particles is ready for the most important step towards a three-dimensional reconstruction of the 

object: angle assignment. 

To further clarify this task, we must first define a model for the formation of the acquired 

images. We will follow a notation similar to that in the papers by Scheres et al. (2012; 2007). The 

weak-phase object approximation (Frank, 2006) gives the linear image formation model in 2.2: 

 

  *  +         
 * +     (2.2) 

 

where: 

  *  + is the Fourier transform of the n-th image in the dataset,        ;  

  *    + is the contrast transfer function for the n-th image (remember that the 

CTF is the Fourier transform of the point spread function); 

    
 is the projection matrix for the n-th image, with positional parameters    

which we want to estimate in this step; 

  * + is the Fourier transform of the 3D volume (structure) which we ultimately 

want to determine; 

    is independently distributed Gaussian noise in Fourier space for the n-th image. 

 

In order to perform a 3D reconstruction, we must estimate the five missing positional pa-

rameters   , namely two translations and three rotations, described in 2.3: 

 

    *              + (2.3) 

 

where *     + are translational shifts and *        + are the three Eulerian angles as defined in 

Figure 2.10: 
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Figure 2.10 – Definition of Eulerian angles α, β and γ. Source: Wikimedia Commons
2
.  

 

Single particle reconstruction is thus an ill-posed problem, because solutions that satisfy 

the missing information are not unique ( Scheres, 2012a). The Eulerian angle α is defined to be 

the in-plane rotations of the projection images. Therefore, if all images are properly centered and 

rotationally aligned to a common reference, all that is left to estimate are the out-of-plane rigid-

body rotations β and γ. See Section 2.4.2.1 for a brief explanation on centering and rotational 

alignment. A technique closely related to single particle analysis, called electron tomography, 

provides the Eulerian orientations by acquiring several images of each particle at different tilt 

angles. However, tomography is restricted to very large macromolecular assemblies due to elec-

tron dose (see Section 2.3) and defocus variation (see Section 2.1.1) during sample tilting 

(Robinson et al., 2007; van Heel et al., 2000). Tomographic techniques will not be covered in this 

text. There are basically two ―zero-tilt‖ methods to figure out the 3D orientation of a projection 

image: angular reconstitution and projection matching. In a sense, angular reconstitution can be 

understood as an ―unsupervised‖ method, because it seeks to find intrinsic angular orientation 

between images; in contrast, projection matching is a ―supervised‖ method as it assigns angles by 

comparing the images to references whose orientations are previously known. 

                                                 
2
 http://en.wikipedia.org/wiki/File:Eulerangles.svg 

http://en.wikipedia.org/wiki/File:Eulerangles.svg
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2.4.2.1 Averaging and alignment 

Before attempting to assign angles to the images, they need to be reasonably well centered 

and rotationally aligned. That is, one must estimate parameters *        + to assure all images 

are aligned to the same coordinate system. However, as images are projections of different views 

of the macromolecule, it only makes sense to align them to a representative reference of the view 

they contain. Such references may be obtained by clustering together similar images. In single 

particle analysis, clustering procedures are synonymous to classification procedures. As with all 

the steps towards 3D reconstruction devised here, classification of electron microscopy images is 

a broad research topic in itself, which will be presented in detail in Section 2.7. For the moment, 

we may only consider that the benefits of clustering images are twofold: 1) it provides the most 

representative views in the dataset (―top-view‖, ―side-view‖, etc), and 2) the SNR of such repre-

sentative views is improved by averaging similar images (van Heel et al., 2009). 

Typically, the dataset is initially centered in relation to its rotational average. One may 

then proceed by classifying the dataset in a pre-defined number of clusters, which is approximate-

ly the number of desired representative views. The average image of each cluster, known as a 

classum, serves as alignment references for the individual images. They are aligned in relation to 

their most similar reference. This procedure is known as multi-reference alignment (MRA) (van 

Heel & Stöffler-Meilicke, 1985; van Heel et al., 2000). By applying successive iterations of 

alignment and classification, high quality classums may be obtained. Typically the number of 

clusters is increased along iterations to capture the most diverse possible set of representative 

orientations of the object. The noise power in the average image decreases proportionally to the 

number of averaged images (van Heel et al., 2009). Due to the low signal-to-noise ratio of the 

datasets (see Section 2.3), angular assignments and initial reconstructions are normally performed 

with classums instead of individual images. 
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2.4.2.2 Angular reconstitution 

Angular reconstitution is based on the ―common line projection theorem‖, which can be 

stated as follows: ―a  1D  projection  (line  projection)  of  a  2D  density  is  equivalent  to a  1D  

central  line  through  the  2D  Fourier  transform  of  the  2D  density  distribution,  and  vice  

versa‖ (van Heel, 1987). The theorem can be extended to two and three dimensions as well: ―two  

2D  projections  of  the  same  3D  object  will  always  have one  1D  or  line  projections  in  

common‖ (van Heel, 1987).  This theorem allows the determination of relative orientations in the 

Euler sphere unambiguously for a set of at least three images, as illustrated in Figure 2.11: 

 

 

Figure 2.11 – Angular reconstitution is based on the common lines theorem. 2D projections of the same 3D object 

always share at least one line through the origin of their Fourier transforms. Finding such lines allows the determina-

tion of relative orientations for a set of three projections from an asymmetrical structure (in this illustration, the 50S 

unit of the ribosome). Extracted from van Heel et al. (2000). 

 

The search for such common lines can be performed in real space by means of sinogram 

correlation. A sinogram is a set of line projections over all possible rotations of a 2D image. The 

rotation step determines the precision of the angular reconstitution. For two images, their line 

projections are correlated against each other to find what is the most similar (ideally identical) 

pair of lines. The symmetry of the object restricts the search space for common lines. This is the 
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reason why solving an icosahedral structure (60-fold symmetry) like a large virus is easier than 

solving an also large asymmetrical structure like a ribosome. Figure 2.12 illustrates the common 

lines search by sinogram correlation functions for a set of three images. 

 

 

Figure 2.12 – Sinogram correlation functions for three projection images (a, b, c) of a 3D object. The sinograms for 

each image (d, e, f), when correlated against each other, yield correlation maps (g, h). The global maximum of such 

correlation maps indicate the common lines for each pair of images and respective orientations. The multiplicity of 

map peaks (black dots) depends on the symmetry of the object. Extracted from van Heel et al. (1997).  

 

Once the relative orientations of a small set of projection images have been reliably estab-

lished, such set may be deemed the anchor set. Anchor sets may also be formed from re-

projections of known 3D structures. Angular reconstitution of further images will then be relative 

to the anchor set. Details regarding angular reconstitution procedures can be found in the papers 

by Marin van Heel et al. (Schatz et al., 1997; van Heel, 1987, 1997). 

2.4.2.3 Projection matching 

While angular reconstitution can be used for de novo angular assignment, projection 

matching relies on a set of projection images whose orientations relative to the 3D object are 

known. Such knowledge may come from a previously determined 3D density map, for example 

in lower resolution, or by other techniques such as X-ray crystallography; or from a previous iter-
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ation of the current 3D reconstruction procedure. An initial model may also be constructed by 

randomly assigning the Euler angles (Harauz & van Heel, 1985). The method consists of taking a 

known 3D structure, re-projecting it across different orientations, and correlating the set of exper-

imental images to this set of re-projections (Harauz & Ottensmeyer, 1983; Harauz & van Heel, 

1985; van Heel et al., 2000). The angles assigned to the images are those of their most similar re-

projection. This process may be iterated to improve the 3D reconstruction under course, as illus-

trated in Figure 2.13. The imposed angular sampling of the Euler sphere determines the number 

of re-projections, and consequently the precision of the angular assignment. Again, object sym-

metry plays an important role by determining the number of re-projections needed for the com-

parisons. Projection matching may be used not only for assigning the β and γ angles, but also for 

performing translational and rotational (in plane) alignments (Orlova & Saibil, 2011). For involv-

ing exhaustive comparisons of N experimental images against a set of M references, projection 

matching is quite a computationally expensive procedure. 

 

 

Figure 2.13 – Overview of the projection matching procedure. The stack of experimental images (1-7) is compared 

against a set of re-projections (a-e) from a previous model or existing structure. Each image is aligned to its most 

similar reference and receives its Euler angles. A new 3D structure is calculated and its re-projections may be used 

for the next refinement iteration. Extracted from Orlova & Saibil (2011). 
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2.4.3 Reconstruction algorithms 

Once images have been aligned and assigned Euler angles, finally one may obtain a 3D 

model out of the single particles imaged in the TEM. This 3D model corresponds to the density 

map of the molecule. The basic reconstruction procedure consists in back-projecting each 2D 

projection image through the 3D space according to its assigned orientation, by means of the in-

verse Radon transform (Radon, 1986). Thus, the three-dimensional density map of the structure is 

approximated from the collected images. The first reconstruction procedure for electron micros-

copy images of biological specimens was proposed by De Rosier and Klug (1968), where the 

―central Section theorem‖ was introduced to this purpose. Aaron Klug received the 1982 Nobel 

Prize in Chemistry for the development of electron crystallography, a related technique in which 

the particles are orderly arranged in a crystalline lattice. The central Section theorem is the exten-

sion of the central line theorem to higher dimensions: the Fourier transform of a 2D projection is 

a slice through the origin of the Fourier transform of the 3D object (see Section 2.4.2.2). Figure 

2.14 illustrates this concept. However, simply back-projecting the 2D images through the 3D 

space does not work properly, because the overlap of frequency components increases towards 

the origin of the Fourier space, thus overly emphasizing low frequencies. To overcome this ef-

fect, Harauz and van Heel (1986) proposed the filtered (or ―weighted‖) back-projection algo-

rithm. Improvements on such methods have taken place since then, as well as alternative pro-

posals have appeared. Overviews of reconstruction techniques can be found in works by van Heel 

et al. (2000) and Frank (2006). 
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Figure 2.14 – Overview of the 3D reconstruction process in Fourier space. Extracted from Orlova & Saibil (2011). 

 

2.4.4 Overview of the iterative reconstruction workflow 

It is important to notice that the averaging and alignment (Section 2.4.2.1), angular as-

signment (Sections 2.4.2.2 and 2.4.2.3) and reconstruction (Section 2) steps briefly explained 

above constitute a cyclic workflow that must be iterated until convergence of the 3D density map. 

A current iteration of the structural model may also be used to generate references for particle 

picking (Section 2.4.1) in some cases. Variations of such workflow exist and are many, but the 

general procedure is synthesized in Figure 2.15. 
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Figure 2.15 – The general iterative single particle reconstruction workflow. After the sample containing multiple 

copies of the desired macromolecule is biochemically optimized, projection images are acquired in cryogenic condi-

tions (or negative staining) in the TEM to reduce radiation damage. The images are digitized directly from the micro-

scope detector or afterwards if collected on photographic film. After boxing particles, they are iteratively classified 

according to the view they represent and aligned in relation to representative cluster references. When the particle 

images are sufficiently well aligned and averaged to improve SNR, angles can be assigned. From these angles, a 3D 

reconstruction can be performed, whose re-projections may be used many times to improve the alignment, and a few 

times to provide the angle assignment. Once the 3D density map has converged, the structure can be biologically 

interpreted or combined with data from other techniques. If something went wrong or there is room for sample im-

provement, a new data collection is performed and the process restarts. Extracted from van Heel et al. (2000). 

 

Some excellent textbooks and review articles have been produced on single particle anal-

ysis and its related techniques. For thorough explanations of the whole process, the reader may 

refer to the books by Frank (2006), Glaeser et al. (2007) and Jensen (2010a, 2010b, 2010c). Also, 

the reviews by van Heel et al. (2000), Henderson (2004), Zhou (2008) and Orlova and Saibil 

(2011) are highly-recommended readings. 
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2.5 Structural heterogeneity 

So far, the single particle reconstruction technique outlined in Section 2.4 assumed the 

sample is homogeneous, which means that all the particles analyzed are stable copies of the same 

molecular assembly. This does not hold true in practice. Proteins and other macromolecular as-

semblies are flexible structures. In order to perform their activities in the cell, they may change 

their shape, assuming different conformational states. For example, see the Mm-cpn protein, on 

which most of the datasets analyzed in this work are based. Mm-cpn has a barrel-like structure 

that opens and closes its lids, as illustrated in Figure 2.16, to aid the folding of other proteins 

(Zhang et al., 2010). Also, molecular complexes may interact with other molecules by binding, as 

for example the ribosome does with the elongation factor G (EF-G), illustrated in Figure 2.17. 

The ribosome is a complex machine that ―reads‖ the amino-acid sequences in the messenger ri-

bonucleic acid (mRNA) to synthesize proteins, a process called translation. George E. Palade 

was awarded the 1974 Nobel Prize in Chemistry for discovering the ribosome from observations 

with the TEM (Palade, 1955), and Venkatraman Ramakrishnan, Tomaz A. Steitz and Ada Yonath 

also received the 2009 Nobel Prize in Chemistry for solving its atomic structure by X-ray crystal-

lography (Ban et al., 2000; Wimberly et al., 2000; Schluenzen et al., 2000). When ―molecular 

machines‖ like these are trapped in vitreous ice in their native states for EM observation, differ-

ent structures in fact co-exist in the sample, making it heterogeneous. 
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Figure 2.16 – Density maps for the Mm-cpn chaperonin (molecular weight: ~1 MDa) in two conformational states. 

The two states have been resolved separately by cryo-EM, but are shown together to illustrate the protein flexibility.  

a) The ―closed‖ state resolved at 4.3 Å; b) the ―open‖ state resolved at 8 Å. The resolution discrepancy is attributed 

to the flexibility of the lid arms in the ―open‖ state. Two lid subunits across its equator ring are highlighted in blue 

and orange, respectively. Adapted from Zhang et al. (2010), supplementary material. 

 

  

Figure 2.17 – Density maps for the E. coli 70S ribosome (molecular weight: ~2.5 MDa) resolved by cryo-EM from 

the same sample. The ribosome is composed of a large subunit (50S), shown in blue, and a small subunit (30S), 

shown in yellow; transfer RNA (tRNA) is shown in green. a) Ribosome containing elongation factor G, shown in 

red, resolved at 21 Å; b) ribosome without EF-G, resolved at 20 Å. Adapted from  Scheres (2012a). 

 

Sample heterogeneity in EM is recognized since long time ago (Frank & van Heel, 1982), 

but it was regarded as a curse then, because the structural flexibility degrades the achievable reso-

lution of the averaged 3D models. However, with the evolution of software development and 

computing power, sample heterogeneity is now seen as an advantage of the technique, because 

snapshots of different conformational states may now be extracted from a single experiment (van 

Heel et al., 2012). A structure resolved in multiple configurations from the same sample was first 

reported by Mellwig & Böttcher (2001), which was the ATP synthase, a membrane protein of 

a) b) 

a) b) 
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chloroplasts. The assumption of multiple structures co-existing in the dataset introduces an addi-

tional complication in the image formation model from Equation 2.2, which now becomes: 

 

  *  +         
 *  +     (2.4) 

 

The introduction of the structural index         in Equation 2.4 means now it is also 

necessary to figure out from which structure each projection image comes, and we change their 

parameters (Equation 2.3) accordingly: 

 

    *                + (2.5) 

 

In order to estimate the parameter k in Equation 2.5, a typical approach is to initially as-

sign each image to a 3D structure randomly, and refine this assignment iteratively by projection 

matching, as described in Sections 2.4.2.3 and 2.4.4. This is the basic principle of the competitive 

3D assignment employed by the IMAGIC package (van Heel et al., 2012). The number of differ-

ent structures K must be known a priori. The computational requirements for this kind of proce-

dure are much greater than that of homogeneous single particle reconstructions, because exhaus-

tive comparisons of each image against re-projections of K structures are performed. This is the 

challenge that motivated this project. Are there other ways to assign a projection image to a 3D 

structure, perhaps more efficiently? If yes, what are the confidence levels and limitations of such 

methods? Such questions will be addressed in Section 2.7, where classification methods in single-

particle electron microscopy are reviewed. 

2.6 Comparison of structural biology techniques 

Cryoelectron microscopy has come to complement other well-established structural tech-

niques in biology, namely X-ray crystallography and nuclear magnetic resonance spectroscopy 

(NMR). Basically, cryo-EM is able to resolve larger and more heterogeneous molecular com-

plexes than these alternative techniques (Zhou, 2008). It does not require crystalline samples, 

which is a limiting factor to which kinds of structures can be studied by X-ray and electron crys-

tallography (Frank, 2006), and also a restriction to observation of molecular dynamics. In fact, a 
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much smaller amount of biological material is needed for cryo-EM experiments than with other 

techniques (Frank, 2006). On the other hand, crystallography and NMR are routinely able to 

achieve atomic resolution, while the detail level of structures resolved by electron microscopy 

strongly depends on the object symmetry (Chiu, 1993). Also, cryo-EM is restricted to ―large‖ 

proteins and complexes: small proteins do not yield sufficient SNR for reconstruction from the 

micrographs (Saibil, 2000). A comparison of the advantages and limitations of each technique is 

given in Table 2.1. 

 

Table 2.1 – A comparison of qualities and limitations of popular structural resolution techniques. Numerical values 

are approximations. [1] (Frank, 2006); [2] (Saibil, 2000); [3] (van Heel et al., 2000). 

 
Requires crystals?

[1]
 Amount of required material

[1]
 

Molecular weight 

restrictions
[2]

 
Resolution range

[3]
 

X-ray  Yes Large (500 pmol) No Atomic (2-3 Å) 

NMR No Very Large (0.2-0.4 μmol) < 100 kDa  Atomic (2-3 Å) 

Cryo-EM No Little (0.25 pmol) > 100 kDa  Near-atomic (5-10 Å) 

2.7 Image classification in single particle analysis 

We shall now explore in greater detail the task of grouping together TEM images of single 

particles introduced in Section 2.4.2.1. When classification of images is mentioned in the context 

of single particle reconstructions, there are two possible interpretations. The first is that of aver-

aging similar views of the particle to improve the SNR, which is the task described in Section 

2.4.2.1. The other one concerns classifying the projection images according to the 3D object they 

come from, which is necessary for the structurally heterogeneous datasets introduced in Section 

2.5. These two types of classification are directly related to the two types of clustering which will 

be explained in Chapter 3: clustering based on ―compactness‖ and clustering based on ―connect-

edness‖. However, in single particle analysis, structural classification algorithms are a relatively 

recent topic, and they have an intimate historical relationship to the classification algorithms of 

similar projection views. A literature review covering the history of such classification algorithms 

will now be presented. This review is not intended to be exhaustive, in the sense that it is not pro-

ductive, if not impossible, to report every algorithm ever proposed and their respective applica-
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tions. The algorithms and works hereafter reported were selected based on their popularity within 

the field, their computational originality in this context, and/or their ability to solve interesting 

biological problems.  

2.7.1 Multivariate Statistical Analysis 

The first systematic method to average images corresponding to similar views of the ob-

ject was proposed in a seminal work by van Heel & Frank (1981). They introduced multivariate 

statistical analysis (MSA) tools in the field, by using Correspondence Analysis (CA) to reduce 

the dataset dimensionality (Benzécri, 1992). By visually clustering the data projected onto two 

factors, they were able to separate four different views of horseshow crab hemocyanin half-

molecules in negatively stained micrographs. As will be demonstrated by many works later, MSA 

approaches to dimensionality reduction are very useful for this kind of analysis because they both 

alleviate the computational efforts of classification and statistically relegate the influence of noise 

to the least significant components or factors. The principles of CA and the related method of 

Principal Component Analysis (PCA) will be outlined in Chapter 3. Such approaches are based 

on the eigenvector-eigenvalue decomposition of the dataset covariance matrix. In following 

works, the authors and colleagues present the theoretical details and potentials of Correspondence 

Analysis applied to electron microscopy images (Bretaudiere & Frank, 1986; Frank & van Heel, 

1982; van Heel, 1986). Interestingly, in these first works they already acknowledge the structural 

heterogeneity within the sample as a possible source of statistical variability, in the case where 

the dataset is homogeneous in respect to the particle orientations. 

In face of the growing size of the datasets, van Heel (1984) makes the classification pro-

cedure automatic by combining Correspondence Analysis with hierarchical ascendant classifica-

tion (HAC). The chosen criterion for class-merging is that of ―minimum added intra-class vari-

ance‖, or Ward criterion (Ward, 1963). More details on hierarchical classification algorithms and 

class-merging criteria can be found in Chapter 3. This is the approach used to identify character-

istic views of the 30S ribosomal subunit from E. coli and B. stearothermophilus on a landmark 

work on this complex (van Heel & Stöffler-Meilicke, 1985). In a later review, van Heel (1989) 

compares the use of HAC with the k-means clustering algorithm, which is also covered in Chap-

ter 3. The main critic against the use of k-means is its dependence on the random initial seeding. 
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To circumvent this problem, the notion of ―stable clustering‖ is introduced here in the form of the 

―dynamic cloud clustering‖ algorithm (DCC), which generates ―cross-partitions‖ from a set of 

different runs of the k-means algorithm (Diday, 1971). However, the HAC algorithm with the 

proposed post-processing heuristic still provides superior results according to the Ward criterion, 

as well as in respect to the balance of class members. Frank et al. (1988) extend the ideas from 

this work by combining the dynamic cloud clustering k-means procedure with HAC acting over 

image factors obtained by Correspondence Analysis. Curiously, the concept of stable clustering is 

rescued about 30 years later in a now popular algorithm for generating classums (Yang et al., 

2012), and is also a motivation for the use of cluster ensembles in data mining (Strehl & Ghosh, 

2002). Such proposals will be covered later in this text. 

Another important Chapter in the history of MSA-based classification methods is the 

work of Borland and van Heel (1990) on conjugate representation spaces. They demonstrate the 

symmetry of classifying the dataset both in the image/data space, and in the pixel/feature space. 

They present the conversion formulas to commute from one space to another and demonstrate the 

usefulness of classification in pixel space to assess localized variability in the projection images. 

Also in this work, the modulation metric is presented, which implicitly applies normalization to 

the data. The modulation metric and the Euclidean distance deal with both negative and positive 

data. Remember from Section 2.4.2.1 that the projection images have intensity values floating 

around zero, which is adequate to phase contrast images. Correspondence Analysis, on the other 

hand, employs the χ
2
 metric which is suited to positive data only. Often in this context, the term 

―MSA‖ refers to the use of the modulation metric in dimensionality reduction, while ―PCA‖ is 

used when the Eucliden distance is employed. 

MSA techniques are useful for other reasons besides classification, for example analyzing 

the molecule symmetry by inspecting the eigenimages of the dataset. Since they first appeared in 

the field, efficient implementations of the algorithms above mentioned were contained in the 

IMAGIC package (van Heel et al., 1996). Due to their interesting properties and computational 

efficiency in handling large datasets, MSA approaches have also spread to other electron micros-

copy packages, although sometimes with slightly different terminology according to the exact 

method implemented: MSA and CA in the SPIDER package (Shaikh et al., 2008), singular value 

decomposition (SVD) in EMAN/EMAN2 (Ludtke et al., 1999; Tang et al., 2007), PCA in 

XMIPP (Sorzano et al., 2004), among others. A recent review on the mathematical and computa-
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tional aspects of MSA methods and their parallelized implementations can be found in the paper 

by van Heel, Portugal and Schatz (2009). 

2.7.2 Invariant transformations 

The dimensionality reduction performed by MSA and related approaches does not allevi-

ate the need for precise rotational alignment of the images for the clustering step when averaging 

similar views. To this end, some invariant transformations have been proposed to be used instead 

of the images themselves. Schatz and van Heel (1990) propose the use of double auto-correlation 

functions (DACF) to achieve translational and rotational invariance. Auto-correlation is the cor-

relation of a signal with itself, and is a shift-invariant operation. If an image is converted from 

Cartesian to cylindrical coordinates, rotations become shifts in the transformed image. Therefore 

rotational invariance is then achieved by auto-correlating the ACF converted to cylindrical coor-

dinates. One of the downsides of auto-correlation is that it is equivalent to the power spectrum of 

the image, in which the amplitudes of Fourier components are squared. This tends to overly em-

phasize low-frequency components. To overcome this problem, double self-correlation functions 

(DSCF) were proposed (Schatz & van Heel, 1992). Self-correlations are defined as the inverse 

Fourier transforms of the amplitude spectrum of a signal. DSCFs work the same way as DACFs, 

but the amplitudes of Fourier components are not squared. The main problem of using the DACF 

and the DSCF is the information loss in these transforms, as they rely twice on the amplitudes of 

Fourier transforms alone. 

Another approach to achieve rotational invariance in classification was proposed by  

Penczek et al. (1996; 1992). Their method is based on the k-means algorithm. However, when 

comparing an image to the current cluster centroids during the assignment step of k-means, no 

straightforward distance comparison is applied; instead, the minimum distance found across all 

possible rotations of the image is used. This method does not suffer from information loss, but is 

obviously computationally more expensive. On the other hand, rotational alignment is then per-

formed simultaneously to classification. 
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2.7.3 Self-organizing maps and growing neural networks 

Another paradigm for clustering of single particle images was introduced by Marabini & 

Carazo (1994). In this work, they employ self-organizing maps (SOM), a kind of neural network 

used for unsupervised data classification formulated by Kohonen (2001). From the algorithm 

construction, the cluster prototypes, called code vectors, are arranged in a two-dimensional map 

in such a way that neighbor prototypes tend to be more similar than distant prototypes. The SOM 

will be presented in greater detail in Chapter 3. They have used SOM both to classify views of 

randomly oriented chaperonin particles (GroEL) and to find structural differences in a dataset of 

aligned images of the TCP-1 complex. The classification per se was done by visually segmenting 

the maps. The first case (randomly oriented particles) was meant to demonstrate the application 

of the method in reference-free alignment. The second case demonstrated the assessment of struc-

tural heterogeneity using the SOM. To this end, the authors also employed the supervised coun-

terpart of the SOM, called learning vector quantization (LVM). The goal of LVM is not to pro-

duce a summarized analysis of the dataset as in the SOM, but to find optimal class representatives 

for further classification of unlabeled data. A similar SOM-based approach was used to analyze 

structural heterogeneity in bi-dimensional crystals (Fernández & Carazo, 1996). 

Since then, the research group around José-Maria Carazo has proposed many other SOM-

based approaches to classification in single particle analysis. Among them, there is a combination 

of SOM with an earlier proposal of themselves using fuzzy c-means (FCM) clustering (Carazo et 

al., 1990; Pascual et al., 1999), called Fuzzy Kohonen Clustering Network (FKCM). The claimed 

advantage of this method is the reduced susceptibility of FKCM to falling into a local minimum 

of clustering in comparison to conventional FCM, and at the same time providing the summa-

rized visual analysis of SOM. This algorithm was evaluated both on 338 images and 2,458 rota-

tional power spectra of the GP40 helicase of Bacillus subtilis bacteriophage SPP1 in negative 

stain. When clustering the images they were able to discriminate molecular handedness across 

homogeneous views of the molecule, and on the rotational power spectra analysis, FKCM clus-

tered the data according to rotational symmetry. FKCM classification accuracy was compared to 

conventional SOM. Another work by them (Pascual-Montano et al., 2001) introduces a formal 

objective function to be optimized by the SOM. This method is called Kernel Probability Density 

Estimator SOM (KerDenSOM) and assures that the code vectors formally represent the underly-
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ing probability distribution of the data. Deterministic annealing is used during parameter estima-

tion. KerDenSOM was also evaluated on two datasets: the same rotational power spectra data of 

the FKCM work, and on 2,822 cryo-EM images of the simian virus 40 (SV40) large T-antigen. 

On the rotational power spectra dataset they were able to recognize previously undetected rota-

tional symmetry groups, and on the large T-antigen data they were able to assess some structural 

variability within the data. The images have been centered and rotationally aligned previously to 

classification. KerDenSOM has later been extended to classify electron sub-tomograms (Pascual-

Montano, Taylor, Winkler, Pascual-Marqui & Carazo, 2002; Yu & Frangakis, 2011). Implemen-

tations of SOM approaches for classification of electron microscopy data are provided by the 

XMIPP package (Sorzano et al., 2004). 

A variant of the self-organizing map, called growing neural gas (GNG) (Fritzke, 1995) 

was employed by Ogura, Iwasaki and Sato (2003) to cluster similar views of a macromolecule. 

The advantages of GNG over SOM include automatic determination of the number of code vec-

tors and the inclusion of prototypes solely on data-populated regions of the hyperspace. In this 

proposal, the map representation is optimized by a simulated annealing heuristic. They demon-

strate the algorithm usability in averaging 11,000 projection images containing views of a mem-

brane protein, the sodium channel, using 520 apoferritin images as artificially introduced contam-

inants. The authors provide a visual comparison of 49 classums obtained by GNG, SOM and 

MSA/HAC to assess class purity, and the GNG is shown to perform better than those on the ana-

lyzed dataset. 

2.7.4 Multi-step classification: solving heterogeneity 

As mentioned previously, for a long time the co-existence of heterogeneous structures in 

the sample was held as an obstacle to the reconstruction of an accurate 3D model by the single 

particle method. Structural variations can be hard to assess only from noisy 2D projections, alt-

hough some of the algorithms above presented had already been able to recognize them to some 

extent. Nevertheless, the advances on microscopy instruments, computing resources and method-

ologies for data analysis have rendered this problem gradually more tractable. We shall now 

overview some of these methodologies. 
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Burgess et al. (1997) have employed a mixed classification approach to observe three dif-

ferent conformations of myosin heads, a motor protein involved in muscular contraction. Firstly, 

they have used k-means to group similar views of their negative stain data in two steps. Cluster-

ing was performed directly on the images, with no data compression technique applied previous-

ly, and different masks were used to select for the motor and regulatory domains at each step. 

Then, a simulated negatively stained structure was generated from an atomic model solved by X-

ray crystallography of the myosin sub-fragment (S1), and re-projections of this model were used 

for visual comparison with the class averages obtained by k-means. Such comparison confirmed 

at least three distinct conformations of the myosin head. Although 3D models from these configu-

rations were not reconstructed, the observation of the myosin head flexibility in the class averag-

es helped to elucidate its functioning mechanism. 

A similar but more automated approach was devised later by  Burgess et al. (2004) in in-

vestigating structural flexibility of myosin and dynein. In this work, an initial classification of the 

datasets was performed using k-means with variable number of classes. The most meaningful 

partitioning, for each dataset, was defined by visual inspection assessing the tradeoff between 

SNR and diversity of views. In this sense, the authors stress that the k-means algorithm is more 

interesting than HAC because it tends to balance the number of class members, which means that 

classums will have approximately the same SNR, while in HAC they do not (for a pre-defined 

number of classes). Such classums were then used to realign the projection data, and the failure to 

correctly align certain images was taken as an indication of structural flexibility. Again, the da-

tasets were split at this point according to alignment criteria to obtain class averages for each con-

formation, using the multi-step classification approach with different masks to assess relative 

movements between head, stem and stalks of these motor proteins. 

 Mellwig and Böttcher (2001) were able to unveil 3D structures of the adenosine thri-

phosphate (ATP) synthase in two conformations. ATP synthase is a 550 kDa asymmetric enzyme 

from the membrane of chloroplasts. After applying the MSA method for classification with sub-

sequent alignment and angular reconstitution steps, a single 3D model was obtained from the 

cryo-EM data. However, visual inspection confirmed that certain classums did not agree well 

with the model re-projections in the given orientations. Then those classums were separated from 

the others and two 3D models were calculated using the previously assigned Euler angles. Re-

projections of these two models were then used to refine the alignment and class assignment of 
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the experimental images, and this process was iterated until the convergence of the two struc-

tures. According to the knowledge of the author of this dissertation, this has been the first case 

where multiple three-dimensional models were obtained from the same heterogeneous sample. 

In the work by White et al. (2004), a strategy for discriminating projections of particles 

with size variation is presented. This kind of conformational flexibility can usually be detected on 

the eigenimages of the dataset after applying MSA techniques. Classifying the data using only 

their coordinates on these selected eigenimages allows the in silico purification of the sample 

according to particle size. Their method has been demonstrated on synthetic and real data, 

achieving a reconstruction of the heatshock protein Hsp26 at 9.5 Å resolution in two confor-

mations. 

Another important work among the first ones dealing with heterogeneous datasets was 

made by Klaholz,  Myasnikov and van Heel (2004). They developed a MSA-based strategy for 

solving two conformations of the E. coli 70S ribosome bound to release factor RF3 while study-

ing protein synthesis. After attempting a single reconstruction from the dataset, it was verified 

that the angular assignment of some images did not stabilize. They also observed that the region 

corresponding to the 30S subunit in the density map appeared less ordered than the rest of the 

structure. Therefore, they decided to classify the images within each orientation class using MSA 

and HAC focusing on this region, applying a selection mask. From the structural class assign-

ments, they reconstructed two structures using the previously assigned Euler angles. Re-

projections of both structures were then generated to improve the alignment and structural classi-

fication of the images, in an iterative loop. This work provided the basis for development of the 

―competitive 3D assignment‖ in the IMAGIC 4D workflow (van Heel et al., 2012). This later 

paper contains an interesting review of heterogeneous sample processing by MSA-related ap-

proaches. 

Following this line, Elad et al. (2008) formalize the two-step classification approach for 

sorting images in heterogeneous datasets. Images are firstly grouped according to the particle 

view they represent, and subsequently discriminated according to the structure they belong to 

within each class obtained in the first step. This approach is names ―double MSA‖ by the authors, 

and represents an important step toward process automation. They detect structural heterogeneity 

from the multimodal distributions of the MSA coordinates in the most informative eigenimages. 

The approach is demonstrated on simulated datasets of GroEL/ES chaperones and two experi-
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mental datasets, one containing mixed populations of GroEL-GroES-ADP complexes and the 

other containing the 70S ribosome bound or not to the elongation factor EF-G. 

A slightly different strategy for classification of structural heterogeneity was proposed by 

Sorzano et al. (2010), called CL2D. They use an information-theoretic based similarity measure 

called correntropy instead of the usual squared Euclidean distance, and perform classification 

with a hierarchical but divisive strategy instead of ascendant. Correntropy is claimed to be better 

suited to measure similarities between non-linear and non-Gaussian process outcomes (Liu, 

Pokharel & Príncipe, 2007). This is the case of TEM data if higher-order components are ac-

counted for in the image formation model. The class assignment decision function, which the 

authors call robust clustering criterion, is very similar to the Ward criterion. They first assess the 

clustering for multi-reference alignment, i.e. the clustering of similar views of the macromole-

cule, in a simulated bacteriorhodopsin dataset in two different noise levels. The quality criterion 

is the dispersion of Euler angles within each class – it is expected that images clustered together 

have similar orientations. Detection of heterogeneous structures is tested on a simulated 70S ribo-

some dataset and on a real p53 dataset. They act as in the classification of views, but assess with-

in each class the percentage of images belonging to each conformation. In other words, it is as-

sumed that heterogeneity classification can be performed concomitantly with the clustering of 

views. The problem with this strategy is that, in practice, the conformational labels are unknown, 

so it is not possible to separate conformations in this way for ab initio reconstructions.  In all the 

analyzed cases, the results from CL2D were compared against other popular classification ap-

proaches: maximum-likelihood classification from the ML2D algorithm (Scheres et al., 2005), 

which will be introduced soon in this Section; SVD/MSA from EMAN (Ludtke et al., 1999), 

which is simply MSA/k-means; and also PCA/Diday (dynamic cloud clustering), PCA/HAC and 

PCA/k-means from SPIDER (Frank et al., 1996). CL2D outperforms all of these, according to 

the criteria above mentioned, on the given datasets. 

2.7.5 Maximum-likelihood Estimation 

Another important branch of heterogeneity classification comprises probabilistic model-

ing approaches. The family of maximum-likelihood estimation (MLE) methods was introduced 

by Sigworth  (1998) for image alignment. The expectation-maximization algorithm, which will 
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be explained in Chapter 3, allows learning the hidden variables that define the underlying proba-

bility distribution of the observed data, including a formal description of the noise. The greatest 

advantage of using MLE for alignment is that it reduces the reference bias. The reference bias is 

the problem that arises when averaging very noisy images aligned to a given template: the aver-

age image may resemble the template, even if each aligned image contains just random noise. If 

cross-correlation is used to estimate the shifts, this is especially likely to happen with single par-

ticle images. Maximum-likelihood estimators avoid reference bias by weighting every possible 

shift by their corresponding a posteriori probability for each observed image. 

This probabilistic model is further extended by Scheres et al. (2005) to perform multi-

reference refinement of single particle images via maximum-likelihood estimation (ML2D). By 

―refinement‖ it is meant the iterative alignment and classification procedure, as in MRA. In this 

approach, the user specifies the number of references (classums) to be obtained and the number 

of different structures or conformations mixed in the dataset. Then, the expectation-maximization 

takes place in determining the alignment parameters and structural assignments, by maximizing 

the likelihood of observing the data according to the probabilistic model. They compare ML with 

cross-correlation MRA on cryo-EM (simian virus SV40 large T-antigen) and negative stain (Ba-

cillus subtilis bacteriophage SPP1 G40P helicase) experimental datasets and also on a simulated 

phantom dataset. More remarkable is the observation of two conformations of the SV40 large T-

antigen dataset in complex with an asymmetric DNA probe. The density corresponding to this 

DNA probe had not been observed before. 

The problem with maximum-likelihood approaches is that, in principle, a broad search of 

the parameter space must be conducted, something that can be very time-consuming. The authors 

have presented a restricted search heuristic that, after the first iteration, covers only a region arbi-

trarily close to the highest probability peak of the parameter space. This reduced-search approach 

dropped the computing time from 162 to 25 hours for the large T-antigen dataset comprising 

3812 projection images ( Scheres, Valle & Carazo, 2005). 

Furthermore, the maximum-likelihood method is extended to include 3D refinements 

(ML3D), enabling near-automatic reconstructions from heterogeneous datasets (Scheres et al., 

2007). The ML3D refinement is equivalent to the projection matching approach, but instead of 

assigning a single value to each of the alignment and class assignment parameters, these are re-

placed by probability-weighted integrations over the parameter space. The refinement method is 
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demonstrated on heterogeneous datasets of the 70S Escherichia coli ribosome and the SV40 large 

T-antigen, and compared with conventional projection matching against known structures. The 

ML approach achieved similar or better results in 3D reconstructions, with the added advantage 

that no a priori knowledge about the structural variability had to be provided. However, perfor-

mance of likelihood optimization was still an issue: the ribosome dataset took six CPU months to 

be processed in a supercomputing facility. 

Since then, several improvements in the probabilistic model used for likelihood optimiza-

tion have been introduced. These included: the introduction of colored noise, i.e., the noise be-

havior was assumed to be independently Gaussian distributed over Fourier components, instead 

of the previously considered independency across pixels (Scheres et al., 2007); the restriction of 

structure ―brightness‖ to correct for normalization errors in the experimental images (Scheres, et 

al., 2009); and the substitution of multivariate Gaussian distributions for multivariate t-

distributions, which have heavier tails, thus penalizing more severely outliers in the dataset 

(Scheres & Carazo, 2009). These modifications have been tested on the heterogeneous dataset of 

the 70S E. coli ribosome, among others, revealing then unknown structural classes and improved 

classification rates, when compared to the previous formulation of the ML algorithm. The maxi-

mum-likelihood classification and refinement framework has been initially implemented in 

XMIPP (Scheres et al., 2008), although now it can also be found in other packages. 

Concerning the computational efficiency of the maximum-likelihood method, a fast adap-

tive search has been proposed by Tagare, Barthel & Sigworth (2010). The ―E‖ step of the expec-

tation-maximization algorithm requires integration over all possible values for each parameter of 

the model; instead, they begin by searching over a coarse discrete grid in the integration domain, 

which is adaptively refined across iterations to focus on the regions of greater contribution to the 

log-likelihood. They implemented the adaptive algorithm using graphics processing units (GPUs) 

and tested the proposal on 2D classification of ribosome images, comparing with the previous 

implementation of ML2D. The proposed Adaptive-EM heuristic achieved similar classification 

results with a speed gain between 10 times in the first iteration to over 60 times in the final itera-

tions.  
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2.7.6 Bayesian estimation 

A probabilistic framework directly related to maximum-likelihood estimation is the a pos-

teriori or Bayesian estimation, introduced by Jaitly et al. (2010) to generate an ab initio 3D mod-

el from 2D class averages. Such class averages are obtained previously from MSA or maximum-

likelihood alignment and classification programs. Bayesian estimation, as will be clarified in 

Chapter 3, weights the observed data with prior knowledge of the problem. Maximum-likelihood 

estimation, in contrast, takes only the observed data into account. The prior knowledge is incor-

porated into the probabilistic model in the form of a priori distributions for the parameters. In this 

case, the voxel values of the 3D density model are constrained to have smooth transitions. This 

type of regularization constraint is interesting to avoid obtaining an overfitted model whose struc-

tural features are mostly originated by random noise from the data. The method is demonstrated 

on one synthetic and four experimental datasets (ATP synthase, GroEL, 70S ribosome and V-

type ATPase) whose structures were already known. 

The Bayesian approach was then extended by Scheres (2012) to comprise not only 3D re-

construction but also image alignment and classification, including heterogeneity separation. The 

proposed maximum a posteriori (MAP) algorithm assumes smoothness of component amplitudes 

in the 3D Fourier space, following the previous work on the maximum-likelihood method 

(Scheres et al., 2007). The MAP method requires little human intervention and robustly avoids 

map overfitting, as is demonstrated in a comparison between reconstructions of the archaeal 

thermosome solved by MAP and by conventional projection matching. Avoiding overfitting does 

not necessarily mean a conservative smoothing of the density map, as is shown with a GroEL 

reconstruction in slightly higher resolution (8.0 Å) than that yielded from conventional projection 

matching (8.8 Å). MAP was also able to identify an under-represented class of the 50S ribosomal 

subunit in the previously studied 70S ribosome binded to tRNA and EF-G. This method is im-

plemented in the RELION package (Scheres, 2012b). Despite its advantages, Bayesian estimation 

suffers from the same computational performance issues that maximum-likelihood methods have. 

An interesting adaptation of the method was devised by Lyumkis et al. (2013), using Bayesian 

estimation solely for heterogeneity classification purposes. This approach was implemented in 

the FREALIGN package (Grigorieff, 2007). 
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2.7.7 Classification of single projection reconstructions 

Scheres et al. (2005b) have also devised a single projection reconstruction (SPR) method 

to classify heterogeneity in datasets of icosahedral viruses. The approach consists in building a 

3D reconstruction out of each projection image, and to compare the variance in 3D space. If there 

are variance peaks in this volume, the projection images are then classified according to their 

density in this region. Regions of high variance in the 3D analysis are possible representative of 

structural heterogeneity, like the presence or absence of attached proteins. This classification may 

be done by manually thresholding the intensity histogram of a particular set of voxels, or by ap-

plying a clustering algorithm like HAC to these intensities. After separation, conventional recon-

struction approaches are started and the class assignment may be improved. The authors first test 

the method on phantom data and compare the performance of different reconstruction algorithms, 

such as the algebraic reconstruction technique (ART) and weighted back-projection (WBP), 

among others. They follow with the application of the method to a real dataset of the adenovirus 

mutant dl313, from which reconstructions in two states are recovered. SPR classification works 

particularly well for highly symmetric particles because each individual reconstruction is a rea-

sonable approximation to the real structure, and is less expensive than conventional competitive 

3D assignments. 

2.7.8 Bootstrap methods 

Another flavor of statistically grounded methods for heterogeneity assessment are those 

based on bootstrapping, firstly presented in the work by Penczek et al. (2006). In a sense, boot-

strap methods can be understood as an extension of classification by single projection reconstruc-

tions (Scheres et al., 2005) to general symmetries. They are related to the analysis of variance in 

pixel space as introduced by Borland and van Heel (1990). Bootstrapping consists on re-sampling 

the dataset with repetitions; from each sample of projection images drawn, a 3D model is gener-

ated. This approach can also be understood as the unsupervised counterpart of the bagging 

(Breiman, 1996) and RANSAC methods (Fischler & Bolles, 1981). The images have been as-

signed Euler angles previously by any chosen reconstruction process. With this set of bootstrap 
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models, it is possible to estimate the variance of the density maps. Regions displaying high vari-

ance are possibly flexible parts of the macromolecule, thus indicating structural heterogeneity. 

Penczek, Frank and Spahn (2006) also apply a method of focused classification following 

the bootstrap technique presented above. After the estimation of 3D variance by bootstrapping, 

the regions of highest variances can be selected by using spherical masks. Then the projection 

images can be clustered by k-means acting only on the selected regions, thus discriminating for 

structural flexibility. The method is demonstrated by classifying experimental images of the 70S 

ribosome with and without tRNA ligands and the elongation factor EF-G. 

Liao and Frank (2010) further extend the bootstrap classification method by combining it 

with Principal Component Analysis in 3D space. They perform PCA on the set of bootstrap vol-

umes, and then generate 2D projections of the eigenvolumes. Each experimental image is then 

assigned a similarity score in relation to the projections of the eigenvolumes in the same orienta-

tion of the given image. These similarity coefficients are then clustered by the k-means algo-

rithm. The authors investigated how well this clustering corresponded to the structural labels by 

testing the method on real and synthetic 70S ribosome datasets, containing mixed populations 

with and without EF-G binding. Results were compared with ML2D (Scheres et al., 2005). For 

this analysis, 40,000 bootstrap volumes were generated for each dataset. Classification perfor-

mance was compared by accuracy and quality of the reconstructions of each conformation, which 

showed to outperform ML2D. 

One of the latest advances in bootstrap techniques was presented by Penczek, Kimmel and 

Spahn (2011), who created the codimensional PCA approach. The method re-samples the projec-

tion images uniformly within similar Euler orientations, which are assigned by reconstructing the 

average 3D map. In this way, artifacts in the bootstrap volumes caused by non-uniform sampling 

employed in previous methods are avoided. From the set of bootstrap density maps, the eigenvol-

umes of the dataset are calculated and their re-projections are used to assign factors to the images 

that are associated with the 3D structural variability. These coefficients are clustered by k-means 

to perform the heterogeneity separation, in a similar approach when compared to that used by  

Liao and Frank (2010). To demonstrate the method, the authors apply it in the analysis of the 

Thermus thermophilus 70S ribosome structural dynamics. 
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2.7.9 Graph partitioning 

Recently, there has been a growing interest in graph representation for cryo-EM datasets. 

Ueno, Kawata and Umeyama (2005) first demonstrated the usefulness of unsupervised graph 

partitioning by using spectral clustering to average similar views of a macromolecule. Spectral 

clustering is based on the eigenvalue-eigenvector decomposition of an adjacency matrix of the 

dataset, which in turn is derived from a similarity matrix. ―Spectral‖ in this context refers to the 

spectrum of eigenvalues of the adjacency matrix. More details on graph partitioning and their 

objective functions will be presented on Chapter 3. They employed the normalized cross-

correlation to measure pairwise similarity between the images in the dataset, and a Gaussian ker-

nel to penalize large distances in the similarity matrix. The approach was demonstrated on syn-

thetic and real datasets of the 70S ribosome, and compared with class averages obtained by clas-

sification using Correspondence Analysis. Spectral clustering was shown to obtain classes with 

higher fidelity to the diverse views of the ribosome present in the datasets. 

In a following work, Ueno et al. (2007) used negative staining to study pH-dependent 

conformations of the human serum albumin, a very small protein with a 67 kDa mass. To average 

similar views of the macromolecule, they employed spectral clustering again. Pairwise distances 

between images were obtained by an approach close to the one used in the rotation-invariant k-

means (Penczek et al., 1996), and a Gaussian kernel was applied to construct the similarity ma-

trix. This classification was also able to discriminate images from the macromolecule in mono-

mer configuration from the dimer configuration, in both pH conditions imposed. Projection 

matching was used to compare the experimental images to re-projections of an atomic model 

previously solved by X-ray crystallography. 

The work by Herman and Kalinowski (2008) formulates the heterogeneity separation 

problem as a graph partitioning task. They introduce a similarity measure for projection images 

that is grounded on the ―common lines‖ theorem, which was explained in Section 2.4.2.2. Basi-

cally, the images are compared not directly by their pixel values, but by equally-spaced line inte-

grals. Because the TEM images contain 3D information projected onto a 2D space, the principle 

underlying this kind of measure is accounting different views of the same structure as more simi-

lar than views that look alike but come from different structures. The similarity between pairs of 

images is used to induce a weighted graph. The classification procedure goes by obtaining a 
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―Min-cut‖ of the graph in k partitions. A Min-cut is the graph partitioning that minimizes the sim-

ilarity between partitions, measured by the sum of the weights on the edges traversing partitions. 

The cost function is optimized by a tabu search heuristic: cut options that do not decrease the 

Min-cut are banned from being revisited for a number of iterations. The total number of iterations 

is pre-defined. This proposal is very interesting for dealing with the heterogeneity separation 

problem independently of 3D reconstructions. However, the method was evaluated solely on syn-

thetic images. 

Shatsky et al. (2010) present a three-step classification approach that combines projection 

matching from an initial model to obtain class averages from similar orientations, MSA/HAC to 

obtain class averages with improved SNR within each angular group, and spectral clustering to 

further combine these classums in structurally homogeneous groups. The similarity graph for 

spectral clustering is constructed from a similarity measure between 1D projections, as in the 

work by Herman and Kalinowski (2008). Angular assignment and structural classification are 

then refined by iterative projection matching. The authors also propose an interesting method to 

determine the number of distinct conformations present in the mixture: the number of structural 

classes is increased until no new structures can be extracted. This multi-model approach was test-

ed on a synthetic and three real datasets, including the 70S ribosome. Although the density maps 

obtained could indeed be further refined, this work demonstrates perhaps the most automated 

approach to classification and reconstruction of heterogeneous datasets. In the ribosome case, 

structural classification accuracy was compared with the known class labels, achieving up to 85% 

correct classification on average with five rounds of projection matching refinement. 

Although not a classification method, the work by Coifman et al. (2010) shall be consid-

ered here for inferring properties of the density map directly from analysis of the set of 2D pro-

jections. The authors derive an interesting relationship between central lines in the Fourier trans-

form of a 3D structure and points on the unit sphere. By mapping the pairwise common lines of 

the projection images onto a weighted graph, the proposed algorithm is able to infer the angular 

relationships from the intrinsic dataset structure. The approach is called Globally Consistent An-

gular Reconstitution (GCAR) and relies on spectral analysis of the adjacency matrix, like spectral 

clustering. The demonstration of GCAR was performed on a synthetic dataset containing noisy 

projections of the 50S ribosomal subunit. 
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Another graph-based classification approach is the one presented by Singer et al. (2012) 

to group projection images with similar orientations. They employ the rotation-invariant k-means 

algorithm (P. A. Penczek et al., 1996) to align and extract relative rotations for every image pair 

in the dataset. The distance matrix is made sparse by thresholding using a pre-defined number of 

nearest neighbors or an arbitrary distance value. The authors note that Euclidean distance by itself 

is not a reliable measure for the noisy cryo-EM images, as projections from very different orien-

tations of the molecule may appear similar due to random patterns introduced by noise. The con-

verse may also occur, when images that are actually from the same orientation may appear to be 

very distant from each other. However, the optimal in-plane rotation angle found in the alignment 

step provides useful information when evaluating whether the measured distances are meaning-

ful. These angles are then used to induce a similarity measure, from which a sparse Hermitian 

matrix is constructed. An Hermitian matrix is a complex square matrix that is equal to its conju-

gate transpose. The classification technique then follows quite similarly to spectral clustering. 

Three specific eigenvectors of the Hermitian matrix are calculated, and from them an affinity 

measure is produced. Clustering the similar views is finally achieved by thresholding the affinity 

measure so to group together images within a certain neighborhood in the graph. Although the 

justifications for this method are mathematically involved, the resulting algorithm is quite simple. 

The main advantage of the proposed method is its robustness to noise, shown by obtaining mean-

ingful class averages on datasets with an SNR of 1/64. However, it has not been demonstrated on 

real or heterogeneous datasets. 

2.7.10 Stability of alignment and classification 

Often, intermediate and final results of the dataset manipulation in single particle analysis 

are difficult to reproduce. This may be due to local optima reached by randomly initialized algo-

rithms, or to explicit and implicit biases introduced in the data processing. Thinking about this, 

Yang et al. (2012) proposed a version of the rotation-invariant k-means algorithm (Penczek et al., 

1996) combined with multi-reference alignment that seeks to attain stable and reproducible clus-

ters. The algorithm is called Iterative Stable Alignment and Clustering (ISAC) and is implement-

ed in the SPARX package (Hohn et al., 2007). While their approach may resemble the dynamic 

cloud clustering method  (Diday, 1971; van Heel, 1989), ISAC performs a multipartition match-
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ing that returns only the consistent clusters found across different runs of k-means; in contrast, 

DCC returns every cross-partition found, which typically results in more clusters than the number 

requested. Currently, ISAC is limited to four independent runs of k-means clustering. ISAC also 

enforces balanced classes in k-means. The main idea is to obtain robust class averages for angular 

assignment, in the sense that they may be easily reproduced and thus are more likely to be cor-

rect; by the same reasoning, the algorithm is also able to exclude unstable images as outliers. Alt-

hough no explicit connection is made in the ISAC proposal, the reasoning behind the algorithm 

keeps many similarities with consensus clustering concepts (Strehl & Ghosh, 2002). 

2.7.11 Other methods 

A few other proposed methods to classify electron microscopy images of single particles 

are worth mentioning. A statistical approach to clustering projections of similar orientations was 

presented by Samsó et al. (2002). This method was based on Bayesian Gibbs sampling, modeling 

classes as a mixture of non-isotropic Gaussian distributions. The algorithm devised was also able 

to select the relevant features from Correspondence Analysis or Principal Component Analysis 

for classification. The authors tested their method against HAC classification using the same fea-

tures extracted by CA and PCA, on synthetic datasets of the 50S ribosomal subunit. Artificial and 

real noise, extracted from carbon film portions of micrographs, was added to the images for a 

range of SNR values. Overall, Gibbs classification was shown to produce classes with higher 

purity than HAC. 

Kawata and Sato (2007) present a statistical method for 2D alignment of particle views. 

Although the classification part of their approach contains no innovation, the work is worth men-

tioning here due to its interesting underlying assumptions. The method is called Multi-Reference 

Multiple Alignment (MRMA). The proposed algorithm estimates several candidate shifts and 

rotations for each image in parallel, in relation to multiple references. Due to the severe noise 

observed in the TEM images, several correlation peaks may appear when estimating these candi-

date alignments; however, the distribution density of such peaks is expected to be higher around 

the ―true‖ peak. Therefore, the reported method finds the optimal alignment by statistical analysis 

of the correlation peaks. After alignment, images are compressed by Correspondence Analysis 

and clustered by HAC. The approach was firstly demonstrated on the ―Lena‖ image with differ-
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ent levels of Gaussian noise and several rotated and shifted copies. The MRMA method was 

compared against the conventional MRA approach, which considers only the highest correlation 

peak for alignment. The alignment quality was assessed by the intra-class variance after HAC 

classification. Experimental datasets of the Transient Receptor Potential C3 and the sodium 

channel were also evaluated, and the pixel intensity histograms of the class averages were also 

used to compare MRA and MRMA. While histograms of classums generated from MRA tended 

to be unimodal and largely dispersed, those obtained from MRMA tended to present clearly de-

fined peaks, indicating that this method was able to achieve better alignments. 

Fu, Gao and Frank (2007) report an approach towards heterogeneity classification denoted 

cluster tracking. In this method, projection images are first grouped in overlapping classes ac-

cording to their orientation (2D classification). Such orientations are given by projection match-

ing with re-projections from a previous model. The class overlap is determined by the neighbor-

hood of the projection orientations on the Euler sphere. Next, images within each class are classi-

fied according to their 3D conformation. PCA and k-means are used, and the relevant compo-

nents for classification are selected by visual inspection of the coordinates histogram. The eigen-

images containing information related to structural heterogeneity are retained, and the others are 

discarded. If there are neighbor classes already analyzed, the classification results across them are 

combined. The algorithm proceeds iteratively until all classes have been analyzed according to 

structural variability. The principle behind analyzing structural heterogeneity in each orientation 

class at a time is to obtain a more reliable classification by combining the neighborhood infor-

mation in the process. Afterwards, the assignments can be refined by projection matching. The 

method is demonstrated on a simulated 70S ribosome dataset, with and without ligands binding. 

The authors show that even small variations on the objects mass, of about ~4%, may produce 

recognizable features on the 2D projections that may allow their separation according to the 3D 

configuration; however, they also point out that more complex conditions found in real datasets 

may prevent the recognition of such features. 

To the extent of the author’s knowledge, Schwander et al. (2010) have been the first to 

formally apply manifold learning techniques to the conformational classification of heterogene-

ous datasets. The authors explicitly assume the relationship between pixel intensities and the Eu-

ler orientation of the projection as a manifold mapping. Thus, the orientations can be inferred by 

the position of the data point on the low-dimensional manifold, an approach that conceptually 
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resembles that used by the GCAR algorithm (Coifman et al., 2010). More importantly, the au-

thors demonstrate how distinct conformational states occupy different manifolds. This is valid 

both for cryo-EM data as well as X-ray Free Electron Laser (XFEL) data. XFEL is a structural 

biology technique somewhat similar to single particle analysis that employs X-rays instead of 

electrons for imaging. By using approaches based on Generative Topographic Mapping (GTM) 

(Bishop, Svensén & Williams, 1998), the authors are able to infer the manifolds underlying the 

dataset. Due to GTM being a generative technique, it becomes possible to estimate views of the 

object in any orientation, as well as to obtain arbitrary snapshots of the macromolecule dynamics, 

as much as the collected data allows. The authors first use GTM for orientation classification of 

synthetic cryo-EM images of the small protein chignolin; they then test the approach on synthetic 

XFEL data of the adenylate kinase (ADK) protein in two conformational states. It is observed 

that two manifolds are learned by the algorithms without any input regarding the number of con-

formations, and such manifolds correspond to generative models of the projection data for the 

ADK ―open‖ and ―closed‖ states. Nevertheless, the authors acknowledge that the computing 

power necessary to run manifold learning algorithms on high-dimensional cryo-EM and XFEL 

data can be an issue; they also point the advantages of graph-based and Riemannian approaches 

to heterogeneity sorting, which do not require knowledge about the manifold dimensionality. On 

the other hand, neither such methods, nor the others above presented, have the generative explan-

atory power that manifold learning techniques have. 

Katsevich, Katsevich and Singer (2013) present a theoretical framework to solve the het-

erogeneity separation problem by estimating the dataset covariance matrix. This work follows the 

lines of Herman and Kalinowski (2008), Coifman et al. (2010),  and Singer et al. (2012), among 

others, that infer 3D structural information by manipulation of the intrinsic relationships across 

the observed images. The method is based on eigenvector analysis of the covariance matrix, and 

is related to high-dimensional PCA. They demonstrate the correctness of the approach by recov-

ering the heterogeneous 3D objects from low SNR synthetic data. 

At this point, the reader probably has noted that there are many available tools for classi-

fication of single particle images, and that there is no systematic way to choose a particular ap-

proach. In practice, even for experienced users, classification requires frequent visual feedback 

and experimenting with the algorithms’ parameters. Thinking about this, Yoshioka et al. (2013) 

developed MASKITON, a web-based tool for interactive masking and classification in 2D. With 
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this graphical tool, the user may easily create selection masks and try different classification algo-

rithms, obtain the correspondent class averages, and compare the results. This kind of analysis 

may be particularly useful to discriminate heterogeneous subsets of images. MASKITON is relat-

ed to APPION (Lander et al., 2009), an also web-based pipeline for single particle analysis that 

acts as a front-end to other electron microscopy packages. The rationale of such tools is to make 

the user able to transparently benefit from the most interesting features each software can offer, 

without having to worry about file formats and conventions. 

2.7.12 Supervised classification 

It shall be remarked that, whenever models of different conformations are available, su-

pervised classification by projection matching can be applied to sort out the structural heteroge-

neity of the dataset. These models may be available as structures previously solved by other tech-

niques, such as X-ray crystallography or NMR, or from previous iterations of the current pro-

cessing. In this case, one of the various methods mentioned above can provide these initial mod-

els. In general, the reference models must be low-pass filtered before classification to avoid ref-

erence bias and overfitting. As the reconstructions improve, higher frequencies may be incorpo-

rated to refine the new models. Supervised classification with the SPIDER package is outlined in 

the review by Shaikh et al. (2008), but similar procedures can also be conducted with other soft-

ware. 

2.7.13 Concluding remarks 

This literature review points that the classification task appears in two related yet distinct 

stages of the reconstruction process. The first one is to group projection images containing views 

of the macromolecule in the same orientation (2D classification). The goal of this classification is 

to generate class representatives with higher SNR for further angle assignment, as explained in 

Section 2.4.2.1. The other role of classification is to discriminate the projection images according 

to the three-dimensional state of the object they were generated from (3D classification). The 

distinct 3D configurations arise in the form of structural flexibility and/or interactions with other 

molecules. In the general case, 3D classification is an unsupervised task, as no previously solved 
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structures are available or the conformational modes are unknown. There are three main branches 

of classification approaches for both 2D and 3D purposes. The first ones to appear, at the begin-

ning of the 1980’s and which remain in use nowadays, were those based on multivariate statisti-

cal analysis, initially with Correspondence Analysis and later with Modulation Analysis and 

Principal Component Analysis, most commonly combined with k-means or hierarchical ascend-

ant clustering. The beginning of the 1990’s saw the appearance of the methods based on Kohonen 

self-organizing maps and their variants. Finally, the 2000’s marked the popularization of the ap-

proaches based on probabilistic modeling, like maximum-likelihood and maximum a posteriori 

estimation. High quality reviews of heterogeneity classification are available, for example, by 

Leschziner and Nogales (2007), Spahn and Penczek (2009), Scheres (2010), van Heel et al. 

(2012), and in the book by Frank (2006). Recently, methods based on other mathematical con-

cepts have emerged: for example, those based on bootstrapping and graph partitioning. It was 

observed that new methodological proposals for heterogeneity classification are either assessed 

by the quality of the 3D models obtained, or by comparison with previous 3D models and respec-

tive structural labels, if available. However, sometimes the proposed algorithms are demonstrated 

in the context of solving new or relatively unknown structures, making the comparison with es-

tablished methods difficult. On the other hand, some works use only synthetic data, leaving room 

for the question of whether the proposed method is able to tackle ―real world‖ challenges. Actual-

ly, the validation of single particle microscopy reconstructions is currently an issue within the 

structural biology community. Whether the results attained by this technique agree with those 

obtained by X-ray crystallography and NMR, or even if reconstructions performed using different 

protocols achieve similar solutions (Henderson et al., 2012) are questions still subject to debate.  

In general, all consolidated approaches to sorting the structural heterogeneity of the da-

tasets depend on iterative reconstructions of 3D models and comparisons with their re-

projections. Computational effort becomes then a concern, as instruments and detectors are being 

improved and datasets are growing routinely larger towards the goal of achieving atomic resolu-

tion models. This is especially critical to maximum-likelihood and Bayesian estimation methods, 

which have to evaluate a large number of parameter configurations for every image. However, a 

few works point out that it should be possible to detect the structural assignments by analyzing 

directly the set of 2D projection images (Coifman et al., 2010; Herman & Kalinowski, 2008; 

Katsevich et al., 2013). The existence of multidimensional ―conformational manifolds‖ in a hy-
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perspace has also been suggested while using MSA techniques (Elad et al., 2008; van Heel, 1984; 

van Heel et al., 2012) and demonstrated in one work with manifold learning (Schwander et al., 

2010), but this fact has not been much explored yet. It may be early to evaluate the relevance of 

such proposals, although they certainly represent important theoretical advances. Curiously, the 

history of classification methods in single particle analysis shows that methodological deepness is 

not synonym for popularity or usefulness: many of the methods presented may be biased towards 

specific datasets, or require expert knowledge to operate, and therefore remain little known to the 

general structural biology community. 

We therefore identify a scarcity of methods seeking to assess the structural heterogeneity 

problem directly from the 2D projection images. The recognition of conformational ―clouds‖ by 

multivariate statistical analysis as suggested previously should be useful to provide initial estima-

tions of class assignments, or to validate the structural classification performed by conventional 

methods. MSA data compression is a common step in the reconstruction workflow implemented 

in many packages, but the information provided by it may have not been explored to its full ex-

tent (see for example Borland & van Heel, 1990). Also, defining the number of structural classes 

co-existing in the dataset often requires a priori knowledge of the molecular complex under anal-

ysis. There is currently no well-established criterion to define this number, and usually different 

values are tried and the ―best‖ is determined according to subjective structure interpretation crite-

ria.  Only a few works have been identified explicitly attempting an unsupervised approach to 

determining the number of classes (Schwander et al., 2010; Shatsky et al., 2010). It is therefore 

desirable to design a classification tool that provides useful heterogeneity information to the user 

independently of the reconstruction method employed, considering the limitations of computing 

resources, and avoiding the use of a priori information about the dataset. 
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3. Data Clustering 

Clustering is the task of grouping together data points according to some pre-defined 

similarity criteria, based on the intrinsic dataset structure. As we have seen in Chapter 2, the clus-

tering task serves two purposes in the analysis of single particle images acquired by transmission 

electron microscopy (TEM). The first one, generally referred to as ―2D classification‖, is to aver-

age projection images containing similar views of the macromolecule. This averaging improves 

the signal-to-noise ratio (SNR) for angular assignment. The other one is known as ―3D classifica-

tion‖ and regards discriminating the projection images according to the conformational state of 

the macromolecule. In this Chapter, we will introduce statistical and machine learning concepts 

that are useful for this latter problem. Many of these concepts have been introduced in Chapters 1 

and 2 and will be explained in greater detail now. Section 3.1 will present the notation to be used 

in the subsequent mathematical formulations. Section 3.2 presents alignment-invariant feature 

selection and extraction tools that are considered relevant for 2D and 3D classification of electron 

microscopy images. Next, in Section 3.3 we introduce multivariate statistical analysis (MSA) 

tools that reduce the dimensionality of the dataset and aid the discrimination of information from 

noise. Finally, in Section 3.4 the concepts of clustering are explicitly introduced. We begin by 

discussing the formal differences between clustering and classification from the machine learning 

point of view, in Section 3.4.1. Then, in Section 3.4.2, the different types of clustering are intro-

duced. Next, in Section 3.4.3, we present widely known clustering algorithms, with special focus 

on those that have been commonly employed in the field of single particle analysis (SPA) and 

those who have been applied in this work.  Section 3.4.4 brings the problem of defining the num-

ber of relevant clusters, with emphasis on SPA datasets. Finally, we introduce ensemble tech-

niques for data clustering in Section 3.4.5, which are at the core of the approach proposed in this 

dissertation. The key sections for understanding the methods employed in this work are 3.3.1, 

3.4.2, 3.4.3 and 3.4.5. 
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3.1 Basic definitions 

The basic type of data we will consider in this work are projection images of isolated par-

ticles in solution, collected by means of a transmission electron microscope. Regarding Chapter 

2, these are the boxed images extracted from the micrographs (Section 2.4.1). Each data point is 

an image, which in turn is represented by a row vector   ,        , where   is the total 

number of data points. Each vector is comprised by   features            , which, in the 

simplest case, are the density values of the   pixels considered.   can be the set of all pixels in 

the image, or only those within an area selected by a binary or real-valued mask. The set *  + of 

all feature vectors in our dataset may be arranged in an     matrix  . Each row contains the 

feature vector representation of an image, and each column contains the intensity values for a 

specific pixel over all images. Later, the original data matrix   may give place to some other 

convenient matrix generated by means of feature extraction (Section 3.2) and/or dimensionality 

reduction (Section 3.3) techniques. 

When clustering, the dataset shall be partitioned in   groups according to a given simi-

larity criterion, with    . In 2D classification,   is the number of expected relevant views of 

the particle to be found within the dataset, whereas in 3D classification   is the number of ex-

pected conformations. Section 3.4.2.1 will discuss the different ways a data point can be assigned 

to a partition. The Euclidean distance (Equation 3.15) will be used as the default dissimilarity 

measure, unless otherwise noted. 

3.2 Alignment-invariant features 

One of the main challenges in the classification of electron microscopy images of single 

particles comes from differences in translational and rotational alignments. Projection images 

containing the same view of the object should ideally always be recognized as identical. Howev-

er, if there are shifts or in-plane rotations between these images, it becomes harder for pattern 

recognition algorithms to acknowledge that they contain essentially the same information. To 

circumvent this problem, a new set of features that are invariant to alignment parameters can be 
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extracted from the images. A common example of invariant feature used in image processing is 

the histogram count of pixel values. More specifically interesting for electron microscopy images 

are the double autocorrelation function (DACF), the double self-correlation function (DSCF) and 

Zernike moments. 

3.2.1 Double Auto-Correlation Function 

The cross-correlation is a similarity measure between two signals that is defined as the 

sliding inner product between them. In the case of images, the sliding is discrete and is performed 

across the pixel positions. The cross-correlation preserves an analogy with the convolution opera-

tion in that it satisfies in Fourier space the relation shown in Equation 3.1, where the symbol   

denotes the cross-correlation operation and    is the complex conjugate of the Fourier transform: 

 

  *     +    *  + *  + (3.1) 

 

The auto-correlation function (ACF) is then the cross-correlation of a signal with itself. It 

can be noted that the ACF is simply the inverse Fourier transform of the power spectrum (PS) of 

a signal, and thus it has a squaring effect on the amplitudes of the Fourier components. The ACF 

is translation-invariant because the amplitudes of Fourier components do not change if the pixel 

values are simply shifted within the image. To achieve rotational invariance, the ACF is then 

converted to polar coordinates, which are defined in Equations 3.2 and 3.3. The coordinates 

(   ) give the position of the pixel in relation to the center of the image,   is the corresponding 

radial distance from the origin and   its respective distance. 

 

   √      (3.2) 

   

          .
 

 
/ (3.3) 

 

In the output image, the angular sampling can be controlled to achieve finer or coarser 

representations. It is important to notice that pixels close to the origin will be over-represented in 

the transformed image when compared to those closer to the borders. Weighting functions can be 

applied to compensate for this effect. Also, pixels distant from the origin by a larger amount than 
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the image width, i.e., those near the corners, will not be converted to the transformed image, 

causing information loss. In polar coordinates, rotations in the original image become translation-

al shifts. Thus, rotational invariance is achieved by applying the ACF again to the first ACF con-

verted to polar coordinates. Schatz & van Heel (1990) proposed this double ACF (DACF) ap-

proach for invariant classification of molecular views. Figure 3.1 illustrates the conversion pro-

cess from a pair of misaligned images through their respective DACFs. 

 

 

Figure 3.1 – Double auto-correlation functions of a test image taken from a 30S ribosomal subunit dataset. a) The 

original image and a shifted and rotation version of it; b) the respective ACFs of the image pair; c) the ACFs con-

verted to polar coordinates; d) the ACFs of c); d) the ACFs from d) converted back to Cartesian coordinates, thus 

illustrating the translation and rotational invariance of the DACF. Extracted from Schatz & van Heel (1990). 
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3.2.2 Double Self-correlation Function 

The previous Section mentioned that the DACF squares the amplitudes of Fourier compo-

nents. This is a problem for the images commonly found in single particle analysis, because it 

tends to over-emphasize the low frequencies, whose amplitudes are much larger than those of the 

medium and high frequencies. To avoid this effect, Schatz & van Heel (1992) proposed the self-

correlation function (SCF), which is defined in Equation 3.4.     denotes the inverse Fourier 

transform and abs denotes the absolute value or the magnitude of a complex number. 

 

    *  +     *   ( *  +)+ (3.4) 

 

Therefore, the SCF does not square the amplitudes of Fourier components. The double 

SCF is achieved by applying the SCF again to a first SCF converted to polar coordinates, just in 

the same way as the DACF. On the other hand, the SCF throws away the phases of the image 

Fourier transform, thus causing potentially severe information loss. 

3.2.3 Zernike moments 

Another way to achieve rotational invariance is to project the image onto a space of Zer-

nike polynomials which are defined within the unit circle. These are named after Frits Zernike, 

winner of the 1953 Nobel prize in Physics for the invention of the phase contrast microscope. 

Zernike moments can be understood as a type of weighted average of an image’s pixel intensities 

whose weights are given by the Zernike polynomials. Following the notation used by Chang & 

Ghosh (2000), the Zernike moment     of order   with repetition   for an image  (   ) is given 

by Equation 3.5: 

 

     
   

 
∑ ∑  (   )   

 (   )

  

 (3.5) 

 

with its respective Zernike polynomial     given by Equation 3.6: 
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where   is a non-negative integer,   is integer subject to constraints (  | |)  be even and 

| |   , and         1. 

There are at least three interesting properties of Zernike moments. The first is that the 

Zernike polynomials form a fixed orthogonal basis which may be useful for dimensionality re-

duction (see Section 3.3). The second one is that the magnitudes of Zernike moments are rotation 

invariant. And the other one is that the rotation between two images can be inferred by the phase 

difference of their Zernike moments. Thus an interesting representation of a set of images may be 

given by calculating their Zernike moments for a range of orders and repetitions. Figure illus-

trates the magnitudes of a few Zernike polynomials. 

 

 

Figure 3.2 – Magnitudes of the first 21 Zernike polynomials. Blue correspond to small values and red correspond to 

large values. Source: Wikimedia Commons
3
. 

 

                                                 
3
 http://upload.wikimedia.org/wikipedia/commons/3/3d/Zernike_polynomials2.png 

http://upload.wikimedia.org/wikipedia/commons/3/3d/Zernike_polynomials2.png
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Zernike moments have been used in the classification of 3D objects from 2D silhouettes 

in military aviation (Chang & Ghosh, 2000) and in 3D feature extraction of protein atomic mod-

els (Grandison, Roberts & Morris, 2009), among other applications. However, it has not been 

explored in the classification of projection images for single particle analysis. Results of cluster-

ing experiments with Zernike moments will be shown in Chapter 5. 

3.3 Dimensionality reduction 

Classification of electron microscopy images of biological entities has two main challeng-

es. The first one is the high dimensionality of the native data representation, which are the pixel 

densities in the images. The invariant transforms presented in Section 3.2 may alleviate this prob-

lem but still may be not enough in this sense. High-dimensional data essentially requires more 

computational effort to be processed both in time and memory, and, what is conceptually worse, 

is less likely to allow an optimal classification. The growing complexity of a machine learning 

task in function of the number of features is known as the curse of dimensionality (Bishop, 2006; 

Duda et al., 2000). The curse is related to how distance measures behave in low and high dimen-

sional spaces – the degrees of freedom for a function grows exponentially with the number of 

dimensions. The other problem is more specific to TEM images acquired in low electron dose 

conditions, as explained in Section 2.3, and is the low signal-to-noise ratio of the data. The severe 

noise makes comparisons performed directly on the image pixels often meaningless. This is also 

the reason why conventional feature selection and extraction procedures, like removing redun-

dant or correlated variables (Duda et al., 2000; Guyon & Elisseeff, 2003) are of little use on this 

kind of data. In order to avoid these problems, it is desired to achieve a representation of the da-

taset with reduced dimensionality. If the dataset can be plotted in two or three dimensions, it be-

comes possible to visualize it and get a better intuition of what is happening in the hyper-

dimensional space; for example, natural groupings or ―clouds‖ of data may become apparent. Not 

only a representation with a small number of features is desired, but it should also be meaningful 

in some sense. This leads us to component analysis, which is a set of techniques aiming to find 

the most ―interesting‖ directions to observe our data. How ―interesting‖ is defined depends on the 

specific technique adopted. 
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3.3.1 Principal Component Analysis 

Principal Component Analysis (PCA), also known as the Karhunen-Loéve transform, is 

one of the most powerful and widespread techniques of dimensionality reduction and data visual-

ization. The goal of PCA is to find the optimal representation of the P-dimensional dataset   onto 

an M-dimensional subspace,    , preserving as much information as possible, in a sum-of-

squared-errors sense. This subspace is composed of the directions of largest variance within the 

data cloud, as illustrated in Figure 3.7. 

Following the explanation by Bishop (2006), let’s first consider a one-dimensional repre-

sentation of our data in this way, i.e.      In the original P-dimensional space, the direction of 

this projection will be given by a unit vector   . Consider the empirical mean of the sample given 

by the formula in Equation 3.7: 

 

  ̅  
 

 
∑   

 

   

 (3.7) 

 

The variance of the projected data is then given by Equation 3.8: 
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where   is the     dataset covariance matrix defined in Equation 3.9: 

 

   
 

 
∑(    ̅) (    ̅)

 

   

 (3.9) 

 

Therefore, in order to maximize the variance of the projected data, one must find the max-

imum of      
  with respect to   , subject to ‖  ‖   . This constrained optimization problem 

can be converted to an unconstrained version by introducing the Lagrange multiplier    as in the 

optimization problem of Equation 3.10: 
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By deriving Equation 3.10 with respect to    and setting the result to zero, Equation 3.11 

shows clearly that    is an eigenvector of the covariance matrix. Also,    is an eigenvalue associ-

ated with    and corresponds to the projected variance, as shown in Equation 3.12. 

 

    
      

  (3.11) 

 

      
     (3.12) 

 

Solving this eigenvector-eigenvalue problem yields the first principal component    and 

its associated variance   . In fact, this component corresponds to the unit vector in the direction 

of the sample mean from the origin of the coordinate system, if the mean has not been removed 

for the calculation of the covariance matrix as in Equation 3.9. Nevertheless, the eigenvector-

eigenvalue formulation is useful for finding the other principal components. The second principal 

component    will be given by the direction of maximum variance orthogonal to   ; the third 

one must maximize the projection variance orthogonally both to    and   , and so on. The set of 

M principal components can be found by determining the first M eigenvectors of the covariance 

matrix  , as the eigenvectors of a real symmetric matrix have the orthogonality property. Effi-

cient algorithms for performing this eigendecomposition are available, such as the iterative ―pow-

er method‖ (Golub & Van Loan, 1996; van Heel et al., 2009). The total number of eigenvectors 

associated with nonzero eigenvalues is determined by the rank of the dataset matrix  . Therefore, 

the principal components are found in decreasing order of their associated projection variance, 

which can be understood as a measure of ―importance‖ in explaining the data distribution. The 

first components explain the most of the data variance, while the last ones explain the least. The 

spectrum of eigenvalues of the covariance matrix is an important tool in determining the number 

of relevant principal components for a given dataset. Figure 3.3 illustrates an exemple of eigen-

value spectrum. 
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Figure 3.3 – Eigenvalue spectrum of the covariance matrix for one of the datasets analyzed in this work. The vertical 

axis show the magnitude of the eigenvalues as a fraction of the total dataset variance. 

 

However, a particular component may be important to describe the whole dataset, but not 

a particular data point, which means that the projection of this point onto this component is close 

to zero. The converse may also occur, in which case the specific component is likely to be found 

among the last ones. For being orthonormal, the principal components span a subspace onto 

which the data can be linearly decomposed, as described in Equation 3.13: 

 

                        (3.13) 

 

Therefore, the linear decomposition of the dataset   onto M principal components ar-

ranged as rows of the     matrix V is given by U, which contains the projected data, as in 

Equation 3.14: 

 

       (3.14) 

 

When using the projection coefficients of PCA as features for further manipulation of the 

data, like clustering, it is important to bear in mind the associated variance of each component 

implies a natural ―weighting‖ for each dimension (Figure 3). If one expects the components to 

have the same weight, one can normalize the coefficients on each of them by dividing by the 

square root of the respective eigenvalue (variance) (van Heel, 1984). This is especially important 

if one arbitrarily selects components for the desired task. One of the interesting things of dealing 

with an image dataset is that the eigenvectors can be visualized as ―eigenimages‖. This visual 
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feedback can give insight on the ―meaning‖ of each principal component, and what are the most 

relevant features of the dataset. In single particle analysis, inspection of the eigenimages gives 

relevant information on the symmetry of the molecule (van Heel et al., 2009). The ―eigenfaces‖ 

method represents also an important application of PCA in face recognition (Turk & Pentland, 

1991). The eigenimages associated with the smallest eigenvalues are likely to represent only 

noise. By truncating the number of principal components used, one obtains a compressed repre-

sentation of the dataset. Bringing back the compressed data to the original P-dimensional space 

yields an ―eigen-filtered‖ version of an image, as illustrated in Figure 3.4.  

 

 

Figure 3.4 – Eigendecomposition of images from the Olivetti Research Face Database. a) 100 images consisting of 

       grayscale pixels (        ); b) Reconstitutions of the images in a) using the 49 eigenfaces in c) (―ei-

genfiltering‖); c) the eigenimages of the dataset in a) (―eigenfaces‖). Adapted from (Barber, 2012). 

 

As explained in Section 2.7.1, PCA and related multivariate statistical analysis methods 

have been widely used in single particle analysis since the beginning of the 1980’s (van Heel & 

Frank, 1981; van Heel et al., 2000; van Heel et al., 2009). This is due to the high explanatory 

power contained in a compressed representation of the data, which is robust to noise and tends to 

reduce the computational efforts of classification algorithms. Also, they may allow the identifica-

tion of relevant features related to molecular properties, such as symmetry, size and structural 

heterogeneity, as presented in Section 2.7. Figure 3.5 shows eigenimages for a typical SPA da-

taset, in which the aforementioned molecular features can be observed. A note of caution is worth 

mentioning, however: the projection directions provided by PCA may be useful for visualization 

and data compression, but this does not imply they are necessarily good for classification or clus-

tering. Other variants of principal components analysis that have been developed include non-
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linear PCA (Scholkopf, Smola & Muller, 1996), probabilistic PCA (Tipping & Bishop, 1999) and 

principal surfaces (Chang & Ghosh, 2001). These variants remain yet to be explored on single 

particle analysis datasets. 

 

 

Figure 3.5 – The first 25 eigenimages of a dataset containing 7,300 projection images of Lumbricus terrestris hemo-

globin with circular mask. The first eigenimage reveals the average molecule size, while eigenimages 2 to 7 clearly 

contain symmetry-related information. The SNR of the eigenimages degrades towards the smaller eigenvalues, indi-

cating they are mostly associated with random fluctuations. Extracted from van Heel et al. (2009). 

3.3.2 Correspondence Analysis and other metrics 

One important thing to notice about conventional PCA is that it relies on the Euclidean 

distance for assessing the covariance of the dataset. Euclidean distance has a close relation to the 

correlation  (   ) between two signals   and y, as demonstrated by Equation 3.15: 
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Therefore, when the Euclidean distance between two data points is small, their correlation 

is large, and vice-versa. The covariance matrix defined in Equation 3.9 can be understood as a 

measure of the correlation between each pair of columns of the dataset matrix  , that is, the cor-

relation between features. The disadvantage of simple correlation is that it is sensitive to multipli-

cation by a constant. However, multiplication by a constant does not affect the information con-

tained in a vector, and hence should not impact its similarity in relation to other vectors. The Chi-

squared (  ) metric is able to correct for this distortion by normalizing each signal vector by its 

average: 
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If the    distance defined in Equation 3.16 is used in the covariance matrix instead of the 

conventional correlation between the features of the dataset (Equation 3.9), Principal Component 

Analysis then becomes Correspondence Analysis (CA). This technique has been proposed to ana-

lyze contingency tables (Benzécri, 1992). Historically, CA was the first and longest used dimen-

sionality reduction technique employed to investigate data clouds of single particle images (van 

Heel & Frank, 1981), and it was used because the computer programs developed by Jean-Paul 

Bretaudiére were readily available in that context (van Heel et al., 2009). Figure 3.6 presents a 

manual cluster analysis performed in this seminal work. Later, the problems of using CA became 

apparent. The    distance is suitable only for positive-valued data, like histogram data. If the 

dataset has negative values, an explosive behavior appears in Equation 3.16 if the average of a 

signal vector is close to zero. For the reasons presented in Section 2.4.2, the boxed particles are 

usually normalized to have zero mean value. One could argue that negative values could be dis-

carded for the use of CA, but this obviously implies losing dataset information. Another option 
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would be to add a constant value to the data so all values become positive, but this would turn 

large-magnitude negative values into small-magnitude positive values, underestimating their con-

tribution to the total dataset variance (van Heel et al., 2009). Borland & van Heel (1990) then 

proposed the use of the modulation metric, also known as the normalized correlation, which 

normalizes the vectors   and   by their respective standard deviations    and    when assessing 

the similarity between them: 
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)    (3.17) 

 

The modulation distance defined in Equation 3.17 is well suited for real-valued data and 

also corrects for any constant multiplication factors between the signals being compared. Never-

theless, if the data is normalized by pre-processing steps as depicted in Section 2.4.2, the conven-

tional correlation is expected to work just fine. In their review of multivariate statistical analysis 

techniques applied to cryo-EM data, van Heel et al. (2009) summarize the formulation of 

PCA/CA with general metrics, also covering the analysis in the reciprocal space, where the pixels 

are regarded as observations and the images as features. 

 

 

Figure 3.6 – Correspondence analysis of a dataset containing projection images of Limulus polyphemus hemocyanin 

particles embedded in negative stain. This is the first example of a dimensionality reduction procedure applied to 

single particle analysis. Extracted from van Heel & Frank (1981). 
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3.3.3 Independent Component Analysis 

Whereas PCA and related techniques aim to decompose the dataset onto a lower-

dimensional subspace that minimizes the squared error with the original representation, Inde-

pendent Component Analysis (ICA) seeks directions that are statistically independent from each 

other. This difference is illustrated in Figure 3.7. ICA is typically employed in blind source sepa-

ration problems, like distinguishing mixed acoustic sources collected by a set of microphones, or 

separating the contributions from each electrode attached to a patient’s head in brain activity im-

aging. While the orthonormality of principal components imply they are uncorrelated, this is 

does not assure their statistical independence. Hyvärinen, Karhunen & Oja (2001) treat independ-

ence as non-linear uncorrelatedness, i.e., two independent random variables should remain un-

correlated even after an arbitrary non-linear transformation be applied. Independence also means 

that the random variables must carry minimal mutual information, or maximal mutual entropy.  

 

 

Figure 3.7 – Comparison between ICA and PCA. The data has been generated by sampling from a 2D exponential 

distribution along the green lines, whose directions are given by the mixing matrix A in Equation 3.18. Blue dashed 

lines represent the orthogonal directions of largest variance obtained by PCA. The red lines represent the directions 

estimated by ICA, which correspond to the directions from which the data coordinates have been independently 

sampled. Extracted from Barber (2012). 

 

For the basic ICA model, suppose the observed data matrix X is generated by a linear 

mixture of K independent signals arranged in rows of the matrix S: 
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      (3.18) 

 

Although the mixing coefficients in matrix A of Equation 3.18 are unknown, the linearity 

of the operation still allows the estimation of the source signals that compose the matrix S. To 

account for the non-linear uncorrelatedness, the model from Equation 3.19 can be applied (Duda 

et al., 2000). The matrix   gives the weights of the model and    is a bias vector.  , - is an arbi-

trary non-linear function, like a sigmoid, for example. 

 

    ,     - (3.19) 

 

The task of ICA is then to find estimates for the K rows of matrix   in Equation 3.19 that 

are as independent as possible from each other. Classically, this independency can be measured 

by the joint entropy (Shannon, 1948) between random variables, as defined in Equation 3.20, 

which then becomes the criterion to be maximized.  (     ) is the joint probability of occurrence 

of particular values    and   . 

 

  (   )   ∑ ∑  (     ),     (     )

  

- (3.20) 

 

Depending on the algorithm used for ICA, this optimization may be carried out by gradi-

ent descent, where a learning rule is derived for    and   , or by the Expectation-Maximization 

algorithm (Section 3.4.3.3). The basics of Independent Component Analysis can be found in the 

pattern recognition books by Duda, Hart & Stork (2000) and Bishop (2006), and for further de-

tails the book by Hyvärinen, Karhunen and Oja (2001) specifically covering ICA is recommend-

ed. 
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3.4 Unsupervised classification 

We shall now turn our discussion to the main topic of this dissertation, which is the unsu-

pervised classification of data. While the previous Sections presented some pre-processing and 

feature extraction methods, we will now introduce some of the algorithms that seek to group the 

dataset in homogeneous partitions. Special attention will be given to the methods that have 

gained popularity among the cryo-EM community, as presented in Chapter 2, and also to those 

that have been chosen specifically for this project. Both individual and ensemble methods will be 

discussed. But before that, we shall discuss some of the formalities regarding supervised and un-

supervised classification and the different types of clustering. 

3.4.1 Clustering and Classification 

One probably has noted that the words ―clustering‖ and ―classification‖ have been used 

interchangeably in this text and in the SPA literature in general. Nevertheless, it is necessary to 

clarify their formal differences. In the machine learning literature, classification refers to the task 

of assigning data points to pre-determined discrete categories or classes, based on a model that 

was trained using previously observed data with known labels (Bishop, 2006). These data are 

usually referred to as the training set. ―Training‖, in this context, means tuning the parameters of 

a mathematical model, namely the classifier. It is often an optimization problem, whose basic 

goal is to maximize the performance of the classifier on the training set. But also the classifier 

must have generalization power, so to have a satisfactory performance on data that is not in the 

training set. This can be achieved by regularization or cross-validation techniques (Haykin, 

1999). Given that it uses a labeled training set, classification is a supervised learning task. Proba-

bly the simplest classifier is the k-nearest neighbors algorithm, which decides the class for each 

new data-point by voting among its k closest neighbors in the training set (Duda et al., 2000). 

The unsupervised counterpart of classification is clustering, which seeks to partition the 

dataset into K groups based solely on its intrinsic structure (Bishop, 2006). Clustering algorithms 

look for natural groupings or ―clouds‖ of data. How ―natural‖ is defined depends on the underly-

ing assumptions each algorithm makes about the data distribution, and the similarity measures 
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employed (Duda et al., 2000). Usually, the number of groups K is defined by the user, based on 

specific domain knowledge. However, the clusters obtained need not correspond to a well-

defined class in the human interpretable sense. It just means that the data points assigned to the 

same cluster are more similar to each other than to points assigned to a different cluster, accord-

ing to the algorithm’s criterion. The simplest clustering procedure is the k-means algorithm, 

which seeks to discover K centroids in the dataset and the clusters are formed by the points shar-

ing the same nearest centroid (Section 3.4.3.2). A centroid is the arithmetic mean of points within 

a cluster. The books by Everitt, Landau & Leese (2001) and Barber (2012) extensively covers the 

clustering task, while the basic concepts and algorithms may also be found elsewhere (Bishop, 

2006; Duda et al., 2000; Haykin, 1999). 

In general, what we are interested in when discussing classification of electron microsco-

py data of single particles, being it with respect to 2D or 3D information, is unsupervised classifi-

cation. Often, no training data like a previous structural model is available, and producing it 

manually is very challenging due to the low SNR and the large amounts of collected data, typical-

ly in the order of tens of thousands of images. Therefore, unless we explicitly specify a super-

vised classification procedure, the word ―classification‖ here will always refer to ―unsupervised 

classification‖, and therefore will be used as a synonym for ―clustering‖. 

3.4.2 Types of clustering 

Clustering algorithms can provide different types of outcomes for the cluster assignments, 

depending on whether a data point belongs to only one or possibly to multiple clusters simultane-

ously, or according to the uncertainty of the assignments. The different types of assignment will 

be presented in Section 3.4.2.1. Also, there are different fundamental assumptions one can make 

about what a ―cluster‖ means, something which will be discussed in Section 3.4.2.2. 
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3.4.2.1 Hard, soft and fuzzy assignments 

A hard assignment is the most basic type of cluster label. It means that a given object 

must belong to one, and only one, of the K clusters. Following the notation from Hruschka, 

Campello, Freitas & de Carvalho (2009), if we represent our clusters as non-empty collections of 

data points   *          +,      and         for    ,  then with hard partitions we 

have             . |  | is the cardinality of set    and corresponds to the number of 

elements it contains. The     vector of labels   contains the cluster assignments for each ob-

ject,    *       +        . Algorithms like hierarchical clustering (Section 3.4.3.1) and 

k-means (Section 3.4.3.2) provide hard partitions in their conventional formulations. Throughout 

this text, we will assume the canonical form of label lists for hard partitions (Strehl & Ghosh, 

2002), which satisfies two conditions:  

i) the label of the first object in the list is 1;  

ii) the label for any of the successive objects in the list has either one of the already 

assigned values, or a value one greater than the highest previously assigned, up to 

 .  

If overlapping partitions are allowed, then we may have a fuzzy clustering setup, where 

each data point belongs to one or more clusters with different degrees of membership. A special 

case of fuzzy clustering is when the objects may fully belong to one or more clusters with equal 

degrees of membership. The classical fuzzy clustering algorithm is fuzzy k-means (Duda et al., 

2000). Note that the degree or strength of cluster membership provided by fuzzy clustering algo-

rithms cannot be confused with probabilistic assignments, like those provided by a Gaussian 

mixture model (GMM), for example (Section 3.4.3.3.1). Probabilistic algorithms deal with uncer-

tainty in cluster assignments, and therefore assess the likelihood of a data point belonging to one 

or another cluster, but this does not necessarily mean that the given point really belongs to more 

than one group. Fuzzy and probabilistic assignments belong subtypes of soft clustering. For over-

lapping cluster assignments, the vector list becomes an     matrix  , where each element     

gives the assignment of point    to cluster  . If the partition is overlapping in the strict sense,   

may be a binary matrix, i.e.     *   +. If the partition is fuzzy or probabilistic,   is a real-

valued matrix, i.e.     ,   -, ∑       . The constraint ∑        is not mandatory in fuzzy 

partitions. 
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3.4.2.2 Compactness vs. Connectedness 

Another important differentiation among cluster algorithms is the kind of data groups that 

they look for. Algorithms based on compactness expect data belonging to the same cluster to 

have internal similarity according to a given metric, or, in other words, an intra-cluster similarity 

higher than inter-cluster similarity. This is the case of conventional clustering procedures like k-

means, hierarchical clustering or mixture models. On the other hand, data points may be assigned 

to the same cluster if they present some connectivity pattern or external similarity (Everitt et al., 

2001). In this case, two points belonging to the same cluster need not be close to each other in a 

metric sense, but the distribution of the cluster in the feature space indicates that these points are 

part of a characteristic pattern, as if sampled from a multidimensional curve. To capture this 

property, often a graph or manifold representation is employed. 

 

 

Figure 3.8 – Two types of patterns that clustering algorithms look for within the dataset. a) Compactness or internal 

similarity; b) connectedness or external similarity. 

3.4.2.3 Assessing clustering performance 

There are different ways of measuring the performance of a given clustering procedure: 

 

 Based on the algorithm’s own cost function 

If the clustering procedure employs the optimization of a cost function, the comparison of 

its value after the application of the procedure is the straightforward way of assessing perfor-

a) b) 
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mance. For example, the k-means cost function is the average distance of all data points to the 

centroids of the clusters they have been assigned to (Section 3.4.3.2). The partitioning solution 

with smallest value for the cost function is the best in this sense. This strategy is only valid when 

comparing solutions from different runs of the same algorithm, or from algorithms that employ 

the same cost function, and with the same number of clusters K. Also, this method only applies if 

there is reason to believe that the cost function properly characterizes the data clusters. 

 

 Based on a clustering index that is algorithm-independent 

There are clustering indexes developed to assess the quality of a partitioning solution in-

dependently of the algorithm employed. Examples are the Davies-Bouldin Index (DBI) (Davies 

& Bouldin, 1979) and the scatter separability criterion (Dy & Brodley, 2004). Often, clustering 

indexes employ some form of regularization that allows comparing solutions with different num-

ber of clusters. This is the case of DBI and also of information-theoretic model selection criteria, 

like Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC) and Integrated 

Likelihood Criterion (ICL) (McLachlan & Peel, 2000). 

 

 Comparing against the ground truth 

If the true labels are available for the analyzed dataset, one can simply compare how the 

clusters match the real classes. This is the case when one desires to assess whether the found 

clusters correspond to ―real-world‖ classes, and therefore if the algorithm is able to discriminate 

these classes in an unsupervised fashion. Often this strategy is used to demonstrate that a totally 

unsupervised classification procedure is feasible on an application where only supervised classi-

fication has been employed before. This will be the preferred method of performance evaluation 

in this work, because our proposal will be tested on datasets whose true labels are known. When 

comparing lists of labels, the cluster correspondence problem arises (Strehl & Ghosh, 2002), 

which is, to find the correspondence between partitions on different lists that may have been gen-

erated in a different order or using different conventions. Then one may compare the percentage 

of matching pairs between two label lists, or employ an information-theoretic criterion that 

measures how well they ―agree‖ (Acharya & Ghosh, 2013). More details about these compari-

sons will be given in Section 3.4.5.2. 
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 Confusion matrices 

Another useful tool when comparing different hard partition solutions are the confusion 

matrices (Kuncheva, 2004). Confusion matrices display how the data is scattered across clusters 

in two different partitioning solutions. These solutions may be provided by two clustering algo-

rithms, or by one clustering algorithm and the ground truth. Assuming one of the solutions is the 

ground truth or the best in some sense, confusion matrices allow us to assess the purity of clus-

ters, which is the percentage of cluster members that are indeed from a given class. See Table 3.1 

for more details. 

 

Table 3.1 - A generic confusion matrix for label lists    and   , containing    and    clusters, respectively. 

      is possible.      is the number of data points from cluster   in    that were assigned to cluster   in   . 

   
    

  …    
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          …     

   
  

  
          …     

   
  

… … … … … … 

   

            …      
    

  

sum   
    

  …    

    

 

3.4.3 Clustering algorithms 

We shall now present and analyze properties of some specific clustering algorithms, cho-

sen based on their popularity for 2D and 3D classification within the cryo-EM community (as 

seen in Chapter 2), or because they are potentially useful for the unsupervised classification of 

structural heterogeneity in cryo-EM datasets (Section 2.5). These are the algorithms that effec-

tively take the dataset matrix X, either in its native representation or after some feature transfor-

mation operation (Sections 3.2 and 3.3), and partition it into K groups. 

3.4.3.1 Hierarchical Clustering 

Hierarchical clustering algorithms do not seek to partition the dataset in K groups right 

from the beginning. Instead, they seek to discover the complete cluster structure of the dataset. 
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Interestingly, this structure can be visualized by means of a hierarchical tree of N levels called a 

dendrogram (Figure 3.9). Hierarchical agglomerative or ascendant clustering (HAC) is a bottom-

up procedure that begins considering every single data point    as a cluster, and, at each step, 

two clusters are merged according to the minimization of a cluster distance measure related to one 

of the linkage criteria to be presented in Section 3.4.3.1.1. The procedure may go up to the level 

in which all objects belong to the same cluster. Divisive or descendant hierarchical clustering 

(HDC) is the top-down counterpart of HAC: all objects begin assigned to a single cluster, and at 

each step a cluster is splitted in order to maximize one of the linkage criteria explained in Section 

3.4.3.1.1. 

 

 

Figure 3.9 – Example of a dendrogram for a hierarchical clustering procedure applied on a dataset comprised of five 

objects. Extracted from Everitt et al. (2001). 

 

In order to obtain K clusters, one can simply prune the dendrogram at the corresponding 

level. Note, however, that while the partition may be optimal at a given merging level of the hier-

archical clustering procedure, like in a greedy optimization algorithm, it will not necessarily be 

optimal for a particular value of K. The criteria may then be refined by moving objects across 

clusters according to some post-processing heuristic (van Heel et al., 2009). It is also possible to 

prune the dendrogram in order to obtain clusters with balanced number of members (van Heel, 

1984). The basic algorithm for HAC returning K clusters is presented in Algorithm 3.1. 
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3.4.3.1.1 Cluster merging criteria 

Several cluster merging or linkage criteria have been proposed, with distinct properties 

each. These criteria are the responsible for the cluster distance measure provided as input in hier-

archical clustering algorithms (Algorithm 3.1). The description and discussion of each criterion 

essentially follows that presented by Everitt et al. (2001). 

 

 Single linkage:  (     )     ‖     ‖              

This criterion compares two clusters by the shortest Euclidean distance between a point in 

cluster     and a point in cluster   . It does not take into account the external cluster structure of 

the dataset and favors the ―chaining‖ of clusters.  

 

 Complete linkage:  (     )     ‖     ‖              

This criterion compares two clusters by the largest Euclidean distance between a point in 

cluster     and a point in cluster   . It does not take into account the external cluster structure of 

the dataset, and tends to find compact clusters of similar diameters.  

 

 Average linkage:  (     )  
 

|  ||  |
∑ ∑ ‖     ‖           

 

This criterion compares two clusters by the average Euclidean distance between points in 

cluster     and points in cluster   . It is an intermediate measure between single and complete 

linkage, taking into account the external cluster structure of the dataset, and tends to join clusters 

with small variance while leaving aside those with larger variance.  

Algorithm 3.1: Hierarchical Ascendant Clustering 

Input: dataset *𝒙𝑛+ 𝑛      𝑁; number of clusters 𝐾; cluster distance measure 𝑑(𝑪𝑖  𝑪𝑗). 

Output: clusters 𝑪  *𝑪    𝑪𝐾+. 
1 begin 

2 𝑪𝑛 ← *𝒙𝑛+ 𝑛      𝑁  

3 𝑘 ← 𝑁 

4 do 𝑘 ← 𝑘    

5 𝑖 𝑗 ← 𝑎𝑟𝑔 i 𝑖  𝑗 𝑑(𝑪𝑖  𝑪𝑗) 

6 𝑪𝑖 ← 𝑪𝑖  𝑪𝑗 

7 until 𝑘  𝐾 

8 (optional) apply moving objects heuristic in order to refine  i ∑ ∑ 𝑑(𝑪𝑖  𝑪𝑗)𝑗𝑖  

9 return 𝑪  *𝑪    𝑪𝐾+ 
10 end 
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 Weighted average linkage:  (     )  
 (     )  (     )

 
 

This criterion compares two clusters by the average of the average linkage distances be-

tween each parent (   and   ) of a cluster    and the other cluster   , in a recursive way. It 

therefore seeks to balance the influence of the number of members in each cluster when using 

average linkage. It is suited to cases where clusters are expected to be highly uneven sized. 

 

 Centroid linkage:  (     )  ‖ ̅   ̅ ‖ 
 

This criterion compares two clusters by the Euclidean distance between the centroid of 

cluster     and the centroid of cluster   . The cluster that contains more members between    and 

   will have dominating influence over the new merged cluster. An issue with this criterion is 

that the cluster centroids are very likely to move from one level of the dendrogram to another, 

possibly complicating the analysis. 

 

 Median linkage:  (     )  ‖ ̃   ̃ ‖ 
 

This criterion compares two clusters by the Euclidean distance between the weighted cen-

troid of cluster     and the weighted centroid of cluster   . The weighted centroid  ̃  is defined 

recursively as the midpoint between the centroids of the clusters that generated   . Therefore, the 

weighted centroid of the new cluster will be the midpoint between  ̃  and  ̃ . This is the size-

balanced counterpart of centroid linkage. 

 

 Ward criterion:  (     )  √
 |  ||  |

|  | |  |
‖ ̅   ̅ ‖

 

 

The Ward criterion (Ward, 1963) or minimum added intra-class variance criterion com-

pares two clusters by the increase on variance (sum of squared distances to the centroid) if merg-

ing them. It seeks to minimize intra-cluster variance while at the same time maximizing inter-

cluster variance. Therefore, at each level of the hierarchical procedure, a pair of clusters will be 

merged if their added variance is the minimum across all pairwise cluster combinations. It tends 

to find balanced and spherical clusters, but is sensitive to outliers. It is the most common linkage 
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method used for image clustering in single-particle analysis (van Heel et al., 2009; van Heel, 

1984, 1989). 

3.4.3.2 k-means 

The k-means algorithm (MacQueen, 1967) is perhaps the simplest unsupervised classifi-

cation procedure, and it is one of the most used algorithms in data mining (Wu et al., 2007). The 

goal of k-means is to find K representative prototypes or centroids of the dataset. The cluster as-

signment of each data point is then given by its nearest centroid. The basic k-means algorithm is 

provided in Algorithm 3.2. 

 

 

 

Usually, the divergence measure  (     ) is taken to be the squared Euclidean distance 

(Equation 3.15). The evolution of cluster assignments across the k-means iterations is illustrated 

in Figure 3.10. In optimization terms, the k-means algorithm is shown to minimize the cost func-

tion in Equation 3.21 (Bishop, 2006): 

 

 

  ∑ ∑     (     )

 

   

 

   

 

    {
  i        
        i   

 

 

(3.21) 

Algorithm 3.2: k-means clustering 

Input: dataset *𝒙𝑛+ 𝑛      𝑁; number of clusters 𝐾; initial prototypes *𝝁𝑘+ 𝑘      𝐾; divergence 

measure 𝑑(𝒙𝑖  𝒙𝑗). 

Output: clusters 𝑪  *𝑪    𝑪𝐾+ 
1 begin 

2 𝑖 ←   

3 do 

4 𝑪𝑘
(𝑖)

← *𝒙𝑛: 𝑘  𝑎𝑟𝑔 i 𝑗 𝑑(𝒙𝑛  𝝁𝑗) ∀ 𝑛   𝑛  𝑁+ 

5 𝝁𝑘 ←
 

|𝑪𝑘|
∑ 𝒙𝑛𝒙𝑛 𝑪𝑘

 

6 𝑖 ← 𝑖    

7 until 𝑪(𝑖)  𝑪(𝑖  ) 

8 return 𝑪  *𝑪 
(𝑖)

   𝑪𝐾
(𝑖)

+ 
9 end 
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However, Algorithm 3.2 is guaranteed to achieve only a local minimum of Equation 3.21. 

The quality of this local optimum is highly dependent on the initialization of the cluster proto-

types *  +. Conventional initializations randomly sample K points from the P-dimensional space 

in which the data lies, or choose K points at random from the dataset. A common procedure to 

obtain satisfactory partitions with k-means is to try several different initializations and retain the 

result with the lowest value for the cost function (Equation 3.21). The k-means++ algorithm em-

ploys a probabilistic sampling method that greatly improves the chance of achieving the global 

optimum of Equation 3.21 (Arthur & Vassilvitskii, 2007). The increase in complexity of the sam-

pling procedure is compensated by a decrease in the number of iterations of the k-means internal 

loop. 

Variations of k-means include the k-medians algorithm, which forces the prototypes to be 

the P-dimensional medians of each cluster (Bradley, Mangasarian & Street, 1997), and the k-

medoids algorithms, which forces the prototypes to be actual data points in each cluster 

(Kaufman & Rousseeuw, 1987). There is also the fuzzy counterpart of k-means, often denoted as 

the fuzzy C-means algorithm, which assigns different degrees of cluster membership for each data 

point (Everitt et al., 2001). Such degree is often taken to be a measure inversely proportional to 

the distance between each point and the cluster prototypes, and it is used as a weight when updat-

ing the cluster centroids. In fact, k-means is a particular case of the Expectation-Maximization 

algorithm that will be presented in Section 3.4.3.3, in which the probabilistic cluster assignments 

in a Gaussian mixture model are hardened by forcing each point to belong only to the cluster with 

highest likelihood (Bishop, 2006). It was demonstrated that the dissimilarity measure used in k-

means clustering can be any of a class called Bregman divergences (Banerjee et al., 2005). With-

in the specific context of single particle analysis, Penczek, Zhu & Frank (1996) proposed a ver-

sion of k-means that combines clustering with rotational alignment of images. 

 



82 

 

 

 

 

Figure 3.10 – Evolution of cluster assignments in the k-means algorithm, illustrated on the ―Old Faithful‖ dataset in 

2D and taking    . a) Green points represent the data, the blue and red crosses are the initial prototypes    and 

  , respectively; b) each data point is first assigned to its nearest prototype (line 4 of Algorithm 3.2); c) the prototype 

positions are re-calculated as the centroids of each cluster assigned in b) (line 5 of Algorithm 3.2); d) the cluster 

assignments are then updated following the new prototype positions, which is equivalent to classifying each data 

point according to which side of the bisector perpendicular to the two centroids they lie on (magenta line). The bisec-

tion is also denoted Voronoi diagram. d-i) the process is repeated until the positions of the centroids converge. Ex-

tracted from Bishop (2006). 

3.4.3.3 Expectation-Maximization 

The Expectation-Maximization (EM) algorithm is an iterative procedure for estimating 

the parameters of a probabilistic model with latent variables (Dempster, Laird & Rubin, 1977). 

Latent or hidden variables are those which somehow ―explain‖ the data set, but cannot be ob-

served. For example, in unsupervised classification, the labels for each data point are hidden vari-

ables. Whereas X is the observed or incomplete data, we shall denote Z as the unobserved data, 
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and *   + as the complete data, following the notation by Bishop (2006). Assuming the observed 

data were sampled from a given joint probabilistic distribution  (   | ) (the model), the EM 

algorithm provides maximum likelihood estimates for the parameters  . As a result, the a posteri-

ori probabilities of the latent variables   are maximized. The likelihood is defined as in Equation 

3.22: 

 

  ( | )  ∑  (   | )

 

 (3.22) 

 

The EM algorithm iterates two steps successively until convergence to a local maximum 

of the likelihood function (Equation 3.22). The first is the E step, in which the a posteriori proba-

bilities of the hidden variables,  ( |      ), are calculated using the current estimates of the 

model parameters,     . Using this posterior distribution for the latent variables, the expectation 

of the complete data log-likelihood can be computed for generic parameters  , using Equation 

3.23: 

 

  (      )  ∑  ( |      )    (   | )

 

 (3.23) 

 

The next step, namely the M step, consists of obtaining new estimates for the parameters, 

    , by direct optimization of the expectation of the log-likelihood (Equation 3.23). The basic 

EM algorithm is depicted in Algorithm 3.3. 

 

 

Algorithm 3.3: EM algorithm 

Input: observed data X,  joint distribution 𝑝(𝑿 𝒁|𝜽), initial parameter estimates 𝜽( ). 

Output: parameter estimates 𝜽. 

1 begin 

2 𝑖 ←   

3 do 

4 evaluate 𝑝(𝒁|𝑿 𝜽(𝑖)) 

5 𝜽(𝑖  ) ← 𝑎𝑟𝑔   𝜽 𝒬(𝜽 𝜽(𝑖)) 

6 𝑖 ← 𝑖    

7 until 𝜽(𝑖)  𝜽(𝑖  ) 

8 return 𝜽(𝑖) 

9 end 
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Expectation-Maximization is regarded as the most general unsupervised learning proce-

dure (Schlesinger & Hlavac, 2002). An interesting property of the EM algorithm is its mono-

tonicity, that is, given an estimate      for the parameter values, a lower bound for the log-

likelihood is always guaranteed (Bishop, 2006; Schlesinger & Hlavac, 2002). 

In the single particle analysis field, the EM algorithm was introduced by Sigworth (1998) 

in order to improve the translational and rotational alignments of images. Instead of ―hard‖ 

alignments performed by cross-correlations, the expected aligned version of the image set X is 

computed by weighting all possible alignment values, which are the hidden variables Z, by their 

posterior probabilities  ( |   ). This statistical procedure reduces the reference bias in aligning 

noisy images. Scheres et al. (2005) later used Expectation-Maximization to provide maximum-

likelihood estimates for multi-reference alignment and classification of noisy images, both in 2D 

and 3D, using a probabilistic image formation model (Scheres et al., 2007; Scheres, Núñez-

Ramírez, et al., 2007). These maximum-likelihood approaches were then extended to Bayesian 

versions (Jaitly et al., 2010; Scheres, 2012a), which  impose a prior distribution  ( ) over the 

parameters (Bishop, 2006). The advantage of Bayesian methods is that they provide a formal way 

of introducing prior knowledge to the problem at hand (Eddy, 2004), which is a form of regulari-

zation (Scheres, 2012a, 2012b). An inherent computational complexity problem with methods 

that employ the EM algorithm is that they require integration over the whole parameter space for 

estimating the posterior probabilities of the hidden data in the E step (line 4 of Algorithm 3.3). 

Nevertheless, discrete approximations can be used to alleviate the computing effort (Scheres, 

Valle & Carazo, 2005; Scheres, 2012b; Tagare, Barthel & Sigworth, 2010). We shall now present 

a particular case of the EM algorithm used for data clustering, namely the Gaussian Mixture 

Model (GMM). 

3.4.3.3.1 Mixture of Gaussians 

We shall now assume that the underlying generative model for our data is a mixture of 

Gaussian distributions. The P-dimensional multivariate Gaussian or normal distribution with 

mean   and covariance   is given in Equation 3.24: 

 

  ( |   )  
 

(  )   

 

√    ( )
   { 

 

 
(   )   (   ) } (3.24) 
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The corresponding mixture model with K multivariate Gaussians having mixing coeffi-

cients    is then presented in Equation 3.25: 

 

  ( )  ∑   

 

   

 ( |     ) (3.25) 

 

However, although we may be able to describe our observed data as a Gaussian mixture, 

what we really want to discover is from which of the K Gaussian distributions a particular data 

point was drawn. Following a simplified version of the explanation by Bishop (2006), let us as-

sume then a hidden indicator variable   , such that    *   + and ∑      . By introducing  , 

the mixture model becomes that in Equation 3.26:  

 

  ( | )  ∏  ( |     )  

 

   

 (3.26) 

 

The conditional probabilities  (    | ), also known as the responsibilities  (  ), will 

then be computed in the E step using Equation 3.27: 

 

  (  )   (    | )  
 (    ) ( |    )

∑  (    ) ( |    ) 
   

 
   ( |     )

∑   
 
    ( |     )

 (3.27) 

 

Given the set of all observations X, the log-likelihood function is that in Equation 3.28: 

 

    ( |     )  ∑   {∑   

 

   

 (  |     )}

 

   

 (3.28) 

 

By deriving Equation 3.28 and setting it to zero with respect to each parameter, the up-

dates to be computed in the M step are given by Equations 3.29, 3.30 and 3.31: 
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∑   (   )  

 

   

    ∑   (   )

 

   

 (3.29) 

 

    
 

  
∑   (   )(     ) (     )

 

   

 (3.30) 

 

    
  

 
 (3.31) 

 

The final GMM algorithm is provided by Algorithm 3.4. 

 

 

 

Using Algorithm 3.4 for clustering yields the posterior probabilities  (   ) of object    

belonging to cluster   . Figure 3.11 shows the evolution of the GMM algorithm on an example 

dataset. k-means (Algorithm 3.2) is a particular case of GMM where, at each iteration of GMM, 

Algorithm 3.4: Gaussian Mixture Model 

Input: observed data X,  initial estimates for the K means  𝝁𝑘
( )

 , covariances  𝚺𝑘
( )

  and mixing coeffi-

cients  𝝅𝑘
( )

  of the distributions. 

Output: parameter estimates *𝝁𝑘+, *𝚺𝑘+, *𝝅𝑘+ and posterior probabilities *𝛾(𝑧𝑛𝑘)+. 
1 begin 

2 ℒ ( ) ← ∑    ∑ 𝜋𝑘
( )𝐾

𝑘  𝒩(𝒙𝑛|𝝁𝑘
( )

 𝜮𝑘
( )

) 𝑁
𝑛   

3 𝑖 ←   

4 do 

5 𝛾(𝑖)(𝑧𝑛𝑘) ←
𝝅𝑘

(𝑖)
𝒩.𝒙𝑛 𝝁𝑘

(𝑖)
 𝜮𝑘

(𝑖)
/

∑ 𝝅𝑗
(𝑖)𝐾

𝑗= 𝝅𝑘
(𝑖)
𝒩.𝒙𝑛 𝝁𝑗

(𝑖)
 𝜮𝑗

(𝑖)
/
 ∀ 𝑛   𝑛  𝑁 

6 𝑁𝑘
(𝑖)

← ∑  𝛾(𝑖)(𝑧𝑛𝑘)
𝑁
𝑛   

7 𝝁𝑘
(𝑖  )

←
 

𝑁𝑘
(𝑖) ∑  𝛾(𝑖)(𝑧𝑛𝑘)𝒙𝑛

𝑁
𝑛   ∀ 𝑘   𝑘  𝐾 

8 𝚺𝑘
(𝑖  )

←
 

𝑁𝑘
(𝑖) ∑  𝛾(𝑖)(𝑧𝑛𝑘)(𝒙𝑛  𝝁𝑘

(𝑖  )
)
 
(𝒙𝑛  𝝁𝑘

(𝑖  )
) 𝑁

𝑛  ∀ 𝑘   𝑘  𝐾 

9 𝝅𝑘
(𝑖  )

←
𝑁𝑘

(𝑖)

𝑁
 ∀ 𝑘   𝑘  𝐾 

10 ℒ (𝑖  ) ← ∑    ∑ 𝜋𝑘
(𝑖  )𝐾

𝑘  𝒩(𝒙𝑛|𝝁𝑘
(𝑖  )

 𝜮𝑘
(𝑖  )

) 𝑁
𝑛   

11 𝑖 ← 𝑖    

12 until ℒ (𝑖)  ℒ (𝑖  ) 

13 return  𝝁𝑘
(𝑖)

 ,  𝚺𝑘
(𝑖)

 ,  𝝅𝑘
(𝑖) , 𝛾(𝑖)(𝑧𝑛𝑘)  

14 end 
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every object is forced to belong only to the distribution with nearest mean. It is also the equiva-

lent of using GMM imposing identical, isotropic covariance matrices for each distribution 

(Bishop, 2006). A clear advantage of GMM over k-means is the ability to recognize ellipsoidal 

clusters, as illustrated in Figure 3.11. The partitions provided by GMM can be hardened by as-

signing each object to its highest posterior probability distribution after Algorithm 3.4 ends, if 

one desires to make a comparison with the labels obtained by k-means, for example. The mixture 

model in Equation 3.26 can be adapted to probability distributions other than the normal distribu-

tion. Scheres & Carazo (2009) improved the robustness of maximum-likelihood structure deter-

mination in SPA by using t-distributions, which have heavier tails than the Gaussian. 

 

 

Figure 3.11 – Evolution of the determination of a two multivariate Gaussian mixture model on the ―Old Faithful‖ 

dataset across iterations (L) of the GMM algorithm, in contrast to Figure 3.10. The blue and red ellipses represent 

one standard deviation from the mean for each of the two distributions. Extracted from Bishop (2006). 
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3.4.3.4 Self-Organizing Maps 

Self-Organizing Maps (SOMs) are a family of unsupervised artificial neural networks 

(ANNs) for clustering and dimensionality reduction first proposed by Kohonen (1982). The goal 

of a SOM is to map the set of N data vectors onto a set of M prototypes or nodes in a topological-

ly ordered fashion (Duda et al., 2000). M may or may not correspond to the K clusters expected, 

depending on how the SOM is used, so that the relationship       holds. The prototypes or 

neurons of the network are adjusted so to best represent the distribution of the observed data 

while preserving a neighborhood relationship (Duda et al., 2000). This relationship, or topology, 

is defined on a low-dimensional grid, called the feature map, typically defined in 1D, 2D or 3D 

for ease of visualization. The process of learning the neuronal weights has a competitive nature 

(Theodoridis & Koutroumbas, 2008), but one which affects not only the winning node but also its 

neighbors, being inspired by the synaptic plasticity of the human brain (Kohonen, 2001). The 

prototypes are described both by a representation in the feature space of the data and by their po-

sition on the map, and they provide a summarized version of the dataset. This mapping is illus-

trated in Figure 3.12. This summarized version may greatly benefit the visualization of the data or 

the application of other supervised and unsupervised classification algorithms afterwards (Duda 

et al., 2000). 

 

 

Figure 3.12 – The mapping between the input layer (observed data) on the left, and the output layer (map nodes or 

prototypes) on the right. The ―winning neuron‖ is the one most similar to the input pattern presented at the moment. 

It is adjusted, in the feature space, to be more similar to this pattern. Its neighbors (grey nodes) are also adjusted 

towards the same pattern, but at a lower rate. Adapted from Everitt et al. (2001). 
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Learning the weights or features of the prototypes is a process called training, in which 

the data patterns are presented one at a time to the network, resembling an ―online‖ version of the 

k-means algorithm,. Defining and training a SOM requires the specification of a few parameters. 

Some of them are related to the topology of the map: in 1D, we can have the prototypes arranged 

in a line or circle; in 2D, they may be arranged on a sheet, a cylinder or a torus, depending on 

how the edges of the map are joined. Also, it is necessary to impose a type of neighborhood to the 

neurons, which can be hexagonal or rectangular. 3D maps may also be considered, but they are 

not going to be used in this work. The topology may be encoded in a binary matrix M whose el-

ements define the neighbors for each prototype. The range or ―influence‖ of the neighborhood is 

usually set to decrease across iterations by a window function  , for stability reasons. Figure 3.13 

illustrates two examples of window functions in 1D and 2D. We might also choose a learning 

rate that decreases with the number of iterations. The learning rate is the proportion to which the 

neurons are adjusted towards a presented data point. 

 

 

Figure 3.13 – Examples of window functions in 1D which decrease the influence of an adjustment applied to a win-

ning neuron, here denoted   , across its neighborhood. a) A 1D window function; b) a 2D rectangular window func-

tion. Extracted from Duda et al. (2000). 

 

The basic procedure consists of presenting a data pattern at a time, in random order, and 

determining its most similar prototype in the map, which we shall call the best matching unit 

(BMU). The weights of the BMU and its neighbors are then adjusted to make them more similar 

to the matched pattern, proportionally to the learning rate and the window function. The SOM is 

the unsupervised counterpart of learning vector quantization (LVQ), a supervised algorithm that 

makes the neurons more or less similar to the matched pattern depending on the label of the ob-

ject being correctly recognized or not (Kohonen, 1990). The basic SOM algorithm is presented in 

Algorithm 3.5. 

a) b) 
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There are two measures commonly employed to assess the quality of a trained SOM 

(Kohonen, 2001). The first one is the quantization error (QE), which is defined as the average 

distance between each data point and its BMU. It quantifies how well the SOM approximates the 

data set, and is equivalent to the k-means cost function (3.21). The other one is the topographic 

error (TE), which is the fraction of data points for which their first two BMUs are not neighbors 

in the map. TE is a measure of topology preservation. 

After training a SOM using Algorithm 3.5, arises the natural question of how to effective-

ly obtain clusters. In the simplest case, one may choose    , and then cluster simply by as-

signing to each object the index of its BMU. In this case, SOM becomes an enhanced version of 

k-means, in which the cluster prototypes influence each other and tend to concentrate on regions 

of the feature space that are more densely populated. For an example of this kind of usage see the 

work by Strehl, Ghosh & Mooney (2000). Another option, in which      , is to provide 

the trained prototypes as inputs to k-means, and then cluster the native data indirectly by the label 

of its BMU (Kohonen, 2001). Because the trained prototypes have a ―local average‖ nature, this 

may be useful when the native data is noisy, and/or the number of data points is so large that it is 

not practical to input them directly to k-means. An example of trained SOM can be seen in Figure 

6.5, with the images representing the weights of each neuron in the map arranged on a sheet. 

However, perhaps the greatest potential of using a SOM is in exploratory data analysis, 

because of the summarized data representation and the constrained low-dimensional topology. If 

Algorithm 3.5: Self-Organizing Map 

Input: observed data patterns *𝒙𝑛+,   M initialized prototypes  𝒘𝑚
( )

 ,  map topology M, neighborhood 

function 𝛬(𝑴 𝑚 𝑡), learning rate function 𝛼(𝑡), number of iterations 𝑡𝑚𝑎𝑥. 

Output: trained prototypes *𝒘𝑚+. 
1 begin 

2 𝑡 ←   

3 do 

4 randomize the order of the patterns *𝒙𝑛+ 

5 for each 𝒙𝑛 

6 𝑖 ← 𝑎𝑟𝑔 i 
𝑚

‖𝒙𝑛  𝒘𝑚
(𝑡)‖

 
 

7 𝒘𝑚
(𝑡  )

← 𝒘𝑚
(𝑡)

 𝛼(𝑡)𝛬(𝑴 𝑖 𝑡)(𝒙𝑛  𝒘𝑚
(𝑡)) ∀ 𝑚   𝑚  𝑀 

8 end 

9 𝑡 ← 𝑡    

10 until 𝑡  𝑡𝑚𝑎𝑥  

11 return  𝒘𝑚
(𝑡)  

12 end 
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the data have a visual nature, like a set of images or electrical signals, one can inspect the proto-

types arranged on the map and recognize characteristic features for each region of the map. Also, 

a very useful visual tool in detecting clusters in a SOM is the U-matrix (Ultsch & Siemon, 1990), 

which is a plot of the final distances between the weight vector of each neuron and of its direct 

neighbors. The U-matrix may also allow the visual determination of the number of clusters K. An 

example of U-matrix is presented in Figure 6.6. 

A disadvantage of the SOM is that it is not guaranteed to optimize any cost function, 

which may pose challenges to parameter tuning and determining convergence during training 

(Bishop, 2006). The Generative Topographic Mapping (GTM) is a formal statistical derivate of 

the SOM (Bishop, Svensén & Williams, 1998). The group of Carazo and colleagues have used 

the SOM and its variants for unsupervised classification of single particle images (Marabini & 

Carazo, 1994; Pascual, Merelo, Carazo & Autnoma, 1999), including a statistical formulation 

based on kernel methods (Pascual-Montano et al., 2001; Pascual-Montano, Taylor, Winkler, 

Pascual-Marqui & Carazo, 2002). 

3.4.3.4.1 Growing Neural Gas 

Another popular variant of the SOM is the Growing Neural Gas (GNG) (Fritzke, 1995). 

GNG differs from SOM in which it learns the data topology by automatically determining the 

number of neurons and which regions of the feature space they should lie on. This avoids the 

problem of having prototypes on ―empty‖ regions, which sometimes may occur with the SOM by 

imposition of the neighborhood configuration. Also, it may automatically determine the number 

of clusters, by splitting unconnected sets of prototypes as representatives of different clusters. 

GNG has also been used on classification of cryo-EM images (Ogura, Iwasaki & Sato, 2003). 

The topological differences between the SOM and the GNG can be visualized in Figure 3.14. 
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Figure 3.14 – Schematic comparison between topologies in a SOM and in a GNG. The SOM uses a fixed topology 

which may cause nodes to lie on unpopulated regions of the feature space (left). By changing the number of nodes 

and their neighborhood relationships, GNG is able to put representatives only on dense regions of the feature space 

(here illustrated as electron microscopy projection images of the sodium channel), and thus ―naturally‖ determining 

the clusters (right). Extracted from Ogura et al. (2003). 

3.4.3.5 Graph partitioning 

The algorithms presented so far assume that clusters in the dataset are of the ―compact‖ 

type presented in Section 3.4.2. Possible exceptions are the SOM and the GNG, depending on 

how they are used. We shall now discuss clustering by means of graph partitioning, which ac-

counts for the ―connectedness‖ of data clouds. The graph representation is particularly useful to 

detect the intrinsic structure of the dataset, as, for graphs, what matters are the relationships be-

tween objects, and not the feature space from which they come from. Thus, graph partitioning 

algorithms are able to detect clusters of arbitrary shape. 

Consider an undirected similarity graph   (   ).   *       + is the set of vertices 

or nodes, which in our case correspond to the N objects.                   is the set of 

edge weights, where     is the weight of the edge connecting node   and node  ;      . The 

higher     is, the more similar nodes   and   are, as illustrated in Figure 3.15. The degree of a 

node is given by Equation 3.32 and is a measure of its ―significance‖ (Theodoridis & 

Koutroumbas, 2008). The diagonal matrix   contains the degrees    as its non-zero entries.   is 

arranged as an     symmetric adjacency matrix (because   is undirected,        ).  There 

are different ways to define the neighborhood and the weights of a similarity graph, which will be 

discussed in the next section, based on the explanation by von Luxburg (2007). 
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    ∑    

 

   

 (3.32) 

 

 

Figure 3.15 – Example of a partitioned graph. The thicker the edge between two vertices is, the more similar the 

vertices are (weighted graph). The red edges indicate those belonging to the cut between partitions    and    (Sec-

tion 3.4.3.5.2).  

3.4.3.5.1 Types of similarity graph 

Given a dataset X whose pairwise similarities are in matrix S, there are three common 

ways of building an adjacency matrix  : 

 

  -neighborhood graph 

In this graph, the adjacency matrix W is obtained by imposing a threshold on the 

elements of the similarity matrix S. Only nodes with a similarity higher than   re-

main connected. The matrix W usually becomes sparse using this type of graph. 

 

  -nearest neighbors graph 

In this graph, the adjacency matrix W is obtained by connecting each node only to 

its k most similar neighbors. However, if this criterion is applied in a straightfor-

ward way, a directed graph may result: a given node i may have node j among its 

  nearest neighbors; but i is not necessarily among the   nearest neighbors of j. 

This situation occurs, for example, if the dataset contains patterns that are consid-

ered ―outliers‖, i.e., points which are located far apart from most of the data cloud. 

In order to make this graph undirected, one may consider       when node i has 
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node j as a neighbor and/or when the converse holds; this way, each node will be 

connected to at least k neighbors. The other strategy is to consider       only 

when node i has node j as a neighbor and when the converse also holds; this way, 

each node will be connected to at most k neighbors. The latter is known as the mu-

tual  -nearest neighbors graph. This strategy may cause nodes to become isolated, 

and therefore this may be an approach to detect outliers. The matrix W usually be-

comes sparse using this type of graph. 

 

 Fully connected graph 

In this graph, the adjacency matrix W is obtained by simply connecting every node 

to each other, weighted by their similarities. However, it may be interesting to pe-

nalize the similarity of nodes that are far apart by applying, for example, a Gaussi-

an kernel. This is done in order to reinforce the neighborhood relationships within 

the graph. 

 

With the  -neighborhood and the  -nearest neighbors strategies, if the connected nodes 

are very similar to each other, one may consider the use of an unweighted graph (    *   +). 

3.4.3.5.2 Goal functions 

The goal of graph partitioning is to split the nodes in K disjoint sets   ,         

    .   
̅̅̅̅  is the complement of partition k, i.e., the set of nodes not belonging to   . The 

―quality‖ of a partitioning may be measured according to different criteria, which are the goal 

functions of the partitioning task. We present here the three most common goal functions (von 

Luxburg, 2007): 

 

 Cut:    (       )  ∑ ∑             ̅̅ ̅̅
 
    

A graph cut is given by the sum of the weights of edges crossing partitions. One 

desires to minimize the cut (Min-cut), which is, to obtain partitions that are the 

least similar to each another, like in Figure 3.15. A disadvantage of Min-cut is that 

it may obtain meaningless or trivial cuts by simply isolating outlier vertices 

(Theodoridis & Koutroumbas, 2008). 
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 RatioCut:     (       )  ∑
   (     ̅̅ ̅̅ )

|  |
 
    

The RatioCut is given by the sum of the weights of edges crossing partitions, nor-

malized by the number of vertices in each partition. RatioCut seeks to obtain bal-

anced partitions, that is, partitions containing approximately the same number of 

vertices (Hagen & Kahng, 1992). 

 

 N-cut:     (       )  ∑
   (     ̅̅ ̅̅ )

   (  )

 
    

The N-cut is given by the sum of the weights of edges crossing partitions, normal-

ized by the volume of the partitions. The volume of a partition is defined in Equa-

tion 3.33: 

 

    ( )  ∑    

     

 (3.33) 

 

N-cut seeks to obtain partitions with approximately the same volume (Shi & 

Malik, 2000). 

 

The next Sections will discuss graph partitioning algorithms used for clustering in this 

work: spectral clustering (Section 3.4.3.5.3) and METIS (Section 3.4.3.5.4). 

3.4.3.5.3 Spectral clustering 

Spectral clustering is a technique derived from spectral graph theory (Chung, 1997). It re-

lies on the eigenvalue spectrum of the Laplacian matrix for a similarity graph. The unnormalized 

graph Laplacian is defined as: 

 

       (3.34) 

 

The Laplacian matrix defined in Equation 3.34 has many interesting properties which will be 

mostly omitted here for simplicity (Mohar & Alavi, 1991; Mohar, 1997; von Luxburg, 2007). 
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What is most important to understand spectral clustering is the observation that, for any vector 

    , the following relationship holds: 

 

      
 

 
∑    (     )

 

     

 (3.35) 

 

From Equation 3.35 it becomes clear that if   is a constant vector, it is the eigenvector 

corresponding to the eigenvalue zero. Also, for all      , Equation 3.35 can only be equal to 

zero if      . Therefore, we can conclude that, if G is composed of K connected components, 

the zero eigenvalue will have a multiplicity of K, with respective eigenvectors having constant 

values for the connected nodes. In this case, W is block-diagonal and consequently L also is so, 

as in Equation 3.36. 

 

   

(

 

  

  

 
  )

             

(

 

  

  

 
  )

  (3.36) 

 

Thus, in this idealized case, if we want to extract the K connected components or clusters 

represented in the graph G, all we would have to do is to find the eigenvectors corresponding to 

the K lowest eigenvalues of the Laplacian matrix L. Interestingly, even in the more practical case 

that the block-diagonality of W does not hold precisely, perturbation theory  assures that the ei-

genvectors and eigenvalues of L shouldn’t change significantly (von Luxburg, 2007). The indica-

tor vectors   will then be approximately constant for the members of the roughly connected K 

components of G – which correspond to the clusters we are looking for from the beginning. The 

eigenvectors corresponding to the K lowest eigenvalues may then be provided as input to some 

other conventional clustering algorithm, say k-means. Therefore, we can say that spectral cluster-

ing changes the representation of the data from a connectivity point of view (the graph) to a 

compactness point of view (the indicator vectors). The basic algorithm for unnormalized spectral 

clustering, which uses the unnormalized Laplacian from Equation 3.34 and approximates a solu-

tion for the RatioCut index (Section 3.4.3.5.2) is given by Algorithm 3.6. 
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We note that Algorithm 3.6 receives as input an adjacency matrix W computed by one of 

the strategies in Section 3.4.3.5.1. Normalized versions of this algorithm have also been proposed 

in order to approximate the N-cut. These involve the eigendecomposition of the normalized La-

placians                  (Ng, Jordan, Weiss & others, 2002) and          (Shi & 

Malik, 2000), respectively (von Luxburg, 2007). How the choices for the adjacency matrix affect 

the results of spectral clustering has been assessed by Maier, von Luxburg & Hein (2012). Re-

cently, the use of spectral clustering has become a trend for 2D and 3D classification of cryo-EM 

images, as already presented in Section 2.7.9 (Shatsky, Hall, Nogales, Malik & Brenner, 2010; 

Ueno, Kawata & Umeyama, 2005; Ueno, Mio, Sato & Mio, 2007).  

 

 

 

Figure 3.16 – Comparison between a) spectral clustering and b) k-means clustering applied to a dataset for which the 

data lie approximately over two concentric circles. Adapted from Theodoridis & Koutroumbas (2008). 

  

Algorithm 3.6: Unnormalized Spectral Clustering 

Input: adjacency matrix W,  number of clusters K. 

Output: clusters  *𝑪    𝑪𝐾+ . 
1 begin 

2 𝑫 ← degree matrix for W 

3 𝑳 ← 𝑫  𝑾 

4 U ← 𝑁  𝐾 matrix containing, as columns, the eigenvectors of 𝑳 corresponding to its K smallest 

eigenvalues 

5 𝑪 ← K clusters returned by k-means applied on the rows of U as objects 

6 return 𝑪  *𝑪𝟏   𝑪𝑲+  
7 end 

a) b) 
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3.4.3.5.4 METIS 

METIS is a multilevel graph partitioning algorithm that is known to achieve high quality 

partitions across a wide range of applications, like VLSI circuit design, finite element methods, 

load balance in distributed computing, among others (Karypis & Kumar, 1995b; Karypis, 2013). 

We have included it here because it will be part of some of the cluster ensemble algorithms pre-

sented in Section 3.4.5.3 (Strehl & Ghosh, 2002), and we decided to evaluate it as a clustering 

algorithm too. Multilevel graph partitioning (Hendrickson & Leland, 1995) is a scheme in which 

a coarsened version of the graph is first partitioned, and then this partition is progressively ex-

tended and refined to finer levels of the graph back to its original size, as depicted in Figure 3.17. 

In this way, both global (the coarsened graph) and local (the refinement process) properties of the 

graph are addressed in the partitioning (Karypis & Kumar, 1998). 

 

 

Figure 3.17 – General multilevel graph partitioning scheme. Extracted from Karypis (2013). 

 

The multilevel scheme adopted by METIS comprises three phases: the coarsening phase, 

the initial partitioning phase and the uncoarsening phase (Figure 3.17). Algorithm 3.7 below pre-
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sents the basic METIS procedure for data clustering. The details of each phase will be explained 

in the next sections. 

 

 

3.4.3.5.5 Coarsening phase 

 

Figure 3.18 – Different ways of coarsening a graph. Extracted from Karypis & Kumar (1998). 

 

The goal of coarsening is to obtain a reduced graph that reflects the properties of the orig-

inal graph in terms of vertex and edge weights (Karypis & Kumar, 1995a). The central concept of 

graph coarsening is matching. To match nodes means combining adjacent nodes of G into a mul-

tinode, such that the weight of the multinode equals the sum of the weight of the matched vertices 

(if the vertices are weighted), and the edges connecting the multinode are the union of the edges 

of the matched vertices connecting external (multi)nodes. Different ways of matching nodes and 

Algorithm 3.7: METIS 

Input: adjacency matrix W,  number of clusters K. 

Output: clusters  *𝑪    𝑪𝐾+ . 
1 begin 

2 𝐺𝑐𝑜𝑎𝑟𝑠𝑒  ← coarsen the graph that has W as adjacency matrix, using one of the strategies from Sec-

tion 3.4.3.5.5 

3 *𝑪    𝑪𝐾+𝑐𝑜𝑎𝑟𝑠𝑒 ← partition 𝐺𝑐𝑜𝑎𝑟𝑠𝑒   using one of the algorithms from Section 3.4.3.5.6 

4 *𝑪    𝑪𝐾+ ← uncoarsen 𝐺𝑐𝑜𝑎𝑟𝑠𝑒  and refine the partitions using one of the algorithms from Section 

3.4.3.5.7 

5 return 𝑪  *𝑪    𝑪𝐾+  
6 end 
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respective effects on vertice and edge weights are shown in Figure 3.18. METIS may use one of 

the following algorithms for matching nodes (Karypis & Kumar, 1995a): 

 

 Random Matching (RM) 

Vertices are visited randomly. If vertex has not been matched yet, it is randomly matched 

to one of its adjacent vertices. 

 

 Heavy Edge Matching (HEM) 

Vertices are visited randomly. If vertex has not been matched yet, it is matched to its most 

similar (heaviest edge) adjacent vertex. 

 

 Sorted Heavy Edge Matching (SHEM) 

Similar to HEM, but vertices are visited in ascending degree order. This reduces the oc-

currence of unmatched vertices on each iteration. Vertices with the same degree are visited in 

random order. 

 

 Light Edge Matching (LEM) 

Similar to HEM, but vertices are matched to their less similar adjacent vertex. It may be 

useful because it makes the average degree of the coarser graph much higher than that of the cur-

rent graph. 

 

 Heavy Clique Matching (HCM) 

A clique is a fully connected subgraph of G. With HCM, vertices are visited randomly, 

and it matches a vertex to its adjacent vertex with the highest degree (i.e., it seeks to collapse 

cliques).  

 

3.4.3.5.6 Partitioning the coarsest graph 

Once the coarsest graph has been obtained by successive application of one of the algo-

rithms presented in Section 3.4.3.5.5, a first partition shall be obtained. METIS uses the Min-cut 

as its goal function (Section 3.4.3.5.2). In order to produce meaningful, non-trivial cuts with Min-
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cut, METIS requires the partitions to be unbalanced only by at most a user-specified percentage 

(Karypis, 2013). At this coarsest level, partitioning algorithms tend to run very fast because the 

size of the graph is small (~100 vertices). For this reason, often different initializations are at-

tempted for the first partition, and that producing the lowest Min-cut is retained. METIS uses one 

of the following algorithms for partitioning the coarsest graph, constrained to the balancing re-

quirements: 

 

 Spectral biSection (SB) 

Unnormalized spectral partitioning, as presented in Section 3.4.3.5.3. 

 

 Kernighan-Lin algorithm (KL) 

The KL algorithm begins with random partition assignments. It then searches for a pair of 

vertices that, if their partitions are swapped, it decreases the edge cut (Min-cut from Section 

3.4.3.5.2) (Kernighan & Lin, 1970). The algorithm proceeds until no decrease in the edge cut is 

possible given the current state of the partitions. The success of the KL algorithm is dependent on 

the initialization and the average degree of the graph. The Fiduccia and Mattheyses (FM) algo-

rithm is a modification of KL in which a single vertex swaps partitions, not a pair. The number of 

iterations can be limited for speed (Karypis & Kumar, 1998). 

 

 Graph Growing Partitioning algorithm (GGP) 

GGP selects a vertex at random. Then it grows a region around it in a breadth-first fash-

ion, until     of the vertices have been included (or     of the total vertex weight). It grows 

more regions if    . This partitioning is then provided as initialization to the KL algorithm 

(Karypis & Kumar, 1998). 

 

 Greedy Graph Growing Partitioning algorithm (GGGP)  

Similar to GGP, but vertices are included in the growing region in sorted order by their 

contribution to decreasing the cut (Karypis & Kumar, 1998). 
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3.4.3.5.7 Uncoarsening phase 

The last phase of METIS is the uncoarsening and refinement phase. In this stage, the 

coarsening process is undone in the reverse order it was applied. At each level of uncoarsening, 

the partitions are projected from the coarser level to the finer one. Then, the edge cut is refined by 

application of one of the following algorithms: 

 

 KL refinement  

Uses projected partitions as initialization to the KL algorithm for refinement. The KL(1) 

version performs a single pass of KL across the list of nodes. 

 

 Boundary KL refinement (BKL) 

BKL is the KL refinement performed over only the vertices at the boundary of the parti-

tions, as these are more likely to be swapped. BKL(1) performs a single pass of KL. BKL(*,1) 

performs BKL if graph is small (vertices on the partition boundaries are less than 2% of the num-

ber of vertices in the original graph), and BKL(1) if graph is larger than that (Karypis & Kumar, 

1998). 

3.4.3.6 Manifold learning and other approaches 

Besides the specific algorithms presented in this Section (3.4.3), many other approaches 

have been proposed for unsupervised data classification. For example, there are combinations of 

different methods, like the popular Chameleon algorithm which performs hierarchical clustering 

by means of graph partitioning (Karypis, Han & Kumar, 1999), the DBSCAN algorithm which 

takes into account the density of data points (Ester, Kriegel, Sander & Xu, 1996), and evolution-

ary algorithms that seek to optimize partitioning goals (Hruschka et al., 2009). 

Data clustering has a close relationship to the more general task denoted manifold learn-

ing, also known as nonlinear dimensionality reduction (Theodoridis & Koutroumbas, 2008). 

Manifold learning algorithms seek to learn the low-dimensional subspace onto which the relevant 

information within high-dimensional data lie on (Bishop, 2006). Many of these algorithms have 

been formulated as non-linear extensions of PCA (Chang & Ghosh, 2001; Scholkopf et al., 1996) 

and of the Kohonen SOM (Bishop et al., 1998), as already commented in Sections 3.3.1 and 
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3.4.3.4, respectively. Autoassociative or autoencoder neural networks are also among the oldest 

and most useful tools for manifold learning. These networks are trained to mimic the input data in 

their output layer, using a reduced number of neurons in their intermediate layers (Bishop, 2006; 

Haykin, 1999). Only recently the use of manifold-oriented algorithms have been introduced in 

single particle analysis, and they delivered promising results for heterogeneity separation 

(Schwander et al., 2010). Nevertheless, manifold learning algorithms may require estimating the 

parameters of complicated topology models, while similarity graphs, although also costly to 

build, may provide similar explanatory power for clustering without making assumptions about 

the data distribution (Gorban, Kégl, Wunsch & Zinovyev, 2007). On the other hand, manifold 

learning approaches provide generative models that may be more informative about the data be-

havior (Bishop et al., 1998; Bishop, 2006). For specific details of manifold learning concepts and 

other popular algorithms like local linear embeddings (LLE), isometric mapping (ISOMAP) and 

Laplacian eigenmaps, the book edited by Gorban, Kégl, Wunsch & Zinovyev (2007) is an indi-

cated reference. 

3.4.4 Defining the number of clusters 

The definition of the number of clusters K when performing unsupervised classification is 

sometimes misleading, as no absolute criteria exist for this task. Often, K is selected based on 

side information about the dataset or by domain-specific knowledge. Visualization of the data 

may also provide good clues with respect to the number of clusters. In single particle analysis, for 

example, it is quite unlikely to have more than a few dozens of different macromolecule views in 

2D classification, or more than half a dozen stable, recognizable conformations in 3D classifica-

tion. 

When this kind of information is not available, however, there are a few methods that 

promote the determination of a reasonable value for K based on intrinsic information from the 

data. Essentially, the number of relevant clusters depends on the scale at which the data is being 

observed (Duda et al., 2000). For methods that minimize a well-defined cost function, like hier-

archical clustering (Section 3.4.3.1) or k-means (Section 3.4.3.2), the ―elbow‖ or ―kink‖ method 

is often employed. The elbow method consists on running the algorithm with different choices for 

K, and plotting the resulting cost (or distortion measure) as a function of K. If the algorithm is 
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initialization-dependent, it should be run many times for a given K, and the variability of the re-

sulting cost must be taken into account; alternatively, only the lowest cost achieved for each val-

ue of K can be considered.  Of course, the cost of the partitioning decreases as the number of 

groups increases; yet, the ―natural‖ number of clusters can be found by the value at which the 

cost function ceases to drop significantly. The elbow method is principled on the fact that, for 

values of K smaller than the ―ideal‖ value   , the true clusters will lie cohesively within the im-

posed clusters, and approaching    will decrease the value of the cost function by large amounts 

at each step. After    is reached, if K is kept increasing, the true clusters will be split across the 

imposed clusters, but this decreases the cost function only by a small amount at each step. There-

fore, a ―kink‖ in a plot like the one shown in Figure 3.19 indicates that the natural partitioning 

has been achieved. Hastie, Tibshirani & Friedman (2008) formalize the kink method with the gap 

statistic. An analogous method is available for spectral clustering algorithms, which consists in 

observing an abrupt rise in the plot of the eigenvalues (the spectrum) of the Laplacian matrix 

(von Luxburg, 2007). Another approach is to resort to clustering indices or information-theoretic 

model selection criteria (McLachlan & Peel, 2004; Theodoridis & Koutroumbas, 2008), as pre-

sented in Section 3.4.2.3. These measures regularize for the number of clusters (model complexi-

ty), and thus allow comparing the quality of solutions with different values for K. 

 

 

Figure 3.19 – Illustration of the ―elbow method‖ for an artificial dataset composed of four real clusters. The k-means 

algorithm was run with different values for K, varying from 1 to 10. The value of the cost function (Equation 3.21) 

for each case was plotted as a function of K. Highlighted by the black circle is the ―kink‖ or ―elbow‖ in the plot, that 

is, the value of K for which the cost function begins to decrease smoothly. In this case, it perfectly matches the true 

number of clusters. 
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3.4.5 Ensemble methods 

From this Section onwards, we will analyze unsupervised classification procedures that 

combine multiple solutions in order to produce the final result. In supervised learning, ensemble 

methods have been in use since the mid 1980’s, in the form of committee machines or mixtures of 

experts, among others (Bishop, 2006; Haykin, 1999). The goal of ensemble methods is to achieve 

improved performance on a particular machine learning task by combining a set of independently 

trained models, like classifiers or regressors. For the clustering task, ensemble methods first ap-

peared formally in the seminal work by Strehl & Ghosh (2002), on which this Section is mostly 

based. 

In this classical formulation, cluster ensembles seek to obtain a solid partitioning solution 

without accessing the original features of the object set. That is, all the ensemble algorithms have 

access to is the set of labels from previous clusterings. Combining partitioning solutions like this 

is an interesting approach in several different scenarios (Ghosh & Acharya, 2011): 

 

 Improved solution quality 

Given a performance criterion, ensemble or ―consensus‖ methods tend to perform better, 

on average, than an individual solution. This is because the ensemble tends to have reduced bias 

when compared to individual models, even when using simple approaches like ensemble averag-

ing in supervised learning (Haykin, 1999). 

 

 Robust clustering 

Clustering algorithms are inevitably doomed to perform poorly on datasets which do not 

match their underlying assumptions. For example, k-means is not able to cope with arbitrarily 

shaped, non-convex clusters. An ensemble of clustering algorithms may then provide a ―meta‖ 

clustering solution that achieves satisfactory performance over a wide range of datasets. This is 

also interesting from the point of view of the user, who, by using an ensemble, does not need to 

worry about parameter tuning of specific algorithms on specific datasets, or will worry less about 

it. 
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 Knowledge reuse 

Consensus clustering may be used to consolidate data labels obtained from multiple pre-

vious projects or experiments. This may be useful for organizational and data storage purposes, 

or to provide a reasonable starting point for new projects or experiments that require an initial 

estimate for the solution. 

 

 “Multiview” clustering 

There are cases in which one must combine labeling solutions that have been obtained 

each with a different perspective on the dataset. For example, the clustering algorithms may have 

had access to different subsets of the dataset features (feature-distributed clustering) or to distinct 

subsets of objects (object-distributed clustering). These may happen for privacy or ownership 

constraints, like in internet databases, or even for logistic and computational resources con-

straints, when it is not possible to bring the whole dataset together into a single location. 

 

The key aspect of ensemble performance is diversity among the base solutions. This is re-

lated to the individual model biases, which hopefully will be averaged out in the consensus solu-

tion. Diversity in clustering solutions may occur in different forms, like, for example (Kuncheva, 

2004; Strehl & Ghosh, 2002): 

 

 Different subsets of features 

This source of diversity is inherent to multiview clustering cases, but may also be pur-

posely introduced if needed. Subsets of features are related to the perspective an algorithm takes 

on the dataset. With images, for example, algorithms may cluster the dataset analyzing distinct 

regions of interest, or different bands of the Fourier spectrum (filtering). Also, other features like 

the intensity histogram and invariant attributes may be used concomitant to each other and to the 

pixels themselves. 
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 Different number of clusters 

The cluster ensemble framework allows the integration of base solutions that have each 

different number of partitions. Varying K may also be deliberately applied in order to introduce 

diversity in the ensemble, or if one desires to use the consensus optimization approach for deter-

mining the number of clusters (Section 3.4.5.1). 

 

 Randomization 

Algorithms that use random initializations or random presentation of the data points, like 

online methods, may be run many times and then integrated into a single, stable, consensus solu-

tion. Randomization combined with multiview clustering may even be used for dimensionality 

reduction, by projecting the data onto random subspaces, clustering, and then looking for a con-

sensus solution (Bingham & Mannila, 2001; Urruty, Djeraba & Simovici, 2007). 

 

 Algorithm portfolio 

A diverse ensemble may be attained by including distinct clustering algorithms. For ex-

ample, one may include both compactness-based (k-means, HAC) as well as connectivity-based 

(graph partitioning) algorithms. Also, one may simply use the same algorithm(s) with distinct 

parameter setups, like different linkage criteria (Section 3.4.3.1.1) or different similarity 

measures, among other variations. 

 

The performance of an ensemble of clustering algorithms over distinct datasets is illus-

trated in Figure 3.20. It can be clearly seen that a single algorithm may not perform well on the 

four datasets. And, what is more interesting is that the consensus solution achieves satisfactory 

performance on all four datasets, even when some individual solutions perform poorly. It must be 

observed that the quality of the consensus solution may not necessarily be better than that of an 

individual base solution (e.g. the YAHOO dataset, bottom row of Figure 3.20). However, it al-

ways provides solutions that are safely better than the worst individual performances. In practical 

scenarios, often it is not known beforehand which algorithms will have good performance on 

which datasets, thus justifying the ensemble approach. 

For unsupervised classification of electron microscopy images of single particles, regard-

ing the 3D heterogeneity of the dataset, we are most interested in achieving high performance and 
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robust classification for considerably noisy data. Particularly, we hope to use knowledge that may 

be already available in the single particle reconstruction workflow, like the principal components 

computed for dimensionality reduction, and to build a complex classification solution from a 

relatively simple algorithm portfolio, i.e., those that do not require the realization of 3D recon-

structions. 

 

 

Figure 3.20 – Learning curves of the same cluster ensemble over four publicly available datasets: 2D2K (top row), 

8D5K (second row), PENDIG (third row) and YAHOO (bottom row). A learning curve is a measure of performance 

as a function of the amount of data available. Here, performance is measured by the increase in Normalized Mutual 

Information (see Section 3.4.5.2) between the algorithm’s solution and the ensemble, in comparison to a random 

labeling. Error bars indicate   1 standard deviations for 10 runs of each algorithm. The first 10 columns correspond 

to the clustering algorithms: k-means with Euclidean distance (KME); cosine similarity (KMC); correlation (KMP); 

Jaccard similarity (KMJ); graph partitioning with Euclidean distance (GPE); cosine similarity (GPC); correlation 

(GPP); Jaccard similarity (GPJ); self-organizing map (SOM), and hypergraph partitioning (HGP). The last column 

correspond to the robust consensus clustering (RCC), provided by the best of three consensus heuristics in each run: 

CSPA, HGPA and MCLA. See Section 3.4.5.3 for more details on these heuristics. Extracted from Strehl & Ghosh 

(2002). 
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3.4.5.1 Consensus clustering 

A first approach in combining R base solutions is to perform voting to define the label of 

each object (Kuncheva, 2004). This method assumes that the base solutions follow a common 

convention and have the same number of partitions. However, achieving this ―common conven-

tion‖, or solving the cluster correspondence problem, is not straightforward and has no perfect 

solution. A slightly more elaborate approach is to treat the     label matrix as a new represen-

tation of the data, and then achieve the final clustering by providing this matrix as input to some 

other clustering algorithm, like k-means. The rationale behind this strategy is that objects that are 

often clustered together are more likely to be similar, and thus should appear together in the final 

solution too. This method has the advantage that the number of groups may vary across the base 

clusterings, and must only be specified for the final solution. Nevertheless, this solution is still 

subject to the pitfalls of the algorithm chosen for the final clustering.  

Strehl & Ghosh (2002) formulate the cluster ensemble problem as a combinatorial optimi-

zation problem. For simplicity, we will only present here the case of hard cluster assignments, 

and in which labels are known for all objects in every base solution. Let the set of R base solu-

tions, possibly containing varying number of groups, be contained in the matrix  , and  (     ) 

be a measure of similarity or agreement between two label vectors,    and   . Then the average 

agreement between a labeling solution     and a set of base solutions   is given by Equation 

3.37: 

 

  (   )(    )  
 

 
∑  (     )

 

   

 (3.37) 

 

Therefore, the cluster ensemble aims to find a single labeling   , with predefined number 

of clusters K,  that maximizes  (   )(    ). That is, the solution that best agrees, on average, 

with the set of available solutions: 

 

              
  

 (   )(    ) (3.38) 
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Note that the optimization problem posed in Equation 3.38 may be solved for distinct val-

ues of K, and the one producing the highest value for  (   )(        ) may be selected as the 

―best‖. Thus, the cluster ensemble approach also provides a model selection method, in addition 

to those mentioned in Section 3.4.4 (Ghosh, Strehl & Merugu, 2002; Strehl & Ghosh, 2002). This 

approach to the definition of the number of clusters is depicted in Figure 3.21. 

 

 

Figure 3.21 – Variation of ANMI, a measure of consensus agreement (see Section 3.4.5.2), as a function of K, for 

two distinct datasets. Extracted from Ghosh et al. (2002). 

3.4.5.2 Comparing labeling solutions 

Equation 3.37 requires that we somehow measure the agreement, or similarity, between 

label lists. Ideally, the result of this measure should lie on a pre-defined range and correct for the 

expected value, i.e., embed an ―adjustment for chance‖ to compensate for random agreements 

(Acharya & Ghosh, 2013). We shall now present some common similarity indices for lists of 

labels. Interestingly, they do not require that the solutions being compared follow the same label-

ing conventions. 

3.4.5.2.1 Adjusted Rand Index 

The Adjusted Rand Index (ARI) was proposed by Hubert & Arabie (1985) and is a pair-

counting based measure. It has the interesting property that it adjusts for cluster overlaps that may 
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occur by chance. If we have two labeling solutions,    and   , we define     |  
    

 |. The 

Adjusted Rand Index is then given by Equation 3.39: 
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Although the ARI has a maximum value of 1 when the two label lists match perfectly, and 

a value of 0 when the index matches the expected value, it may produce negative results which 

are meaningless (Acharya & Ghosh, 2013). 

3.4.5.2.2 Normalized Mutual Information 

The Normalized Mutual Information (NMI) was proposed by Strehl & Ghosh (2002) and 

is an information-theoretic based measure, given by Equation 3.40: 
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where  (  ) is the entropy of   , defined by Equation 3.41: 
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and  (     ) is the mutual entropy of    and   , given by Equation 3.42: 
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The NMI as given in Equation 3.42 has the interesting property that it is constrained to the 

interval ,   -, allowing easy interpretation of the results. Note that  (  ) and  (  ) are the 

entropies of lists    and   , respectively, and  (     ) is the mutual entropy between them, as 

defined previously in Equation 3.20.  (     ) is denoted the mutual information between    and 

   (Shannon, 1948). When the NMI is used in the cluster ensemble optimization problem, Equa-

tion 3.37 is called the Average NMI (ANMI), and will be the default choice for the rest of this 

explanation, following Strehl & Ghosh (2002), unless otherwise noted. 

3.4.5.2.3 Normalized Variation of Information 

The Normalized Variation of Information (NVI) is also an information-theoretic based 

measure (Xiong, Wu & Chen, 2009), defined in Equation 3.43: 

 

  (   )(     )    
  (     )

 (  )   (  )
 (3.43) 

 

NVI was proposed in order to normalize the original Variation of Information (VI) meas-

ure  (Meilă, 2003), which was restricted to label lists of the same size and having the same num-

ber of partitions. Please note that the VI and NVI are metrics, while the NMI is not (Ghosh & 

Acharya, 2011). 

3.4.5.3 Algorithms 

Directly solving the consensus clustering problem defined in Equation 3.38 is a difficult 

combinatorial optimization problem. As pointed out by Strehl & Ghosh (2002), even for a very 

small dataset containing 16 objects, there are 171,798,901 manners of grouping them into mere 

four clusters. They then proposed a greedy search algorithm to optimize Equation 3.38. 

Kuncheva (2004) proposes a randomized version of this algorithm that is more likely to achieve a 

good local maximum, which is depicted in Algorithm 3.8. 
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Algorithm 3.8 begins by selecting the available solution that best agrees with the other so-

lutions, on average (line 2). Then, it swaps the cluster assignment for all   , one at a time and in 

random order, to the one of the other     possible labels that maximizes the average agreement 

(line 8). After all    have been swept, the order of the list is again randomized and the search 

restarts. The algorithm proceeds like this until no labels have been changed, which means that a 

local optimum has been achieved. However, the computational complexity of this approach 

makes it impractical for large datasets.  

Strehl & Ghosh (2002) proposed more efficient heuristics to achieve a consensus solution, 

which are based on a hypergraph representation. A hypergraph is a generalization of the graph 

representation, in which an edge may connect more than two vertices. To illustrate this concept 

and its derivate heuristics, let’s consider a simple example containing seven objects and four dis-

tinct clustering solutions, as in Table 3.2 (Strehl & Ghosh, 2002). Note that the base solutions are 

diverse in that they do not follow the same convention (cluster correspondence) in terms of la-

bels, do not necessarily contain the same number of clusters, and do not necessarily contain as-

signments to all objects. 

  

Algorithm 3.8: Greedy Consensus Clustering 

Input: 𝑁  𝑅 matrix 𝜦 of base clustering solutions; number of clusters K. 

Output: consensus solution 𝝀 . 

1 begin 

2 𝑟𝑖𝑛𝑖𝑡 ← 𝑎𝑟𝑔   𝑟 𝜙
(𝑎𝑣𝑔)(𝜦 𝝀𝑟) 

3 𝝀( ) ← 𝝀𝑟𝑖𝑛𝑖𝑡 
4 𝑖 ←   

5 do 

6 for 𝑛      𝑁 (in random order) 

7 𝜆𝑛
(𝑖)

← 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 𝜙
(𝑎𝑣𝑔)(𝜦 𝝀(𝑖): 𝜆𝑛

(𝑖)
 𝑘) 𝑘      𝐾 

8 end 

9 𝑖 ← 𝑖    

10 until 𝝀(𝑖)  𝝀(𝑖  ) 

11 return 𝝀(𝑖)  
12 end 
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Table 3.2 – An example   matrix containing seven objects and four labeling solutions. Note that solution  
   has less clusters than the other solutions, and does not contain assignments to all objects. Also, the labeling con-

vention varies across solutions. Extracted from (Strehl & Ghosh, 2002). 

              

   1 2 1 1 

   1 2 1 2 

   1 2 2 ? 

   2 3 2 1 

   2 3 3 2 

   3 1 3 ? 

   3 1 3 ? 

 

The base label matrix   can be converted into a binary representation scheme, matrix  , 

shown in Table 3.3.   is composed of submatrices *       +, each corresponding to one of the 

base clusterings. Note that this form of representation avoids the cluster correspondence problem. 

Also, a careful analysis of this matrix indicates that it may be possible to infer the cluster assign-

ment of objects that do not have labels in all base solutions, like objects   ,    and   . More im-

portantly, this matrix can be seen as the adjacency matrix of a hypergraph, in which the objects 

are the vertices, and each cluster is a hyperedge connecting its member objects, which are those 

that have been assigned a value of ―1‖ in the matrix. The four heuristics that follow, CSPA (Sec-

tion 3.4.5.3.1), HGPA (Section 3.4.5.3.2), MCLA (Section 3.4.5.3.3) and HGBF (Section 

3.4.5.3.4) all benefit from this hypergraph representation in different ways. 
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Table 3.3 – The   matrix: binary hypergraph representation of matrix   (Table 3.2). Extracted from (Strehl & 

Ghosh, 2002). 

                    

                                     

   1 0 0 1 0 0 1 0 0 1 0 

   1 0 0 1 0 0 1 0 0 0 1 

   1 0 0 1 0 0 0 1 0 0 0 

   0 1 0 0 1 0 0 1 0 1 0 

   0 1 0 0 1 0 0 0 1 0 1 

   0 0 1 0 0 1 0 0 1 0 0 

   0 0 1 0 0 1 0 0 1 0 0 

3.4.5.3.1 Cluster-based Similarity Partition Algorithm 

The Cluster-based Similarity Partition Algorithm (CSPA) uses matrix   (Table 3.3) to 

build a real-valued coassociation matrix  . Hence, an induced similarity measure is obtained from 

the fact that more similar objects tend to be more often clustered together. The     entries of 

matrix   lie in the interval ,   -, where a value of 1 indicates that objects i and j always appear 

together, and 0 means they are never assigned to the same group, among the base clusterings.   is 

obtained by a simple matrix multiplication with  , as shown in Equation 3.44. 

 

   
 

 
    (3.44) 

 

Table 3.4 shows the coassociation matrix for the example from Table 3.2, in which    . 

The constitution of   for this example is also shown graphically in Figure 3.22. 
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Table 3.4 – The coassociation matrix   induced from Table 3.3. 

                       

   1 0.75 0.50 0.25 0 0 0 

   0.75 1 0.50 0 0.25 0 0 

   0.50 0.50 1 0.25 0 0 0 

   0.25 0 0.25 1 0.50 0 0 

   0 0.25 0 0.50 1 0.25 0.25 

   0 0 0 0 0.25 1 0.75 

   0 0 0 0 0.25 0.75 1 

 

 

Figure 3.22 – Visualization of the binary coassociation matrices *           + and the weighted coassociation 

matrix   (rightmost) corresponding to Table 3.4. Extracted from Strehl & Ghosh (2002). 

 

After the coassociation matrix is formed, it can be interpreted as the adjacency matrix of a 

weighted, undirected, similarity graph. Such graph is illustrated in Figure 3.23. Then, a graph 

partitioning algorithm can be applied to obtain the consensus solution with K clusters. Strehl & 

Ghosh (2002) use METIS (Section 3.4.3.5.4) due to its scalability and high-quality partitioning 

solutions for many types of graphs (Karypis & Kumar, 1998). CSPA is perhaps the simplest 

―smart‖ heuristic and is able to achieve good quality solutions (Ghosh et al., 2002; Strehl & 

Ghosh, 2002). However, its computational complexity is proportional to    both in time and 

memory, which renders it impractical for very large datasets. Considering worst case time com-

plexity alone, CSPA is  (    ), meaning its running time scales proportionally to     . 

Punera & Ghosh (2008) proposed sCSPA, the extension of CSPA to soft clusterings (see Section 

3.4.2.1). The extension is quite straightforward, by replacing the binary cluster indicators in ma-

trix   (Table 3.3) by the corresponding fuzzy (or probabilistic) coefficients. 
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Figure 3.23 – The induced similarity graph to be partitioned in CSPA, corresponding to the matrix   (Table 3.4) of 

the example from (Strehl & Ghosh, 2002) worked out in this Section. Thickness of edges indicate their relative 

weights (self-edges not shown). 

3.4.5.3.2 HyperGraph Partitioning Algorithm 

The HyperGraph Partitioning Algorithm (HGPA) is quite similar to CSPA, but instead of 

using the induced similarity matrix, it uses the binary matrix   directly (Table 3.3). HGPA there-

fore formulates the cluster ensemble problem as a hypergraph partitioning task, as illustrated in 

Figure 3.24. The partitioning is performed by cutting the minimal number of hyperedges that 

leaves the graph composed of K disjoint partitions. To handle this task, Strehl & Ghosh (2002) 

use HMETIS (Karypis, Aggarwal, Kumar & Shekhar, 1997), the extension of METIS to hyper-

graphs. 

 

 

Figure 3.24 - The hypergraph to be partitioned in HGPA, corresponding to the matrix   (Table 3.3) of the example 

from (Strehl & Ghosh, 2002) worked out in this Section. The eleven types of lines indicate the eleven hyperedges 

connecting objects. 
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HGPA has the advantage that it is the fastest of the three heuristics proposed by Strehl & 

Ghosh (2002), with a worst-case time complexity of  (   ). A disadvantage is that practical 

hypergraph partitioners consider only the removal of entire hyperedges, possibly achieving solu-

tions worse than if only partially removing hyperedges was allowed. Because of this, two or more 

radically different consensus solutions will then have equivalent quality from the hypergraph 

partitioning point of view (Strehl & Ghosh, 2002). 

3.4.5.3.3 Meta-CLustering Algorithm 

The Meta-CLustering Algorithm (MCLA) is the most elaborate of the three consensus 

heuristics proposed by Strehl & Ghosh (2002). In a certain sense, it uses the transpose of the bi-

nary coassociation matrix   from Table 3.3. In the MCLA formulation, a ―meta-graph‖ is formed 

having each clustering    as a vertex. The edges are weighted by the Jaccard similarity measure, 

given in Equation 3.45. The cluster similarity matrix of this ―meta-graph‖ is exemplified in Table 

3.5, and the respective visualization is shown in Figure 3.25. 

 

  (     )  
|     |

|     |
 

  
   

‖  ‖ 
  ‖  ‖ 

 
   

   

 (3.45) 

 

This cluster similarity graph is then k-way partitioned by METIS. In the next step, the clusters 

allocated to each partition are then merged, giving place to meta-clusters. A meta-cluster may 

contain each object    many times, depending on how often the object appears in the collapsed 

clusters. At the final stage of the algorithm, the meta-clusters compete for objects. This means 

that an object is definitely allocated to the meta-cluster in which it appears most often, as if the 

meta-clusters were bidding for the object. In case of ties, the object is randomly allocated to one 

of the meta-clusters in which it appears equally often. A very interesting byproduct of this com-

petition for objects is that a confidence measure is provided by the relative occurrence of the ob-

jects on each meta-cluster. 
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Table 3.5 – Example of the cluster similarity matrix for the meta-graph used by MCLA. Entries are the Jaccard simi-

larity between hyperedges in matrix   from Table 3.3. 

                                    

   1 0 0 1 0 0 0.67 0 0 0.25 0 

   0 1 0 0 1 0 0 0.33 0.25 0.33 0.33 

   0 0 1 0 0 1 0 0 0.67 0 0 

   1 0 0 1 0 0 0.67 0.25 0 0.25 0.25 

   0 1 0 0 1 0 0 0.33 0.25 0.33 0.33 

   0 0 1 0 0 1 0 0 0.67 0 0 

   0.67 0 0 0.67 0 0 1 0 0 0.33 0.33 

   0 0.33 0 0.25 0.33 0 0 1 0 0.33 0 

   0 0.25 0.67 0 0.25 0.67 0 0 1 0 0.25 

    0.25 0.33 0 0.25 0.33 0 0.33 0.33 0 1 0 

    0 0.33 0 0.25 0.33 0 0.33 0 0.25 0 1 

 

MCLA has a worst-case complexity in time of  (     ). Assuming      , it tends 

to be almost as fast as HGPA (Section 3.4.5.3.2), while producing good quality solutions (Ghosh 

et al., 2002; Strehl & Ghosh, 2002). However, if the base clusterings are very ―diverse‖, it tends 

to perform worse than CSPA and HGPA (Strehl & Ghosh, 2002). This is because MCLA implic-

itly assumes that there are notable correlations (or correspondences) between clusters. Punera & 

Ghosh (2008) extended MCLA to soft clusterings with sMCLA. In their formulation, the hy-

peredges, instead of binary vectors, are converted into feature vectors having the soft assignments 

as features. A pairwise similarity between them is then computed based on the Euclidean dis-

tance; the remainder of the algorithm is the same. 
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Figure 3.25 – The meta-graph used by MCLA, corresponding to the cluster similarity matrix from Table 3.5 of the 

example from Strehl & Ghosh (2002) worked out in this Section. Hyperedges are the vertices of this graph, and the 

edges correspond to the Jaccard similarity (Equation 3.45) between them. Edge thickness corresponds to its relative 

weight. Next to each vertex is the set of objects associated with the hyperedge. 

 

3.4.5.3.4 Hybrid Bipartite Graph Formulation 

A fourth consensus heuristic based on (hyper)graphs is the Hybrid Bipartite Graph For-

mulation (HGBF) proposed by Fern & Brodley (2004). This approach considers both objects and 

base clusters as vertices of a bipartite graph, and they are linked by unweighted edges simply 

whenever object    belongs to cluster   
    *     +   *      + ;   

  is therefore a hy-

peredge in matrix H from Table 3.3. A bipartite graph is one in which its vertices belong to two 

disjoint partitions, such that all the edges of the graph connect vertices in different partitions. An 

example of such bipartite graph is given in Figure 3.26. After the graph is formed, it can be parti-

tioned using METIS or spectral clustering (Fern & Brodley, 2004). 
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Figure 3.26 – Example of bipartite graph used by HBGF. This is the graph corresponding to the example from 

(Strehl & Ghosh, 2002) worked out in this Section, derived from the matrix H (Table 3.3). 

 

Fern & Brodley (2004) argue that this representation has two main advantages. First, it is 

a lossless representation, which means that the original set of base clusterings can be fully recov-

ered from the bipartite graph. From the three heuristics presented previously, only HGPA has this 

property. The other advantage is that HGBF incorporates both similarities between data points 

and similarities between clusters. This circumvents flaws that occur in formulations that take into 

account only one of these two types of information. For example, CSPA may treat as being bare-

ly similar points that are rarely clustered together, although them both may be similar to other 

points that often appear together. An analogous problem may occur with MCLA: two clusters 

containing disjoint sets of objects (i.e., there is no overlap between them) will be regarded as to-

tally dissimilar even though the union of their member objects may often appear together in other 

clusters. Also, it is not subject to the hypergraph partitioning limitations suffered by HGPA (see 

Section 3.4.5.3.2). Solving HBGF has worst-case complexity of  (   ) in time. Punera & 

Ghosh (2008) also formulated a version of HBGF for soft clustering, sHBGF. It simply weights 

the edges of the bipartite graph by the corresponding value of the soft assignment. 

3.4.5.4 Remarks on cluster ensembles 

We observe that the formulation of the cluster ensemble problem as a graph partitioning 

task may suffer from the balancing constraints commonly employed in (hyper)graph partitioning 

algorithms when the base clusterings are highly unbalanced. Strehl & Ghosh (2002) employed 

(H)METIS for the CSPA, HGPA and MCLA heuristics, but the balancing constraints also exist 
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and may be even more severe in other graph partitioning approaches, like spectral clustering 

(Section 3.4.3.5.3). Regarding the algorithms for ensembles of soft clusterings proposed by 

Punera & Ghosh (2008), it is important to notice that, although the base clusterings are of the soft 

type, the output consensus are hard assignments. 

Although we have concentrated on (hyper)graph models for cluster ensembles due to their 

acknowledged quality and feature-independent representations, these are not the only approaches 

available. We point out that more advanced approaches based on cumulative voting exist (Dudoit 

& Fridlyand, 2003), and that using the set of labels from the base clusterings as a new representa-

tion of the data allows not only using a conventional clustering algorithm to obtain consensus, as 

pointed out in Section 3.4.5.1, but also to formulate probabilistic cluster ensembles. These in-

clude a mixture model formulation for consensus clustering (Topchy, Jain & Punch, 2004), adap-

tive cluster ensembles (Topchy, Minaei-Bidgoli, Jain & Punch, 2004) and Bayesian cluster en-

sembles (Wang, Shan & Banerjee, 2011). These methods use the Expectation-Maximization al-

gorithm from Section 3.4.3.3 to improve the log-likelihood of the consensus solution. There are 

also cluster ensembles proposals that count on access to the original set of features of the dataset 

(Domeniconi & Al-Razgan, 2009). For an overview of the cluster ensemble problem and its asso-

ciated applications and algorithms, please refer to the book by Kuncheva (2004) and the reviews 

by Acharya & Ghosh (2011; 2013). 
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4. Classification of Heterogeneous 

Cryo-EM Data 

This Chapter will present our proposal for unsupervised classification of structural hetero-

geneity on cryo-EM data. The structural heterogeneity problem has been introduced in Section 

2.5. The data clustering concepts and algorithms outlined in Chapter 3 will now be brought to-

gether in a framework that aims to discriminate conformational states without performing 3D 

reconstructions, thus being useful to validate the 3D classification performed by conventional 

single particle reconstruction (SPR) methods. The description of our unsupervised classification 

scheme will follow that depicted in Figure 1.2. Finally, we will present details about the data cho-

sen for the tests of our proposal. The specific implementation details and parameter choices are 

depicted in Chapter 5, and the results of our study are presented in Chapter 6. 

4.1 Data collection 

After a potentially heterogeneous sample is prepared following the proper biochemical 

protocols (Frank, 2006), a series of micrographs are collected in the transmission electron micro-

scope (TEM). We will emphasize the analysis of cryo-EM datasets because sample preservation 

by negative stain usually does not allow the observation of conformational differences (Section 

2.2.1). During the process of CTF correction (Section 2.1.1), some micrographs may be discarded 

due to insufficient quality. For the initial analyses and reconstructions, it may be desirable to 

coarsen the micrographs by a factor of 2 or even 4, for computational speedup. From the remain-

ing micrographs, the particles are windowed using manual or semi-automated picking procedures 

(Section 2.4.1). The stack of boxed particles constitutes the set of projection images that will be 

further analyzed and classified. 
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4.2 Data pre-processing 

Common pre-processing steps include normalizing the projection images to zero mean 

and the same variance. Also, the images must be masked by a circular disk for removal of back-

ground information that is of no interest. The mask may be binary or real-valued depending on 

whether they have a hard or soft edge. Soft-edged masks are required if operations on Fourier 

space will be conducted, as they do not introduce high-frequency artifacts (Section 2.4.2). Images 

may be band-pass filtered for suppression of noise and low-frequency artifacts. We note that fil-

tering is a crucial step for our analysis as it directly limits the magnitude of structural flexibility 

that remains observable, but the specific filtering parameters will largely depend on the type of 

molecule under investigation and the image acquisition conditions. We will consider both the 

more general case when the images are just corrected for translational misalignments and the 

more advanced case when the images are also rotationally aligned. Beyond these standard nor-

malization and alignment procedures, other feature extraction (Section 3.2) and dimensionality 

reduction (Section 3.3) operations may be necessary to achieve success on the task at hand. In our 

experiments, Principal Component Analysis (Section 3.3.1) will be used to compress the datasets. 

4.3 Unsupervised classifiers 

After the feature vectors have been obtained for each projection image, they will be classi-

fied in an unsupervised fashion by clustering algorithms, independently of the specific recon-

struction procedure that may be in course. We focus here on the problem of validating heteroge-

neous reconstructions (Henderson et al., 2012), so we will assume that the number of conforma-

tional states expected is already known. No assumptions are made about the specific distribution 

each conformational manifold may impose on the data, if any. Therefore, we will use clustering 

algorithms with different underlying motivations: Hierarchical Ascendant Clustering (HAC), k-

means, Self-Organizing Maps (SOM), Gaussian Mixture Models (GMM), Spectral Clustering 

and METIS. HAC (van Heel et al., 2009), k-means (P. A. Penczek et al., 1996), SOM (Marabini 

& Carazo, 1994) and spectral clustering (Shatsky et al., 2010; Ueno et al., 2005) have already 

been employed for 2D and 3D classification of single particles data. Gaussian mixtures have al-
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ready been used within the maximum-likelihood structural refinement context (Scheres & 

Carazo, 2009), while we will use it just for unsupervised classification. METIS was chosen be-

cause it was shown to have impressive graph partitioning performance on a wide range of domain 

applications, and it was readily available, as it is part of some consensus heuristics whose per-

formance we will also investigate (see Section 4.4). We also note that, in general, the most com-

putationally expensive step in using graph partitioning algorithms is to build the adjacency ma-

trix. Adjacency matrices are already going to be generated for spectral clustering, so they can also 

be provided as input to METIS. These algorithms were presented in Section 3.4.4. We will assess 

the performance of clustering algorithms for heterogeneity classification both individually and as 

a cluster ensemble. 

4.4 Consensus clustering 

After a set of labels is provided by the clustering algorithms, we explored consensus clus-

tering approaches by means of an ensemble. The potential advantages of using ensemble cluster-

ing in this application are many, as explained in Chapter 3. We are mainly interested in construct-

ing a complex classification solution, regarding the structural heterogeneity of the data, from a set 

of relatively simple clustering algorithms. We are also interested in robust classification for noisy 

data, as we make no prior assumptions about which kind of algorithm may be best suited for a 

given dataset.  

The first consensus method we attempted was a basic majority voting scheme. Later, we 

introduced the three heuristics proposed by Strehl & Ghosh (2002) to efficiently solve the cluster 

ensembles problem: CSPA, HGPA and MCLA. We also investigated the use of the k-means al-

gorithm as a simple method for obtaining a consolidated clustering solution by using the base set 

of labels as a new representation for the dataset (Section 3.4.5.1), and compared it with the other 

approaches. 

As we will use data that has already been labeled by conventional reconstruction methods, 

they will serve as the ―ground truth‖ for the evaluation of our unsupervised classifiers. The parti-

tioning validation procedure consists of verifying how well the structural assignments provided 

by the iterative reconstruction matches our unsupervised classification framework. Nevertheless, 
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we also attempted to use cluster ensembles internal agreement to determine the number of struc-

tural classes (Section 3.4.5.1). 

4.5 The dataset 

The dataset on which we have concentrated the tests of our clustering framework consists 

of a mixture of projection images from the Mm-cpn protein in its ―open‖ and ―closed‖ states. 

This structure has a molecular weight of ~1 MDa and D8 symmetry, which means its subunits are 

repeated along two perpendicular axes, one of two-fold symmetry and the other of eight-fold 

symmetry. Mm-cpn is a group II chaperonin, from the archaea Methanococcus maripaludis or-

ganism. Chaperonins are macromolecular machines that aid the folding of cellular proteins in 

eukaryotes and archaea. Mm-cpn is a barrel-like structure that accommodates polypeptide chains 

in its central cavity, as shown in Figure 4.1. With its lids closed, energy is provided to the con-

tained polypeptide substrate (a protein) by adenosine triphosphate (ATP) induction. When the 

protein is released with this added energy, it may potentially reach a stable folding state, akin to 

an annealing procedure. The structure in both conformations has been resolved by electron cryo-

microscopy, albeit from separate samples. Details about Mm-cpn role in the cell and its structure 

determination can be found in the work by Zhang et al. (2010). The structure in the ―open‖ state 

was determined by single particle reconstruction at 8 Å, while a resolution of 4.3 Å was achieved 

for the structure in the ―closed‖ state. This discrepancy is mainly attributed to the flexibility of 

the lids in the open conformation. The distinct states were biochemically induced, and then im-

aged and reconstructed separately. While we acknowledge that this case does not represent the 

more general situation in which the sample contains a mixture of conformations, it still allow us 

to mixture in silico the images collected from each sample in a single dataset, and perform our 

analysis with a perfect standard for comparison. The downside of deliberately separating confor-

mational states prior to TEM imaging is that no information about intermediate states can be re-

trieved. Also, the striking different structural configurations assumed in the two states, notably by 

the closing of the arm lids, make it suitable for the investigation of how variations in structure 

conformation affect the data distribution in the feature space used for classification. We have 

tested our approach both on synthetic and real Mm-cpn models, as detailed in Chapter 5. 
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Figure 4.1 – Views of the Mm-cpn density maps. Top row: the macromolecule in the ―open‖ state; bottom row: the 

macromolecule in the ―closed‖ state. a,d) top view; b,e) intermediate view; c,f) side view. Density map generated in 

the IMAGIC package (van Heel et al., 2012) from the atomic models deposited at the online Protein Data Bank 

(http://www.wwpdb.org) (Bernstein et al., 1977), entries 3LOS for the ―open‖ state and 3IYF for the ―closed‖ state 

(Zhang et al., 2010). Visualizations were generated using the UCSF Chimera package (Pettersen et al., 2004). 

  

a) b) c) 

d) e) f) 

100 Å 

http://www.wwpdb.org/
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5. Materials and Methods 

This Chapter describes the methods and implementations used in the experiments per-

formed along the project period. All computer programs and scripts were created by the author of 

this text, except for those which are explicitly denoted otherwise. Besides the clustering and con-

sensus algorithms themselves, data manipulation and performance evaluation routines were also 

coded. The corresponding results and discussions are available in Chapters 6 and 7, respectively. 

5.1 Datasets 

We employed in our experiments synthetic and real datasets containing projection images 

of the Mm-cpn protein in ―open‖ and ―closed‖ conformations (Section 4.5). Its large size and 

high symmetry and, especially, the striking variations in its structural features between the two 

states make Mm-cpn a reasonable choice for investigating the feasibility of our classification ap-

proach. Samples containing Mm-cpn in the open and closed states embedded in vitreous ice were 

imaged separately on a JEM3200FSC (JEOL) transmission electron microscope operated at 300 

kV acceleration voltage at the National Center for Macromolecular Imaging (NCMI), Houston, 

TX, USA. Micrographs were acquired on             Gatan CCD detectors. Particles were 

selected from the micrographs using the BOXER program and density maps for both states were 

obtained following the EMAN single particle reconstruction (SPR) workflow (Ludtke et al., 

1999). From the density maps, the atomic structures of Mm-cpn in both states were modeled and 

deposited in the Protein Data Bank (PDB) publicly accessible database (http://www.wwpdb.org) 

(Bernstein et al., 1977), under accession codes 3LOS (open conformation) and 3IYF (closed con-

formation). Further details on sample preparation, imaging, reconstruction and atomic model 

generation can be found in the work by Zhang et al. (2010). In what follow we describe how we 

have prepared the synthetic and real datasets for our experiments. 

  

http://www.wwpdb.org/
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5.1.1 Synthetic Mm-cpn projection images 

Our first experiments were solely based on synthetic data. We simulated projection imag-

es of Mm-cpn in the open and closed conformations from the atomic models deposited at the 

PDB, using the following protocol: 

 

1. Emulate density maps from the 3D atomic models, each with             

voxels; 

2. Low-pass filter the 3D volumes; 

3. Project each volume in 10,000 images,         pixels each with a 3 Å pixel size. 

Projection orientations are random. 

4. High-pass filter the 2D projection images, in order to emulate one of the main charac-

teristics of the TEM contrast transfer function (CTF) (Section 2.1.1).  

5. Normalize images to zero mean and unit variance; 

6. Add Gaussian noise of zero mean and variance of 10 to the images, in order to impose 

an SNR of 0.10 to the data, which is typical for cryo-EM datasets; 

7. Randomly shift the images to simulate slight misalignments. We chose to draw the 

shift magnitudes from a 2D Gaussian distribution with mean at the image center and a 

standard deviation of 2 pixels;  

8. Apply a circular binary mask to exclude most of the image background. The mask ra-

dius is of 45 pixels (90% of half the image side), which results in 6,349 valid pixels; 

9. Re-normalize the pixels within the mask to zero-mean and unit variance;  

10. Reduce the dataset dimensionality to 100 components using PCA. 

 

All these steps were conducted with the IMAGIC package (van Heel et al., 2012), except 

for step 7 which was performed in MATLAB. Filters in IMAGIC have Gaussian fall-offs in Fou-

rier domain. The effect of high-pass filtering the images to roughly account for the effect of the 

CTF is displayed in Figure 5.1. We refer to the noiseless synthetic dataset as S1, and the noisy 

and misaligned dataset as S2. Examples of images from both synthetic datasets are shown in Fig-

ure 5.2. The native datasets have dimensions of             , being 10,000 projection images 

from each conformation. After dimensionality reduction, they become            datasets. 
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Figure 5.1 – Examples of images from the synthetic Mm-cpn datasets. Images 1 to 5 represent projections from the 

―open‖ state, while images 6 to 10 represent projections from the ―closed‖ state. a) Aligned and noiseless projection 

images; b) images from a) after high-pass filtering (dataset S1); 

5.1.2 Real Mm-cpn projection images 

Besides the simulated images generated from the PDB models presented above, we also 

conducted experiments using the very own TEM images used for the derivation of such models. 

This set of real images was kindly provided by Dr. Junjie Zhang (Texas A&M University) and 

Dr. Wah Chiu (Baylor College of Medicine). This dataset contains 10,000 projection images, 

being 5,000 from each conformational state. Images have dimensions of         pixels each, 

with a pixel size of 2.6 Å. CTF correction (Section 2.1.1) had already been performed on these 

images. We prepared them for our experiments according to the following protocol: 

 

1. Band-pass filter the 2D projection images, in order to suppress noise and low-

frequency artifacts. 

2. Normalize images to zero mean and unit variance; 

3. Align the images. In order to account for different alignment conditions commonly 

found in cryo-EM datasets, we generated datasets using four different types of align-

ments: 

a. Center the whole dataset with respect to its average image (dataset R1); 

b. Center the whole dataset with respect to 10,000 random re-projections of the 

density maps obtained from the PDB models (Section 5.1.1), being 5,000 from 

each conformation (dataset R2). This alignment is expected to be better than 

that performed in a), as the images are aligned to ―perfectly‖ centered corre-

sponding re-projections; 

a) 

b) 

1 2 3 4 5 6 7 8 9 10 
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c. The same as b), but generating 24 rotated copies of each image in 15° steps 

(dataset R3). This procedure aims to emulate a larger dataset with increased 

number of rotations for each view. The rotational sampling of the projections 

impacts the quality of the subspace spanned by the eigenimages, as will be 

shown in Chapter 6. 

d. The same as b), but also performing rotational alignment of the images. This 

corresponds to a nearly optimal alignment condition (dataset R4). 

4. Apply a circular binary mask to exclude most of the image background. The mask ra-

dius is of 43.2 pixels (72% of half the image side), which results in 5,785 valid pixels; 

5. Re-normalize the pixels within the mask to zero-mean and unit variance;  

6. Reduce the dataset dimensionality to 100 components using PCA. 

 

A comparison between the synthetic and real images can be seen in Figure 5.2. Regarding 

dataset R3, the principal components were calculated from the 240,000 images dataset with arti-

ficially increased rotational sampling. However, only the coordinates of the original 10,000 im-

ages projected onto this subspace were considered on the experiments which make use of this 

dataset. More details about the application of PCA to the synthetic and real datasets will be pre-

sented in Chapter 6, as well as their eigenimages. 

We point out that all four real datasets correspond to practical situations found in the Sin-

gle Particle Analysis workflow. Dataset R1 corresponds to the first round of translational align-

ment, in which the images are simply centered against the whole dataset center of mass. Dataset 

R2 would occur in a later round of alignment, where a given iteration of a 3D model is already 

available and whose reprojections can be used to refine the image shifts. Dataset R4 follows the 

same logic, but includes rotational alignments as well. Dataset R3 is conceptually similar to R2, 

but emulates a situation in which a larger dataset is available. 
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Figure 5.2 - Selected images from the analyzed datasets. The first five images are from the ―open‖ state and the fol-

lowing five are from the ―closed‖ state. S1: noiseless synthetic dataset; S2: Noisy and misaligned synthetic dataset; 

R1: experimental dataset after band-pass filtering and centering. 

5.2 Experiments 

5.2.1 Exploratory Data Analysis: SOM 

The initial experiments were performed using the Self-Organizing Map. The goal of these 

experiments was to check whether the SOM is able to discriminate the conformational states on 

the synthetic datasets (S1 and S2). Several SOMs were trained having different sizes and topolo-

gy configurations. We analyzed them based on the U-matrix and the distribution of the best 

matching units (BMUs) across the map. The maps displayed in this work had       neurons 

arranged on a sheet, with hexagonal neighborhood. Neurons were initialized with random values. 

The functions from the SOM Toolbox for MATLAB (Vesanto, Himberg, Alhoniemi & 

Parhankangas, 2000) were used to train and analyze these maps. 

5.2.2 Experiment 1: Consensus by simple agreement 

Later, we decided to evaluate whether an unsupervised consensus classification could 

provide higher accuracy and stability in discriminating the conformations on datasets S1 and S2. 

The native representation of the data by the pixels as feature vectors was employed. We used two 

algorithms: SOM and spectral clustering. The SOM was chosen in order to benefit from the re-

sults of previous experiments.  Spectral clustering was chosen due to its ability to detect clusters 

S1  

S2  

R1  

1 2 3 4 5 6 7 8 9 10 
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of arbitrary shape. For simplicity, we considered the number of clusters to be equal to the true 

number of classes, i.e.,    . 

 

 SOM clustering: Cluster labels were assigned to the map prototypes by manually 

segmenting the U-matrix. The labels were then extended to the dataset by assign-

ing to each object the label of its BMU. 

 

 Spectral clustering: an  -neighborhood similarity graph was constructed by cal-

culating the pairwise normalized cross-correlation (Equation 3.17) between all im-

ages, and applying a similarity threshold       . The normalized cross-

correlation lies in the interval ,   -, where 1 denotes perfect similarity. The adja-

cency matrix of the graph is thus a               sparse matrix. With this ma-

trix as input, the unnormalized spectral clustering algorithm was applied 

(Algorithm 3.6). 

 

 Consensus clustering: as a method of consensus, we used the simple agreement 

between the solutions of the two algorithms above. The canonical labeling scheme 

from Section 3.4.2.1 was employed, and whenever the two solutions agreed on the 

label for a given object, the object was retained on the consensus solution; if they 

disagreed, the object was discarded. 

 

We then evaluated the purity of the classes obtained, which is the proportion of correctly 

assigned members in relation to the total number of class members. By ―correctly assigned‖ we 

adopt the majority of cluster members belonging to the same class in the true solution. 

5.2.3 Experiment 2: Determining the number of clusters 

In a subsequent experiment, we decided to include more clustering algorithms in the en-

semble, and try to automatically determine the number of structural classes. Datasets S1, S2 and 

R1 were analyzed by the data projections on the 100 components extracted with PCA. This is the 

maximum number of components allowed by the efficient parallel implementations of MSA al-
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gorithms in the current version of the IMAGIC package (van Heel et al., 2009). The model selec-

tion criterion was the optimization of ANMI according to the number of clusters (Section 

3.4.5.1). Here, we adopted the three consensus heuristics proposed by Strehl & Ghosh (2002): 

CSPA, HGPA and MCLA, described in Section 3.4.5.3. A ―meta-consensus‖ strategy was em-

ployed, running the three heuristics and choosing that yielding the highest ANMI values. If the 

number of clusters determined by the ANMI peak is different from the true number of clusters, 

the correspondence between the obtained clusters and the true labels can be verified by a confu-

sion matrix. The base solutions were provided by HAC, k-means, SOM and three versions of 

spectral clustering (   ). The number of clusters was changed from 2 up to 10 for each algo-

rithm, making a total of 54 base solutions. The implementations and parameter setup of each al-

gorithm were the following: 

 

 Hierarchical Ascendant Clustering: the HAC algorithm (Algorithm 3.1) was 

applied using Euclidean distance and the Ward criterion for cluster merging. The 

linkage and cluster MATLAB functions were employed to this end. This is simi-

lar to the classification procedure employed by IMAGIC (van Heel et al., 2009), 

but without post-processing the clusters to improve the Ward criterion. 

 

 k-means: we applied k-means (Algorithm 3.2) in a straightforward manner. An ef-

ficient implementation for MATLAB was employed (Chen, 2012). This program 

randomly selects K data points as initial prototypes. 

 

 Self-Organizing Map: to avoid having to manually segment the U-matrix as done 

on Experiment 1, which can be sometimes a very subjective procedure, we used 

the SOM in a more simple fashion. The SOM was trained having a number of neu-

rons equal to the number of desired clusters K. After training, each data point was 

assigned to its BMU, and this assignment was regarded as the object’s cluster la-

bel. This is similar to the procedure adopted by Strehl, Ghosh & Mooney (2000). 

 

 Spectral Clustering: we applied three versions of spectral clustering (Algorithm 

3.6): the unnormalized version (von Luxburg, 2007), the normalized version ac-
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cording to Shi & Malik (2000), and the normalized version according to Ng, 

Jordan & Weiss (2002). While the first version approximates a solution to the Ra-

tioCut, the two latter approximate solutions to the Ncut (Section 3.4.4.5.2). The 

graph adjacency matrix was the same from Experiment 1. The idea behind using 

these three versions is to have the inherent properties of graph partitioning algo-

rithms, like finding clusters of arbitrary shape, while at the same time accounting 

for diversity in the ensemble, at least theoretically. 

 

 Consensus solutions: consensus solutions were obtained by applying the CSPA, 

HGPA and MCLA heuristics implemented in the ClusterPack toolbox for 

MATLAB (Strehl, 2011). Internally, these heuristics make use of the METIS and 

HMETIS (hyper)graph partitioning algorithms (Karypis et al., 1997; Karypis & 

Kumar, 1998). 

5.2.4 Experiment 3: The influence of alignment quality 

In this experiment, we aimed at verifying the influence of the alignment quality between 

the images on the separation of conformational states by unsupervised algorithms. We analyzed 

datasets S1, S2, R1, R2, R3 and R4 projected along 100 principal components, as before, and also 

using only the first 10 components. For the real datasets, we also evaluate how the classification 

is influenced by the projection orientation, as some specific views of the macromolecule may 

appear quite similar in both conformations. In order to emulate a more practical scenario, we im-

posed a number of clusters equal to the true number of conformations present in the dataset. This 

implies our cluster ensemble approach is being used as a partitioning validation tool, that is, the 

user takes the result from the robust unsupervised classification as an indicator of the accuracy of 

the structural assignments performed by conventional SPR methods. The underlying assumption 

is that the existence of distinct conformational manifolds may be observable from the ensemble 

of base clustering solutions. Additionally, we included two more algorithms in order to improve 

the diversity of the ensemble: a mixture of Gaussians and METIS (Karypis, 2013), and used only 

one version of spectral clustering (   ). Implementation details are as follows: 
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 Hierarchical Ascendant Clustering: HAC was used in the same way as in Ex-

periment 2. 

 

 k-means: k-means was used in the same way as in Experiment 2. 

 

 Self-Organizing Map: SOM was used in the same way as in Experiment 2. 

 

 Gaussian Mixture Model: we performed clustering by modeling the dataset as a 

mixture of two multivariate Gaussian distributions (Algorithm 3.3). Each data 

point was assigned in a ―hard‖ fashion to the distribution with the highest a poste-

riori probability of membership. Additionally, the a posteriori probability can be 

used to assess the reliability of the cluster assignments. Functions gmdistribu-

tion.fit and cluster of the MATLAB Statistics Toolbox were used to implement 

this clustering method. 

 

 Spectral Clustering: only the unnormalized version of spectral clustering was 

used this time. Using the pairwise normalized cross-correlation as similarity 

measure, a sparse adjacency matrix for an unweighted graph was created by con-

necting each data point to its 10 nearest neighbors or more; vertices were connect-

ed either if object i was among the most similar to object j or the converse. In this 

way, each vertex is connected to at least 10 other vertices (Section 3.4.3.5.1). A 

publicly available spectral clustering toolbox that implements the methods de-

scribed in von Luxburg (2007) was used to create the adjacency matrices (Buerk, 

2012). 

 

 METIS: the METIS algorithm was used from the interface provided by the Clus-

terPack toolbox to its binaries (Strehl, 2011). We used the default configurations, 

which include the Sorted Heavy-Edge Matching (SHEM) for graph coarsening 

down to 100 vertices, Greedy Graph Growing Partitioning (GGGP) for initial bi-

Section, and the ―adaptive‖ Boundary Kernighan-Lin (BKL(*,1)) refinement for 
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uncoarsening. For more details on these methods, please refer to Section 3.4.3.5.4 

and to the manual by Karypis (2013). 

 

 Consensus solutions: besides CSPA, HGPA and MCLA, we also used k-means as 

a consensus method by providing it with the set of base labels as new features for 

the data, due to its simplicity and speed (Section 3.4.5.1). We also used the cluster 

confidence measure provided intrinsically by MCLA to assess the quality of the 

assignments by this algorithm.  

5.3 Performance assessment 

We will use agreement measures like the Normalized Mutual Information (NMI) and the 

Adjusted Rand Index (ARI), both explained in Section 3.4.5.2, as well as the percentage of 

matches between the label lists. We note that this latter form of comparison, although of intuitive 

appeal, may be misleading because it does not account for random matches in any form. To aid 

the performance analysis, we may also use confusion matrices to understand the data assignments 

across clusters (Section 3.4.3) and plots of the data points projected along selected principal 

components. 
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6. Results 

In this Chapter, the results from the experiments described in Chapter 5 will be presented 

and briefly discussed. The conclusions from these experiments are drawn in Chapter 7. Our most 

important findings derive from sections 6.2.1 and 6.2.4. 

6.1 Principal Component Analysis 

We begin by analyzing the distribution of the data points on the subspace spanned by their 

principal components. This may allow us to get an intuition of how the data behaves in the higher 

dimensional feature space of pixel intensities. Figure 6.1 shows the first 10 eigenimages for the 

six Mm-cpn datasets used in this work. Eigenimages are visualizations of the principal compo-

nents for image sets. Note that the second eigenimage is the same for datasets S1 and S2, except 

for a signal inversion. This inversion is irrelevant for PCA because they represent the same pro-

jection direction. Interestingly, the eigenimages for datasets S1 and S2 are quite similar, because 

they contain essentially the same underlying information except for the noise. This indicates that 

PCA is able to extract components that contain most of the true signal information despite it be-

ing disturbed by severe random noise, which is due to the statistical preservation nature of PCA 

(Section 3.3.1). Also, dataset S2 has two eigenimages (highlighted in red) introduced by the 

misalignments between images (Dube et al., 1993). We also observe that, as the quality of the 

alignment improves for the real datasets, the first principal components become more informative 

regarding the true underlying signal. This improvement can be clearly seen by comparing da-

tasets R1 and R2 in Figure 6.1. Also, as more data becomes available for determining the princi-

pal components, their signal-to-noise (SNR) ratio improves. This can be noted by observing that 

eigenimages for dataset R3, which were calculated from a set of 240,000 artificially rotated im-

ages (originally 10,000), are more similar to those of dataset S1, which are for the noiseless da-

taset containing 20,000 images. 
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Figure 6.1 - The first 10 eigenimages for each of the six Mm-cpn datasets analyzed in this work. For dataset S2, 

highlighted in red are eigenimages 3 and 4, which do not have similar correspondents in dataset S1. 

 

We can also evaluate the spectrum of eigenvalues for the datasets in order to better under-

stand how the first principal components ―explain‖ the variance of the data distributions (Section 

3.3.1). Such spectra are shown in Figure 6.2. It is remarkable how the introduction of noise 

spreads the variance across the principal components, as seen for dataset S2 and for the real da-

tasets, in comparison to the eigenvalue spectrum of dataset S1. Additionally, it can be seen that 

the quality of the alignment tends to concentrate more variance on the first principal components. 

This can be observed for dataset S1 (perfectly aligned) in relation to dataset S2 (imposed misa-

lignments), dataset R2 (centering according to 3D re-projections) in relation to R1 (centering 

according to the dataset’s average image), which is probably the most remarkable case, and also 

for dataset R4 (translational and rotational alignment according to 3D re-projections) in relation 

to dataset R3 (centering according to 3D re-projections, but with artificially increased rotational 

sampling for calculation of the principal components). 

 

S1  

S2  

R1  

R2  

R3  

R4  
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Figure 6.2 – The spectrum of the first 100 eigenvalues for the Mm-cpn datasets analyzed in this work. Eigenvalues 

are plotted as the fraction of the total dataset variance they contain. 

 

The accumulated variance for the first 10 and the first 100 principal components are 

shown in Table 1. Combined with the previous figures, this table allows us to observe how low 
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the SNRs of these datasets are. Random noise causes most of the dataset variance to be distribut-

ed more or less evenly across the eigenvalue spectrum, except for the very few first ones, as 

shown in the plots from Figure 6.2. These first are the ones which mostly ―explain‖ the true mo-

lecular projection signal, as can be seen in Figure 6.1. The increase on variance associated with 

the first 10 principal components as consequence of alignment improvement, mentioned before, 

can also be inferred from Table 6.1. The remaining of the eigenimages mostly describes random 

variations, in relation to the whole dataset statistics. These observations demonstrate the power of 

PCA both in filtering the noise out of the data, and compressing the relevant variance of a high-

dimensional dataset (6,349 dimensions for datasets S1 and S2, and 5,785 dimensions for datasets 

R1, R2, R3 and R4) onto a subset of only a few dimensions (10 or 100 in this case). 

 

Table 6.1 – Accumulated variance on the first 10 and first 100 principal components, for the six datasets analyzed in 

this work. The values are displayed as the percentage of the total dataset variance they contain. 

% First 10 First 100 

S1 45.97 91.54 

S2 11.99 32.40 

R1 7.54 39.34 

R2 8.24 35.88 

R3 9.66 36.91 

R4 12.05 39.83 

 

Besides dimensionality reduction and ―eigenfiltering‖, PCA is also very useful for visual-

ization. For example, as eigenimages 1 and 2 are essentially the same for datasets S1 and S2, we 

can see how the introduction of noise and misalignments between images affects the data distri-

bution, as plotted in Figure 6.3. By applying the original data labels, it is also possible to observe 

how the projection images from each conformational state are distributed in a given subspace. 
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Figure 6.3 – Datasets S1 and S2 plotted along their respective first two principal components. The insets show the 

eigenimages corresponding to each axis. Data points belonging to the ―open‖ state are colored red, while data points 

from the ―closed‖ state are colored blue. 

 

From Figure 6.3 it becomes clear that, for the synthetic datasets, the projections from each 

conformational state occupy relatively well-defined manifolds in a multidimensional feature 

space. As seen for dataset S2, when images are noisy and not perfectly aligned, such manifolds 

may become hardly recognizable. In order to get an insight on the data distribution in relation to 

the conformational class on all datasets, Figure 6.4 shows the data projected onto the first three 

principal components for each dataset. It is important to bear in mind that, although these first 

three components are those with largest associated variance, they are not necessarily the best to 

discriminate the conformational manifolds. This becomes especially critical if the number of pro-

jections of different conformations is highly imbalanced in the dataset. Due to the statistical rep-

resentation properties of PCA, in this case, components associated with the discrimination of con-

formational changes would likely not be found among the first ones. These plots may also be 

useful to evaluate the performance of the unsupervised classification algorithms applied in the 

experiments in comparison to the ground truth. 
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Figure 6.4 – The datasets plotted along their respective first three principal components. The insets show the eigen-

images corresponding to each axis. Data points belonging to the ―open‖ state are colored red, while data points from 

the ―closed‖ state are colored blue. 

6.2 Experiments 

6.2.1 Exploratory Data Analysis: SOM 

Our first experiments using the Kohonen SOM (Kohonen, 2001) were very important in 

order to verify that an unsupervised learning algorithm could indeed recognize the separation of 

conformational states in the Mm-cpn synthetic datasets. What is most interesting is that this sepa-

ration can be observed even in the absence of rotational alignments between images. Previous 

uses of the SOM in single particle analysis had only discriminated structural heterogeneity on 

aligned sets of projection views, as described in Section 2.7.3 (Marabini & Carazo, 1994). The 

SOMs shown in this Section were trained using the native data representation, that is, the image 

pixels. 

A first analysis that can be conducted with the SOM when trained on sets of images is to 

directly observe the neurons or codebooks after training, as shown in Figure 6.5. In the case of 

dataset S1, it can be clearly seen that the neurons from the region to the left of the map learned to 

represent views of Mm-cpn in the open state, with different in-plane rotations, while the right-
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most part of the map learned to represent views from the closed state. For dataset S2, the map 

also learned to represent views of distinct conformations on distinct regions: the lower left por-

tion of the map is associated with views from the open state, while the upper and rightmost parts 

are associated with views from the closed state. 

 

 

 

Figure 6.5 – The codebooks or neurons of the SOM after training on datasets S1 and S2. 

 

In order to detect clusters within the map, we can plot the U-matrix explained in Section 

3.4.3.4 (Ultsch & Siemon, 1990). The U-matrices for the trained SOMs presented in this Section 

are shown in Figure 6.6. It can be clearly observed that the inter-neuron distances are greater in 

the regions where the maps transition from representing the open conformation to the closed con-

formation, if we compare Figure 6.5 and Figure 6.6. It can also be observed that within the re-

gions corresponding to the open state (the leftmost part of the map for dataset S1, and the lower 

leftmost part of the map for dataset S2) the inter-neuron distances are higher, because views in 

S1  

S2  
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different orientations of the ―open‖ Mm-cpn are more diverse than views from the ―closed‖ Mm-

cpn. For example, the top-view of the open state has dimensions very distinct to those observed 

on a side-view of the same state (Figure 4.2). An interesting feature of these U-matrices is the 

relative continuity displayed by neurons associated with a same conformational state. This is an 

indication that the projection images from the distinct Mm-cpn conformations lie on different 

multidimensional manifolds. While the data clouds shown in Figure 6.4 indicated a similar be-

havior, they were projected on an arbitrary subspace, while the SOM allows this interpretation 

from the native feature space of the data. 

 

 

 

Figure 6.6 – The U-matrices for the SOM trained on the S1 and S2 datasets. Color code indicates average Euclidean 

distances between a codebook and its neighbors. 

 

Figure 6.5 and Figure 6.6 suggest that, if we segment the U-matrix, we may be able to 

classify the codebooks according to the conformational state they belong to. Consequently, the 

whole dataset can also be labeled according to this interpretation. This can be done by assigning a 

S1  

S2  
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data point the label of its most similar neuron on the map, called its Best Matching Unit (BMU). 

Figure 6.7 shows the labels applied to the map codebooks by a straightforward manual segmenta-

tion of the U-matrices. These labels were used later in Experiment 1 (Section 6.2.2). 

 

 

 

Figure 6.7 – The SOM trained on datasets S1 and S2 labeled by manual segmentation of the U-matrix. Red corre-

sponds to neurons associated with the open conformation, while blue corresponds to those associated with the closed 

conformation. 

 

Indeed, we can plot on the map the number of hits for each neuron, that is, for how many 

data points a given neuron is the best matching unit. Such plot is shown in Figure 6.8. We can see 

that some neurons are not the BMU for any data point. Interestingly, these are the neurons which 

have the highest average distances to their neighbors in the U-matrix, something which can be 

verified in Figure 6.6. This means that these neurons lie on low density regions of the multidi-

mensional feature space, i.e., they are just transitional neurons from one data-populated hyper-

volume to another. 

 

S1  

S2  
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Figure 6.8 – The distribution of ―hits‖ for the SOM trained on datasets S1 and S2. Color code indicates the density of 

data points associated with a given neuron on the map. 

 

Up to this point, we have been emulating what could be analyzed on a general unsuper-

vised scenario, not using the true data labels in the assessment of the SOM discrimination per-

formance. Using these labels, we can verify that the SOM indeed learns to discriminate the con-

formational states, as presented in Figure 6.9. In the case of the noiseless dataset S1, all neurons 

are associated only to data points from the same conformation, that is, they are 100% pure in 

terms of conformational representation. Interestingly, there is a set of isolated neurons associated 

with the open conformation in the middle of the region associated with the closed conformation. 

This detail was not perceived by our naïve segmentation approach of the U-matrix, because the 

inter-neuron distances between this isolated region and its surroundings are not impressively 

large (Figure 6.6). See Experiment 1 (Section 6.2.2) for the classification errors implied by this 

method. For the noisy dataset, it can be seen that neurons in transitioning regions of the map tend 

to exhibit intermediate purity. 

 

S1  

S2  
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Figure 6.9 – The number of hits on each neuron of the map discriminated by their true conformational labels, for 

datasets S1 and S2. Color code indicates the purity within the total hits on a given neuron. Colors towards blue indi-

cate that most data points associated with the neuron are from the closed state, while colors towards red indicate that 

most associated data belong to the open state. Intermediate colors indicate data points from mixed conformational 

states, that is, a purity close to 50%. Black neurons are those with zero hits. 

6.2.2 Experiment 1: Consensus by simple agreement 

In Experiment 1, we tried a simple consensus approach between the classification results 

obtained by the SOM, using the segmentation shown in the previous subsection, and the labels 

provided by unsupervised spectral clustering. Table 6.2 displays the results for dataset S1 and 

Table 6.3 displays the results for dataset S2. As expected from the observations of data clouds 

(Figure 6.3) and the U-matrices (Figure 6.6), heterogeneity classification on the noisy and misa-

ligned dataset is harder. Nevertheless, both SOM and spectral clustering could achieve a classifi-

cation accuracy (average class purity) of about  90% on dataset S2. What is more important, 

though, is that the consensus solution obtained by simple agreement between the two base solu-

tions achieved higher purities than any algorithm alone, in both cases. We acknowledge that such 

S1  

S2  
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high accuracy came at the cost of rejecting images (about 14% of dataset S2). However, it is in 

principle possible to compensate for this cost, by collecting more images in the TEM if the rejec-

tion rate becomes prohibitively high. 

 

Table 6.2 - Unsupervised classification results from Experiment 1, dataset S1. 

 Spectral SOM Consensus Ground truth 

―open‖ 8,716 9,676 8,589 10,000 

―closed‖ 11,284 10,324 10,197 10,000 

Rejected 0 0 1,214 0 

Errors in ―open‖ class 116 162 4 0 

Errors in ―closed‖ class 1,400 486 471 0 

Total error (without rejects) 1,516 648 475 0 

Rejected [%] 0 0 6.07 0 

―open‖ class purity [%] 98.67 98.33 99.95 100 

―closed‖ class purity [%] 87.59 95.29 95.38 100 

Total purity (without rejects) [%] 92.42 96.76 97.47 100 

 

Table 6.3 –Unsupervised classification results from Experiment 1, dataset S2. 

 Spectral SOM Consensus Ground truth 

―open‖ 8,957 10,460 8,296 10,000 

―closed‖ 11,043 9,540 8,879 10,000 

Rejected 0 0 2,825 0 

Errors in ―open‖ class 806 1,164 244 0 

Errors in ―closed‖ class 1,849 704 605 0 

Total error (without rejects) 2,655 1,868 849 0 

Rejected [%] 0 0 14.12 0 

―open‖ class purity [%] 91.00 88.87 97.06 100 

―closed‖ class purity [%] 83.26 92.62 93.19 100 

Total purity (without rejects) [%] 86.72 90.66 95.06 100 
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6.2.3 Experiment 2: Determining the number of clusters 

In a second experiment, we aimed to improve the consensus clustering approach, avoiding 

rejections. To this end, we employed the three heuristics proposed by Strehl & Ghosh (2002): 

CSPA, HGPA and MCLA. The set of base solutions was provided by six clustering algorithms: 

HAC, k-means, SOM and three versions of spectral clustering. The number of clusters requested 

for each algorithm and each consensus solution varied from 2 up to 10. This makes a total of 54 

base clustering solutions. In order to avoid the subjectivity of the manual segmentation of the U-

matrix, as well as avoiding the processing time required by training a large map, we used the 

SOM with the number of neurons equal to the number of requested clusters. 

First, we evaluated whether the ensemble provided more accurate solutions than the indi-

vidual algorithms. Table 6.4 shows the classification accuracy for all base solutions and consen-

sus heuristics when    . 

 

Table 6.4 – Classification accuracy of the cluster ensemble employed in Experiment 2 for the solutions containing 

only two clusters. Results are given as the percentage of matches with the true labels. The best performers are high-

lighted in bold for the individual algorithms and the consensus heuristics. 

%  HAC k-means  SOM Spectral A Spectral B Spectral C CSPA HGPA MCLA 

S1 98.57  97.43 97.56 100 100 100 100 49.90 98.57 

S2 91.79 91.82 87.86 99.98 99.98 99.99 99.98 49.66 50.03 

R1 63.25 63.46 44.44 49.99 49.98 49.98 78.41 50.00 49.92 

 

We also employed the inherent model selection method available for cluster ensembles, in 

order to determine the number of structural classes in a totally unsupervised fashion. Using the 

three consensus heuristics, we observed how the Average Normalized Mutual Information (AN-

MI) (Section 3.4.5.1.1) between the consensus and the base solutions varied with the number of 

clusters requested. These measurements are shown in Figure 6.10. We then evaluated more care-

fully the consensus solution with the highest ANMI, that is, the one which best agreed with the 

set of base clusterings. CSPA was the winning heuristic for both synthetic datasets, while MCLA 

achieved the highest ANMI for dataset R1. Interestingly, for datasets S1 and S2 the ANMI peak 

coincided with the true number of clusters (   ), which is what we would ideally expect. For 

dataset R1, the ANMI peak was found at    , closely followed by the value at    . Consen-

sus solutions with similar ANMI values like these mean that the partitionings with higher number 

of clusters simply split existing groups into smaller ones, without affecting the remaining parti-
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tions significantly. In this case, the solution with six clusters is equivalent to the one with five 

clusters, only with one of its groups subdivided into two new groups. It is also remarkable how 

the ANMI peak for dataset R1 is much lower (0.1881) than for datasets S1 and S2 (0.6791 and 

0.6319, respectively). This indicates that the set of base clusterings for dataset R1 is more di-

verse, that is, the individual algorithms came up with more ―conflicting opinions‖ about the data 

clusters than those obtained for datasets S1 and S2. Consequently this is evidence that unsuper-

vised structural classification on real cryo-EM datasets can be quite challenging.  
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Figure 6.10 – The variation of the ANMI between the consensus and the base solutions, for datasets S1, S2 and R1. 

Measurements for heuristics CSPA, HGPA and MCLA are reported. The ANMI peak for each dataset is highlighted 

by a circle. 

 

Table 6.5 shows the confusion matrices for the solutions obtained from the ANMI peak 

on each dataset. For R1, we see that, although the total number of clusters found was six, only 

two of them were densely populated. Two of them were empty (clusters 2 and 3), which is an 

issue that can happen with the MCLA algorithm when the meta-clusters compete for objects 

(Section 3.4.5.1.6). Small meta-clusters, i.e., those with only a few objects, tend to lose their ob-

jects to bigger ones. Besides these two empty clusters, we see another two that are barely popu-

lated, clusters 4 and 5. Regarding conformational classification, such small clusters could be dis-

carded without prejudice of the reconstruction procedure. This is why they were not taken into 

account when assessing the total classification accuracy on this dataset. Therefore, the solution 

obtained from the ANMI peak for dataset R1 produced only two valid clusters, which coincides 

with the true number of conformations expected, and the classification accuracy was similar to 

that obtained when we requested only two clusters (Table 6.4), although slightly lower. 
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Table 6.5 – Confusion matrices for the consensus solutions given by the ANMI peak on each dataset, Experiment 2. 

The average purity for dataset R1 was calculated discarding clusters 4 and 5 which were barely populated. 

S1 
 

cluster  

 
 

1 2 sum 

cl
as

s open  0 10,000 10,000 

closed  10,000 0 10,000 

 sum 10,000 10,000 20,000 

 purity [%]  100 100  

 average [%] 100  

 

 S2 
 

cluster  

  
 

1 2 sum 

 

cl
as

s open  9,997 3 10,000 

 closed  1 9,999 10,000 

  sum 9,998 10,002 20,000 

  purity [%]  99.99 99.97  

  average [%]  99.98  

 

R1 
 

cluster  

 
 

1 2 3 4 5 6 sum 

cl
as

s open  341 0 0 114 5 4,540 5,000 

closed  2,550 0 0 0 0 2,450 5,000 

 sum 2,891 0 0 114 5 6,990 10,000 

 purity [%]  88.20 - - 100 100 64.95  

 average* [%]  76.58  

 

Figure 6.11 shows the ensemble solution obtained by the ANMI peak for dataset R1 pro-

jected along its first two principal components, in comparison to the true classes. Clearly, it can 

be seen that the cluster corresponding to the ―closed‖ state ended up approximately split in half 

between a pure cluster and the cluster mostly associated with the ―open‖ class. 
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Figure 6.11 – Dataset R1 projected along its first two principal components (shown in details). a) True labels. Red 

corresponds to images from the ―open‖ state, blue corresponds to images from the ―closed‖ state. b) Labels assigned 

by the MCLA consensus heuristic with six clusters. Two clusters are empty and two others are barely populated, 

colored in orange. 

 

Another interesting aspect to be observed from this experiment is the behavior of ―com-

pactness‖-based algorithms, like k-means, against ―connectedness‖-based algorithms, like spec-

tral clustering. Especially for dataset S1, in which the conformational manifolds can be readily 

recognized along the principal components, we can see the different interpretation these two al-

gorithms take on the data distribution, as shown in Figure 6.12. While k-means could achieve a 

high classification accuracy, its solution is very different from that obtained by spectral cluster-

ing, which achieved perfect classification. The cluster convexity requirement intrinsically as-

sumed by k-means prevents it from detecting cluster distributions of arbitrary shape (Section 

3.4.4.2). With this example, we illustrate the importance of plotting the data distribution when 

assessing clustering performance.  

 

a) b) 
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Figure 6.12 - Dataset S1 projected along its first two principal components (shown in details), clustered in two 

groups. a) Labels provided by k-means, which have a 97.43% matching with the ground truth. b) Labels assigned by 

the unsupervised spectral clustering algorithm, which have a 100% matching with the ground truth. Red corresponds 

to images from the ―open‖ state, blue corresponds to images from the ―closed‖ state. 

 

Finally, we would like to draw attention to the performance of the HGPA consensus heu-

ristic. Table 6.4 shows it performed poorly when requesting two clusters, achieving an essentially 

random classification solution for all datasets. However, if we look at Figure 6.10, we see that 

HGPA had its ANMI peak at     for all three datasets, and such peak was very close to the 

ANMI values achieved by the CSPA and MCLA heuristics with three clusters, except in the case 

of dataset R1. We then decided to plot the HGPA solution with three clusters along the principal 

components, in order to gain insight on what happened. Figure 6.13 displays this plot for dataset 

S2. While we see that the ―closed‖ class (blue dots) was essentially correctly recognized by 

HGPA, the ―open‖ class (red and green dots) became split in two clusters, and such division 

seems to be random. Therefore, when requested to provide three clusters, HGPA provided an 

essentially correct solution for two classes, if we consider the union of both clusters correspond-

ing to the ―open‖ class. However, such correspondence may be difficult to verify in practice. This 

issue is probably caused by the hypergraph partitioning restrictions found by HGPA, as explained 

in Section 3.4.5.1.5. 

 

a) b) 
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Figure 6.13 - Dataset S2 projected along its first two principal components (shown in details). a) True labels. Red 

corresponds to images from the ―open‖ state, blue corresponds to images from the ―closed‖ state. b) Labels assigned 

by the HGPA consensus heuristic with three clusters. The third cluster is labeled green. 

6.2.4 Experiment 3: The influence of alignment quality 

The third and last experiment we conducted aimed at observing the influence of the 

alignment quality on the detection of the conformational clusters. We also assessed the robust-

ness of the ensemble solutions. The two synthetic and the four datasets were analyzed, as they 

represent different data quality conditions or different stages of the reconstruction procedure. In 

this context, we assumed that the cluster ensemble is being employed to validate the structural 

assignments obtained from a conventional reconstruction procedure. Therefore, the number of 

clusters requested in all solutions is the true number of conformations expected (   ). Six 

clustering algorithms were used to provide the base solutions: HAC, k-means, SOM, Gaussian 

Mixture Model (GMM), unsupervised spectral clustering and METIS. The consensus solutions 

were provided by four algorithms: k-means, CSPA, HGPA and MCLA. The clustering algorithms 

analyzed the datasets using 10 and 100 principal components, and in each case 10 runs of each 

algorithm were executed to account for randomized initializations. The mean and standard devia-

tion of the matches with the true labels are reported in Table 6.6 and Table 6.7, respectively. 

  

a) b) 
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Table 6.6 – Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 10 

principal components. Mean and standard deviation of the classification accuracy for 10 runs are reported. The best 

performing algorithm is highlighted in bold, both among the base solutions and among the consensus solutions. 

% HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.9825 ± 

0.0000 

0.9723 ± 

0.0000 

0.9080 ± 

0.1227 

0.9929 ± 

0.0000 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9868 ± 

0.0052 

0.9869 ± 

0.0032 

0.4990 ± 

0.0000 
0.9930 ± 

0.0035 

S2 
0.9613 ± 

0.0000 

0.9199 ± 

0.0000 

0.7938 ± 

0.1694 

0.9509 ± 

0.0001 

0.9775 ± 

0.0000 
0.9789 ± 

0.0000 

0.9715 ± 

0.0003 
0.9738 ± 

0.0041 

0.4993 ± 

0.0000 

0.9674 ± 

0.0025 

R1 
0.6576 ± 

0.0000 

0.6928 ± 

0.0005 

0.4807 ± 

0.1237 

0.7123 ± 

0.0891 

0.6500 ± 

0.0000 
0.7538 ± 

0.0000 

0.6980 ± 

0.0165 
0.7513 ± 

0.0066 

0.5000 ± 

0.0000 

0.6646 ± 

0.0111 

R2 
0.8569 ± 

0.0000 

0.8549 ± 

0.0000 

0.7682 ± 

0.1030 

0.8168 ± 

0.0779 
0.8632 ± 

0.0000 

0.7753 ± 

0.0000 
0.8666 ± 

0.0028 

0.7957 ± 

0.0191 

0.5000 ± 

0.0000 

0.8657 ± 

0.0030 

R3 
0.8599 ± 

0.0000 

0.8613 ± 

0.0000 

0.8089 ± 

0.0979 

0.8651 ± 

0.0386 
0.8688 ± 

0.0000 

0.7878 ± 

0.0000 
0.8712 ± 

0.0015 

0.7956 ± 

0.0223 

0.5000 ± 

0.0000 

0.8693 ± 

0.0033 

R4 
0.8883 ± 

0.0000 

0.8641 ± 

0.0000 

0.8569 ± 

0.0266 

0.7731 ± 

0.0901 

0.8540 ± 

0.0000 
0.9858 ± 

0.0000 

0.8725 ± 

0.0055 
0.9518 ± 

0.0252 

0.5000 ± 

0.0000 

0.8767 ± 

0.0054 

 

Table 6.7 - Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 100 

principal components. Mean and standard deviation of the classification accuracy for 10 runs are reported. The best 

performing algorithm is highlighted in bold, both among the base solutions and among the consensus solutions. In 

case there is a tie between the mean performances, the solution with the smallest dispersion is declared to be the best. 

% HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.9857 ± 

0.0000 

0.9743 ± 

0.0000 

0.9514 ± 

0.0389 

0.9411 ± 

0.1863 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9915 ± 

0.0073 

0.9972 ± 

0.0059 

0.4990 ± 

0.0000 
0.9991 ± 

0.0030 

S2 
0.9179 ± 

0.0000 

0.9180 ± 

0.0001 

0.7289 ± 

0.1750 

0.9822 ± 

0.0003 

0.9991 ± 

0.0000 
0.9995 ± 

0.0000 

0.9841 ± 

0.0003 

0.9841 ± 

0.0006 

0.4993 ± 

0.0000 

0.9589 ± 

0.0069 

R1 
0.6314 ± 

0.0000 

0.6821 ± 

0.0020 

0.5472 ± 

0.1421 
0.7425 ± 

0.0899 

0.4419 ± 

0.0000 

0.6490 ± 

0.0000 

0.6926 ± 

0.0089 
0.7233 ± 

0.0231 

0.5000 ± 

0.0000 

0.6334 ± 

0.0647 

R2 
0.8534 ± 

0.0000 
0.8613 ± 

0.0001 

0.8145 ± 

0.0306 

0.6411 ± 

0.2079 

0.8427 ± 

0.0000 

0.7713 ± 

0.0000 

0.8617 ± 

0.0015 

0.7860 ± 

0.0057 

0.5000 ± 

0.0000 
0.8643 ± 

0.0017 

R3 
0.8613 ± 

0.0000 

0.8618 ± 

0.0000 

0.7609 ± 

0.1761 

0.6255 ± 

0.2191 

0.8518 ± 

0.0000 
0.8982 ± 

0.0000 

0.8673 ± 

0.0014 

0.8633 ± 

0.0344 

0.5000 ± 

0.0000 
0.8678 ± 

0.0041 

R4 
0.8795 ± 

0.0000 

0.8637 ± 

0.0000 

0.8333 ± 

0.0694 

0.7360 ± 

0.1081 

0.8612 ± 

0.0000 
0.9837 ± 

0.0000 

0.8698 ± 

0.0025 
0.9396 ± 

0.0455 

0.5000 ± 

0.0000 

0.8748 ± 

0.0030 

 

However, the interpretation of unsupervised classification performance by means of the 

fraction of matches with the ground truth can be misleading, due to the cluster correspondence 

problem (Section 3.4.3). Even if the canonical labeling convention is used (Section 3.4.2.1), the 

solutions being compared are still subject to the assignment of the first object in the list. The label 

of the first object is always ―1‖, but the remaining objects belonging to cluster ―1‖ may be very 

different in solutions    and   . That is, cluster ―1‖ in    may not correspond to cluster ―1‖ in 

  . For this reason, we also evaluated the performance of the algorithms in this experiment using 

label-independent clustering similarity measures. 
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Table 6.8 and Table 6.9 display the performance using the Normalized Mutual Infor-

mation (NMI) (Section 3.4.5.1.2.2) for 10 and 100 principal components, respectively. The 

equivalent results using the Adjusted Rand Index (ARI) (Section 3.4.5.1.2.1) are contained in 

Table 6.10 (10 principal components) and Table 6.11 (100 principal components). 

 

Table 6.8 - Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 10 

principal components. Mean and standard deviation of the Normalized Mutual Information with the ground truth for 

10 runs are reported. The best performing algorithm is highlighted in bold, both among the base solutions and among 

the consensus solutions. 

NMI HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.8901 ± 

0.0000 

0.8318 ± 

0.0001 

0.6581 ± 

0.3016 

0.9462 ± 

0.0000 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9133 ± 

0.0283 

0.9128 ± 

0.0176 

0.0000 ± 

0.0000 
0.9483 ± 

0.0237 

S2 
0.7865 ± 

0.0000 

0.5996 ± 

0.0000 

0.3659 ± 

0.1687 

0.7238 ± 

0.0007 

0.8509 ± 

0.0000 
0.8595 ± 

0.0000 

0.8231 ± 

0.0013 
0.8314 ± 

0.0219 

0.0000 ± 

0.0000 

0.8120 ± 

0.0096 

R1 
0.0870 ± 

0.0000 

0.1184 ± 

0.0005 

0.0415 ± 

0.0276 

0.1580 ± 

0.0665 

0.0819 ± 

0.0000 
0.1948 ± 

0.0000 

0.1244 ± 

0.0175 
0.1909 ± 

0.0105 

0.0000 ± 

0.0000 

0.0932 ± 

0.0090 

R2 
0.4362 ± 

0.0000 

0.4326 ± 

0.0000 

0.2593 ± 

0.1315 

0.3733 ± 

0.1864 
0.5024 ± 

0.0000 

0.2313 ± 

0.0000 
0.4842 ± 

0.0175 

0.2712 ± 

0.0409 

0.0000 ± 

0.0000 

0.4781 ± 

0.0162 

R3 
0.4566 ± 

0.0000 

0.4518 ± 

0.0001 

0.3385 ± 

0.1194 

0.4911 ± 

0.1066 
0.5139 ± 

0.0000 

0.2543 ± 

0.0000 
0.4996 ± 

0.0107 

0.2715 ± 

0.0496 

0.0000 ± 

0.0000 

0.4931 ± 

0.0133 

R4 
0.5645 ± 

0.0000 

0.5007 ± 

0.0000 

0.4418 ± 

0.0738 

0.2875 ± 

0.2449 

0.5059 ± 

0.0000 
0.8925 ± 

0.0000 

0.5379 ± 

0.0108 
0.7303 ± 

0.1069 

0.0000 ± 

0.0000 

0.5451 ± 

0.0109 

 

Table 6.9 - Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 100 

principal components. Mean and standard deviation of the Normalized Mutual Information with the ground truth for 

10 runs are reported. The best performing algorithm is highlighted in bold, both among the base solutions and among 

the consensus solutions. 

NMI HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.9060 ± 

0.0000 

0.8527 ± 

0.0000 

0.7540 ± 

0.1564 

0.9023 ± 

0.3089 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9442 ± 

0.0480 

0.9815 ± 

0.0390 

0.0000 ± 

0.0000 
0.9932 ± 

0.0214 

S2 
0.6608 ± 

0.0000 

0.5930 ± 

0.0004 

0.2608 ± 

0.2282 

0.8816 ± 

0.0016 

0.9898 ± 

0.0000 
0.9941 ± 

0.0000 

0.8952 ± 

0.0013 

0.8939 ± 

0.0044 

0.0000 ± 

0.0000 

0.7918 ± 

0.0246 

R1 
0.0662 ± 

0.0000 

0.1048 ± 

0.0019 

0.0602 ± 

0.0464 
0.2098 ± 

0.0840 

0.1011 ± 

0.0000 

0.0650 ± 

0.0000 

0.1149 ± 

0.0098 
0.1508 ± 

0.0320 

0.0000 ± 

0.0000 

0.0811 ± 

0.0060 

R2 
0.4644 ± 

0.0000 

0.4537 ± 

0.0002 

0.3176 ± 

0.0631 

0.2286 ± 

0.1549 
0.4735 ± 

0.0000 

0.2243 ± 

0.0000 

0.4617 ± 

0.0038 

0.2511 ± 

0.0108 

0.0000 ± 

0.0000 
0.4888 ± 

0.0081 

R3 
0.4485 ± 

0.0000 

0.4559 ± 

0.0002 

0.3073 ± 

0.0998 

0.2340 ± 

0.1786 

0.4885 ± 

0.0000 
0.5253 ± 

0.0000 

0.4814 ± 

0.0113 

0.4308 ± 

0.0894 

0.0000 ± 

0.0000 
0.4948 ± 

0.0109 

R4 
0.5344 ± 

0.0000 

0.5006 ± 

0.0000 

0.3978 ± 

0.1263 

0.2130 ± 

0.1821 

0.5136 ± 

0.0000 
0.8799 ± 

0.0000 

0.5265 ± 

0.0048 
0.6888 ± 

0.1454 

0.0000 ± 

0.0000 

0.5349 ± 

0.0055 
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Table 6.10 - Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 10 

principal components. Mean and standard deviation of the Adjusted Rand Index with the ground truth for 10 runs are 

reported. The best performing algorithm is highlighted in bold, both among the base solutions and among the con-

sensus solutions. 

ARI HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.9312 ± 

0.0000 

0.8922 ± 

0.0001 

0.7199 ± 

0.3130 

0.9718 ± 

0.0000 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9481 ± 

0.0204 

0.9483 ± 

0.0124 

0.0000 ± 

0.0000 
0.9722 ± 

0.0140 

S2 
0.8512 ± 

0.0000 

0.7051 ± 

0.0000 

0.4487 ± 

0.1933 

0.8132 ± 

0.0003 

0.9118 ± 

0.0000 
0.9172 ± 

0.0000 

0.8891 ± 

0.0011 
0.8979 ± 

0.0156 

0.0000 ± 

0.0000 

0.8739 ± 

0.0092 

R1 
0.0993 ± 

0.0000 

0.1486 ± 

0.0008 

0.0565 ± 

0.0375 

0.2087 ± 

0.0879 

0.0899 ± 

0.0000 
0.2576 ± 

0.0000 

0.1577 ± 

0.0266 
0.2526 ± 

0.0132 

-0.0001 

± 0.0000 

0.1087 ± 

0.0148 

R2 
0.5095 ± 

0.0000 

0.5038 ± 

0.0000 

0.3259 ± 

0.1628 

0.4234 ± 

0.1908 
0.5276 ± 

0.0000 

0.3031 ± 

0.0000 
0.5376 ± 

0.0083 

0.3511 ± 

0.0481 

-0.0001 

± 0.0000 

0.5349 ± 

0.0087 

R3 
0.5181 ± 

0.0000 

0.5221 ± 

0.0001 

0.4161 ± 

0.1461 

0.5385 ± 

0.1119 
0.5440 ± 

0.0000 

0.3312 ± 

0.0000 
0.5510 ± 

0.0044 

0.3513 ± 

0.0576 

-0.0001 

± 0.0000 

0.5455 ± 

0.0097 

R4 
0.6031 ± 

0.0000 

0.5302 ± 

0.0000 

0.5121 ± 

0.0759 

0.3274 ± 

0.2394 

0.5012 ± 

0.0000 
0.9440 ± 

0.0000 

0.5550 ± 

0.0165 
0.8188 ± 

0.0900 

-0.0001 

± 0.0000 

0.5676 ± 

0.0162 

 

Table 6.11 - Performance of the cluster ensemble from Experiment 3 on the six analyzed datasets, using the first 100 

principal components. Mean and standard deviation of the Adjusted Rand Index with the ground truth for 10 runs are 

reported. The best performing algorithm is highlighted in bold, both among the base solutions and among the con-

sensus solutions. 

ARI HAC k-means  SOM GMM Spectral  METIS k-means  CSPA HGPA MCLA 

S1 
0.9436 ± 

0.0000 

0.8998 ± 

0.0000 

0.8206 ± 

0.1325 

0.9032 ± 

0.3062 
1.0000 ± 

0.0000 

1.0000 ± 

0.0000 

0.9666 ± 

0.0288 

0.9890 ± 

0.0233 

0.0000 ± 

0.0000 
0.9963 ± 

0.0118 

S2 
0.6984 ± 

0.0000 

0.6990 ± 

0.0004 

0.3198 ± 

0.2745 

0.9300 ± 

0.0012 

0.9962 ± 

0.0000 
0.9980 ± 

0.0000 

0.9375 ± 

0.0010 

0.9373 ± 

0.0024 

0.0000 ± 

0.0000 

0.8425 ± 

0.0253 

R1 
0.0690 ± 

0.0000 

0.1326 ± 

0.0029 

0.0815 ± 

0.0623 
0.2643 ± 

0.0978 

0.0135 ± 

0.0000 

0.0887 ± 

0.0000 

0.1486 ± 

0.0138 
0.2013 ± 

0.0412 

-0.0001 

± 0.0000 

0.0861 ± 

0.0274 

R2 
0.4995 ± 

0.0000 
0.5221 ± 

0.0002 

0.3990 ± 

0.0717 

0.2352 ± 

0.1484 

0.4697 ± 

0.0000 

0.2943 ± 

0.0000 

0.5233 ± 

0.0043 

0.3273 ± 

0.0132 

-0.0001 

± 0.0000 
0.5307 ± 

0.0049 

R3 
0.5221 ± 

0.0000 

0.5236 ± 

0.0001 

0.3839 ± 

0.1171 

0.2357 ± 

0.1795 

0.4950 ± 

0.0000 
0.6342 ± 

0.0000 

0.5397 ± 

0.0041 

0.5321 ± 

0.0978 

-0.0001 

± 0.0000 
0.5412 ± 

0.0119 

R4 
0.5760 ± 

0.0000 

0.5291 ± 

0.0000 

0.4615 ± 

0.1398 

0.2647 ± 

0.1983 

0.5218 ± 

0.0000 
0.9359 ± 

0.0000 

0.5470 ± 

0.0075 
0.7803 ± 

0.1426 

-0.0001 

± 0.0000 

0.5617 ± 

0.0088 

 

Some interesting observations can be made regarding the different cluster similarity 

measures. Firstly, it can be seen that the k-means algorithm achieved the best individual perfor-

mance for dataset R2 with 100 principal components according to the percentage of label match-

es with the ground truth (Table 6.7) and also according to the ARI (Table 6.11), but, according to 

the NMI measure (Table 6.9), the best algorithm for this dataset was spectral clustering. Thus, it 

can be seen that the cluster correspondence problem is present in the analyses of Table 6.6 and 

Table 6.7. Also, while the k-means and CSPA consensus solutions had the same average perfor-

mance for dataset S2 with 100 components in Table 6.7, according to NMI (Table 6.9) and to 
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ARI (Table 6.11) the k-means average performance was slightly higher than that of CSPA. We 

see also that the performance of the HGPA consensus heuristic was practically zero according to 

NMI (Table 6.8 and Table 6.9) and to ARI (Table 6.10 and Table 6.11), but by the fraction of 

matches with the ground truth (Table 6.6 and Table 6.7) it had about 50% accuracy. This means 

that the results of HGPA for solutions with two clusters are essentially random, an issue we had 

already observed in Experiment 2 (Section 6.2.3). Still regarding the performance of HGPA, we 

draw attention to some close-to-zero negative ARI values in Table 6.10 and in Table 6.11, which 

are meaningless for practical effects (Section 3.4.5.1.2.1). Despite avoiding the cluster corre-

spondence problem, a difficulty in interpreting clustering similarity with NMI and ARI is their 

non-linear behavior in relation to the fraction of matching labels between two solutions, as shown 

in Figure 6.14. This plot may aid the interpretation of Tables Table 6.6 through Table 6.11. In 

this figure, a percentage of zero matches between two clustering solutions    and   means that 

the cluster labels are inverted between them. For NMI and ARI, both solutions are identical. For 

simplicity, let’s assume that    is a fixed solution in which the objects are equally distributed in 

two clusters. As the objects have their assignments changed to the other cluster in solution   , the 

fraction of matches increases up to 50%, which indicates that all of the objects belong to the same 

cluster in   . By changing the assignments of the second cluster in   , the percentage of matches 

keeps increasing up to 100%, when    becomes identical to    in terms of label convention. 
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Figure 6.14 – Comparison of cluster similarity indices NMI (blue continuous line) and ARI (green dashed line) 

against the percentage of matching labels between two solutions containing two clusters. 

 

Apart from cluster similarity indices, the central aspects of Experiment 3 can be better as-

sessed by plotting the classification performances. To this end, we chose to plot the fraction of 

matching labels between each solution obtained and the ground truth, due to its ease of interpreta-

tion. However, as we want to address relative performance and robustness, NMI and ARI would 

also serve. Figure 6.15 shows the performance plots for each dataset using 10 principal compo-

nents. Figure 6.16 is the equivalent for 100 principal components. 
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Figure 6.15 – Plots of the average classification accuracy on the six datasets using 10 principal components in Exper-

iment 3 (Table 6.6). Base solutions are shown in blue and consensus solutions are shown in green. Error bars corre-

spond to ± 1 standard deviation from 10 runs of each algorithm. 
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Figure 6.16 - Plots of the average classification accuracy on the six datasets using 100 principal components in Ex-

periment 3 (Table 6.7). Base solutions are shown in blue and consensus solutions are shown in green. Error bars 

correspond to ± 1 standard deviation from 10 runs of each algorithm. 
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which requires a more elaborate approach when specifying the number of clusters (see Experi-

ment 2, Figure 6.13) and for this reason will be ignored in this analysis. Also, the best individual 

performances were not always provided by the same algorithm, even though graph partitioning 

approaches seem to be better suited to this task. Therefore, the ensemble approach is justified by 

providing a solution robust to variations across particular choices of clustering algorithms. This 

can also be supported by the additional observation that the dispersion of consensus performances 

is much smaller than that of certain individual solutions, most notably those provided by the 

SOM and the GMM algorithms, which have many parameters and are highly dependent on their 

initializations. Perhaps surprisingly, the simple consensus approach using the k-means algorithm 

yielded solutions comparable to those from more sophisticated heuristics like CSPA and MCLA 

on our datasets. Even though we cannot determine an absolute winner among these three consen-

sus approaches, we would recommend the use of k-means or MCLA because of their linear com-

putational complexity, in contrast to the quadratic complexity of CSPA (see Section 3.4.5.1.3). 

Also, the difference in performance between using 10 or 100 principal components is negligible, 

even though only a small fraction of a dataset’s variance is concentrated on the first 10 principal 

components (Table 6.1). There are two possible and complementary explanations for this. The 

first one is related to the curse of dimensionality (Section 3.3): although 100 principal compo-

nents provide a better statistical representation of the data, it renders the search space exponen-

tially larger when finding an optimal clustering solution. The other one is related to the own na-

ture of the data investigated: as they have extremely low SNRs (except for dataset S1), practically 

all the relevant information is concentrated on the first principal components, while the remainder 

of them mostly describe random noise, as previously observed in Section 6.1. Therefore, the in-

clusion of more components does not provide useful information about the data clusters, and their 

noisy nature may even confuse the clustering algorithms. In addition to common practices in sin-

gle particle analysis (Frank, 2006; van Heel et al., 2000), we observe that no more than 10 princi-

pal components should be enough to obtain a reasonably good clustering on most cryo-EM da-

tasets. 

Regarding the real datasets, it can be seen from Figure 6.15 and Figure 6.16 that the im-

provement on the alignment quality clearly allows more accurate unsupervised classification. 

There is a remarkable improvement in the classification of dataset R2, which was translationally 

aligned with re-projections of 3D models, in relation to dataset R1, which was just centered 
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against the dataset’s average image. Then there is a slight overall improvement in dataset R3 

when compared to dataset R2; dataset R3 had its principal components determined with artificial-

ly introduced rotated versions of the images, emulating a situation in which more data is availa-

ble. Finally, when complete alignment information (translation and rotation) becomes available, 

as in dataset R4, clustering algorithms may achieve very high classification performance, with an 

outstanding 98.58% accuracy obtained by the METIS algorithm using 10 principal components. 

This result is even more impressive if we see that the conformational clusters are not separable 

when observed along the first principal components, as shown in Figure 6.17. Nevertheless, it is 

important to acknowledge that all classification results are biased by the translational and/or rota-

tional alignment steps performed previously. Considering the results obtained by spectral cluster-

ing in Experiments 2 and 3, it can also be seen that graph partitioning algorithms are powerful 

tools in recognizing conformational heterogeneity in cryo-EM datasets. 

 

 

Figure 6.17 - Dataset R4 projected along selected principal components (shown in details), clustered in two groups 

by METIS using a similarity matrix constructed from 10 principal components. a) Plot along the first and second 

principal components. b) Plot along the second and third principal components. Red points correspond to images 

from the ―open‖ state, blue points correspond to images from the ―closed‖ state. This clustering solution has 98.58% 

matching in relation to the true conformational labels. 

 

Finally, we would like to demonstrate the use of the inherent clustering confidence meas-

ure provided by the MCLA heuristic. The competitive stage of this heuristic, in which the meta-

clusters dispute objects, allows the observation of how ―strong‖ the label assignment is for a giv-

en object. If this object appears in a meta-cluster much more often than in the others, the confi-

dence of this assignment will be high; if it appears with approximately the same frequency in two 

or more meta-clusters, the confidence will be low. As an example, we illustrate the confidence of 

a) b) 
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the assignments made by MCLA in dataset R4, using 10 principal components, shown in Figure 

6.18. From these plots, we see that a small portion (about 3%) of the data has a very low confi-

dence on their cluster assignments (data points colored towards red). Therefore, in a single parti-

cle reconstruction procedure, the user could discard these data as they probably represent low 

quality images. Interestingly, the data with lowest confidence estimates lie on regions of the mul-

tidimensional space that overlap the two conformational manifolds, depending on the direction of 

observation. In other words, these are data for which the base clusterings cannot agree unani-

mously on their labels. 

 

 

Figure 6.18 – The cluster assignment confidence from one run of MCLA on dataset R4 using 10 principal compo-

nents. The dataset is shown projected along selected principal components (shown in details). The confidence is 

normalized within each cluster such that 1 is the highest and 0 is the lowest. a) Plot along the first and second princi-

pal components. b) Plot along the second and third principal components. 

  

a) b) 
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7. Conclusions 

This dissertation presented the problem of structural heterogeneity in the study of macro-

molecular assemblies by transmission electron microscopy. More specifically, we aimed at sepa-

rating the electron microscopy data according to the structural conformation represented in the 

image by means of unsupervised classification algorithms. 

In the last decades, the transmission electron microscope has become an invaluable in-

strument in structural biology. In comparison to the other well established techniques in this field, 

namely X-ray crystallography and nuclear magnetic resonance, transmission electron microscopy 

does not require the crystallization of the particles, and allows the observation of relatively large 

structures. This makes it suitable for investigating the mechanisms of large molecular assemblies, 

like protein complexes and other cellular machinery, such as the ribosome.  

In order to prevent damage by the radiation beam, the dose has to be lowered and the 

samples must be embedded in negative stain or vitreous ice. The latter method is commonly re-

ferred to as electron cryo-microscopy, or cryo-EM, and is the preferred sample preservation 

method for achieving high resolution 3D reconstructions, in the order of only a few Angstroms. A 

three-dimensional reconstruction of the structure density map can be obtained by iteratively esti-

mating the projection direction, called Euler angles, for each of the collected images. This pro-

cess is referred to as single particle reconstruction. 

However, as the signal-to-noise ratio of the images is low, large datasets are required in 

order to obtain reasonable reconstructions, typically containing tens of thousands of images. Usu-

ally, projection images containing similar views of the structure are averaged in order to improve 

the SNR, in a process called 2D classification. 

As molecular assemblies are flexible structures, they may assume different conformations 

while performing their function in the organisms. Such structural heterogeneity may prevent the 

reconstruction of reliable models by cryo-EM. Therefore, the set of images must be classified 

according to the structural configuration of the particle projected, in a process called 3D classifi-

cation. 
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Several methods have been proposed to this end, using multivariate statistical analysis, 

maximum-likelihood and Bayesian statistical modeling, graph representations, and, more recent-

ly, manifold learning approaches. However, all of the currently available 3D classification meth-

ods involve the iterative reconstruction of the heterogeneous models to some degree. 

Based on the assumption that projection data from distinct conformations lie on different 

manifolds in a multidimensional space, we used unsupervised classification techniques to detect 

such manifolds or ―conformational clusters‖ without the need of performing 3D reconstructions. 

Such approach may be useful for initial partitioning of the datasets, as shown in Figure 1.1, or to 

validate conformational assignments obtained by conventional reconstruction procedures. 

Unsupervised learning is an area that is heavily grounded on the fields of statistics and 

machine learning, and has provided useful tools to many other knowledge domains. Dimensional-

ity reduction techniques may reduce the computational efforts of unsupervised learning tasks, 

besides supporting exploratory data visualization. We have mainly used Principal Component 

Analysis, due to its longtime demonstrated suitability to cryo-EM datasets. 

Many unsupervised algorithms have been proposed in the machine learning community, 

and we have presented and employed six of them: k-means clustering, hierarchical clustering, 

Gaussian mixture models, self-organizing maps, spectral clustering and METIS. These algo-

rithms make different assumptions on the distribution of the data clusters. For example, the first 

four algorithms assume that data clusters are compact, although with different nuances among 

them, while spectral clustering and METIS employ graph-based representations of the data in 

order to partition clusters of arbitrary shape. Also, cluster assignments may be overlapping or not, 

and data points may have different cluster membership degrees, as is the case when clustering is 

performed by a mixture of Gaussian distributions. 

In order to obtain a more accurate classification solution in cryo-EM datasets, we em-

ployed an ensemble of clustering solutions. Cluster ensembles tend to provide more robustness 

and higher accuracy than individual clustering algorithms. They are also useful to integrate and 

reuse distributed knowledge about the data labels. In general, a consensus solution is obtained by 

maximizing an agreement measure throughout the set of base clusterings. 

We have used three efficient heuristics to obtain consensus among the results from the in-

dividual algorithms mentioned above: CSPA, HGPA and MCLA. These heuristics transform the 

cluster ensemble problem into a (hyper)graph partitioning problem. This representation has the 
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advantages of avoiding the cluster correspondence problem, as well as not requiring access to the 

original data features. Additionally, we have used the k-means algorithm applied directly to the 

set of base labels in order to obtain a single, consolidated clustering. 

In our experiments, we used synthetic and real datasets containing projection images of 

the Mm-cpn protein in its ―open‖ and ―closed‖ conformations. The two synthetic datasets con-

tained 20,000 projection images,         pixels each, while the four real datasets contained 

10,000 projection images,         pixels each. The distribution of conformational states with-

in all datasets was 50%-50%. One of the synthetic datasets (S1) was noiseless, while the other 

one (S2) had Gaussian noise added in order to obtain a signal-to-noise ratio of 0.10. This dataset 

was also randomly misaligned around the center of the image. The four real datasets differ in the 

quality of the image alignment, emulating different experimental conditions. Dataset R1 was just 

centered in relation to the average of the images. Dataset R2 was centered by comparison against 

re-projections of Mm-cpn 3D models in the two conformations. Dataset R3 is similar to R2, but 

its principal components were calculated on an extended dataset with artificially introduced rotat-

ed copies of each image. This procedure aims to emulate a situation in which more data is availa-

ble. The last dataset, R4, was aligned both translationally and rotationally by comparison against 

re-projections of Mm-cpn 3D models in the two conformations. 

All datasets were compressed to 100 dimensions using PCA. Visual inspection of the 

eigenimages (Figure 6.1) shows that the improvement on alignment quality makes the first com-

ponents more informative with respect to the true underlying signal. This can be assessed by ob-

serving structural features of Mm-cpn on these components, including features related to its D8 

symmetry. Also, the eigenvalue spectrum of the datasets (Figure 6.2) indicate that most of the 

relevant variance is concentrated on the first few principal components, while the rest of them are 

mostly associated with random noise. 

By plotting the projection coordinates of the images onto two or three principal compo-

nents, we can gain insight on the data distribution in the higher-dimensional feature space. Nota-

bly, by applying the structural labels on these plots (Figures 6.3 and 6.4), it can be clearly seen 

that projection data from the ―open‖ and ―closed‖ states occupy different manifolds. As expected, 

the more noisy and misaligned the datasets, the more difficult becomes the recognition of such 

manifolds. 
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Initially, we used a relatively large self-organizing map with       neuron units to ex-

plore the synthetic datasets. Figures 6.5 and 6.6 indicate that the SOM was able to recognize the 

conformational separation within the dataset in a totally unsupervised fashion, even for dataset 

S2. Such separation was later confirmed by using the true data labels, as shown in Figure 6.9. 

In our first experiment using consensus clustering, we confirmed that higher accuracy 

could be achieved in determining the structural labels for the synthetic datasets. We used a simple 

agreement method to obtain a consensus between the previously trained SOMs and spectral clus-

tering. Whenever the two algorithms disagreed, the data point was discarded. Discarding low-

quality images is a common procedure in single particle reconstructions, and, if needed, more 

images can be collected to compensate for data prunning. However, such consensus method is 

naïve and only suitable to a small number of individual solutions, as disagreements tend to be 

more frequent with the inclusion of more base clusterings.  

In our second ensemble experiment, we used the CSPA, HGPA and MCLA heuristics to 

obtain a consensus between HAC, k-means, SOM and three versions of spectral clustering. The 

number of clusters requested was changed from 2 up to 10, making a total of 54 base solutions. 

Datasets S1, S2 and R1 were analyzed based on their first 100 principal components. We con-

firmed that the consensus heuristics can provide more accurate solutions than individual algo-

rithms, most notably for the real dataset. 

Also, we aimed to determine the number of clusters automatically by choosing the con-

sensus solution with highest Average Normalized Mutual Information with the base clusterings. 

The relatively low ANMI peak for the real dataset indicates that individual algorithms came up 

with very diverse opinions about the data clustering, in comparison to datasets S1 and S2. While 

the ensemble could correctly determine the number of conformational clusters for the synthetic 

datasets, it came up with six clusters for dataset R1, provided by MCLA. Two out of these six 

clusters were empty, and another two were barely populated. In a practical scenario, these small 

clusters could be discarded without prejudice to the reconstruction procedure. The two remaining 

densely populated clusters then corresponded to the true clusters with relatively high accuracy 

(76.58%). This result is evidence that cluster ensembles provide a valuable tool for model selec-

tion in unsupervised classification of cryo-EM data. We observed that the HGPA heuristic failed 

to provide meaningful solutions with two clusters, but it could correctly recognize the two con-

formational clusters using a three-way partition (Figure 6.13). Therefore, while we cannot under-
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estimate the quality of the HGPA heuristic, the analysis of its performance is more intrincate than 

for the other approaches on our datasets. 

Our third and last experiment assumed that the true number of clusters was known, as in a 

validation scenario. In this context, the user wants to verify whether the structural assignments 

performed by conventional reconstruction methods are consistent with the data distribution. We 

then assessed the stability of individual and ensemble algorithms, by performing 10 runs for each 

of them, and also whether the quality of the alignment among the real datasets implied higher 

classification accuracy. Clustering was performed using the first 10 and the first 100 principal 

components for all datasets. We used six diverse individual algorithms: HAC, k-means, SOM, 

Gaussian Mixture Model, spectral clustering and METIS. The consensus solutions were provided 

by k-means, CSPA, HGPA and MCLA. We compared the labels provided by the algorithms and 

consensus solutions against the ground truth using three different cluster similarity indices: the 

percentage of matches between solutions, the Normalized Mutual Information (NMI) and the 

Adjusted Rand Index (ARI). While the percentage of matches has intuitive appeal, it is subject to 

the cluster correspondence problem. On the other hand, NMI and ARI have non-linear behavior 

(Figure 6.14), rendering difficult interpretation. 

From the observation of Figures 6.15 and 6.16, we see that the difference in performance 

for 10 or 100 principal components is negligible. This is evidence that the relevant dataset infor-

mation is concentrated on the first few components, and they should be enough to achieve high 

unsupervised classification accuracy. Regarding the consensus solutions, we see that the ensem-

ble always provides solutions of comparable quality, if not better, than the best performing indi-

vidual solutions. Also, consensus solutions are more stable than certain individual algorithms, 

notably those highly dependent on the initialization of parameters like the SOM and the GMM. In 

all cases, k-means, CSPA and MCLA provided consensus solutions of comparable quality. 

Therefore, an ensemble is a safer approach than resorting to any specific unsupervised algorithm 

individually. However, we would recommend avoiding the CSPA heuristic due to its quadratic 

computational complexity in time and memory. 

Relatively high accuracy (almost 80%) could be achieved even for our most challenging 

dataset, R1. Nevertheless, we see that the improvement on the alignment quality makes the con-

formational clouds more distinguishable to clustering algorithms. Therefore, we see that align-

ment is a crucial step for the success of unsupervised conformational classification. 
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We would like to draw special attention to the METIS algorithm, as it could achieve 

98.58% accuracy on a real dataset (R4), standing apart from every other individual solution. This 

is probably a consequence of its ability to address both global and local aspects of the dataset 

distribution when represented as a similarity graph. Finally, we have showed that the MCLA pro-

vides an inherent cluster assignment confidence level that can be useful to exclude unreliable data 

in the context of single particle reconstructions (Figure 6.18). 

7.1 Future research directions 

We hope that the investigation here presented leads to improvements in solving 3D mod-

els from heterogeneous cryo-EM samples. One thing to be addressed is certainly whether the 

cluster ensemble approach can be useful in ab initio structure determination. Such question can 

only be answered by performing 3D reconstructions using the partitions provided by the cluster 

ensemble and comparing them to conventional heterogeneous reconstruction approaches. We 

could not perform this kind of experiment due to time constraints. We also acknowledge that 

Mm-cpn may be a relatively easy biological system for unsupervised classification, in face of its 

rather striking conformational differences between the ―open‖ and ―closed‖ states. It is expected 

that such low-frequency variations will be readily reflected in the distribution of the data in the 

feature space. Nevertheless, it served well the purpose of demonstrating that unsupervised con-

formational classification is feasible on real cryo-EM datasets. Therefore, we think that analyzing 

datasets with more subtle, high-frequency conformational oscillations, by cluster ensembles is a 

topic worth investigating. 

We would like also to draw attention to the fact that the ensemble framework could be ex-

tended to take into account not only different clustering algorithms, but also different perspec-

tives on the datasets (feature-distributed clustering). For example, selected areas of interest within 

the images could be classified separately, as well as different bands of the frequency spectrum. 

This latter approach is equivalent to clustering data using different filtering parameters. Classifi-

cation in conjugate spaces (co-classification), as proposed by Borland & van Heel (1990) still 

remain to be properly explored and could be useful to detect conformational changes, especially 

when combined with modern co-clustering approaches (Busygin, Prokopyev & Pardalos, 2008). 
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Additionally, invariant features could be extracted from the images in order to investigate wheth-

er they contribute to the observation of conformational manifolds. 

Finally, from the results obtained with spectral clustering and METIS, we point that graph 

partitioning algorithms are very promising in detecting conformational clusters without any as-

sumption on their shapes, and likely represent computationally cheaper alternatives to conven-

tional heterogeneous reconstruction procedures or to intrincated manifold learning algorithms. 
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