
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e da Computação

Euler Rodrigues de Sousa Faria

A system able to forecast and explain queue
events on open pit mines

Um sistema capaz de prever e explicar eventos de fila
em minas a céu aberto

Campinas

2019

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e da Computação

Euler Rodrigues de Sousa Faria

A system able to forecast and explain queue events on
open pit mines

Um sistema capaz de prever e explicar eventos de fila

em minas a céu aberto

Dissertation presented to the School of Electrical and Com-
puter Engineering at University of Campinas in partial fulfil-
ment of the requirements for the degree of Master of Electrical
Engineering, in the area of Computing Engineering.

Dissertação apresentada à Faculdade de Engenharia Elétrica
e de Computação o da Universidade Estadual de Campinas
como parte dos requisitos exigidos para a obtençãoo do tíulo
de Mestre em Engenharia Elétrica, na área de Engenharia da
Computação

Supervisor: Prof. Dr. Fernando José Von Zuben

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Euler Rodrigues de Sousa
Faria, orientada pelo Prof. Dr.
Fernando José Von Zuben

Campinas
2019

COMISSÃO JULGADORA - DISSERTAÇÃO DE MESTRADO

Candidato: Euler Rodrigues de Sousa Faria RA: 209440

Data da Defesa: 08 de Março de 2019

Título da Tese: "A system able to forecast and explain queue events on open pit mines”

Prof. Dr. Fernando José Von Zuben (Presidente, FEEC/UNICAMP)

Prof. Dr. Bruno Henrique Groenner Barbosa (DEG/UFLA)

Prof. Dr. Mateus Giesbrecht (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora, encontra-
se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de PósGraduação da
Faculdade de Engenharia Elétrica e de Computação.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Rose Meire da Silva - CRB 8/5974

 Faria, Euler Rodrigues de Sousa, 1993-
 F225s FarA system able to forecast and explain queue events on open pit mines /

Euler Rodrigues de Sousa Faria. – Campinas, SP : [s.n.], 2019.

 FarOrientador: Fernando José Von Zuben.
 FarDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia Elétrica e de Computação.

 Far1. Séries temporais. 2. Aprendizado de máquina. I. Von Zuben, Fernando

José, 1968-. II. Universidade Estadual de Campinas. Faculdade de Engenharia
Elétrica e de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Um sistema capaz de prever e explicar eventos de fila em minas a
céu aberto
Palavras-chave em inglês:
Time Series
Machine Learning
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Fernando José Von Zuben [Orientador]
Bruno Henrique Groenner Barbosa
Mateus Giesbrecht
Data de defesa: 08-03-2019
Programa de Pós-Graduação: Engenharia Elétrica

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9094-0060
- Currículo Lattes do autor: http://lattes.cnpq.br/1522820862003933

Powered by TCPDF (www.tcpdf.org)

Acknowledgements

First and undoubtedly I would like to give thanks for my mother Lucia who
raise me up by herself against all of the financial difficulties and challenges that a mom
can face by creating two children as a single mother. This victory is also yours.

Second for my brother Edgar Jr. who was always supportive to my dreams
and stood by my side on the difficult moments of this life.

Third to my advisor Fernando Von Zuben, for the opportunity to trace this
journey, for all the patience and knowledge taught throughout lessons and several meetings
that he gladly arranged on his busy schedule, and the many contributions made for this
thesis. I also would like to give thanks to Mateus Giesbrecht for the various advice about
carreer, life and technical aspects of problems related to time series.

Moreover I would like to give thanks for Daniel Scalli Fonseca, my manager
at IBM, who as soon as I was accepted in the M.Sc. program he trusted me to work
in his team and keep studying making all arrangements for the flexibility necessary to
accomplish this endeavour. Last but not least, I would like to give thanks for Edson
Antonio, Data Science Program Leader at a multinational Mining Company, for all the
discussions and ideation processes who instigate me and contributed for many of the
solutions here proposed.

Abstract
This research project comprehensively analyzes queue time events of haul trucks at dum-
ping time in open pit mines, tracking its main contributors factors. A data mining process
is conducted to gather all relevant contributors at disposal. Based on this consolidated
data, it is proposed a system, denoted as Oráculo. Oráculo is composed of three modules:
a Predictor module consisting in a NARX model based on an Artificial Neural Network
capable of forecasting the average queue time faced by haul trucks at dumping area
with performance of 12% of RRMSE (Relative Root Mean Square Error) on the test
set; a Decision maker module responsible for producing alarms of surge of queue events
performing a F1-score of 0.71 on the test set; and an Explainer module able to stratify
the main contributors for the alarms generated providing a leaver of action to avoid or
minimize such counterproductive scenarios before they occur. The Oráculo system has
been successfully tested in a real mine site in Brazil and it is currently being applied in
a production environment of a multinational mining company. To the best of author’s
knowledge, there is no system published or in the market yet capable of performing the
set of the capacities accomplished by Oráculo making it the first of its line.

Keywords: Queue-Events; Open-pit; Time Series; Machine Learning; Accountability.

Resumo
Este projeto de pesquisa analisa criteriosamente eventos de fila de caminhões fora de
estrada no momento de básculo em minas a céu aberto, elencando seus principais con-
tribuidores. Um processo de mineração de dados é conduzido a fim de reunir todas as
características relevantes à disposição. Baseado neste conjunto de características, é pro-
posto um sistema denotado por Oráculo. Oráculo é composto por três módulos, um mó-
dulo Preditor constituído por um modelo NARX baseado em uma Rede Neural Artificial
capaz de prever o tempo médio de fila enfrentado pelos caminhões fora de estrada com
performance de 12% de RRMSE (do inglês Relative Root Mean Square Error) no conjunto
de teste; um módulo Decisor responsável por produzir alarmes de surtos de fila com 0.71
de F1-score no conjunto de teste; um módulo Esclarecedor capaz de apontar os principais
contribuidores para os alarmes gerados provendo um apoio à tomada de decisão capaz de
evitar ou minimizar tais cenários de forma antecipatória. O sistema Oráculo foi testado
com sucesso em uma mina localizada no Brasil e está atualmente sendo aplicado em um
ambiente de produção por uma empresa multinacional do ramo de mineração. Segundo
o conhecimento do autor, não há nenhum sistema publicado ou no mercado até a atual
data, capaz de executar o conjunto de capacidades realizadas pelo sistema Oráculo, o
tornando o primeiro em sua linha.

Keywords:Eventos de Fila; Séries Temporais; Aprendizado de Máquina; Atribuição de
causa

List of Figures

Figure 1.1 – Schematic of the Hauling operation, adapted from (SOOFASTAEI et
al., 2015). 14

Figure 2.1 – Univariate autoregressive strategy with 𝑝 = 4 18
Figure 2.2 – Multivariate autoregressive strategy with 𝑘 = 𝑝 = 4 19
Figure 2.3 – Mathematical model of a neuron unit 𝑘. 20
Figure 2.4 – Fluctuations verified along the training process 23
Figure 2.5 – Dropout Neural Net Model.Left: A standard neural net with 2 hid-

den layers.Right:An example of a thinned net produced by applying
dropout to the network on the left.Crossed units have been dropped
(SRIVASTAVA et al., 2014) . 25

Figure 2.6 – Illustrative behavior of the Stochastic Gradient Descent with Restarts 28
Figure 3.1 – Examples of features idletime and loadtons before aggregating 32
Figure 3.2 – Examples of features after aggregating 33
Figure 3.3 – Smoothing the data with Savitzky filter 35
Figure 4.1 – Flow chart of the Oráculo System . 39
Figure 4.2 – Examples of Aggregating Time intervals 40
Figure 4.3 – Treatment of Outliers . 40
Figure 4.4 – Target normalized using 𝑙𝑜𝑔(1 + 𝑦) . 41
Figure 4.5 – Analysis of Idletime’s average every two hours normalized using 𝑙𝑜𝑔(1+𝑦) 42
Figure 4.6 – Lasso test set results . 43
Figure 4.7 – ANN architecture . 43
Figure 4.8 – ANN Training process . 44
Figure 4.9 – ANN test set results . 44
Figure 4.10–Test set results for Lasso model with target smoothed 45
Figure 4.11–Test set results for ANN model with smoothed target 45
Figure 4.12–Comparison of the performance of the proposed models for forecasting

higher peaks . 46
Figure 4.13–Confusion Matrix for Θ . 46
Figure 4.14–Confusion Matrix for Φ . 47
Figure 4.15–A fictitious example of the Oráculo’s operation 48

List of Tables

Table 2.1 – Three popular types of activation functions 20
Table 3.1 – Features description . 32
Table 3.2 – Confusion Matrix . 37
Table 4.1 – Lasso Results . 43
Table 4.2 – Summary of the obtained performance 45
Table 4.3 – Results for Θ . 46
Table 4.4 – Results for Φ . 47

Contents

1 Introduction . 14
2 Literature Review . 17

2.1 Time series models . 17
2.2 Artificial Neural Networks . 19

2.2.1 Formalization . 20
2.2.2 Supervised Learning . 21
2.2.3 Gradient Descent Optimization . 25
2.2.4 Monitoring training functions . 27

2.3 Local Interpretable Model-Agnostic Explanations 29
3 Methodology . 31

3.1 Data mining . 31
3.2 Data Engineering . 32
3.3 Data Cleaning . 33
3.4 Feature and Target Transformations . 34
3.5 Predictor’s module . 35
3.6 Decision maker . 36
3.7 Explainer . 38

4 Results . 39
4.1 Data Preprocessing . 39

4.1.1 Data Engineering . 39
4.1.2 Data Cleaning . 40
4.1.3 Feature and Target Transformations 41
4.1.4 Analysis of the number of lags . 41

4.2 Predictor module . 42
4.3 Decision maker . 46
4.4 Explainer module . 47

Conclusion . 49

Bibliography . 51

14

1 Introduction

Surface mining is the most common mining method worldwide, and open pit
mining accounts for more than 60% of all surface output (HARTMAN; MUTMANSKY,
2002). Truck haulage is responsible for the majority of costs in a surface mining operation
(ERCELEBI; BASCETIN, 2009), therefore it is highly desirable to maintain an efficient
haulage system.

The productive cycle of truck haulages in open pit mines can be divided in
different components: loading, hauling, maneuvering, dumping, returning and spotting as
presented in Figure 1.1 (SOOFASTAEI et al., 2015). During both loading and dumping
time it often occurs queue events which are caused by a variety of reasons.

Figure 1.1 – Schematic of the Hauling operation, adapted from (SOOFASTAEI et al.,
2015).

In this study the time of the queue events at dumping area are called Idletime
to distinguish it from time of queue events at loading area which will be called from now
on Queuetime. Another important distinction adopted is between the terms prediction
and forecasting as follows. In the field of machine learning the term prediction is used
to represent the output of any type of model (e.g Regression, Classification, Clustering)
which does not have direct relationship with the time-stamp or order of a sequence. On
the other hand, the verb to forecast is used in the sense of predicting a step ahead value
from a time series perspective. In other words it means the act of predicting something
that will only be known in the future given the time the features are analyzed.

The surface mine is a highly dynamic environment in which a series of dif-
ferent events can suddenly emerge causing Idletime, Queuetime or different phenomena
not described in this study. Nonetheless the main effective parameters regarding material
transport in hauling operations according to the literature are: mine planning (whose goal
is to optimise the return on investment by scheduling/planning operations and improving
the preparation of the mineral product according to specifications); road condition (in-
terferes directly on the haul trucks performance and operation safety requiring constant

Chapter 1. Introduction 15

monitoring and maintenance); truck and shovel matching (involves choosing a fleet of
trucks and loaders that have the capacity to move the materials specified in the mine
plan within a stipulated period aiming at reducing the overall cost of materials); swell
factors (it is the amount of volume increase from Bank volume ,i.e. undisturbed, in place
state, to Loose volume i.e. disturbed, excavated state, of the material due to voids, air
pockets, added to the material after excavation); shovel and truck driver’s ability, weather
condition, payload distribution and payload variance. (KECOJEVIC; KOMLJENOVIC,
2010; NASHVER; SIGHBIN, 2007; BECKMAN, 2012; CHIRONIS, 1978).

There are a considerable amount of systems that assist the open pit mine
operations, ranging from hauling operations (e.g. Modular’s Dispatch System, Komatsu’s
HAC system) to truck’s maintenance. All of those systems generate a vast amount of
data that are generally used to create reports along the time and, in some more advanced
automated mine operations, this data is used to monitor events and trigger actions in real
time.

Even though taking actions in real time based on monitored events is valuable,
forecasting abnormal behaviors is crucial for having an efficient haulage system. The key
to accomplish this capability resides in the value extraction from the enormous amount
of data produced by those systems. The use of Machine Learning techniques can take full
advantage of this data by producing models and applications containing unique knowledge
domain of the business necessities.

This research project comprehensively analyzes the Idletime events in open pit
mines tracking its main contributor factors. A data mining process is conducted to gather
all of those contributors in a single database preserving the pattern studied and timing
coherence. Based on this consolidated data, it is proposed a system, denoted as Oráculo.
The main objectives of Oráculo system are to forecast surges of Idletime and stratify its
main contributors.

Oráculo is composed of three modules: a Predictor module consisting in a
NARX model based on an Artificial Neural Network capable of forecasting the average
queue time faced by haul trucks at dumping area with performance of 12% of RRMSE
(Relative Root Mean Square Error) on the test set; a Decision maker module responsible
for producing alarms of surge of queue events performing a F1-score of 0.71 on the test set;
and an Explainer module able to stratify the main contributors for the alarms generated
providing a leaver of action to avoid or minimize such counterproductive scenarios before
they occur. The Oráculo system has been successfully tested in a real mine site in Brazil
and it is currently being applied in a production environment of a multinational mining
company. To the best of author’s knowledge, there is no system published or in the market
yet capable of performing the set of capacities accomplished by Oráculo, making it the

Chapter 1. Introduction 16

first of its line.

Besides introductory and concluding remarks, this dissertation contains three
chapters: Literature Review, regarding every technical aspect used throughout the project;
Methodology, explaining the procedures proposed for developing Oráculo system; Results,
exhibiting the outcomes of the methodology adopted respecting the data disclosure poli-
cies of the enterprises involved.

17

2 Literature Review

In this chapter the technical aspects of this research are described in the fol-
lowing sections. First, time series models explaining the perspective taken to propose
a solution for the problem addressed. Second, Artificial Neural Networks explaining its
formal concepts, supervised learning process and auxiliary techniques used to assist the
training process. Third, Local Interpretable Model-Agnostic Explanations describing the
core concepts used on this research project.

The first two sections of this chapter were used to compose the Oráculo’s
first module (i.e the Predictor), while the third section was entirely used to compose the
last module of the Oráculo system: the Explainer. The Decision Maker module will be
discussed in details on the Methodology chapter.

2.1 Time series models

A realization of a stochastic process also known as time series is a sequence
of numbers, or vectors, characterized by a family of covariances. Two different sequences
can be representations of the same stochastic process if they have the same statistical
characteristics. Once a time series is obtained (e.g. acquiring temperature values from a
sensor in a constant sampling frequency during a certain period of time), one can identify
a mathematical model capable of finding new realizations of the same time series from
a white noise input. The problem of identifying this model is denoted by time series
realization problem (GIESBRECHT, 2013).

A famous family of models for solving the realization problem of univariate
time series are the autoregressive AR models and its variants: ARMA, ARIMA, SARIMA,
in special the autoregressive with exogenous entries models: ARX, ARMAX, ARIMAX,
SARIMAX,etc. Even though those models are powerful and easily applicable on a variety
of real problems, they are limited to linear time series that are governed by Gaussian dis-
tributions and classical Bayesian theory. Additionally, the time series have to be stationary
or be transformed into a stationary one by removing the trend component if possible. An
excellent reference for Gaussian and Non-Gaussian models for time series can be found
in (DURBIN; KOOPMAN, 2012). The Autoregressive model (AR(p)) for 𝑡 = 1, . . . , 𝑛

presented by Equation (2.1):

𝑦𝑡 = 𝜑1𝑦𝑡−1 + . . . + 𝜑𝑝𝑦𝑡−𝑝 + 𝜁𝑡, 𝜁𝑡 ∼ 𝑁(0, 𝜎2
𝜁) (2.1)

Chapter 2. Literature Review 18

where 𝑦𝑡−1+. . .+𝑦𝑡−𝑝 are denoted as regressors, 𝜑1+. . .+𝜑𝑝 are the parameters
or coefficients to be estimated by applying any kind of numeric analysis technique (e.g.
least squares, maximum likelihood), 𝑝 is the number of lags and 𝜎2

𝜁 is the variance of the
Gaussian disturbance 𝜁𝑡 that also has to be estimated. It is interesting to notice that the
number of lags 𝑝 forms a window that moves on time. Figure 2.1 exhibits this concept.

Figure 2.1 – Univariate autoregressive strategy with 𝑝 = 4

In fact, this same strategy can be extended when exogenous inputs affects, as
presented in Equation (2.2).

𝑦𝑡 = 𝜑1𝑦𝑡−1 + . . . + 𝜑𝑝𝑦𝑡−𝑝 + 𝜙1𝑢𝑡−1 + . . . + 𝜙𝑘𝑢𝑡−𝑘 + 𝜁𝑡, 𝜁𝑡 ∼ 𝑁(0, 𝜎2
𝜁) (2.2)

where 𝑢𝑡−1 + . . . + 𝑢𝑡−𝑘 are the regressors for the exogenous entries, 𝜙1 + . . . + 𝜙𝑘 the
coefficients or parameters to be estimated and k the number of lags for the exogenous
entries.

This capability of correlating multivariate time series using autoregressive
models with exogenous entries configures a multiple input single output (MISO) system
from a system identification perspective. Figure 2.2 exhibits this concept.

A challenge faced when applying the auto regressive models is the choice of 𝑝

which resumes how long it is necessary to look back at past events in order to forecast
the future. This problem can be addressed by analyzing the auto correlation function of
the time series being modeled, by using AIC/BIC criterion or even using Spearman’s or
Pearson’s correlation between the samples lagged and the output being predicted.

An interesting approach that seeks to overcome the limitations of linearity and
normal distributions faced in AR models is the use of machine learning models such as
Non-Linear Regressions, Random Forests and Support Vector Machines for solving the

Chapter 2. Literature Review 19

Figure 2.2 – Multivariate autoregressive strategy with 𝑘 = 𝑝 = 4

time series realization problem. Those models would have features (i.e. inputs) represented
by the information highlighted on the red box in Figures 2.1 and 2.2.

For this research the Idletime faced by haul trucks at dumping area as well
as its contributor factors were treated as a multivariate time series problem. All the dis-
crete events involved in this problem were aggregated in the same frequency forming a
time series for each feature analyzed. Moreover, for solving the realization problem it
was devised an Artificial Neural Networks (ANN) using the autoregressive with exoge-
nous entries approach, characterizing it as a Nonlinear-Autoregressive-Exogenous model
(NARX).

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) have been exploited in a variety of applica-
tions, the majority of which are concerned with pattern recognition in one form or another
(PARUNAK, 1998).

In the realm of engineering applications, ANN’s have been applied in contexts
ranging from materials (HAMMOOD; MAHDI, 2012),(KE-LUXIANG et al., 2014) to
mechanical engineering (RAHIMI-GORJI et al., 2017).

The popularity of ANN’s is mainly due to the universal approximation theo-
rem, which states that a simple feed-forward network with one hidden layer containing a
finite number of neurons can approximate any continuous function (CYBENKO, 1989).
Although the theorem emphasizes the huge potential of ANN’s, it does not touch the
algorithmic learning ability of the parameters required to achieve its full potential.

Chapter 2. Literature Review 20

2.2.1 Formalization

The basic unit of a neural network is known as neuron, node or hidden unit.
The mathematical representation of a neuron is presented in Figure 2.3.

Figure 2.3 – Mathematical model of a neuron unit 𝑘.

The output of a neuron 𝑘 is given by Equation (2.2.1):

𝑦𝑘 = 𝑓(𝑢𝑘) = 𝑓
(︂ ∑︀𝑛

𝑗=1 𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘

)︂
= 𝑓

(︂ ∑︀𝑛
𝑗=0 𝑤𝑘𝑗𝑥𝑗

)︂
= 𝑓(𝑤𝑇

𝑘 𝑥)
(2.3)

where 𝑤𝑘0 = 𝑏𝑘 and 𝑥0 = 1.

The activation function 𝑓(𝑢𝑘) can be chosen from a variety of non-linear func-
tions. Some of the most common examples are described on Table 2.1.

Table 2.1 – Three popular types of activation functions

Name Graph Function Derivation Image

Sigmoid
𝑓(𝑥) = 1

1 + 𝑒−𝑥
𝑓

′(𝑥) = 𝑓(𝑥)(1 − 𝑓(𝑥)) (0, 1)

Tanh
𝑓(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
𝑓

′(𝑥) = 1 − 𝑓(𝑥)2 (−1, 1)

ReLU
𝑓(𝑥) =

⎧⎨⎩0, for 𝑥 < 0
𝑥, for 𝑥 ≥ 0

𝑓
′(𝑥) =

⎧⎨⎩0, for 𝑥 < 0
1, for 𝑥 ≥ 0

[0, ∞)

Chapter 2. Literature Review 21

The rectifier linear unit (ReLU) has been widely used on convolutional neural
networks (deep learning) for image applications due to its proven efficiency both in con-
vergence and training time (KRIZHEVSKY et al., 2017), (SIMONYAN; ZISSERMAN,
2014),(SZEGEDY et al., 2015),(HE et al., 2016). The original ReLU was further ex-
plored originating a family of activations functions: Leaky rectified linear unit (Leaky
ReLU)(MAAS et al., 2013), Parametric rectified linear unit (PReLU)(HE et al., 2015),
Randomized leaky rectified linear unit (RReLU)(XU et al., 2015), Exponential linear unit
(ELU)(CLEVERT et al., 2015), Scaled exponential linear unit (SELU)(KLAMBAUER et
al., 2017), each one with its own particularities and benefits for specific applications.

The connections among neurons lead to the construction of the ANN’s ar-
chitecture. The more organized structures are called layers, in which the output of each
neuron of a previous layer serves as input for all neurons of the subsequent layer.

A typical ANN architecture is the Multilayer Perceptron (MLP). The MLP
is characterized by mapping inputs to the output by a linear combination of functions
exhibiting a sigmoidal shape (i.g. Tanh, Sigmoid). The output of the MLP is obtained
from Equation (2.4):

𝑦𝑘 =
𝑛∑︁

𝑗=1
𝑤𝑘𝑗𝑓

(︂ 𝑚∑︁
𝑙=0

𝑣𝑗𝑙𝑥𝑙

)︂
+ 𝑤𝑘0 = ĝ𝑘(𝑥, 𝜃), 𝑘 = 1, . . . , 𝑟 (2.4)

where 𝜃 = [𝑣10𝑣11 . . . 𝑣1𝑚𝑣2𝑚 . . . 𝑣𝑛𝑚𝑤10𝑤11 . . . 𝑤1𝑚𝑤2𝑚 . . . 𝑤𝑛𝑚]𝑇 .

2.2.2 Supervised Learning

The target of this study is the prediction of a continuous value, characterizing
a regression problem from a perspective of a machine learning problem. So it is desired to
find a set of weights for the neural network that produces a mapping function capable of
reproducing the relationship of the inputs and the output with reasonable performance.

Considering the availability of an input-output dataset {x𝑙,𝑘, 𝑦𝑙,1}𝑁,𝑀
𝑙=1,𝑘=1, where

x𝑙,𝑘 is the feature matrix with 𝑁 rows or samples and 𝑀 features, and 𝑦𝑙,1 is a vector with
dimension 𝑁 × 1 containing the target. Using the autoregressive with exogenous entries
approach, given by equation (2.2), for producing the input-output dataset would result
in a total of 𝑀 = 𝑝 + 𝑘 features. In this case the features would be the regressors of the
exogenous entries plus the output regressors (i.e. 𝑦𝑡−1 . . . + 𝑦𝑝) and the target would be
the vector 𝑦𝑡 with 𝑁 samples.

One possible measurement of performance for regression models is the Mean
Squared Error (MSE) of the predicted values 𝑦𝑙 and the real values 𝑦𝑙 as presented in

Chapter 2. Literature Review 22

Equation (2.5), where 𝑁 is the number of data points.

𝐽(𝜃) = 1
𝑁

𝑁∑︁
𝑙=1

(𝑦𝑙 − 𝑦𝑙)2 (2.5)

The predicted values produced by the ANN can be described in terms of the
weights, interpreted as free parameters to be adjusted during the learning process. Equa-
tion (2.6) provides a demonstration of how 𝜃, the vector containing all ANN’s weights,
influences the MSE.

𝐽(𝜃) = 1
𝑁

∑︀𝑁
𝑙=1(𝑦𝑙 − 𝑦𝑙)2 = 1

𝑁

∑︀𝑁
𝑙=1(ĝ1(x𝑙, 𝜃) − 𝑦𝑙)2

= 1
𝑁

∑︀𝑁
𝑙=1

(︂ ∑︀𝑛
𝑗=1 𝑤1𝑗𝑓

(︁ ∑︀𝑚
𝑖=0 𝑣𝑗𝑖𝑥𝑙𝑖

)︁
+ 𝑤10 − 𝑦𝑙

)︂2 (2.6)

Considering 𝑃 as the dimension of 𝜃, it is possible to conclude that 𝐽 : R𝑃 →
R1 which characterizes an error surface belonging to R𝑃 +1.

The supervised learning process of ANN’s consists in finding 𝜃 that minimizes
𝐽(𝜃) given a dataset with N samples. This process can be seen as a non-linear optimization
problem with no restrictions over 𝜃, thus producing:

𝜃′ = argmin
𝜃∈ℜ𝑃

𝐽(𝜃) (2.7)

A widely used algorithm to search for an optimal value of 𝜃 is the gradient
descent technique (GD). The GD is a first-order iterative optimization algorithm capable
of finding a local minimum of any continuous nonlinear function (e.g. the surface formed
by 𝐽(𝜃)).

The classical GD, also known as batch gradient descent, is calculated by taking
the partial derivative of 𝐽(𝜃) for the entire dataset and then updating the weights towards
the opposite direction of its gradient ∇𝜃𝐽 .

The parameter that controls the step along this direction is known as the
learning rate, represented by 𝜂 in Equation (2.8). The greater the value of 𝜂, the larger
is the step towards the closest local minimum on the 𝐽(𝜃) surface. Assuming the proper
choice of the learning rate, including adaptive procedures to tune the learning rate along
the iterations, GD converges to the global minimum of convex error surfaces and to a
local minimum of non-convex surfaces, such as 𝐽(𝜃).

𝜃𝑡+1 = 𝜃𝑡+1 − 𝜂(∇𝜃𝐽(𝜃)) (2.8)

Chapter 2. Literature Review 23

There are some important variations of the gradient descent that are applied
to the supervised learning process of ANN’s aiming at accelerating convergence and better
managing computational resources. Some of them are described below based on literature
review (RUDER, 2016).

Stochastic Gradient Descent:

The classic GD with an iterative step provided by Equation (2.8) computes the
gradient for the whole dataset, whereas the stochastic gradient descent (SGD) executes
the parameter updating process for each training example x𝑙 and real value 𝑦𝑙 as presented
in Equation (2.9):

𝜃𝑡+1 = 𝜃𝑡 − 𝜂(∇𝜃𝐽(𝜃; x𝑙; 𝑦𝑙)) (2.9)

The main advantages of SGD are the possibility of learning on the fly and in
some circumstances it may be much faster than the classical gradient descent. Another
interesting aspect of SGD is that, by updating the weights interactively, the loss function
exhibits a high variance as presented in Figure 2.4. This fluctuation might lead to a
better local minimum of the 𝐽(𝜃) surface, when compared to the local minimum of GD.
This variance can hinder convergence, but slowly decreasing the learning rate along the
iterations tends to promote convergence.

Figure 2.4 – Fluctuations verified along the training process

Mini-Batch Gradient Descent:

Another version of the classical gradient descent is the Mini-Batch Gradient
Descent (MGD), which takes the best of GD and SGD by updating the weights for every

Chapter 2. Literature Review 24

mini-batch with 𝑛 training samples as presented in equation (2.10).

𝜃𝑡+1 = 𝜃𝑡 − 𝜂(∇𝜃𝐽(𝜃; x𝑙:𝑙+𝑛; 𝑦𝑙:𝑙+𝑛) (2.10)

The MGD reduces the high variance noticed on SGD leading to a more stable
convergence. The mini-batch involves a matrix of training samples so it can resort to
matricial operations to implement optimization techniques, such as the use of Graphical
Process Units (GPU) with Cuda software from NVIDIA.

Regularization techniques:

A valuable technique used in many supervised learning approaches for ma-
chine learning models is regularization. Regularization contributes to reduce overfitting
by increasing the generalization capability of the models.

The most common regularization techniques are: L1, also called Lasso (TIB-
SHIRANI, 1996), L2 and dropout, which is used in particular for ANN’s. As mentioned
before, the supervised learning process of ANN’s consists in finding the best combination
of weights 𝜃 that minimizes 𝐽(𝜃) given a training data set. With regularization L1 or L2,
Equation (2.5) becomes:

𝐽(𝜃) = 1
𝑁

𝑁∑︁
𝑙=1

(𝑦𝑙 − 𝑦𝑙)2 + 𝜆Ω(𝜃) (2.11)

where coefficient 𝜆 ≥ 0 controls the strength of the regularization, so that the
higher its values the higher is the regularization imposed on the weights.

For the L2 regularization, Ω(𝜃) is equal to ||𝜃||22, while for the L1 regularization,
Ω(𝜃) = ||𝜃||1. The L2 regularization reduces the magnitude of all the weights simultane-
ously, while the L1 regularization reduces the magnitude of the weights but inducing
sparsity in the model (i.e. setting part of the weights to zero), thus promoting a type of
feature selection.

Calculating the derivative of L1 and L2 with respect to 𝜃 yields the following
expressions:

𝜕Ω
𝜕𝜃𝑖

=

⎧⎪⎨⎪⎩
2 × 𝜃

(𝑡)
𝑖 , if Ω(𝜃) = ||𝜃||22

𝑠𝑖𝑔𝑛(𝑤(𝑡)
𝑖), if Ω(𝜃) = ||𝜃||1 and 𝜃

(𝑡)
𝑖 ̸= 0

(2.12)

Another way of regularization is the dropout technique which randomly drops
units or neurons and its connections from the ANN during training time. According with

Chapter 2. Literature Review 25

SRIVASTAVA et al.,2014 this process prevents units from co-adapting too much and it
generates an exponential number of thinned neural nets created by the original architec-
ture as presented in Figure 2.5. Among its benefits one may highlight: it is responsible
for avoiding overfitting and improving convergence in really deep neural networks. At
test time it approximates the effect of averaging the predictions of all thinned networks
generated along the dropout process in the training phase. In other words, one can see
this technique at test time as an ensemble method of all thinned networks increasing the
generalization capability.

Figure 2.5 – Dropout Neural Net Model.Left: A standard neural net with 2 hidden lay-
ers.Right:An example of a thinned net produced by applying dropout to the
network on the left.Crossed units have been dropped (SRIVASTAVA et al.,
2014)

2.2.3 Gradient Descent Optimization

With the rise of Deep Learning, the academic community has been developing
a series of optimization algorithms for the gradient descent. Those algorithms aim to
address some of the common challenges faced in minimizing highly non-convex error
functions usually found in ANN’s training process, such as: choosing a proper learning
rate and getting trapped in suboptimal local minima of the error surface.

It will be provided a brief explanation of the two optimizer used in this research.

RMSprop

According to RUDER(2016), RMSprop is an unpublished adaptive learning
rate method which was proposed by Geoff Hinton in Lecture 6e of his Coursera Class
(HINTON, 2014).

Chapter 2. Literature Review 26

The RMSprop follows a sequence of algorithms that compute adaptive learning
rates for each parameter: Adagrad (DUCHI et al., 2011) and Adadelta (ZEILER, 2012).
The formulation of RMSprop’s weight updates is:

𝜃𝑡+1 = 𝜃𝑡 + Δ𝜃𝑡 (2.13)

The Δ term is derived from Adadelta and it is presented in Equation 2.14.

Δ𝜃𝑡+1,𝑖 = − 𝜂√
𝐸[𝑔2]𝑡,𝑖+𝜖

𝑔𝑡,𝑖

𝐸[𝑔2]𝑡+1,𝑖 = 0.9𝐸[𝑔2]𝑡−1,𝑖 + 0.1𝑔2
𝑡,𝑖

(2.14)

where 𝑔𝑡,𝑖 is a short hand for the gradient descent with respect to every indi-
vidual parameter 𝜃𝑖 ∈ 𝜃 (i.e. 𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃, 𝑖)) which confers the adapative cabability of
RMSprop, Adadelta, Adagrad optimizers. According to ZEILER(2012), each dimension
has its own dynamic rate. Since this dynamic rate grows with the inverse of the gradient
magnitudes, large gradients have smaller learning rates and small gradients have large
learning rates. This has a nice property, as in second order methods, that the progress
along each dimension evens out over time.

The 𝐸[𝑔2]𝑡 term is an exponentially decaying average of the squared gradients
depending on the previous average and the current gradient 𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1+(1−𝛾)𝑔2

𝑡 .
This average is a local estimate ensuring that learning continues to make progress even
after many iterations of updates, which is an improvement compared to the Adagrad
method that used a L2 norm of all past gradients which would vanish overtime.

Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) is an algorithm for first-order gradient-
based optimization of stochastic objective functions, based on adaptive estimates of lower-
order moments (KINGMA; BA, 2014).

Adam also computes adaptive learning rates for each parameter. Moreover it
stores an exponentially decaying average of past squared gradients 𝑣𝑡 and an exponentially
decaying average of past gradients 𝑚𝑡:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡

(2.15)

𝑚𝑡 and 𝑣𝑡 are the first (mean) and the second moment (uncentered variance)
of the gradients. The authors of Adam initializes 𝑚𝑡 and 𝑣𝑡 as vectors of zeros. By doing

Chapter 2. Literature Review 27

that, they observed that those parameters were biased towards zero specially on initial
steps. To address this problem they proposed a new formulation of bias-corrected first
and second moment estimates:

�̂�𝑡 = 𝑚𝑡

1−𝛽𝑡
1

𝑣𝑡 = 𝑣𝑡

1−𝛽𝑡
2

(2.16)

The weights updating rule assumes the form:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂√
𝑣𝑡 + 𝜖

�̂�𝑡 (2.17)

2.2.4 Monitoring training functions

With the availability of open source languages such as Python and the advent
of deep learning, a series of interesting monitoring training functions that support the
training process of ANN’s has been developed. A considerable set of those functions can
be found on packages such as Pytorch, Keras, TensorFlow or Caffe. For this research,
three in special were used.

Early Stopping

The Early Stopping technique checks for every loss improvement in the vali-
dation set in comparison with the last iteration. In case it does not improve it starts
counting until a threshold called patience (e.g. 15 epochs) is reached, thus promoting the
interruption of the training process. In other words, the training process will continue as
long as there is at least an improvement on the loss of the validation set every 𝑛 epochs
where 𝑛 is known as patience threshold.

Model Checkpoint

The Model Checkpoint saves the weights of the ANN at every improvement
of the validation loss. This is a simple technique, yet is really useful for keep tracking of
improvement while testing different architectures and combinations of its parameters.

Learning Rate schedules

Another interesting technique used to assist the ANN’s training process is
the learning rate schedules. This method adjust the learning rate during training by e.g.

Chapter 2. Literature Review 28

annealing, i.e. reducing, according to a pre-defined schedule such as a cosine function or
when the optimization search process falls in a suboptimal minimum, reaching a plateau.

In fact, the biggest problems, pointed out by some authors like (DAUPHIN
et al., 2014), in optimizing highly non-convex error functions in high dimension space,
such as ones usually found in ANN’s training process, are the saddle points and not local
minima. Those points are surrounded by high error plateaus that can dramatically slow
down the learning process, and give the illusory impression of the existence of a local
minimum.

Two learning rate annealing methods used on this research project were: Cycli-
cal Learning Rate policy and Reducing Learning Rate on Plateau. A short description of
those methods will be provided in what follows.

The Cyclical Learning Rate policy (CLR) proposed by (SMITH, 2015) uses a
variant of learning rate annealing called stochastic gradient descent with restarts (SGDR),
which gradually decreases the learning rate as training progresses. Based on a change of
the learning rate from time to time configured by the schedule imposed, the search process
are more prone to escape from the saddle points. Figure 2.6 shows how this behavior would
look like in a known search space.

The period of the schedule imposed is configured by the number of iterations,
which is the number of batches insides an epoch (e.g. a dataset with 100 samples and a
batchsize of 10 samples would have 10 iterations). The authors suggest that the restart
period of the schedule selected should be between 2 to 8 iterations. In short, for using
CLR it is required to define the type of schedule (i.g. exponential, triangular, triangular2,
etc..), the number of iterations for setting a cycle and the maximum and minimum values
of the schedule function.

Figure 2.6 – Illustrative behavior of the Stochastic Gradient Descent with Restarts

The Reducing Learning Rate on Plateau also follows the same ’restarting’
principle of SGDR. However it just reduces the learning rate by a pre-defined factor. This

Chapter 2. Literature Review 29

reduction is done until the learning rate reaches a minimum value, also adjustable. After
this minimum value for the learning rate is reached, the learning rate value is restarted
to its original value moving on to another round of the method. The Reducing Learning
Rate on Plateau is triggered by every time that there is no improvement on the validation
loss for a predefined amount of epochs.

2.3 Local Interpretable Model-Agnostic Explanations

There is a latent demand for explaining the reason behind model’s prediction
for real applications. The academic community has been developing a series of approaches
toward this goal. In fact the keyword regarding this subject on machine learning field is
accountability, and can be found on proceedings like FAT (Fairness, Accountability and
Transparency).

For this research, it was clear the necessity of explanations of the reasons for
surges of Idletime at dumping areas in order to provide a lever of action to avoid or atte-
nuate those scenarios before it happens. Consequently, it was used the Local Interpretable
Model-Agnostic Explanations (LIME) (RIBEIRO et al., 2016) to achieve this goal.

LIME is an algorithm that explains predictions of any machine learning model
in a faithful way, by approximating it locally with an interpretable model. A brief expla-
nation of the core concepts behind LIME will be provided in what follows.

The first important concept used in LIME is the interpretable data represen-
tation which uses representations that are understandable by humans. It is interesting to
notice that those representations can vary from the original feature space which feed the
model’s predictions. An example given by the authors of LIME is the case of text clas-
sification where interpretable representations could be a binary vector representing the
absence or presence of a word, whereas the classifier uses more complex and sometimes
incomprehensible features such as word embeddings. The authors denote 𝑥 ∈ ℜ𝑑 as being
the original representation of an instance being explained, while proposing 𝑥

′ ∈ {0, 1}𝑑′

as the binary vector of interpretable representations.

In the paper the authors define explanation as a model 𝑔 ∈ 𝐺 where 𝐺 is a
class of potentially interpretable models such as decision trees, linear regressions, or failing
rules list. Also, they provide visual or textual artifacts on the domain of interpretable
representations {0, 1}𝑑′ . Even having the model’s class 𝐺 as highly interpretable, they
measure the complexity of each model 𝑔 as Ψ(𝑔) (e.g. depth of decision trees).

They denote the model being explained by 𝑓 : ℜ𝑑 → ℜ (e.g: for classifier 𝑓

is the probability of 𝑥 to belong to a certain class). Also, it is used a proximity measure

Chapter 2. Literature Review 30

Π𝑥(𝑧) of an instance 𝑧 to 𝑥 in order to define the concept of locality around 𝑥. As a result,
the explanations made by LIME is obtained by the following expression:

𝜉(𝑥) = argmin𝑔∈𝐺 ℒ(𝑓, 𝑔, Π𝑥) + Ψ(𝑔) (2.18)

where ℒ(𝑓, 𝑔, Π𝑥) is a measure of how unfaithful 𝑔 is in approximating f in the
locality defined by Π𝑥.

The code for LIME is available on GitHub in a repository shared by the au-
thors along with examples and a comprehensive documentation. The general steps of the
application of LIME in Python is provided as follows.

First it is required to pass the data used to train the machine learning model,
and an object containing the model already trained. LIME gathers information about the
training data and stores it in the explainer object. The information is composed mainly
of the type of features (i.e. numerical or categorical) and computes distributions of the
features either using bins or mean and standard deviation, depending on the settings
passed by the user.

For creating the explanations there is an object called explainer() that inherits
attributes from the LIME object created on the first step. Then when an explanation
is required by using a method of the explainer object, the prediction being explained is
mutated creating by default 5000 new samples.

The type of mutation depends on some user settings and the data type of each
feature. Then for each of the mutated samples a prediction is made using the trained
machine learning model. In the next step all mutated samples are used to train another
model 𝑔 ∈ 𝐺 (e.g. linear model) only using a few features 𝑛features. The number of
features is selected through a couple of methods that can be selected by the users, the
default is forward selection.

The model 𝑔 is optimized by a greedy optimization strategy with objective
function described in equation (2.18) and the feature importances are computed (e.g. the
coefficients of the linear model). With this information the most important features will
exhibit a positive or negative influence over the predicted value.

Those explanations that have a positive influence in each prediction are then
considered explanatory attributes.

31

3 Methodology

In this chapter, it is presented the methodology adopted to develop the Oráculo
system.The first section called Data mining explains how the features were collected.
The next section denoted as Data Engineering explains which strategies were taken to
preserve time coherence and join all relevant information available. The third section
Data Cleaning, presents the process used to clean the data for training the models. The
fourth section, Feature and Target Transformations, presents the scaling process done on
the features and the target. The fifth section, Predictor’s module, contains the approach
and techniques used to develop, train, optimize, and select the models for building the
Predictor module of Oráculo. The sixth section, Decision maker, discusses the strategy
developed to trigger an alarm devoted to flagging a surge of Idletime. The seventh section,
Explainer, discusses the use of LIME as an approach to stratify main contributors for the
alarms generated by the Decision Maker’s module.

3.1 Data mining

The surface mine is a highly dynamic environment where a huge variety of
events can appear and disturb the productivity cycle causing Idletime or other problems
not modeled in this project. Therefore, it was conducted a data mining process in order
to identify possible reasons for the Idletime.

This process was performed along with the Mine Site Productivity’s super-
visors throughout a series of discussions, visits to the mine site in question and with
the collaboration of the Information Technology area of the mining company involved. It
was spent a considerable amount of time to understand all the different variables that
somehow impact the system and where to retrieve them, from available datasets.

The resulting features are summarized in Table 3.1. The Litology and the
Truck Fleet features are percentages of Loadtons and # Trucks respectively. For instance,
in a time interval of one hour 1 thousand tons of material were dumped in a specific
location, the composition of this amount of material is described in the Litology features
(e.g. 800 tons of crispy hematite, 200 tons of calcite). In the same period 100 trucks were
responsible for dumping this amount of material, those 100 trucks are stratified according
with their fleet (e.g. 70 CAT 797 and 30 CAT 793D). Those two features work as a OneHot
Enconding for all possible categories for the type of litologies and truck fleet available on
the dataset.

Chapter 3. Methodology 32

For information security purposes the four original databases are discriminated
in letters as well as the name of each litology and haul truck fleet.

Table 3.1 – Features description

Feature Description Databases sources
Loadtons Amount of material being carried by all trucks[tons] A
Litology Type of material being carried [tons] A
Trucks Number of total trucks that dumped on the Crusher A
Truck Fleet Number of trucks stratified by fleet A
WTCS Waiting time for Crusher Signal B
CWCS Count of waiting Crusher Signals B
WTML Waiting time caused by Mill Failures D
CML Count of Mill Failures D

3.2 Data Engineering

There was no previous primary key in the 4 databases (i.e. A, B, C and D)
which could be used to join all of this information on the same grain of analysis. Nonethe-
less, all of them were discrete events associated with a start time and end time of that
specific event. For example, the main database called here as A contained the productivity
cycle information such as: loading time, dumping time, Idletime, the amount of material
carried by the truck as well as its litology, among others, and all of those events were
associated with a specific time in seconds of a shift as presented in Figure 3.1 where it
was chosen only two features in a morning shift.

Figure 3.1 – Examples of features idletime and loadtons before aggregating

For addressing this problem, it was selected a set of time interval (e.g. every
30 minutes, every hour and every two hours) to aggregate all features of interest in each
database separately, thus resulting in a primary key making possible the join of informa-
tion in a time interval of analysis. This process is elucidated in Figure 3.2 where the same

Chapter 3. Methodology 33

features presented in Figure 3.1 were aggregated in a time interval of 2 hours. All of the
features in both figures were scaled using normalization.

Figure 3.2 – Examples of features after aggregating

The loss of information while aggregating the features was inevitable and nec-
essary to build a primary key to join all the relevant information from the different data
sources. A strategy applied to minimize this loss of information was done by taken the
average and standard deviation from each continuous feature aggregated on the desired
time interval.

There were 4 types of litologies available on the dataset, 3 types of fleet, plus
the 6 other features described in Table 3.1 yielded a total of 13 raw features.By aggregating
and extracting the average and standard deviation of each raw feature excepted by #
Truck and CWCS which were used only the sum, the resulting number of features were a
25.

This whole process was automatized in a code written in Python in order to
facilitate the choice of the time interval to aggregate, to join the databases and to select
which features would be brought from each one of the databases. The time intervals
studied were 30 minutes, 1 hour and 2 hours. The discussion about of each time interval
tested is presented in the Subsection 4.1.1 in Results chapter.

3.3 Data Cleaning

Evaluating the quality of the data it is a crucial step for training machine
learning models. In real world applications, the data available often presents undesirable
information which is produced due to different reasons such as: sensors or system failures,
erroneous handmade annotations and abnormal events which have also to be properly
treated depending on the type of the modeling process. This analysis was carefully done
for each data source available before aggregating and joining the information. Also, the

Chapter 3. Methodology 34

distribution of the continuous values were presented and analyzed by the mine site super-
visors in order to detect strange patterns.

After aggregating and joining all the information, it was noticed the presence
of outliers which were then treated. The results of the approach taken are presented in
Subsection 4.1.2 in Results chapter.

3.4 Feature and Target Transformations

An important step in training machine learning models is the features scaling
process. This strategy is required for convergence purposes and to avoid feature pre-
dominance in models based on weights which somehow combine features (e.g. Logistic
Regression, Linear Regression, ANN, Suport Vector Machines, etc..). In fact, not all ma-
chine learning models need feature matrix scaled such as Decision trees based algorithms
(e.g. Random Forests, XGBoost, GBM, etc..).

In this research project the features were scaled using normalization approach
as presented in Equation (3.1).

𝑥𝑛𝑜𝑟𝑚 = 𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(3.1)

Also the target was scaled using a 𝑙𝑜𝑔(1 + 𝑦), which is a known strategy when
working with time series problems. The models were trained and validated using this
features and target transformations until a plateau was reached. The comparison of results
obtained is presented in Results chapter.

After several attempts on improving the machine learning models performance,
it was found that the most difficult scenario to forecast was the Idletime’s oscillations spe-
cially the higher peaks. To address this situation it was used a Savitzky–Golay’s smoothing
filter implemented on the library scipy.signal in Python.

The Savitzky filter increases the signal-to-noise ratio preserving the pattern of
the signal. This objective is accomplished in a convolution process by fitting successive
sub-sets of adjacent data points with a low-degree polynomial by the method of linear
least squares (SAVITZKY; GOLAY, 1964).

It was tested different sizes of window and polynomial orders that could provide
a better fitting for the model without loosing the pattern studied. Figure 3.3 exhibits the
smoothing process with the resulting choice of a window of 5 samples and a 3 degree
polynomial.

Chapter 3. Methodology 35

Figure 3.3 – Smoothing the data with Savitzky filter

3.5 Predictor’s module

The goal of the Predictor’s module of Oráculo system is to forecast the average
of Idletime in the next time interval and not to predict its value on the current time. The
prediction on the current time would be useless for the mine site operators since the
event would have already happened by the time of acquiring and aggregating features.
Therefore it was used an auto-regression approach with exogenous inputs for addressing
this problem as discussed in Section 2.1.

For choosing the ideal amount of time steps (i.e. (𝑝) at Equation (2.1)) required
for forecasting the Idletime in the next time interval, it was done an analysis of auto-
correlation plots of the target as well as a Pearson correlation among lagged features
an the target being forecast. This discussion is presented in Subsection 4.1.4 in Results
chapter.

After concluding this analysis, the resulting data available was split in a hold-
out methodology (i.e. 80% for devising the models and 20% most recent data for test).
The test set was let untouched during the devising models process reserving it only for
performance comparison purposes. Then the 80% of the original database was divided
again in a holdout methodology creating a training set and a validation set used to tune
the devised machine learning models.

Two metrics were chosen as performance criterion for comparison of the ob-
tained model: the Mean Absolute Error (MAE) demonstrated in Equation 3.2, and the
Relative Root Mean Square Error (RRMSE), demonstrated in Equation 3.3.

MAE(𝜃) = 1
𝑁

𝑁∑︁
𝑙=1

|𝑦𝑙 − 𝑦𝑙| (3.2)

RRMSE(𝜃) = 100 ×

√︁
1
𝑁

∑︀𝑁
𝑙=1(𝑦𝑙 − 𝑦𝑙)2

𝜇𝑦𝑙

(3.3)

Chapter 3. Methodology 36

where 𝜇𝑦𝑙
is the mean value of the actual target being predicted.

The RRMSE can be seen as a performance comparison against the mean value
of the target being predicted, in other words it is a sense of how better is the prediction
of the model being evaluated against a straight line crossing the median value of the
target. According with the literature (SHCHERBAKOV et al., 2013; DESPOTOVIC et
al., 2016), a model performing a RRMSE < 10% is considered excellent, while 10% <

RRMSE < 20% is good, fair if 20% < RRMSE < 30% and poor if RRMSE > 30%.

A series of models were developed with the aim of reproducing new realizations
of Idletime. The first model developed was a Linear Regression with L1 (Lasso) which
objective function presented in Equation (3.4).

min
𝑤

1
2𝑛samples

||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||1 (3.4)

where 𝛼 is a constant and ||𝑤||1 is the L1-norm of the parameter vector.

For finding the best 𝛼 it was used a Grid Search approach with predefined sets
of values which are elucidated in Subsection 4.2 in Results chapter.

The second model developed was a NARX model using an ANN. The ANN
architecture devising process was done by trial and error. It was started with a simple MLP
with one hidden layer of 100 neurons. The number of neurons and layers were adjusted
step by step observing the performance on the validation set. It was also found that
the ReLu activation function provided a better performance than the Sigmoid activation.
Furthermore, it was used the ADAM optimzer, L2 regularization, two training monitoring
functions and a Learning rate annealing function.

3.6 Decision maker

The Decision maker module was developed to alert the mine site operators
of the possibility of Idletime’s surge in front of the dumping area. Two strategies were
developed to create this alarm devoted to flagging a surge of Idletime.

First it was created a simple threshold Φ as presented in Equation (3.5) based
on the median 𝛾 value of Idletime extracted from the historical data used to train the
Predictor module. Every time that the Predictor module forecasted a value greater than
this threshold minus an 𝜉 parameter to account for the error associated with the forecast
an alarm was triggered. The idea behind the choice of the median value as a threshold was
because there was no previous definition from the mine site supervisors of how to identify
a surge of Idletime, so if the value forecasted was greater than the most common value

Chapter 3. Methodology 37

faced by the haul trucks it was considered a surge of Idletime. The results are discussed
in the Results chapter.

Φ = 𝛾 − 𝜉 (3.5)

In the second attempt it was developed a new threshold Θ obtained by the
average value of the last two Idletime events as follows:

Θ = idletime(𝑡) + idletime(𝑡 − 1)
2 (3.6)

In case of the output provided by the Predictor module be greater than Θ, a
flag is activated (i.e a Boolean variable equals True) informing the user of a possible surge
of Idletime in the next time interval.

For verifying the results of the Decision maker, a series of tests were conducted
during the month of October 2018 in a real mine site located in Brazil. Since the Deci-
sion maker would detect a surge of Idletime based on the criterion developed it can be
used classification metrics to evaluate the overall performance of the Decision Maker’s
module.Therefore, it was used the confusion matrix as presented in Table 3.2, F1 Score
exhibited in Equation (3.9), Recall presented in Equation (3.8) and Precision presented
in Equation (3.7).

Table 3.2 – Confusion Matrix

Actual
Positive Negative

Prediction Positive 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃) 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
Negative 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁) 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3.7)

𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3.8)

𝐹1 = 2 * 𝑃 * 𝑅

𝑃 + 𝑅
(3.9)

The interpretation of Precision 𝑃 for this problem is the rate of surges of
Idletime detected that was indeed surges of Idletime, while Recall 𝑅 can be interpreted
as the capability of detecting all the existing surges of Idletime in the period evaluated.
The 𝐹1 score is the harmonic average of Precision and Recall. All values of these metrics
range from 0 to 1. The closer the value to 1 better the performance.

Chapter 3. Methodology 38

3.7 Explainer

Every time an alert is generated by the Decision Maker’s module, that specific
sample of the features is passed to the LIME system, so it can indicate the top 3 features
that had a positive influence on the behavior of the Predictor module. In other words,
LIME explanations are used to provide the presumed reasons for the surge of Idletime
created by the Decision Maker’s module.

Aiming at investigating the performance in a real scenario, a series of tests
were made in a staging environment (i.e. a nearly exact replica of the production environ-
ment) assisted by the mining supervisors. Basically, it was provided the surge of Idletime
predictions 2 hours ahead along with the LIME stratification in case of alert. With those
information the users can take actions to minimize the surge of Idletime events at the
dumping area studied. Those tests were important to evaluate the overall performance of
the system against the real scenario of the mine site studied and collect the feedback for
enhancing the system performance.

39

4 Results

This chapter presents the results achieved by the Oráculo’s module using data
from a real mine site located in Brazil. The flow chart of the three Oráculo’s modules is
exhibited in Figure 4.1 where UI refers to user interface developed by a specialized team.

Figure 4.1 – Flow chart of the Oráculo System

Moreover, this chapter contains a section denoted as Data Preprocessing where
it is presented all the data cleaning and data engineering approaches taken to prepare the
data for devising the Predictor’s module.

4.1 Data Preprocessing

4.1.1 Data Engineering

By testing different aggregating time intervals, it was noticed that the smaller
the grain of analysis the more sparse and noisy was the resulting time series of Idle-
time, turning burdensome the forecasting process. Figure 4.2 exhibits this pattern for the
following aggregating time intervals 30 minutes, 1 hour and 2 hours.

This matter of choosing the appropriate aggregating time interval was also
discussed with the mine site supervisors for getting their perspective of what would be
the best time interval to get a prediction of Idletime’s surge events in such a way that
it was possible to take actions for preventing this scenario. As a result, the optimal time
interval was found to be every 2 hours which also provided a better convergence for the
Predictor’s module.

Chapter 4. Results 40

Figure 4.2 – Examples of Aggregating Time intervals

4.1.2 Data Cleaning

The distribution of Idletime was analyzed and it was noticed the presence of
outliers. In order to deal with this problem, every value greater than the mean plus three
standard deviations were removed. The result of this approach is exhibited in Figure 4.3.

(a) Before

(b) After

Figure 4.3 – Treatment of Outliers

The number of lost examples in this process was only 37.

Furthermore, the failures were analysed selecting only those which exhibited
influence on the Idletime. This filtering process was also assisted by the mine site super-

Chapter 4. Results 41

visor. The list of failures are not exhibited due to information security purposes.

4.1.3 Feature and Target Transformations

After cleaning and adjusting the aggregating frequency of the data, the result-
ing feature matrix was scaled using a normalization approach as presented in Equation
3.1.

Another strategy adopted that provided a good convergence for the models
was to normalize the target (i.e. the average of Idletime every 2 hours) using 𝑙𝑜𝑔(1 + 𝑦).
The resulting distribution is presented Figure 4.4.

Figure 4.4 – Target normalized using 𝑙𝑜𝑔(1 + 𝑦)

4.1.4 Analysis of the number of lags

Aiming at choosing the number of lags used in the autoregressive models two
approaches were adopted. First it was analyzed the autocorrelation and partial autocor-
relation graphs as presented in Figure 4.5. The QQ Plot and the Probability Plot, also
presented in Figure 4.5, demonstrate how close is the the distribution of the time series
analysed compared to a normal distribution

Based on this analysis, it was chosen 6 lags for forecasting the next Idletime.
Later some tests were done with lag values greater than 6 which did not produced any
improvements on the performance of the Predictor module.

The same number 6 of lags were also applied for the rest of features resulting in
a feature matrix containing the 25 features at time 𝑡 with its 6 lagged samples 𝑡−1, . . . , 𝑡−5
plus the lagged samples of the target (i.e. mean and standard deviation of Idletime). The

Chapter 4. Results 42

Figure 4.5 – Analysis of Idletime’s average every two hours normalized using 𝑙𝑜𝑔(1 + 𝑦)

structure of this matrix is similar to the red box presented in Figure 2.2. This lagged
samples choice resulted in a feature matrix of dimensions 182 × 𝑛 (i.e. 26 × 7).

For selecting the features, it was analyzed the Pearson’s correlation between
the Idletime at the next time interval (i.e. 𝑡 + 1) with the features at the past (i.e.
𝑡, 𝑡 − 1, . . . , 𝑡 − 5). As a result, it was derived a vector of dimension 182 × 1 with each
row containing a value ranging from -1 to 1 also known as the statistical significance
or p-value. Finally it was selected all features that exhibits a p-value less than −0.3 or
greater than +0.3 resulting in a total of 111 features for devising the Predictor’s module.

4.2 Predictor module

The goal of this module it to forecast the average of Idletime 2 hours ahead.
For accomplishing this, different models were devised and evaluated.

The first model devised was a simple Linear Regression trained with L1 (Lasso)
regularizer using scikit-learn library in Python.

For finding the best 𝛼 it was used a Grid Search approach with predefined sets
of values. The results are displayed on Table 4.1

After choosing the 𝛼 that provided the best result on the validation set, the

Chapter 4. Results 43

Table 4.1 – Lasso Results

𝛼 MAE Train MAE Validation
3.0 1.20 0.91
1.0 1.01 0.79
1e−1 0.81 0.67
1e−2 0.74 0.61
1e−3 0.72 0.65
1e−4 0.72 0.67

performance of model was evaluated on the test set. As a result, it was obtained a MAE
of 0.71. To help getting a better sense of performance it was also used the RRMSE. This
metric yielded a value of 26% which is considered on the literature a reasonable model.
Also, the predicted versus the actual value on the test set is provided on Figure 4.6.

Figure 4.6 – Lasso test set results

Although the Linear Regression with Lasso regularizer provided a reasonable
result on the test set (i.e. MAE of 0.71 and 26% of RRMSE), a non-linear model was also
devised aiming for improving this performance.

The ANN architecture was devised by trial and error observing the perfor-
mance on the validation set. The resulting architecture is presented in Figure 4.7.

Figure 4.7 – ANN architecture

Chapter 4. Results 44

Aiming at training the ANN’s weights it was used the Adam optimizer with a
learning rate of 10−3 and a weight decay (i.e. L2 regularizer) of 10−5. Two callbacks were
used to monitor the training process: EarlyStopping and ModelCheckPoint. It was also
found that by using the Cyclical learning rate policy with an exponential annealing it was
possible to extend the number of epochs during the training process resulting in a better
performance on the test set. Figure 4.8 demonstrates the model convergence during the
training process.

Figure 4.8 – ANN Training process

The MAE on the test set achieved with this approach was 0.66 with a RRMSE
of 26%. Even though the RRMSE of both models were equal, the MAE on the test set
of the ANN 0.66 was slightly better than the Lasso Regression 0.71. Also, the predicted
versus the truth value on the test set is provided in Figure 4.9.

Figure 4.9 – ANN test set results

Using the target filtered by Savitzky filter, the models were retrained following
the same steps previously discussed. The Lasso Regression with 𝑎𝑙𝑝ℎ𝑎 = 1e−2 yielded a
MAE of 0.38 and a RRMSE of 13% on the test set. Figure 4.10 exhibits the predicted
versus the actual values on the smoothed test set.

Chapter 4. Results 45

Figure 4.10 – Test set results for Lasso model with target smoothed

The ANN was trained using the same architecture presented in Figure 4.7
achieving a MAE of 0.32 and 11% of RRMSE on the smoothed test set, which is the best
result achieved with the models devised. Figure 4.11 presents the predicted versus the
actual values on the smoothed test set.

Figure 4.11 – Test set results for ANN model with smoothed target

The summary of the obtained results considering all the approaches described
in this section are disposed in Table 4.2.

Table 4.2 – Summary of the obtained performance

MAE RRMSE

Noisy target Lasso 0.71 26%
ANN 0.66 26%

Smoothed target Lasso 0.38 13%
ANN 0.32 11%

Besides the best performance reached by using the ANN according to the
metrics evaluated, it was also observed that the ANN could better anticipate higher
peaks when compared to the Lasso model. This is a really important capability of the
model, since the main goal of Oráculo system is forecasting surges of Idletime (i.e. higher
peaks). An example of this situation is illustrated in Figure 4.12 on the peak between the
15th and 25th samples.

Chapter 4. Results 46

Figure 4.12 – Comparison of the performance of the proposed models for forecasting
higher peaks

4.3 Decision maker

The first threshold Θ based on the mean value of the last two average of
Idletime faced by the haul trucks, presented in Equation (3.6) yielded the results in
Figure 4.13 and Table 4.3.

Figure 4.13 – Confusion Matrix for Θ

Table 4.3 – Results for Θ

Metrics Value
F1-score 0.76
Precision 0.68
Recall 0.86

The second threshold Φ presented in Equation (3.5) yielded the results in
Figure 4.14 and Table 4.4.

The two thresholds identify what would be a surge of Idletime creating a
binary classification problem by using the forecasts of the Predictor module. In fact, each
threshold has its particularities. Θ can be seen as a moving average that would detect a
trend with the past two Idletime values, while Φ detects the Idletime that differs from
the most common value on the historical data used to train the Predictor module.

Chapter 4. Results 47

Figure 4.14 – Confusion Matrix for Φ

Table 4.4 – Results for Φ

Metrics Value
F1-score 0.71
Precision 0.57
Recall 0.96

The Θ threshold is flexible and carries local information. However, it still
consider low values of Idletime as a surge which in reality is not true.

With that interpretation in mind and after a series of discussions with the
Mine Supervisors and comparative tests, it was chosen the Φ threshold for identifying a
surge of Idletime. Additionally, a fact that contributes for this decision was in general the
smaller number of False Negatives resulted when using the Φ threshold versus the ones
yielded by using Θ.

4.4 Explainer module

The Explainer module is constituted mainly by LIME and it is activated every
time an alarm of surge of Idletime is generated by the Decision Maker module. Then it
is taken the top 3 features that had a positive influence on the output provided by the
Predictor module. In other words, the features used to forecast the average of Idletime
two hours ahead inform the presumed reason for the forecast that generated alarm.

The messages generated at the final user interface was created based on the
users feedback in order to make it easier to understand and feasible to use. The final version
was omitted from this thesis due to information security purposes. However, Figure 4.15
illustrates the idea behind the user interface as well as a real example, provided by the
Mine Supervisors, of a successful surge of Idletime detected .

The column "Time of prediction" contains the time which the Oráculo system

Chapter 4. Results 48

Figure 4.15 – A fictitious example of the Oráculo’s operation

was activated meaning that the surge of Idletime will happen or not in the next 2 hours.
If the color is red it means that the decision maker generated an alarm which will be con-
firmed by the value 1 in the column "Alarm of Idletime’s surge". Finally the contributors
found by LIME are disposed in a list in the column "Contributors" which refers to the
features used to train the Predictor‘s module.

The graph right below the three columns is a metric from the Mine Supervisor
that confirmed a Surge of Idletime indicated by Oráculo system on the given hour (i.e.
the peak around 2:15) in a test made on a real mine site located in Brazil.

49

Conclusion

This dissertation presents and analyzes a successful application of an inter-
pretable machine learning solution which is currently being used in a mining company
in Brazil. The contact with the mine site supervisors and the visits made to the mine
enhanced the capability of tracking good features to forecast the surge of queue events at
the dumping area and greatly improved the overall understanding of the problem.

The Data Mining, Engineering and Cleaning processes were undoubtedly the
most time consuming phase of this research project. Being able to automatize and develop
a well documented code for this pipeline made feasible testing different groups of features
and observing the impact of each one. Moreover, it contributed for later transferring this
solution to a production environment.

Another important strategy of the methodology adopted was the auto-regressive
perspective of the time series models. This strategy has opened a variety of possibilities
in many practical problems faced on the daily work life in industrial plants with com-
plex process to be monitored. Every problem that has a correlated time sequence can be
benefited from the concepts here applied and discussed.

The power of Artificial Neural Networks with the state of the art techniques
to augment the training processes were indeed essential. In special the supervised learn-
ability of a function that maps the correlation among the target and all the features
acquired with an associated error. This characteristic made it possible to overcome the
tight schedule imposed by the stakeholders delivering a robust forecast model. Addition-
ally, the capacity of forecasting higher peaks of Idletime besides the superior performance
compared to the Lasso regression was fundamental.

The rule based system behind the Decision Maker module, opened a range
of new possibilities for adding new features (e.g. new information from sensors, images,
etc...) in the surge of Idletime identification process. This flexibility does not require
historical data and can be updated easily as the mine site changes over time. This capacity
outperforms the usage of a classifier machine learning model which would demand a
historical data for learning the pattern in case.

The explanatory feature of the Oráculo’s system granted by the LIME algo-
rithm provided a leaver of action for the forecasts and the alarms generated by the Pre-
dictor and Decision Maker modules. This capacity is crucial and turned the forecasting
followed by an automatic explanation more useful for the final users.

Conclusão 50

Future work and perspectives

There are some points of improvement identified by the author and summarized
on the list below. Those points will be studied and might be applied for next projects
depending on the results achieved.

∙ Usage of Recurrent Neural Networks or even Convolutional Neural Networks for
improving the Predictor’s module;

∙ Usage of ensemble or Meta Learning techniques for combining the forecast of differ-
ent models aiming at improving the generalization capability;

∙ Selection of the number of lags in multivariate time series is a combinatorial analysis
that creates an opportunity for developing a heuristic model to accomplish this goal.

51

Bibliography

BECKMAN, R. Haul trucks in australian surface mines. 2012: Australia: p. 87-96., 2012.
Citado na página 15.

CHIRONIS, N. P. Coal age operating handbook of coal surface mining and reclamation.
In: . [S.l.: s.n.], 1978. Vol. 6., cap. Alberta: Coal Age Mining Informational
Services:, p. p. 153–169. Citado na página 15.

CLEVERT, D.; UNTERTHINER, T.; HOCHREITER, S. Fast and accurate deep
network learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.
Disponível em: <http://arxiv.org/abs/1511.07289>. Citado na página 21.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Signals and
Systems, vol. 2, p. pp. 303–314, 1989. Citado na página 19.

DAUPHIN, Y. N.; PASCANU, R.; GÜLÇEHRE, Ç.; CHO, K.; GANGULI, S.; BENGIO,
Y. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In: Advances in Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada. [s.n.], 2014. p. 2933–2941. Disponível em: <http://papers.nips.cc/paper/
5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization>.
Citado na página 28.

DESPOTOVIC, M.; NEDIC, V.; DESPOTOVIC, D.; CVETANOVIC, S. Evaluation
of empirical models for predicting monthly mean horizontal diffuse solar radiation.
Renewable and Sustainable Energy Reviews, Elsevier BV, v. 56, p. 246–260, apr 2016.
Disponível em: <https://doi.org/10.1016/j.rser.2015.11.058>. Citado na página 36.

DUCHI, J. C.; HAZAN, E.; SINGER, Y. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, v. 12,
p. 2121–2159, 2011. Disponível em: <http://dl.acm.org/citation.cfm?id=2021068>.
Citado na página 26.

DURBIN, J.; KOOPMAN, S. J. Time Series Analysis by State Space Methods. [S.l.]:
Oxford university press, 2012. Citado na página 17.

ERCELEBI, S.; BASCETIN, A. Optimization of shovel-truck system for surface mining.
Journal of the Southern African Institute of Mining and Metallurgy, scieloza, v. 109, p.
433 – 439, 07 2009. ISSN 2225-6253. Disponível em: <http://www.scielo.org.za/scielo.
php?script=sci_arttext&pid=S2225-62532009000700006&nrm=iso>. Citado na página
14.

GIESBRECHT, M. PROPOSTAS IMUNO-INSPIRADAS PARA IDENTIFICAÇÃO
DE SISTEMAS E REALIZAÇÃO DE SÉRIES TEMPORAIS MULTIVARIÁVEIS
NO ESPAÇO DE ESTADO. Tese (Doutorado) — School of Electrical and Computer
Engineering, UNICAMP, 2013. Citado na página 17.

HAMMOOD, A. S.; MAHDI, H. Development artificial neural network model to study
the influence of oxidation process and zinc-electroplating on fatigue life of gray cast iron.

http://arxiv.org/abs/1511.07289
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization
https://doi.org/10.1016/j.rser.2015.11.058
http://dl.acm.org/citation.cfm?id=2021068
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532009000700006&nrm=iso
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532009000700006&nrm=iso

Bibliography 52

International Journal of Mechanical & Mechatronics Engineering 12(74), 2012. Citado
na página 19.

HARTMAN, H. L.; MUTMANSKY, J. M. Introductory Mining Engineering. [S.l.]: NJ:
John Wiley & Sons, 2002. Citado na página 14.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015.
Disponível em: <http://arxiv.org/abs/1502.01852>. Citado na página 21.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. [s.n.], 2016. p. 770–778. Disponível em:
<https://doi.org/10.1109/CVPR.2016.90>. Citado na página 21.

HINTON, G. Neural networks for machine learning. Lecture 6a Overview of mini-batch
gradient descent. 2014. Disponível em: <http://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf>. Citado na página 25.

KE-LUXIANG; PU-YUXIANG; YOU-PINGWU. Prediction of the fatigue life of natural
rubber composites by artificial neural network approaches. Materials & Design, Volume
57, p. Pages 180–185, 2014. Citado na página 19.

KECOJEVIC, V.; KOMLJENOVIC, D. Haul truck fuel consumption and co2 emission
under various engine load conditions. Mining Engineering, 2010. Citado na página 15.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. Disponível em: <http://arxiv.org/abs/1412.6980>. Citado na
página 26.

KLAMBAUER, G.; UNTERTHINER, T.; MAYR, A.; HOCHREITER, S. Self-
normalizing neural networks. CoRR, abs/1706.02515, 2017. Disponível em: <http:
//arxiv.org/abs/1706.02515>. Citado na página 21.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Commun. ACM, v. 60, n. 6, p. 84–90, 2017. Disponível
em: <http://doi.acm.org/10.1145/3065386>. Citado na página 21.

MAAS, A. L.; HANNUN, A. Y.; NG, A. Y. Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of the 30th International Conference on
Machine Learning,. [S.l.: s.n.], 2013. Citado na página 21.

NASHVER, K.; SIGHBIN, J. Improving the organization of the shovel-truck systems in
open-pit coal mines. Jacksonville, USA: p. 31-36, 2007. Citado na página 15.

PARUNAK, H. V. D. Book review: Neural networks for pattern recognition by
christopher m. bishop (clarendon press, 1995). SIGART Bulletin, v. 9, n. 1, p. 41–43,
1998. Disponível em: <http://doi.acm.org/10.1145/294828.1067910>. Citado na página
19.

RAHIMI-GORJI, M.; GHAJAR, M.; KAKAEE, A.-H.; GANJI, D. D. Modeling of the
air conditions effects on the power and fuel consumption of the si engine using neural
networks and regression. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, Volume 39, p. pp 375–384, 2017. Citado na página 19.

http://arxiv.org/abs/1502.01852
https://doi.org/10.1109/CVPR.2016.90
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1706.02515
http://arxiv.org/abs/1706.02515
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/294828.1067910

Bibliography 53

RIBEIRO, M. T.; SINGH, S.; GUESTRIN, C. "why should I trust you?": Explaining
the predictions of any classifier. CoRR, abs/1602.04938, 2016. Disponível em:
<http://arxiv.org/abs/1602.04938>. Citado na página 29.

RUDER, S. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016. Disponível em: <http://arxiv.org/abs/1609.04747>. Citado 2
vezes nas páginas 23 and 25.

SAVITZKY, A.; GOLAY, M. J. E. Smoothing and differentiation of data by simplified
least squares procedures. Analytical Chemistry, v. 36, p. 1627–1639, 1964. Citado na
página 34.

SHCHERBAKOV, M. V.; BREBELS, A.; SHCHERBAKOVA, N. L.; TYUKOV, A. P.;
JANOVSKY, T. A.; KAMAEV, V. A. A survey of forecast error measures. Citeseer,
2013. Citado na página 36.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556, 2014. Disponível em: <http:
//arxiv.org/abs/1409.1556>. Citado na página 21.

SMITH, L. N. No more pesky learning rate guessing games. CoRR, abs/1506.01186,
2015. Disponível em: <http://arxiv.org/abs/1506.01186>. Citado na página 28.

SOOFASTAEI, A.; AMINOSSADATI, S. M.; KIZIL, M. S.; KNIGHTS, P. Simulation
of payload variance effects on truck bunching to minimise energy consumption and
greenhouse gas emissions. Coal Operators’ Conference, 2015. Citado 2 vezes nas páginas
7 and 14.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUT-
DINOV, R. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, v. 15, p. 1929–1958, 2014. Disponível em:
<http://jmlr.org/papers/v15/srivastava14a.html>. Citado 2 vezes nas páginas 7
and 25.

SZEGEDY, C.; LIU, W.; JIA, Y.; SERMANET, P.; REED, S. E.; ANGUELOV,
D.; ERHAN, D.; VANHOUCKE, V.; RABINOVICH, A. Going deeper with
convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. [s.n.], 2015. p. 1–9. Disponível em:
<https://doi.org/10.1109/CVPR.2015.7298594>. Citado na página 21.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso: a retrospective.
Journal of the Royal Statistical Society, Series B (Methodological), p. 267–288, 1996.
Citado na página 24.

XU, B.; WANG, N.; CHEN, T.; LI, M. Empirical evaluation of rectified activations
in convolutional network. CoRR, abs/1505.00853, 2015. Disponível em: <http:
//arxiv.org/abs/1505.00853>. Citado na página 21.

ZEILER, M. D. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701,
2012. Disponível em: <http://arxiv.org/abs/1212.5701>. Citado na página 26.

http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1506.01186
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/1212.5701

	Title page
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Literature Review
	Time series models
	Artificial Neural Networks
	Formalization
	Supervised Learning
	Gradient Descent Optimization
	Monitoring training functions

	Local Interpretable Model-Agnostic Explanations

	Methodology
	Data mining
	Data Engineering
	Data Cleaning
	Feature and Target Transformations
	Predictor's module
	Decision maker
	Explainer

	Results
	Data Preprocessing
	Data Engineering
	Data Cleaning
	Feature and Target Transformations
	Analysis of the number of lags

	Predictor module
	Decision maker
	Explainer module

	Conclusion
	Bibliography

