
Saullo Haniell Galvão de Oliveira

On bicluster aggregation and its benefits for
enumerative solutions.

Aglomeração de biclusters e seus benefícios para
soluções enumerativas.

Campinas

2015

i



ii



UNIVERSIDADE DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Saullo Haniell Galvão de Oliveira

On bicluster aggregation and its benefits for enumerative
solutions.

Aglomeração de biclusters e seus benefícios para soluções
enumerativas.

Master dissertation presented to the Electrical
Engineering Graduate Program of the School
of Electrical and Computer Engineering of the
University of Campinas to obtain the M.Sc.
grade in Electrical Engineering, in the field of
Computer Engineering.
Dissertação de mestrado apresentada a Facul-
dade de Engenharia Elétrica e de Computação
da Universidade Estadual de Campinas para
obtenção do título de Mestre em Engenharia
Elétrica, na área de Engenharia de Computa-
ção.

Orientador: Prof. Dr. Fernando José Von Zuben

Este exemplar corresponde à versão
final da dissertação defendida pelo
aluno Saullo Haniell Galvão de
Oliveira, e orientada pelo Prof. Dr.
Fernando José Von Zuben

Campinas
2015

iii



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Elizangela Aparecida dos Santos Souza - CRB 8/8098

    
  Oliveira, Saullo Haniell Galvão de, 1988-  
 OL4o OliOn biclusters aggregation and its benefits for enumerative solutions / Saullo

Haniell Galvão de Oliveira. – Campinas, SP : [s.n.], 2015.
 

   
  OliOrientador: Fernando José Von Zuben.
  OliDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de

Engenharia Elétrica e de Computação.
 

    
  Oli1. Aprendizado de máquina. 2. Análise de Cluster. 3. Mineração de dados

(Computação). 4. Outliers (Estatística). 5. Problemas de enumeração
combinatória. I. Von Zuben, Fernando José. II. Universidade Estadual de
Campinas. Faculdade de Engenharia Elétrica e de Computação. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Agregação de biclusters e seus benefícios para soluções
enumerativas
Palavras-chave em inglês:
Machine learning
Cluster analysis
Data mining and knowledge discovery
Outliers (statistics)
Combinatorial enumeration problems
Área de concentração: Engenharia de Computação
Titulação: Mestre em Engenharia Elétrica
Banca examinadora:
Fernando José Von Zuben [Orientador]
Ricardo José Gabrielli Barreto Campelo
Guilherme Palermo Coelho
Fabrício Olivetti de França
Romis Ribeiro de Faissol Attux
Data de defesa: 27-02-2015
Programa de Pós-Graduação: Engenharia Elétrica

Powered by TCPDF (www.tcpdf.org)

iv



v



vi



Abstract
Biclustering involves the simultaneous clustering of objects and their attributes, thus defin-
ing local models for the two-way relationship of objects and attributes. Just like clustering,
biclustering has a broad set of applications, ranging from an advanced support for recom-
mender systems of practical relevance to a decisive role in data mining techniques devoted
to gene expression data analysis. Initially, heuristics have been proposed to find biclusters,
and their main drawbacks are the possibility of losing some existing biclusters and the inca-
pability of maximizing the volume of the obtained biclusters. Recently efficient algorithms
were conceived to enumerate all the biclusters, particularly in numerical datasets, so that
they compose a complete set of maximal and non-redundant biclusters. However, the ability
to enumerate biclusters revealed a challenging scenario: in noisy datasets, each true bicluster
becomes highly fragmented and with a high degree of overlapping, thus preventing a direct
analysis of the obtained results. Fragmentation will happen no matter the boundary condi-
tion adopted to specify the internal coherence of the valid biclusters, though the degree of
fragmentation will be associated with the noise level. Aiming at reverting the fragmentation,
we propose here two approaches for properly aggregating a set of biclusters exhibiting a high
degree of overlapping: one based on single linkage and the other directly exploring the rate of
overlapping. A pruning step is then employed to filter intruder objects and/or attributes that
were added as a side effect of aggregation. Both proposals were compared with each other
and also with the actual state-of-the-art in several experiments, including real and artificial
datasets. The two newly-conceived aggregation mechanisms not only significantly reduced
the number of biclusters, essentially defragmenting true biclusters, but also consistently in-
creased the quality of the whole solution, measured in terms of Precision and Recall when
the composition of the dataset is known a priori.

Keywords: Biclustering; bicluster enumeration, bicluster aggregation, outlier removal, met-
rics for biclusters.
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Resumo

Biclusterização envolve a clusterização simultânea de objetos e seus atributos, definindo mo-
delos locais de relacionamento entre os objetos e seus atributos. Assim como a clusterização, a
biclusterização tem uma vasta gama de aplicações, desde suporte a sistemas de recomendação,
até análise de dados de expressão gênica. Inicialmente, diversas heurísticas foram propostas
para encontrar biclusters numa base de dados numérica. No entanto, tais heurísticas apresen-
tam alguns inconvenientes, como não encontrar biclusters relevantes na base de dados e não
maximizar o volume dos biclusters encontrados. Algoritmos enumerativos são uma proposta
recente, especialmente no caso de bases numéricas, cuja solução é um conjunto de biclusters
maximais e não redundantes. Contudo, a habilidade de enumerar biclusters trouxe mais um
cenário desafiador: em bases de dados ruidosas, cada bicluster original se fragmenta em vá-
rios outros biclusters com alto nível de sobreposição, o que impede uma análise direta dos
resultados obtidos. Essa fragmentação irá ocorrer independente da definição escolhida de co-
erência interna no bicluster, sendo mais relacionada com o próprio nível de ruído. Buscando
reverter essa fragmentação, nesse trabalho propomos duas formas de agregação de biclusters
a partir de resultados que apresentem alto grau de sobreposição: uma baseada na clusteriza-
ção hierárquica com single linkage, e outra explorando diretamente a taxa de sobreposição
dos biclusters. Em seguida, um passo de poda é executado para remover objetos ou atributos
indesejados que podem ter sido incluídos como resultado da agregação. As duas propostas
foram comparadas entre si e com o estado da arte, em diversos experimentos, incluindo bases
de dados artificiais e reais. Essas duas novas formas de agregação não só reduziram significa-
tivamente a quantidade de biclusters, essencialmente defragmentando os biclusters originais,
mas também aumentaram consistentemente a qualidade da solução, medida em termos de
precisão e recuperação, quando os biclusters são conhecidos previamente.

Palavras-chaves: Biclusterização, enumeração de biclusters, agregação de biclusters, remo-
ção de outliers, métricas para biclusters.
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1 Introduction

Data mining is a popular research field that aims to detect hidden patterns in datasets
and to extract knowledge of these analyses. Clustering is a data mining task that finds groups
of highly correlated objects in a dataset. If two objects are in the same group, they are highly
correlated; but if they are in distinct groups, they should not be correlated. The applications of
clustering techniques are disseminated, varying from marketing purposes to outlier detection,
going through protein identification, among others. The reader may refer to Jain et al. (1999)
for a survey of clustering.

To be part of a cluster, an assumption is made: all attributes of the clustered objects
must show certain correlation. If the process do not find a global correlation, the objects will
not be part of the same cluster. This assumption is problematic for some applications and
specially for objects with many attributes. For example, in microarray gene expression data
analysis, it is very hard to find a global correlation between all the attributes. Usually, the
objects of this kind of dataset are genes, and the attributes are samples of experiments. A
cluster would represent a set of genes that exhibit a similar expression considering all the
samples. But the samples can refer to distinct subjects. For example, one sample can come
from a healthy tissue, another from a cancer tissue. If a gene is related to the manifestation
of that cancer, it will certainly be expressed differently in the two samples when compared
to a non-related gene. In this case, the clustering methods will not be able to find proper
groups in these datasets.

Biclustering is a set of clustering algorithms capable of finding groups of objects
in a subset of attributes. In this case, the group of objects only makes sense considering
that specific subset of attributes. This class of algorithms rapidly found application in gene
expression data analysis and several other fields. As finding all biclusters in a dataset is an
NP-hard problem, most of the algorithm proposals are heuristics, that may miss important
biclusters.

The enumeration of biclusters is something recent. Veroneze et al. (2014) proposed
a family of bicluster enumeration algorithms for real datasets, that we will explore in this
dissertation. In the literature, it is known that the presence of noise when enumerating a
dataset leads to a result with too many biclusters with high overlapping (ZHAO; ZAKI, 2005).
Even in small datasets, the quantity of enumerated biclusters can be enormous, leading to a
complex and timing consuming analysis, or even impracticable. In this case, the aggregation
plays a fundamental role in removing the unnecessary overlapping and simplifying the final
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biclusters of the solution.

An area of research similar to bicluster aggregation is the biclustering ensemble, which
is a combination of different results into a more robust final result. Ensemble is a common
practice in classification and regression tasks, and is gaining attention in clustering tasks.
The literature presents a variety of biclustering ensemble algorithms, but the aggregation
is a subtly different task, to be better explained along the text. Despite that difference,
we compared our proposals with the results produced by an ensemble algorithm, as well as
with the most similar approach to an aggregation algorithm that we were able to find in
the literature. After aggregating fragmented biclusters, an outlier removal step is conceived
to filter out intruder objects and / or attributes that supposedly were incorporated in the
aggregated solution.

We will show that the aggregation of biclusters based on the high overlapping of the
enumerative solution, can lead to better results, severely reducing the quantity of biclusters.
This conclusion was obtained considering three artificial datasets and two real datasets from
different backgrounds.

1.1 Main goal of the research
The goal of this research is to remove the redundancy and improve the quality of

a bicluster solution that presents a high degree of overlapping among its components. This
characteristic is easily found in enumerative solutions of biclustering.

1.2 Structure of the dissertation
This dissertation is divided into five parts.

Part I - Main Concepts In this part we will explain the necessary background to support
our contribution. This part contains three chapters. The first chapter will discuss clus-
tering and biclustering methods. The second chapter will discuss the ensemble meth-
ods for biclustering, and we will highlight the difference between bicluster ensemble
and bicluster aggregation. The third chapter will discuss the metrics for biclustering
evaluation that best fit our needs.

Part II - Proposals In this part we will explain our contributions. We will start by explain-
ing our first contribution: an aggregation based on hierarchical clustering with single
linkage. After that, we will explain a second proposal: an aggregation based on the
overlapping between the biclusters. We will continue by explaining an outlier removal
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step that proved to be important on our contributions, and we will end this chapter by
giving an example of the entire aggregation procedure.

Part III - Discussion In this part we will explain how the experiments were planned and
delimited. We will also explain how the artificial datasets were generated, discuss the
results of the experiments, and show how our proposal can be positioned in comparison
with the existent methods.

Part IV - Final considerations This chapter concludes this dissertation and outlines the
future work that can be done starting from the achieved contributions.
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2 Clustering and biclustering

In this chapter we will explain the limitations of clustering that motivated the devel-
opment of biclustering algorithms and how these algorithms look for patterns in a dataset.

2.1 Clustering

Clustering is a well-known data mining task, that groups objects from a dataset into
clusters. Ideally the similarity between objects on the same cluster is high, and the similarity
between objects from distinct clusters is low. The clustering usefulness led this problem to be
studied in many contexts and by researchers in many disciplines. Some important applications
for clustering are market research, astronomy, psychiatry, weather classification, archeology,
bioinformatics, among others (EVERITT et al., 2011). For a broad view of the area, we
recommend the surbvey by Jain et al. (1999).

2.2 Clustering with Single Linkage

Single linkage is a method of agglomerative hierarchical clustering. In this class of
methods, each object starts in its own cluster. The clusters are then sequentially combined
with the closest cluster specified by a pre-defined distance, up to the point where all objects
belong to the same cluster.
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Figure 1 – Example of a dendrogram.
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It is common to represent the process of hierarchical clustering in a visual form using a
dendrogram, as in Figure 1. The leafs of the dendrogram represent the objects, each junction
represents a cluster and the height of a junction represents the distance between the two
combined clusters.

The term “single linkage” refers to how the distance between the clusters will be
calculated (JAIN et al., 1999). In this case, the distance is measured by the closest elements
of the two groups in comparison.

A drawback of the hierarchical clustering is that the user must choose where to cut
the dendrogram. The cut determines how many clusters the solution will have. Usually the
height of the junctions is used to indicate a good cut: when the height of a junction is much
bigger than the height of the junctions below, it may be a good place to cut the dendrogram.
Another drawback of single linkage is what is known as the chaining effect. If the clusters are
connected by some elements, the process may not find useful clusters (JAIN et al., 1999).

2.3 Biclustering Motivation
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Figure 2 – Example of clustering considering objects composed of two attributes.

Figure 2 shows an example of clustering. We can see that the two groups are well-
defined in distinct areas of the feature space. However, even in this limited dimensionality, we
can verify one major limitation of clustering: the assumption of correlation in all attributes.
Note that Attribute 2 is not relevant for clustering group 2. We can see this problem in
a practical example. Table 1 shows a toy dataset, where the rows represent movies, the
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columns represent customers and the table fields are evaluations that these customers gave
to the movies. The first four movies are from the category “documentary” and the last four
are from the category “action”. If we consider all attributes, we will not be able to find any
relevant group. But considering subsets of the attributes, we can easily find two distinct
groups. This example leads us to biclustering.

Table 1 – Example of biclusters in a movie evaluation dataset.

Maria João José Sofia
Cosmos: A Space Time Odissey 5 5 2 5
Fed Up 5 4 1 5
Myth Busters 4 4 5 2
Catfish 5 5 5 1
X-men 2 5 4 5
Godzilla 4 1 5 4
Lone Survivor 2 1 5 5
Non-Stop 5 3 5 4

Biclustering is a set of clustering algorithms that simultaneously cluster the rows
(objects) and columns (attributes) of a dataset. In this case, biclustering does not require
correlation between all attributes, given that it finds the most related set of attributes for
each set of objects. Hartigan (1972) proposed the first biclustering algorithm, and Cheng
& Church (2000) coined the term, applying their proposal to gene expression data. In fact,
biclustering is already considered a common technique to analyze gene expression data.

2.4 Problem formulation and definitions
Consider a dataset A ∈ R𝑛×𝑚, with rows 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and columns 𝑌 =

{𝑦1, 𝑦2, . . . , 𝑦𝑚}. We define a bicluster 𝐵 by 𝐵 = (𝐵𝑟, 𝐵𝑐), where 𝐵𝑟 ⊆ 𝑋 and 𝐵𝑐 ⊆ 𝑌 , such
that the elements in the bicluster show a coherence pattern. A bicluster solution is a set of
biclusters represented by �̄� = {𝐵𝑖}𝑞

𝑖=1, where 𝑞 is the quantity of biclusters on the solution
set. A bicluster is maximal if and only if we can not include any other object / attribute
without violating the coherence threshold. The overlapping function between two biclusters
𝐵 and 𝐶 is defined as

𝑜𝑣(𝐵, 𝐶) = |𝐵𝑟 ∩ 𝐶𝑟 × 𝐵𝑐 ∩ 𝐶𝑐|
𝑚𝑖𝑛(|𝐵𝑟 × 𝐵𝑐|, |𝐶𝑟 × 𝐶𝑐|) . (2.1)

Madeira & Oliveira (2004) categorized the types of biclusters according to their co-
herence patterns. In Figure 3 we show only the most important types of biclusters, that are
explained below.
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1,0 1,0 1,0 1,0 1,0 2,0 3,0 4,0 1,0 1,0 1,0 1,0
1,0 1,0 1,0 1,0 1,0 2,0 3,0 4,0 2,0 2,0 2,0 2,0
1,0 1,0 1,0 1,0 1,0 2,0 3,0 4,0 3,0 3,0 3,0 3,0
1,0 1,0 1,0 1,0 1,0 2,0 3,0 4,0 4,0 4,0 4,0 4,0

(a) (b) ( c)

1,0 2,0 5,0 0,0 1,0 2,0 0,5 1,5 70 13 19 10
2,0 3,0 6,0 1,0 2,0 4,0 1,0 3,0 49 40 49 35
4,0 5,0 8,0 3,0 4,0 8,0 2,0 6,0 40 20 27 15
5,0 6,0 9,0 4,0 3,0 6,0 1,5 4,5 90 15 20 12

(d) (e) (f)

Figure 3 – Types of biclusters. (a) Constant bicluster, (b) Constant columns, (c) Constant
rows, (d) Coherent values (additive model) (e) Coherent values (multiplicative
model) (f) Coherent evolution.

Constant bicluster: This type of bicluster is represented by 𝑎𝑖𝑗 = 𝜇 + 𝜔𝑖𝑗, where 𝜇 is a
constant value, and 𝜔𝑖𝑗 is a level of noise associated with the entry 𝑎𝑖𝑗. Figure 3a shows
an example where 𝜔𝑖𝑗 = 0, ∀𝑖, 𝑗.

Constant columns: This type of bicluster is represented by 𝑎𝑖𝑗 = 𝜇 + 𝛽𝑗 + 𝑤𝑖𝑗 or 𝑎𝑖𝑗 =
𝜇 × 𝛽𝑗 + 𝑤𝑖𝑗, where 𝑤𝑖𝑗 is a level of noise associated with the entry 𝑎𝑖𝑗. For the perfect
case, Figure 3b shows an example. When the bicluster is not perfect, ∃𝑖, 𝑗 such that
𝑤𝑖𝑗 ̸= 0.

Constant rows: This type of bicluster is represented by 𝑎𝑖𝑗 = 𝜇+𝛼𝑖+𝑤𝑖𝑗 or 𝑎𝑖𝑗 = 𝜇×𝛼𝑖+𝑤𝑖𝑗,
where 𝑤𝑖𝑗 is a level of noise associated with the entry 𝑎𝑖𝑗. Figure 3c shows an example.

Coherent values: This type of bicluster is represented by 𝑎𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑤𝑖𝑗, on the
additive case; and 𝑎𝑖𝑗 = 𝜇×𝛼𝑖×𝛽𝑗 +𝑤𝑖𝑗 on the multiplicative case; where 𝑤𝑖𝑗 is a level of
noise associated with the entry 𝑎𝑖𝑗. Figures 3d and 3e represent these cases, respectively.
We can see that one row (column) plus (times) some constant value produces another
row (column).

Coherent evolution: This type of bicluster is defined according to the order of the values,
not depending explicitly on the values themselves. We can see an example in Figure 3f,
where the columns show the following pattern: 𝑎𝑖4 < 𝑎𝑖2 < 𝑎𝑖3 < 𝑎𝑖1, for 𝑖 = {1, 2, 3, 4}.
Coherent evolution is then a generalization of coherent values.

We highlight that biclusters with constant values, constant values on rows or constant
values on columns, are special cases of biclusters with coherent values �with 𝛼 = 0 or 𝛽 = 0
�and we will focus our attention on the latter.
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Figure 4 – Bicluster structure. (a) single bicluster, (b) exclusive row and column biclusters,
(c) checkerboard structure, (d) exclusive rows biclusters, (e) exclusive columns
biclusters, (f ) non-overlapping biclusters with tree structure, (g) non-overlapping
non-exclusive biclusters, (h) overlapping biclusters with hierarchical structure, and
(i) arbitrarily positioned overlapping biclusters.

Besides all these types, a dataset can dispose their biclusters in many structures. Fig-
ure 4 shows several examples of structures of biclusters, as in Madeira & Oliveira (2004). The
checkerboard structure and the arbitrarily positioned overlapping are the most explored in
the literature, as they are the most common in real scenarios. Figure 4 shows only contiguous
biclusters, but this is not a necessary condition, as 𝐵𝑟 ⊆ 𝑋 and 𝐵𝑐 ⊆ 𝑌 , and non-contiguous
biclusters are very common. This work focuses on maximal biclusters of the structure de-
picted in Figure 4i, also considering contiguous or non-contiguous biclusters. A bicluster is
considered maximal when no row or column can be included without violating the chosen
coherence pattern.

2.5 Some heuristics

As finding all biclusters in a dataset is an NP-hard problem (MADEIRA; OLIVEIRA,
2004), several methods resort to heuristics. Cheng & Church (2000) proposed the CC algo-
rithm, one of the most famous methods for biclustering. They look for a bicluster per exe-
cution and the volume of the bicluster directly influences the search, as long as the internal
values do not trespass a residue value 𝛿. Eq. 2.2 defines the residue of a bicluster 𝐵:

𝐻(𝐵) = 1
|𝐵𝑟||𝐵𝑐|

∑︁
𝑖∈𝐵𝑟,𝑗∈𝐵𝑐

(𝑎𝑖𝑗 − 𝑎𝑖𝐽 − 𝑎𝐼𝑗 + 𝑎𝐼𝐽)2, (2.2)

where 𝑎𝑖𝐽 is the row mean, 𝑎𝐼𝑗 is the column mean, 𝑎𝐼𝐽 is the bicluster mean. When a bicluster
is perfect (constant bicluster, constant on rows / columns, or coherent value), its residue is
zero. Also, when the algorithm finds a bicluster, it replaces their values with random numbers.
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Jiong et al. (2003) proposed the FLOC (FLexible Overlapped biClustering), another
important heuristic. They based their algorithm on CC but avoiding the step of replacing
the values of the found bicluster with random numbers. Moreover, FLOC also identifies more
than one bicluster simultaneously.

The main limitation of these heuristics is that they are not able to guarantee finding
all the biclusters. Also, the biclusters that are found may not be of maximal volume, in the
sense that some rows and columns may be missed.

For a comprehensive survey of bicluster algorithms, the reader may refer to Madeira
& Oliveira (2004) and Tanay et al. (2005).

2.6 Bicluster enumeration

The bicluster enumeration is accomplished by a class of biclustering algorithms that
performs an exhaustive search for all maximal biclusters in a dataset, given a desired coher-
ence pattern.

In the case of binary datasets, there are plenty of algorithms for enumerating all
maximal biclusters. Some examples are Makino & Uno (MAKINO; UNO, 2004) and In-
Close2 (SIMON, 2009). The enumeration of all maximal biclusters in an integer or real-
valued dataset is a much more challenging scenario, but we already have some proposals,
such as RIn-Close (VERONEZE et al., 2014), and RAP (PANDEY et al., 2009). In subspace
clustering, where biclustering is called clustering by pattern similarity, some algorithms have
an enumerative approach to mine coherent values biclusters (VERONEZE et al., 2014). As
an example we have pCluster, proposed by Wang et al. (2002). Some shortcomings of this
algorithm pointed by Veroneze et al. (2014) are: a) it does not find all biclusters; b) it finds
biclusters that do not meet the user-defined measure of similarity.

An extension of pCluster is MaPle, proposed by the same authors (PEI et al., 2003).
In order to return just maximal biclusters, for each newly found bicluster MaPle looks at
all previously found biclusters, increasing the computational cost of this algorithm. Veroneze
et al. (2014) also pointed some scenarios where MaPle is not able to properly enumerate all
biclusters of a dataset. In other words, pCluster and MaPle are not enumerative, although it
was suggested by the authors.

Zhao & Zaki (2005) proposed MicroCluster. The algorithm starts by building a multi-
graph, then mines the maximal biclusters from this multigraph. Veroneze et al. (2014) pointed
that MicroCluster still miss some biclusters and thus is not enumerative. This algorithm has
an agglomerative step that will be used in this work and will be explained in more details
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later. The first proposal able to achieve the enumeration of coherent values biclusters in a
numerical dataset is the work of Veroneze et al. (2014). They proposed RIn-Close, a family
of algorithms that perform a complete, correct and non-redundant enumeration of biclusters.
By complete we mean that it returns all maximal biclusters present on the dataset; by correct
we expect that it returns only biclusters that attend the informed coherence pattern; and by
non-redundant we mean that it does not return the same bicluster more than once.

The parametrization of RIn-Close is also very important, as it is directly correlated
with the number of enumerated biclusters, and runtime. The authors draw attention to the
fact that even in a small dataset, depending on the parametrization, the algorithm may return
a large amount of biclusters. For more details about the actual state of research on bicluster
enumeration of several different types, the reader may refer to Veroneze et al. (2014).

In this work, we propose a way of aggregating biclusters from a biclustering result.
It is important that the obtained biclusters present high overlapping, as it is the case when
enumerating biclusters in noisy datasets. For this reason, in this work we will focus on enu-
merative results. We will use the RIn-Close family, as the other options present drawbacks
pointed here and by Veroneze et al. (2014).
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3 Ensemble and Aggregation

Ensemble is a common practice in supervised learning, which consists of combining the
results from several components into a single result of better performance and more robust
to noise (SHARKEY, 1996). According to Lima (2004), “it is about getting a result, for a
classification / regression problem, from several results of multiple alternative solutions for
the same problem, called components of the ensemble” 1. It is important for the components
to show a good individual performance, and also diverge in the error (PERRONE; COOPER,
1993). In other words, the components should fail in distinct aspects of the problem, and
hopefully for distinct samples of the dataset. In this way, where a component has a bad
performance, other ones can perform better.

Recently the ensemble setting started to be extended to unsupervised learning, such
as clustering. The problem of cluster ensemble is more difficult than classification ensemble,
as the labels of the clusters are hypothetical and we have a correspondence problem. Besides
that, the quantity and the shape of the clustering solutions may vary, according to the
assumptions of the algorithms, and to the view that each component has of the dataset
(STREHL; GHOSH, 2002). From the motivations of cluster ensemble (GHOSH; ACHARYA,
2011; STREHL; GHOSH, 2002; STREHL et al., 2000; WANG et al., 2011), we highlight:

Knowledge reuse: It is possible that some clustering solutions are already available from
the dataset. Thus, we can use that information to influence a new solution. Also, dis-
carding the previous knowledge can be wasteful.

Distributed computing: Some restrictions may rule the data, such as content privacy,
geographic, technical, or even contractual restrictions. Thus, we can deal with each
component independently and use the results to reach a consensus.

Content privacy: Some data may be protected by privacy restrictions or may belong to
different companies or government organs. Move that data may not be possible. Thus,
again, we can obtain each component independently and use the results to reach a
consensus.

Robustness: Combining solutions from different algorithms or data views contributes to
get a more robust result, as it does a better exploration of the hypothesis space (Note:

1 “Trata-se da obtenção de uma saída, para um problema de classificação, ou de regressão, a partir das
saídas individuais propostas por múltiplas soluções alternativas para o mesmo problema, denominadas
componentes do ensemble”.
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by hypothesis space we mean the space of all models that can be proposed to represent
the data).

For a comprehensive survey of cluster ensemble, the reader may refer to Vega-Pons &
Ruiz-Shulcloper (2011). In this survey, the authors categorized cluster ensemble algorithms
based on their consensus function, i.e. the function that combines the distinct results.

3.1 Bicluster ensemble
Since ensemble methods may promote the improvement of the performance of super-

vised classification and clustering, it is reasonable to think that they can also be extended
to tackle the biclustering problem (HANCZAR; NADIF, 2011b). In fact, many approaches
for biclustering ensemble already proposed in the literature, are based on the methods for
clustering ensemble.

Usually the process of getting an ensemble is the same: initially, we generate some
biclustering solutions, looking for diversity; then we use a consensus function to combine the
previous solutions into a single one. A selection step may also be included before combining
the candidate components. We will briefly describe the status of research on this topic.

Gullo et al. (2012) proposed an ensemble method in which they used distinct bicluster-
ing algorithms to generate diverse solutions, and modeled the consensus as a multiobjective
optimization problem. They also proposed a method to choose the most promising solution
on the Pareto front. The authors commented on the need to tune the parameters of the
solutions to get a good result, as simpler approaches led to comparable results.

Hanczar & Nadif (2011b) used the bagging technique to get the components and
combined the results using a “metacluster of biclusters”, based on Strehl & Ghosh (2002).
Although promising, one needs to pay attention to the runtime of this proposal.

Huang et al. (2012) proposed a scalable biclustering ensemble method. They used the
ITCC (Information-Theoretic Co-Clustering) algorithm to generate the components. The au-
thors implemented the algorithm in a distributed way using the Hadoop MapReduce frame-
work. They based the consensus on evidence accumulation (FRED; JAIN, 2005), and ana-
lyzed their algorithm on: text mining datasets, a comments authorship discovery task, and
a Brazilian Sign Language (LIBRAS2) dataset.

Hanczar & Nadif (2011a) published promising results of biclustering ensemble on
microarray gene expression data, improving the biological significance of the final result.
2 Linguagem Brasileira de Sinais
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They represented the biclusters in a binary matrix and then used a triclustering (HANCZAR;
NADIF, 2012) technique to get the consensus. We will use this algorithm in this dissertation,
as it was already applied to gene expression data analysis.

Aggarwal & Gupta (2013) divided the ensemble in two steps. The first is a label corre-
spondence problem, where each bicluster receives a label and they search for a correspondence
between the biclusters. The second is the consensus via optimization. The cost function con-
siders the dissimilarity between objects and attributes. A drawback of this method is the
assumption that all objects / attributes must be part of a bicluster, which may not be true
and can lead to poor results (PIO et al., 2013).

One major point in ensemble is that we want to combine the results reinforcing the
biclusters that seem to be important for several components, and discarding the ones that
may come from noise. If an area (set of objects and attributes) of the dataset is covered
just by one bicluster while the other covered areas have much more biclusters, the ensemble
should discard this bicluster, as it may be considered of low importance.

3.2 Bicluster aggregation
A major drawback of enumeration, particularly in the context of noisy datasets, is the

existence of a large number of biclusters, due to fragmentation of a much smaller number of
original biclusters, exemplified in Fig. 5, and verified in one of our experiments. The noise is
responsible for fragmenting the original biclusters into many with high overlapping, so that
the aggregation of these biclusters is recommended (LIU et al., 2004; ZHAO; ZAKI, 2005).
This fragmentation leads to a challenging scenario for the analysis of the results, that can
become impractical even in small datasets.

The aggregation aims at recovering the true bicluster from its fragmented counter-
parts. Although this combination seems similar to bicluster ensemble, the problem is different.
While on ensemble tasks we discard biclusters that seem unimportant and combine the ones
that contribute most for the solution, in bicluster aggregation we never discard any bicluster.

We will explain some methods of bicluster aggregation already published in the liter-
ature.

3.2.1 MicroCluster aggregation

After the enumeration, Zhao & Zaki (2005) added two steps to their algorithm. These
steps have the task of deleting or merging biclusters that are not covering an area much
different from other biclusters. Consider two biclusters 𝐵 = (𝐵𝑟, 𝐵𝑐) and 𝐶 = (𝐶𝑟, 𝐶𝑐). We
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Figure 5 – Illustration of the fragmentation of a bicluster in a noisy dataset.

define the span of a bicluster 𝐵 as the set of object-attribute pairs belonging to the bicluster,
given as 𝐿𝐵 = {(𝑔, 𝑠) | 𝑔 ∈ 𝐵𝑟, 𝑠 ∈ 𝐵𝑐}, and 𝐿𝐶 = {(𝑔, 𝑠) | 𝑔 ∈ 𝐶𝑟, 𝑠 ∈ 𝐶𝑐}. Then we can
define these derived spans:

𝐿𝐵∪𝐶 = 𝐿𝐵 ∪ 𝐿𝐶 (3.1)
𝐿𝐵−𝐶 = 𝐿𝐵 − 𝐿𝐶 (3.2)
𝐿𝐵+𝐶 = 𝐿(𝐵𝑟∪𝐶𝑟)×(𝐵𝑐∪𝐶𝑐). (3.3)

With these definitions, MicroCluster deletes the bicluster 𝐵 if a set of biclusters {𝐶𝑖}
exists such that

𝐿𝐵 − 𝐿∪𝑖𝐶𝑖

𝐿𝐵

< 𝜂. (3.4)

Notice that the set {𝐶𝑖} can have just one bicluster.

This step can be better understood looking at the left side of Figure 6. We can see
that two black biclusters are overlapping a red bicluster. If the ratio of the gray area by the
area of the red bicluster is less than the parameter 𝜂, we remove the red bicluster.

If
|𝐿𝐵+𝐶−𝐵−𝐶 |

|𝐿𝐵+𝐶 |
< 𝛾 (3.5)

holds, we merge 𝐵 and 𝐶 into one bicluster 𝐷 = (𝐵𝑟 ∪ 𝐶𝑟, 𝐵𝑐 ∪ 𝐶𝑐). At the right side of
Figure 6, if the ratio of the gray area by the area covered by the two black biclusters is less
than the parameter 𝛾, we merge the two biclusters by the union of their objects / attributes.
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Figure 6 – Examples of the delete / merge of the MicroCluster algorithm.

3.2.2 CoClusLSH Aggregation

Gao & Akoglu (2014) used the principle of Minimum Description Length to propose
CoClusLSH, an algorithm that returns a hierarchical set of biclusters. The hierarchical part
can be seen as an aggregation step. This step is done based on the LSH technique as a hash
function. Candidates hashed to the same bucket are then aggregated until no merge improves
the final solution. Their work is focused on finding biclusters in a checkerboard structure,
that does not allow overlapping, thus being not suitable for the focus of our research.

3.2.3 OPC-Tree Aggregation

Liu et al. (2004) proposed OPC-Tree, a deterministic algorithm to mine Order Pre-
serving Clusters (OP-Clusters), a general case of OPSM type of biclusters. They also have an
additional step for creating a hierarchical aggregation of the encountered OP-Clusters. The
Kendall coefficient is used to determine which clusters should be merged and in which order
the objects should participate in the resultant OP-Cluster. The highest the Rank Correlation
using the Kendall coefficient, the highest the similarity between two OP-Clusters. The merg-
ing is allowed according to a threshold that is reduced in a level-wise way. It is important to
highlight that this work considers the order of the rows in the cluster. In this case, a perfect
coherent values bicluster keeps the order of its rows and the hierarchical step of OPC-Tree
would be able to be used in this case as well. But we are considering noisy datasets, in which
this assumption probably will not hold, and thus, the hierarchical step of OPC-Tree is not
suitable for the problem we are dealing with.

To the best of our knowledge, these are the proposals in the literature that are most
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similar to the problem we are dealing. These algorithms will be better explored in Chapter
6, where they will be compared with our contributions.

To evaluate our results we will need metrics for biclusters evaluation. This is the
subject of the next chapter.
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4 Evaluation of Bicluster Results

The comparison of clustering solutions is well established in the clustering literature,
which comprehends several studies on the analysis of the properties of similarity measures for
comparing partitions. However, we cannot directly use those metrics to compare biclusters,
since a bicluster comprehends a tuple of two sets (rows and columns) (HORTA; CAMPELLO,
2014). Besides that, in this work we have two additional restrictions:

Overlapping: as two biclusters may overlap, the metric must consider this scenario.

Quantity of biclusters: as we will verify in the experiments, the enumeration usually re-
turns a quantity of biclusters that are far from the real quantity of biclusters. In this
case, we need a metric that does not consider the quantity of biclusters, but evaluates
how the biclusters include the proper elements (rows and columns). On the other hand,
to evaluate the results from aggregation we need a metric that considers the quantity
of biclusters, as we expect to achieve the right amount.

4.1 External metrics

Some metrics for evaluating a result consider only the data itself, without using ex-
ternal information. This is the characteristic of an internal metric. External metrics compare
the results with a reference solution. In this work we will use only external metrics, except
for the Gene Ontology Enrichment Analysis. For an extensive comparison of external metrics
for biclustering solutions, the reader may refer to (HORTA; CAMPELLO, 2014).

4.1.1 Pairwise Precision, Recall and F-score

Precision, Recall and F-score are often used on information retrieval for measuring
binary classification (SALTON, 1971; RIGSBERGEN, 1979). If we take pairs of elements,
we can extend these metrics to evaluate clustering / biclustering solutions. For each pair of
points that share at least one bicluster in the overlapping biclustering results, these measures
try to estimate whether the prediction of this pair as being in the same bicluster was correct
with respect to the underlying true categories in the dataset (BANERJEE et al., 2005). It is
important to highlight that these metrics do not consider the quantity of biclusters.
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Lets define

𝑝𝑎𝑖𝑟𝑠(�̄�) =
𝑞⋃︁

𝑖=1
{((𝑔1, 𝑠1), (𝑔2, 𝑠2)) | 𝑔1, 𝑔2 ∈ 𝐵𝑟

𝑖 ; 𝑠1, 𝑠2 ∈ 𝐵𝑐
𝑖 ; (𝑔1, 𝑠1) ̸= (𝑔2, 𝑠2)}, (4.1)

as a function that returns a set with all pairs of elements of the biclusters of a solution
�̄� = {𝐵𝑖}𝑞

𝑖=1, where 𝑞 is the quantity of biclusters on the solution set.

Lets consider �̄� as the proposed solution and 𝐶 as the reference solution. We will
define the metrics Pairwise Precision - or just Precision, Pairwise Recall - or just Recall, and
F-score as follows:

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(�̄�, 𝐶) = |𝑝𝑎𝑖𝑟𝑠(�̄�) ∩ 𝑝𝑎𝑖𝑟𝑠(𝐶)|
|𝑝𝑎𝑖𝑟𝑠(�̄�)|

. (4.2)

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝑅𝑒𝑐𝑎𝑙𝑙(�̄�, 𝐶) = |𝑝𝑎𝑖𝑟𝑠(�̄�) ∩ 𝑝𝑎𝑖𝑟𝑠(𝐶)|
|𝑝𝑎𝑖𝑟𝑠(𝐶)|

. (4.3)

𝐹 − 𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙) = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. (4.4)

It is important to discuss the behavior of these metrics. We can interpret the Pairwise
Precision, or just Precision for simplicity, as a percentage of true indications in a solution.
For example, if 30% of the elements that are part of a bicluster in a solution are not part
of any biclusters on the reference solution, the Precision will be impacted. An extreme case
is if a solution returns only one bicluster with one element (pair object / attribute). If this
object in fact belongs to a bicluster on the reference solution, then the Precision will be 1.
This solution is very precise, as all elements that it said to be part of a bicluster in fact are.

We can interpret the Pairwise Recall, or just Recall for simplicity, as the percentage
of elements that are truly part of a bicluster and the solution included in a bicluster. For
example, if a solution includes in their biclusters only 70% of the elements that are part
of a bicluster in the reference solution, then the Recall will be affected. An extreme case
happens if a solution includes all the dataset into one bicluster. In this case the Recall is
1, the maximum value. This solution was able to include in a bicluster every element that
should be part of a bicluster.

Precision is the fraction of retrieved pairs that are relevant; while Recall is the fraction
of relevant pairs that are retrieved. The F-score is the harmonic mean of the Precision and
the Recall. For more details about these metrics, the reader may refer to Menestrina et al.
(2009).
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4.1.2 Clustering error

Horta & Campello (2014) made an extensive analysis of several external metrics for
biclustering evaluation. One of these metrics was Clustering Error (CE), that considers the
quantity of biclusters in its evaluation.

Supposing that �̄� represents the proposed solution; |�̄�| = 𝑘; and 𝐶 represents the
reference solution; |𝐶| = 𝑞. We will define the CE metric as follows:

𝐶𝐸(�̄�, 𝐶) = 𝑑𝑚𝑎𝑥

|𝑈 |
, (4.5)

where 𝑑𝑚𝑎𝑥 = ∑︀𝑚𝑖𝑛{𝑘,𝑞}
𝑖=1 |𝐵𝑟 × 𝐵𝑐 ∩ 𝐶𝑟 × 𝐶𝑐|, where 𝑖 represents a map between the biclusters

of the proposed solution with the reference solution having maximum overlap; and |𝑈 | =
| ⋃︀𝑘

𝑖=1 𝐵𝑟
𝑖 × 𝐵𝑐

𝑖 ∪ ⋃︀𝑞
𝑖=1 𝐶𝑟

𝑖 × 𝐶𝑐
𝑖 | is the number of elements in the area covered by biclusters

of both the reference and the proposed solution. This metric severely penalizes a solution
with more biclusters than the reference, thus not recommended for evaluating enumerative
results.

4.1.3 Difference in Coverage

We propose the difference in coverage, that measures what the reference biclustering
solution covers and the found biclustering solution does not cover, and vice versa. This
metric gives an intuitive idea of how two solutions cover distinct areas of the dataset. Let
∪�̄� = ⋃︀

𝐵𝑟
𝑖 × 𝐵𝑐

𝑖 be the usual union set of a biclustering solution �̄�. Let �̄� and 𝐶 be the
found and the reference biclustering solution, respectively. Then the difference in coverage is
given by:

𝑑𝑖𝑓_𝑐𝑜𝑣(�̄�, 𝐶) = | ∪�̄� − ∪𝐶 | + | ∪𝐶 − ∪�̄� |
𝑚 × 𝑛

. (4.6)

Figure 7 shows an example. Consider the red biclusters as the reference solution, and
the black biclusters as the proposed solution. The difference in coverage is the gray area. We
will use this measure to verify how different an aggregated solution is from the enumeration.

This metric is very similar to the pairwise definitions of Precision and Recall, but
gives a more direct and intuitive idea of how the proposed solution differs from the original
solution.
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Figure 7 – Illustration of the difference in coverage.

4.2 Other forms of evaluation

4.2.1 Gene Ontology Enrichment Analysis

The Gene Ontology Project 1 (GO) is an initiative to develop a computational repre-
sentation of the knowledge of how genes encode biological functions at the molecular, cellular
and tissue system levels. Groups around the world collaborate developing gene function an-
notations and keeping it up to date on the gene ontology website.

One of the main uses of GO is to perform enrichment analysis on gene sets. For exam-
ple, given a set of genes that are up-regulated under certain conditions, an enrichment analysis
will find which GO terms are over-represented (or under-represented) using annotations for
that gene set2.

It is important to notice that this is not an external metric, or a metric at all. It
will not compare two bicluster solutions, but just verify how relevant is a set of genes when
compared to the annotations in Gene Ontology Project datasets. This method is commonly
used to analyze results from biclustering techniques on microarray gene expression datasets,
because it may indicate the relevance of the gene sets. Just to cite some: (HARTIGAN,
1972; CHENG; CHURCH, 2000; LAZZERONI; OWEN, 2000; JIONG et al., 2003; ZHAO;

1 http://geneontology.org
2 http://geneontology.org/page/about Acessed on 2014, November, 26
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ZAKI, 2005; HANCZAR; NADIF, 2011b). Another drawback is that this analysis discard
the information of the attributes, using just the set of genes in its calculation.

We will use the Gene Ontolgoy Enrichment Analysis (GOEA) to verify the relevance
of the results in a gene expression dataset. Table 2 shows an example of a result from GOEA.
In this table, the GO term column represents an ontology term that the set of genes is
related to in the annotations. The column p-val “is the probability or chance of seeing at
least x number of genes out of the total n genes in the list annotated to a particular GO
term, given the proportion of genes in the whole genome that are annotated to that GO
Term. That is, the GO terms shared by the genes in the user’s list are compared to the
background distribution of annotation. The closer the p-value is to zero, the more significant
the particular GO term associated with the group of genes is (i.e. the less likely the observed
annotation of the particular GO term to a group of genes occurs by chance)”3. The column
counts shows how many times the gene set was related to that specific annotation versus how
many times the gene set was related to other annotations. The column definition is a brief
description of the GO term.

We have interest in the p-val column, that is somehow an indication of the biological
relevance of the gene set to the related GO Term, and may indicate the importance of the
bicluster. If this value is less than 0.05, the bicluster may be considered enriched and we have
a good indication that a further analysis of the gene set should be conducted.

3 http://geneontology.org/page/go-enrichment-analysis
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Table 2 – Enrichment analysis of the first bicluster from the aggregation by overlapping with
rate of 70%.

GO Term p-val counts definition
GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural

and functional unit of all organisms. [GOC:jl]...
GO:0044444 0.00000011 19 / 608 Any constituent part of the cytoplasm, all of the con-

tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 19 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 16 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate filaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate filaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...
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5 Proposals for aggregation

In this chapter, we will introduce our proposals for aggregating fragmented biclusters.
We already briefly introduced the clustering with single linkage method in section 2.2, and
the problem of bicluster aggregation in section 3.2. These concepts will be used now.

5.1 Aggregation with single linkage
Our proposal receives as input a bicluster solution 𝑆, from enumeration or from a

result presenting high overlapping among its components. With this solution, we transform
each bicluster into a binary vector representation as follows: Given the dimensions of the
dataset A ∈ R𝑛×𝑚, each bicluster will be a binary vector x of length 𝑛 + 𝑚. For a bicluster
𝐵 transformed into the binary vector x, the first 𝑛 positions represent the rows of the dataset
A and their values are given by the function 1𝑅 → {0, 1} defined as:

1𝑅(𝑖) :=
⎧⎨⎩1 𝑖𝑓 𝑖 ∈ 𝐵𝑟,

0 𝑖𝑓 𝑖 /∈ 𝐵𝑟,
(5.1)

where 𝑖 is the index of the vector x. In other words, if the bicluster contains the 𝑖th row,
x𝑖 = 1, otherwise, x𝑖 = 0. The last 𝑚 positions represent the columns of the dataset A and
their values are given by the function 1𝐶 → {0, 1} defined as:

1𝐶(𝑖) :=
⎧⎨⎩1 𝑖𝑓 𝑖 ∈ 𝐵𝑐,

0 𝑖𝑓 𝑖 /∈ 𝐵𝑐.
(5.2)

In other words, if the bicluster contains the 𝑖th column, x𝑛+𝑖 = 1, otherwise, x𝑛+𝑖 = 0.

After this transformation, we use the Hamming distance, defined on the Eq. 5.3, to
apply the single linkage clustering on the existing biclusters.

𝑑𝑖𝑠𝑡(x, y) =
𝑛+𝑚∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|. (5.3)

Notice that the Hamming distance on this transformation will just count how many
rows and columns are different on the two bicluster. In this case, a non-maximal bicluster
may be distant from the bicluster that covers its maximal area, thus impacting the quality
of the results of this method of aggregation. So, it is important to ensure the maximality of
the biclusters in the solution that will be aggregated by this method.
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We still have the task of cutting the dendrogram. This is a well studied task in the
clustering community and some guides are given in (SOKAL; ROHLF, 1962; RAND, 1971;
LANGFELDER et al., 2008). In this work we will choose the cut visually. Basically, when
the height of a junction is more pronounced than the heights of the junctions below it, we
consider it as a good cut, since the distance of the clusters being joined is higher.

After choosing a cut on the dendrogram, we aggregate all biclusters that belong to a
junction using the function aggreg, defined as:

𝑎𝑔𝑔𝑟𝑒𝑔(𝐵, 𝐶) = (𝐵𝑟 ∪ 𝐶𝑟, 𝐵𝑐 ∪ 𝐶𝑐), (5.4)

that is simply the union of rows / columns of the biclusters. Note that the aggreg function is
associative, as demonstrated below:

𝑎𝑔𝑟𝑒𝑔(𝐵, 𝑎𝑔𝑟𝑒𝑔(𝐶, 𝐷)) = 𝑎𝑔𝑟𝑒𝑔(𝐵, (𝐶𝑟 ∪ 𝐷𝑟, 𝐶𝑐 ∪ 𝐷𝑐))
= (𝐵𝑟 ∪ (𝐶𝑟 ∪ 𝐷𝑟), 𝐵𝑐 ∪ (𝐶𝑐 ∪ 𝐷𝑐))
= ((𝐵𝑟 ∪ 𝐶𝑟) ∪ 𝐷𝑟, (𝐵𝑐 ∪ 𝐶𝑐) ∪ 𝐷𝑐)
≡ 𝑎𝑔𝑟𝑒𝑔(𝑎𝑔𝑟𝑒𝑔(𝐵, 𝐶), 𝐷)

Moreover, we want to highlight that the direct union of rows / columns may include
elements that shouldn’t be part of a bicluster. In Section 5.3 we will present a way to remove
rows / columns that are interpreted as outliers.

5.2 Aggregation by overlapping
Considering that the biclusters we want to aggregate have high overlapping, it is

natural to aggregate x biclusters with an overlapping rate above a defined threshold. This
proposal is based on the aggregation by pairs: while having two biclusters with an overlapping
rate higher than a pre-determined threshold 𝑡ℎ, we remove them from the set of biclusters,
and include the result of the function aggreg, defined on Eq. 5.4, taking these two biclusters
as the arguments.

Figure 8 shows the aggregation of two biclusters. If the gray area is higher than the
threshold, we aggregate the two biclusters.

Let 𝐵, 𝐶, 𝐷, and 𝐸 be biclusters. Note that 𝑜𝑣(𝐷, 𝐸) ≥ 𝑜𝑣(𝐵, 𝐸) and 𝑜𝑣(𝐷, 𝐸) ≥
𝑜𝑣(𝐶, 𝐸) for 𝐷 = 𝑎𝑔𝑔𝑟𝑒𝑔(𝐵, 𝐶). So, for all biclusters 𝐸 where 𝑜𝑣(𝐵, 𝐸) ≥ 𝑡ℎ or 𝑜𝑣(𝐶, 𝐸) ≥ 𝑡ℎ,
𝑜𝑣(𝐷, 𝐸) ≥ 𝑡ℎ. For this reason, the order of the aggregation does not interfere on the final
result. It is also important to note that the new bicluster 𝐷 can have 𝑜𝑣(𝐷, 𝐸) ≥ 𝑡ℎ, for
some bicluster 𝐸 where 𝑜𝑣(𝐵, 𝐸) < 𝑡ℎ and 𝑜𝑣(𝐶, 𝐸) < 𝑡ℎ.
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Figure 8 – Example of aggregation of two biclusters.

Again, as the aggreg function unites the rows (columns), we need an additional step
for outlier removal.

5.3 Outlier removal

As explained in Sections 5.1 and 5.2, and as we will see on the experiments in Chapter
6, in our proposals of aggregation it will be necessary a step of outlier removal. Ideally, this
step is going to remove elements that should not be part of a bicluster, and do nothing when
these elements do not exist.

Let 𝐵 = (𝐵𝑟, 𝐵𝑐) be an aggregated bicluster, with |𝐵𝑟| = 𝑜, |𝐵𝑐| = 𝑝. We define a
participation matrix P ∈ R𝑜×𝑝, where each element 𝑝𝑖𝑗 indicates the quantity of biclusters in
which this element takes part on 𝐵. For example, if an element is part of 15 biclusters that
compose 𝐵, then its value on the P matrix will be 15.

So, we will explain the process of outlier removal with the help of Figure 9. The first
step is to compute the matrix P for the aggregated bicluster. Then we have two steps of
outlier removal: one for the objects, and other for the attributes.

To remove possible outlier objects, we take the mean and the standard deviation of
all columns on the bicluster of matrix P. The left side of Figure 9 illustrates this step. After
that, we check the values of each element of the columns. If the value is less than the mean
minus one standard deviation, then we check this element as a potential outlier. In the right
side of Figure 9, we can see that the entire first row was checked as potential outlier because
1 < 7.75−4. If we mark the entire row as a potential outlier, it is removed from the bicluster.
In our example, that is the case.

We execute the same process for the columns, calculating the mean, standard devia-
tion and checking for potential outliers on the rows. We remove the column if it is entirely
marked as a potential outlier.
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Planilha1

Página 1

1 1 1 1 1 1 1 1
10 10 9 9 0 0 0 0
10 10 9 9 → 0 0 0 0
10 10 9 9 0 0 0 0

Mean 7.75 7.75 7 7
Std 4.5 4.5 4 4

(a) Calculating the mean 
and standard deviation of 

each column.

(b) All elements marked as 
potential outliers

Figure 9 – Example of outlier removal.

The next section shows a toy example of the entire process: aggregation with single
linkage and outlier removal.

5.4 Practical Example

We will now supply an example of the process of aggregation. Figure 10a shows a toy
dataset with a bicluster of coherent values. After adding a Gaussian noise (𝜇 = 0, 𝜎 = 1),
we can see in Figure 10b that now we have three biclusters, one depicted in yellow (𝐵), one
depicted in green (𝐶) and one depicted in red (𝐷). The noise fragmented the first bicluster
into those three.
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(a) Example of a bicluster.
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(b) Example of the fragmentation of
the bicluster.

Figure 10 – Example of the impact of noise fragmenting an original single bicluster.

Let us transform those three biclusters in three binary vectors, using the process
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described in Section 5.1.

𝐵 =[0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0]
𝐶 =[0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0]
𝐷 =[0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0]

𝑟𝑜𝑤𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

With the proper representation of the biclusters, we can run the hierarchical clustering
with single linkage using these vectors as objects.
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(b) Example of a P matrix.

Figure 11a shows the dendrogram of this process. As this example is too small, the
height of the whole dendrogram represents a very short distance between the groups, and we
can cut it on the top, having just one cluster. The Figure 11b shows the P matrix for outlier
removal, that in this example will not filter any element. Notice that with one cluster, we
have recovered the original bicluster.

The next part of this dissertation will explain the experiments that we run to test our
proposals of bicluster aggregation.



34



Part III

Results and Discussion
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6 Results and Discussion

This chapter describes the methods and implementations used in the experiments
performed along the development of the research. Except when explicitly denoted, the author
implemented all the programs and scripts mentioned in this text. We will also present the
results and discussion.

6.1 Datasets
In our experiments we employed three artificial datasets: art1, art2, and art3 ; and

two real datasets: GDS2587 and Food. We designed the artificial datasets to present different
scenarios with increasing difficulty. We will use them to verify the impacts of noise, and to
compare the performance of several aggregation methods and outlier removal of elements in
the aggregation. The two real datasets are from different backgrounds. The first real dataset
is from microarray gene expression data, as it is a well known application of biclustering
methods. The second real dataset is about nutritional information, and it was used to evaluate
a well-known biclustering algorithm called Plaid Models (LAZZERONI; OWEN, 2000). We
will describe the details of each dataset in what follows.

6.1.1 Art1

This dataset has 1000 objects and 15 attributes. Each entry is a random integer,
drawn from a discrete uniform distribution on the set {1, 2, ..., 100}. Then we inserted 5
bicluster of coherent values, arbitrarily positioned and without overlapping. For each biclus-
ter, the quantity of objects was randomly drawn from the set {50, . . . , 60}, and the quantity
of attributes was randomly drawn from the set {4, 5, 6, 7}. To insert a bicluster, we fixed
the value of the first attribute and obtained the values of the other attributes by adding a
constant value to the first column. This constant value was randomly drawn from the set
{−10, −9, . . . , −1, 1, . . . , 9, 10}.

6.1.2 Art2

We generated this dataset by the same process of art1. The only difference is that 4 of
5 biclusters have some overlapping. Two biclusters have approximately 36% of overlapping,
other two biclusters have approximately 11% and the last bicluster has no overlap with others.
These percentages of overlapping were decided to have a controlled difficulty of the task.
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6.1.3 Art3

We generated this dataset by the same process of art1. The difference now is that it has
15 biclusters, with different levels of overlapping and some biclusters overlap with more than
one peer. The overlapping setup in this dataset is: 3 pairs of biclusters with approximately
15% of overlapping, a pair with 30%, a pair with 34%, a pair with 39%, a pair with 48% and
a pair with 60%. Again, these percentages of overlapping were decided to have a controlled
difficulty of the task.

6.1.4 Microarray Gene Expression GDS2587

GDS2587 1 is a microarray gene expression dataset. Each entry in the matrix is the log2

ratio of the expression. The log2 ratio is defined as log2(𝑇/𝑅), where 𝑇 is the gene expression
level in the testing sample and 𝑅 is the gene expression level in the reference sample. The data
was collected from the organism E. coli. We removed every gene with missing data in any
sample, and the data was normalized by mean centralization, as common in gene expression
data analysis (PRELIć et al., 2006). After this pre-processing step, the dataset contains 2792
genes and 7 samples. In this dataset we aim to validate our contribution when devoted to
the analysis of microarray gene expression data, as it is considered a relevant application of
biclustering methods.

6.1.5 Food

Food2 is a dataset with 961 objects, which represent different foods, and 7 attributes,
which represent nutritional information (grams of fat, calories of food energy, grams of car-
bohydrate, grams of protein, milligrams of cholesterol, grams of saturated fat, and the weight
in gram of the food). As the values of each attribute are in different ranges, we used the same
pre-processing as (VERONEZE et al., 2014), rescaling the attributes to the range [0, 1000].
In this dataset our goal is to illustrate the usefulness of bicluster aggregation in a different
scenario and to verify if the aggregation leaves uncovered areas that the enumeration has
covered at first.

6.2 Experiment 1: The impact of noise
In this experiment we will only use the artificial datasets. Our goal is to verify the

impact of noise in the enumeration of biclusters. To this end, we will add a Gaussian noise
1 http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2587
2 http://www.ntwrks.com/chart1a.htm
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with 𝜇 = 0 and 𝜎 ∈ {0, 0.01, . . . , 1}, to each dataset, and run the RIn-Close algorithm. This
procedure will be repeated for 30 times and all reported values will be the average of these
executions. We set the RIn-Close parameters as follows:

Type of bicluster: as we know the type of the biclusters on the datasets, we set RIn-Close
to mine coherent values biclusters.

minRow: as we know the minimum possible size of the biclusters, we set minRow to 4.

minCol: as we know the minimum possible size of the biclusters, we set minCol to 50.

𝜖: We will test a sequence of crescent values for 𝜖 due to its importance for a good result. If
𝜖 is too small, we may miss important biclusters expressing more internal variance. If
𝜖 is too high, the biclusters may include unexpected objects and attributes.

Figure 11 shows the evolution of the quantity of enumerated biclusters, by the variance
of noise, for each value of 𝜖, for all artificial datasets.

In all datasets, for each value of 𝜖, the behavior is the same: as the noise increases the
quantity of enumerated biclusters eventually starts to increase. In Figures 11a and 11b, we
know that the real quantity of biclusters is 5, but when the noise increases, the enumerated
quantity reaches approximately 800 biclusters, depending on the value of 𝜖. Notice that the
biclusters are distinct and no bicluster is contained in another one. In Figure 11c, we can see
that the quantity of biclusters reaches high values too. At some level of noise, the number of
biclusters starts to decrease to a point that the algorithm is not able to find any bicluster,
as there is no way to satisfy the coherence threshold. But, as we can see in Figure 11a, the
added noise was not enough to reach this point for dataset art1, which is the easiest one.

In Figure 12, we can see the quality of the enumeration without considering the
quantity of biclusters. Due to the effect of noise on the enumeration, if we use a metric that
considers the quantity of biclusters, we will not be able to verify the quality of the solution.
In this case, for this experiment we will report only the metrics Precision, Recall and F-score.

As we can see in Figure 12b, the noise has almost no interference in the Recall. It
means that this dataset has biclusters very well defined. Even with high degrees of noise they
are not missed. On the other hand, when the variance of the noise is too low, Figure 12a
shows that the enumerated biclusters contains more elements than expected. It is happening
because the parameter 𝜖 is high, allowing some elements to be part of the biclusters, even
without being part of the original solution. As the noise increases, less of these initial elements
are going to satisfy the 𝜖 restriction to be included in some bicluster. In this dataset, the
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Figure 11 – Quantity of biclusters by the variance of the Gaussian noise in the artificial
datasets. Each curve is parameterized by 𝜖.

effect of the noise was not so severe on the Recall, given that it only started to decrease when
the variance of the noise was close to 1.

In dataset art2, the effects of the noise can be better observed. Figure 12d shows
that the noise starts to affect the solutions very early. When 𝜖 = 2, the Recall starts to
decrease very soon, when 𝜎 ≈ 0.3. However, for more relaxed values of 𝜖, we can still see the
decrease on the Recall. Being the most difficult, dataset art3 is the most affected by noise.
Independently of the value of 𝜖, the RIn-Close can not find any bicluster after some levels of
variance in the noise. For example, when 𝜖 = 2, after 𝜎 ≈ 0.4 the Precision gets undefined.
It happens because the denominator of Eq. 4.2 is not defined when the quantity of biclusters
is zero. In Figure 12f, we can see that the decline of the Recall starts when 𝜎 ≈ 0.3 for 𝜖 = 2.

In this experiment we may conclude that the noise fragments the true biclusters into
many with high overlapping. This was observed in Liu et al. (2004), in Zhao & Zaki (2005),
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and in Gao & Akoglu (2014). Intuitively, it seems to be advantageous to explore this high
overlapping aiming at aggregating the enumerated biclusters, getting a result closer to the
ground truth. Now we will verify the effects of the aggregation on the artificial datasets.
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Figure 12 – Precision and Recall for the solutions of RIn-Close, by the variance of the Gaus-
sian noise in the artificial datasets. Each curve is parameterized by 𝜖.
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6.3 Experiment 2: The impact of aggregation

As we could see on the previous experiment, the enumeration is affected by the noise.
Not only the quantity of biclusters increases significantly, but also the quality of the solution
decreases.

In this experiment, our goal is to verify the impact of aggregation on the previous
results of RIn-Close. We will choose the results with the 𝜖 that led to a initial Precision closest
to 0.85. That gives us: art1 with 𝜖 = 6, art2 with 𝜖 = 4 and art3 with 𝜖 = 3. This value was
chosen because if the Precision is too low, it means that the 𝜖 value is allowing too many
undesired objects or attributes in the enumerated biclusters. In this case, the aggregation
may not improve the quality of the final results because their input is not of good quality. If
the Precision is too high, we will only be able to see improvements in the reduced quantity
of biclusters, but the aggregation may increase the Precision too.

This value was chosen because if the Precision is too low, the input of the aggre-
gation may be of poor quality. If the Precision is too high, we may not be able to see the
improvements on the quality on the final aggregated results.

We will consider the following algorithms (explained in Sections 3.1, 3.2.1, 5.1 and
5.2) here:

Triclustering We will set 𝑘 to the true number of biclusters. The authors supplied the code
for this algorithm.

MicroCluster To parameterize this algorithm, we will run a grid search with the values
in the set 0.15, 0.1, 0.05 for each of the two parameters, getting 9 results for each run.
Also, as the aggregation step of the algorithm is composed of two steps, merging and
deleting, we will run each experiment twice: with the merging step first (MD) and with
the deleting step first (DM). Unless we want to draw attention to some particular fact,
we will report only the best result. The authors supplied the code for this algorithm.

Single linkage We will cut the dendrogram with the proper quantity of biclusters: for art1
and art2, 5 biclusters; for art3, 15 biclusters. Again, there are several ways to choose
the cut, please see Section 5.1.

By overlapping We will test several values for the rate of overlapping.

After getting the results for all executions of the listed algorithms, we will choose the best
result from each one and compare them using the CE metric. We will also run a two-sided
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Wilcoxon Rank Sum Test at 5% significance level on the mean with the CE metric, to verify
if the results have significant difference between each other.

As we have a large quantity of results for this experiment, we will organize them by
dataset.

6.3.1 Results on art1
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Figure 13 – Results produced by RIn-Close on art1. The scale on the right refers to the
quantity of biclusters on the solution.

Figure 13 shows the results of RIn-Close when 𝜖 = 6.0. This is the result that we will
try to improve. We expect that the aggregation increases the Precision without decreasing
the Recall, while reaching the true number of biclusters.

Figure 14 shows the quality of the results of the aggregation with single linkage.
Despite the decrease in Precision, this is a good result because now we have only 5 biclusters.
So, the aggregation with single linkage was able to reduce the quantity of biclusters to the
right number, at the cost of the Precision. We may also pay attention to the fact that the
Recall remained in the maximum value until 𝜎 ≈ 0.9. It means that the biclusters of the
aggregated solution are including more objects (attributes) than expected, which indicates
decrease in Precision; but are not missing any elements, thus keeping the Recall at high
values. In other words, every element that should be in a bicluster, in fact are, but elements
that should not be included, are also part of the biclusters. So, this method of aggregation
was not able to reach all of our goals, as the Precision is decreasing. However, the results
suggested that we can add a step of outlier removal to try to improve the Precision of the
final solution.
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Figure 14 – Aggregation with single linkage using Hamming distance on art1.

In Figure 15 we can see the results from the aggregation by overlapping with several
rates. The rates 60%, 65%, and 70% led to the same results and we will report just the latter
result. We can see that even when the rate of overlapping was 95%, the aggregation reached
the correct quantity of biclusters. But again the Precision decreased a little and the Recall
remained high. This is the same scenario of the aggregation with single linkage and we can
draw the same conclusions.

Figure 16 shows the results from the aggregation of MicroCluster algorithm when
𝜂 = 𝛾. The other results were omitted because they were not so different from the ones we
are showing. We start by focusing on the stability of the results. For example, comparing
Figures 16a and 16b, we can see that the latter showed more stability on the quantity of
biclusters, on the Precision and on the Recall. The difference on the Precision and Recall
metrics were not significant when changing the order of execution. But, as the quantity of
biclusters when the deleting step was executed first is closest to the real one, from now on,
for this dataset we will only consider the result when 𝜂 = 0.15, 𝛾 = 0.15 in that order of
operation. This aggregation decreased the Recall and increased the Precision, when compared
to the results of the enumeration. Different from the results from the aggregation with single
linkage or by overlapping, the results of MicroCluster are not including all objects (attributes)
that should be part of a bicluster.

In Figure 17 we see the Precision and Recall of the solution obtained by the triclus-
tering algorithm. We must remember that the parameter k is set to 5, which is the correct
number of biclusters in the dataset. We can see that the Precision is very high, indepen-
dently of the variance of noise, but the Recall decreased a lot. This fact indicates that the
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(a) 70%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

ε =6

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4.2

4.4

4.6

4.8

5

5.2

Precision
Recall
F−score
Qtd
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(e) 90%
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(f) 95%

Figure 15 – Results from the aggregation by overlapping on art1. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(b) Deleting first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(c) Merging first, 𝜂 = 0.1, and 𝛾 = 0.1.
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(d) Deleting first, 𝜂 = 0.1, and 𝛾 = 0.1.
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(e) Merging first, 𝜂 = 0.05, and 𝛾 =
0.05.
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(f) Deleting first, 𝜂 = 0.05, and 𝛾 =
0.05.

Figure 16 – Results from the aggregation using MicroCluster on art1. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 17 – Aggregation with the triclustering algorithm on art1.

biclusters of this solution only contain elements that should be in a bicluster. However, it is
not including all objects (attributes) that it should, thus decreasing the Recall.

We will then compare the best results from each agglomeration, using the CE metric,
and verify if the results have significant difference between each other. They are: a) single
linkage; b) aggregation by overlapping with 70%; c) MicroCluster with 𝜂 = 𝛾 = 0.15, deleting
operation first; and d) triclustering.
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Figure 18 – CE of the best results of aggregation on art1.

Figure 18 shows the CE metric for the best solutions of each algorithm. We can see
that the aggregation with single linkage and by overlapping had the best results on this
metric, and they exhibit a similar pattern.
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Figure 19 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art1.

Fig. 19 shows the statistical significance of the pairwise difference between the solu-
tions, using a Two-sided Wilcoxon Rank Sum Test. When a curve is below the 0.05 threshold,
it means that the two compared solutions do differ significantly. We can see that for all levels
of noise, just the solutions of single linkage and aggregation by overlapping did not show
statistical difference. For most levels of noise, the solutions of Triclustering and MicroCluster
also did not exhibit a significant difference.
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6.3.2 Results on art2
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Figure 20 – Results produced by RIn-Close on art2. The scale on the right refers to the
quantity of biclusters on the solution.

In Figure 20, we can see the results of RIn-Close when 𝜖 = 4. In this dataset, the
impact of noise starts earlier than on dataset art1. We can see that there is a high decrease
on the Recall, simultaneously with an increase on the quantity of biclusters, when 𝜎 ≈ 0.55.
This may seem a little contradictory, as we have more biclusters, with a penalized Recall.
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Figure 21 – Aggregation with single linkage using Hamming distance on art2.

Figure 21 shows the quality of the results of the aggregation with single linkage.
Despite the impacts of noise happening earlier in this dataset, the scenario here is pretty
much the same of art1 : Precision decreases a little and Recall remains high. It indicates
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that some intruder elements may be filtered from the biclusters of this solution. This will be
verified on experiment 3.

In Figure 22, we can see the results of aggregation by overlapping. When the rate
of overlapping was 60% and 65% the results were identical, and very similar to these from
70%. So, we will show only the results when the rate of overlapping is greater or equal to
70%. But again, the scenario is very similar to the one obtained with single linkage. We can
see that the aggregation was able to get the true number of biclusters when the noise was
not so high, independently of the rate of aggregation. This also indicates the high degree of
overlapping of the enumerated biclusters, even when the rate was 95% the aggregation was
able to get the correct quantity. In Figures 22c, 22d, 22e, and 22f, we can see that when
𝜎 ≈ 0.6 the quantity of biclusters starts to increase. If we compare this result with the one
presented in Figure 21, we can see that we have practically the same Precision and Recall,
but the aggregation with single linkage has the correct number of biclusters for all variance
of the noise, which is an advantage.

Figure 23 shows the results after the aggregation with MicroCluster. In this dataset,
the MicroCluster aggregation got better results when compared to the ones obtained in art1.
In all configurations, we can see that the Precision is higher than the one of RIn-Close, but
the Recall decreased a little. Considering the quantity of biclusters, we can see that when the
deleting operation came first, the aggregation reached a quantity closer to the true number
of biclusters.

Figure 24 shows the quality of the results of the aggregation using the triclustering
algorithm. Again, the Precision is high and the Recall decreased considerably, what indicates
that the biclusters of this solution are very conservative with their elements. In other words,
the objects (attributes) that are in any bicluster of this solution should really be part of that
bicluster. But this result is too conservative, not including a good percentage of the elements
that should be part of a bicluster.

Now we will compare the best results from each agglomeration, using the CE metric
and verify if the results have a significant difference among each other. They are: a) single
linkage; b) aggregation by overlapping with 75%; c) MicroCluster with 𝜂 = 𝛾 = 0.15, deleting
operation first; and d) triclustering.

Figure 25 shows the CE metric for the best solutions of each algorithm. We can see
that the aggregation with single linkage and by overlapping had the best results on this
metric, and they exhibit a similar pattern again.

Fig. 26 shows the significance pairwise difference of the results on art2. We can see
that for most levels of noise, only the comparisons between aggregation by overlapping versus
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(a) 70%
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(b) 75%
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(c) 80%
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(d) 85%
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(e) 90%
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(f) 95%

Figure 22 – Results from the aggregation by overlapping on art2. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(b) Deleting first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(c) Merging first, 𝜂 = 0.1, and 𝛾 = 0.1.
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(d) Deleting first, 𝜂 = 0.1, and 𝛾 = 0.1.
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(e) Merging first, 𝜂 = 0.05, and 𝛾 =
0.05.
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(f) Deleting first, 𝜂 = 0.05, and 𝛾 =
0.05.

Figure 23 – Results from the aggregation using MicroCluster on art2. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 24 – Aggregation with the triclustering algorithm on art2.
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Figure 25 – CE of the best results of aggregation on art2.



6.3. Experiment 2: The impact of aggregation 55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Significance pairwise difference on art2

σ

p−
va

lu
e

 

 

0.05
MC x Tric
MC x Ov
MC x SL
Tric x Ov
Tric x SL
Ov x SL

Figure 26 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art2.

single linkage, and MicroCluster versus Triclustering, exhibit significant difference.
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6.3.3 Results on art3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

ε =3

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000
Precision
Recall
F−score
Qtd

Figure 27 – Results produced by RIn-Close on art3. The scale on the right refers to the
quantity of biclusters on the solution.

Figure 27 shows the results of RIn-Close when 𝜖 = 3. The effects of the noise here
are more severe than on the other datasets. When 𝜎 ≈ 0.4, the Precision already starts to
decrease. This is the result that we will try to improve and we must remember that this is
the most challenging among the artificial datasets.
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Figure 28 – Aggregation with single linkage using Hamming distance on art3.

Figure 28 is showing the quality of the aggregation with single linkage. We can see a
little decrease on the Precision but the Recall still high at the beginning. The scenario seems
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to be very similar to the one provided by the other datasets, and if we consider that this
dataset is the most challenging, we can realize the positive effect promoted by aggregation.

Figure 29 shows the results obtained on the aggregation by overlapping. On the other
datasets, we reported only the results when the rate of aggregation was greater than or equal
to 70%. Thus we will follow the same procedure for this dataset. When the rate of overlapping
was less than or equal to 90%, and the noise was not high enough (𝜎 < 0.3), the aggregation
returned on average 13 biclusters, that is less than the true number of biclusters. However, as
this dataset has a pair of biclusters that have 60% of overlapping, probably these biclusters
are being merged on the final solution. In Figure 29f, we can see the details of the solution
when the rate of overlapping was 95%. We can see that the Precision of this result is a little
higher than the one for the other rates. But up to 𝜎 ≈ 0.3, the mean quantity of bicluster is
17, which is higher than the true number of biclusters. We can compare the Precision of these
results with the Precision of the aggregation with single linkage, presented in Figure 28. The
latter has the proper number of biclusters in its solution and has very similar Precision and
Recall when compared to the former.

Figure 30 shows the results when the aggregation was performed by the MicroCluster
algorithm. We can see that when the deleting operation was executed first, the final number
of biclusters were more stable and the Precision was a little higher. We can also see that
these results did not show a visual difference in both Precision and Recall.

As presented in Figure 31, the aggregation with the triclustering algorithm could not
get a good result when compared to the alternatives previously exposed, even with 𝑘 being
set to the true number of biclusters in the dataset.

We will then compare the best results from each agglomeration using the CE metric,
and verify if the results have significant difference among each other. They are: a) single
linkage; b) aggregation by overlapping with 75%; c) MicroCluster with 𝜂 = 𝛾 = 0.15, deleting
operation first; and d) triclustering.

Figure 32 shows the CE metric for the best solutions of each algorithm. We can
see that, except for triclustering, all the other results are similar, and the aggregation by
overlapping seems to be the most stable of the comparison.

Fig. 33 shows the significance comparison for each algorithm. As we can see, most of
the results did not show significant difference between them, except when the level of noise
assumed high values. But in this case, where the noise is high and the quality of the solutions
is poor, this indication of difference is not relevant.

In this experiment, we could see that the aggregation in fact was able to get much
less biclusters with a comparable or better quality. We could notice that our proposals can
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(b) 75%
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(c) 80%
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(e) 90%
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(f) 95%

Figure 29 – Results from the aggregation by overlapping on art3. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(b) Deleting first, 𝜂 = 0.15, and 𝛾 =
0.15.
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(c) Merging first, 𝜂 = 0.1, and 𝛾 = 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

ε =3

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
Precision
Recall
F−score
Qtd

(d) Deleting first, 𝜂 = 0.1, and 𝛾 = 0.1.
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(e) Merging first, 𝜂 = 0.05, and 𝛾 =
0.05.
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(f) Deleting first, 𝜂 = 0.05, and 𝛾 =
0.05.

Figure 30 – Results from the aggregation using MicroCluster on art3. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 31 – Aggregation with the triclustering algorithm on art3.
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Figure 32 – CE of the best results of aggregation on art3.
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Figure 33 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art3.

get better results if we add a step of outlier removal on the final results. This will be tested
on the next experiment.
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6.4 Experiment 3: The impact of outlier removal on aggregation
In the previous experiment, both the aggregation with single linkage and the aggre-

gation by overlapping presented a high rate of Recall and the Precision was not as high. It
indicates that the biclusters were bigger than they should be. In other words, the aggregation
was forcing the biclusters to include more objects and / or attributes, because its unique op-
eration was the union of objects and attributes. The quality of the result could be improved
if these elements, that should not be included in any bicluster, were removed in the final
result.

This third experiment intends to verify the impact of outlier removal after the aggre-
gation of the enumerated results considering our proposals. The method of outlier removal
was explained in Section 5.3. After getting the results of the outlier removal step on our
proposals, we will again compare them with the results from the other algorithms of the
experiment 2, using the CE metric. We will also run a two-sided Wilcoxon Rank Sum Test
at 5% significance level on the mean of the CE metric, to verify if the results have significant
difference among each other. We will again group the results by dataset.

6.4.1 Results on art1
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(b) After outlier removal

Figure 34 – Aggregation with single linkage using Hamming distance on art1, before and
after outlier removal and as a function of the noise standard deviation.

Figure 34b shows the quality of the aggregation with single linkage after outlier re-
moval, while Figure 34a is a repetition of Figure 14, for the ease of the comparison. We can
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see that for this dataset, the result is close to the maximum achievable performance. The
noise only starts to impact when 𝜎 ≥ 0.8. The method of outlier removal was able to remove
only the objects and / or attributes that should in fact be removed from the biclusters.

Figure 35 shows the quality of the aggregation by overlapping after outlier removal.
We can see that, regardless of the chosen rate of overlapping, all results were again close to
the maximum achievable performance.

We will then compare the best results from each aggregation procedure using the CE
metric, and verify if the results have significant pairwise difference. As for this dataset our
proposals exhibit high performance, we will choose the same results that we have chosen on
the previous experiment, except that now we will use the results after outlier removal. The
comparison will include the following contenders: a) single linkage after outlier removal;
b) aggregation by overlapping with rate of 70% after outlier removal; c) MicroCluster with
𝜂 = 𝛾 = 0.15, deleting operation first; and d) triclustering.

In Figure 36 we can see that our proposals exhibit a performance even better than
that produced without outlier removal, being both again very similar among each other. In
fact, they did not show statistical difference in any level of noise, as we can see on Fig. 37.
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Figure 35 – Results from the aggregation by overlapping on art1, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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Figure 36 – CE of the best results of aggregation on art1.
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Figure 37 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art1.
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6.4.2 Results on art2

In the previous subsection, we could realize that the outlier removal was very efficient
for dataset art1. For dataset art2 we will follow the same protocol.
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(b) Before outlier removal

Figure 38 – Aggregation with single linkage using Hamming distance on art2, before and
after outlier removal, and as a function of the noise standard deviation.

Figure 38a shows the quality of the aggregation with single linkage after outlier re-
moval, while Figure 38b is a repetition of Figure 21, for the ease of the comparison. We can
see that the step of removing outliers was able to increase the Precision of the result without
decreasing the Recall. It makes this result better and concordant with our goal: increasing
the Precision without decreasing the Recall, with the proper number of biclusters.

The Precision is also close to 1, but not so close to the maximum achievable perfor-
mance as it was for art1. We interpreted this result as an indication that the outlier removal
could be more aggressive, removing more elements than it is currently removing. It would
increase the Precision even more. So we modified the outlier removal method as follows:
instead of marking for removal the elements that were below the mean minus on standard
deviation, we supplied a percentile and all elements below that percentile should be marked
for removal. Assuming a normal distribution, the mean minus one standard deviation is
equivalent to −1 z-score, that in percentile is approximately to 15.8655. Figure 39 shows the
quality of the aggregation with single linkage and several values for outlier removal based
on percentile. Comparing the Precision (Figure 39a) and Recall (Figure 39b), we can see a
trade-off. For example, when the value of the percentile was 6 we got the worst Precision and
the best Recall. It indicates that when the value of the percentile is lower than the equivalent
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(b) Recall

Figure 39 – Aggregation with single linkage and outlier removal, and as a function of the
noise standard deviation. Each curve is parameterized by the percentile.

to one standard deviation (thus reducing the action of outlier removal), we are removing
fewer elements, decreasing the Precision. On the other hand, when the value of the percentile
was 24 we got the best Precision and the worst Recall. It indicates that when the value of
the percentile is higher than the equivalent to one standard deviation (thus increasing the
action of outlier removal), we are removing more elements, including the ones that should be
removed (increasing the Precision) and the ones that should not (decreasing the Recall). We
can also see in Figure 39a that the Precision increases a little more between the values 12
and 15. The decrease on Recall for the same values is not so great. This may indicate that
15 is a good choice for the percentile, which is very close to the equivalent to one standard
deviation, that we were using before.

Figure 40 presents the results of the aggregation by overlapping after outlier removal.
We can see that the different rates did not change too much the number of final biclusters,
and did not lead to significant differences between the rates of Precision and Recall. However,
when the rate was 70% (Figure 40a) the quantity of biclusters were a little more stable than
for the other rates. We were also able to improve the Precision without decreasing the Recall,
reaching our goal with the aggregation of this dataset.

We will then compare the best results from each aggregation procedure using the
CE metric, and verify if the results have a significant pairwise difference. We will choose the
same results that we have chosen on the previous experiment, except that now we will use the
results after outlier removal. The comparison will include the following contenders: a) single
linkage after outlier removal; b) aggregation by overlapping with rate of 75% after outlier
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Figure 40 – Results from the aggregation by overlapping on art2, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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removal; c) MicroCluster with 𝜂 = 𝛾 = 0.15, deleting operation first; and d) triclustering.
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Figure 41 – CE of the best results of aggregation on art2.

Figure 41 shows behavior of the CE metric for the best solutions of each algorithm.
We can see that the aggregation with single linkage and by overlapping produced the best
results on this metric, and they seem very related again.
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Figure 42 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art2.

Aggregation by single linkage and by overlapping did not show statistical difference
for most levels of noise, as we can see on Table 42. As the results from MicroCluster and
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triclustering are the same of the experiment 2, they also did not show significant pairwise
difference for most levels of noise.

6.4.3 Results on art3
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Figure 43 – Aggregation with single linkage using Hamming distance on art3, before and
after outlier removal, and as a function of the noise standard deviation.

Figure 43a shows the quality of the aggregation with single linkage after outlier re-
moval, while Figure 43b is a repetition of Figure 28, for the ease of the comparison. We can
see that the Recall decreased a little and the Precision did not increase. This indicates that
the outlier removal step in this solution did not remove elements that should be removed
(Precision did not increase), but instead it removed a few elements that should not be re-
moved (decrease on Recall). So, for this dataset the outlier removal step did not improve the
quality of the solution, promoting instead a small decrease in the Recall.

Figure 44 presents results of the aggregation by overlapping, after the outlier removal
step. When comparing with Figure 29, we can see that the Precision increased a little, and
the Recall decreased.

For this dataset, the step of outlier removal was not able to improve the final result.
We believe that this is due to the design of the dataset, where a single bicluster overlaps more
than 60% of its area with another two. However, this step is still important, as it has the
potential to remove objects and / or attributes that should not be included on the solution,
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Figure 44 – Results from the aggregation by overlapping on art3, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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and when the method was not able to do so, it did not impair Precision or Recall in a relevant
way.

We will then compare the best results from each aggregation procedure, using the
CE metric, and verify if the results have significant pairwise difference. They are: a) single
linkage after outlier removal; b) aggregation by overlapping with rate of 75% after outlier
removal; c) MicroCluster with 𝜂 = 𝛾 = 0.15, deleting operation first; and d) triclustering.
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Figure 45 – CE of the best results of aggregation on art3.

Figure 45 shows the CE metric for the best solutions of each algorithm. We can see
that, except for triclustering, all the other results showed similar results, with MicroCluster
having the highest CE when 𝜎 ≤ 0.4, but aggregation with single linkage and by overlapping
having the highest CE when 0.4 < 𝜎 ≤ 0.55.

Fig. 46 shows the pairwise significance comparison. As we can see, except from the
comparisons between Triclustering versus Single Linkage; and Triclustering versus aggrega-
tion by overlapping; none of the results showed a significant pairwise difference pattern for
most of the levels of noise. In other words, the difference is not stable. As all methods are
somehow based on the overlapping between the biclusters, this similarity reinforces the belief
that this dataset is the most challenging among the artificial datasets considered here.

The first three experiments already presented were useful to show that the bicluster
aggregation not just reduces the quantity of biclusters, but may also increase the quality of
the final result. Now we will verify the benefits of the aggregation on real datasets.
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Figure 46 – Two-sided Wilcoxon Rank Sum Test at 5% significance level on CE metric, on
art3.

6.5 Experiment 4: Application to gene expression data
This experiment compares the solutions of the aggregation algorithms on the GDS2587

dataset, which comes from gene expression data. We will run the RIn-Close algorithm with
several values for 𝜖 and compare the final solutions of each aggregation algorithm.

In this experiment we will run the RIn-Close to enumerate the biclusters of the
GDS2587 dataset. After that, we will compare the agglomerative algorithms. The parametriza-
tion of the agglomeration algorithms will follow the same methods of the Experiment 2, and
for the triclustering algorithm, we will use the results from the aggregation by overlapping to
choose 𝑘. We will compare the results with the gene ontology enrichment analysis. Moreover,
we will describe some of the enriched biclusters. As explained in Section 4.2.1, this analysis
is common for gene expression data.

Table 3 – Quantity of biclusters enumerated with the RIn-Close algorithm on the GDS2587
dataset.

𝜖 Qtd. of biclusters
2.8 23
2.9 2825
3.0 19649

Table 3 shows the quantity of biclusters enumerated for 3 values of 𝜖. When 𝜖 < 2.8, no
biclusters were found, and due to memory limits, we decided that the quantity of biclusters
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when 𝜖 = 3 is sufficiently large for aggregation.
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Figure 47 – Dendrograms of the aggregation with single linkage, on the GDS2587 dataset.

Figure 47 shows the dendrograms of the aggregation with single linkage, for each value
of 𝜖. We can see in Figure 47a that the cut is very straightforward, having 2 very distinct
groups. In Figure 47b the cut is also easy, having 4 clear groups of objects. In Figure 47c, we
may cut the dendrogram in 5 groups.

Table 4 – Quantity of biclusters for the aggregation by overlapping on the GDS dataset.

Rate Qtd (𝜖 = 2.8) Qtd (𝜖 = 2.9) Qtd (𝜖 = 3)
60 % 2 4 5
65 % 2 4 5
70 % 2 4 5
75 % 2 4 5
80 % 2 4 5
85 % 2 4 8
90 % 2 5 10
95 % 2 9 22

Table 4 shows the quantity of biclusters after the aggregation by overlapping. The
results here seem to agree with the solution obtained by the aggregation with single linkage.
When 𝜖 = 2.8, all rates led to 2 biclusters. When 𝜖 = 2.9 the majority of the rates indicated
4 biclusters, the same reasonable cut of the dendrogram. And when 𝜖 = 3, the majority
of the rates indicated 5 biclusters, that also agrees with the cut of the dendrogram of the
aggregation with single linkage. As both solutions are based on the level of overlapping, it
seems intuitive that they would reach similar solutions.

Table 5 shows the quantity of biclusters that had objects and / or attributes removed
after the outlier removal step. We can see that, when 𝜖 = 3, the aggregation did not include
outliers when the rate was less then or equal to 80%, which indicates that the fragmentation of
the biclusters in these settings did not include outliers, only fragmenting inside the bicluster.
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Table 5 – Number of biclusters that changed after the outlier removal step.

Rate Qtd (𝜖 = 2.8) Qtd (𝜖 = 2.9) Qtd (𝜖 = 3)
60 % 1 of 2 1 of 4 0 of 5
65 % 1 of 2 1 of 4 0 of 5
70 % 1 of 2 1 of 4 0 of 5
75 % 1 of 2 1 of 4 0 of 5
80 % 1 of 2 1 of 4 0 of 5
85 % 1 of 2 1 of 4 2 of 8
90 % 1 of 2 2 of 5 2 of 10
95 % 1 of 2 4 of 9 3 of 22

We also compared the coverage of each rate of the aggregation by overlapping, and
they were always the same, independently of the quantity of final biclusters. For example,
when 𝜖 = 2.9, both the rates 60% and 95% covered the same area of the dataset.

Table 6 – Quantity of biclusters for the aggregation with MicroCluster on the GDS dataset.

Order 𝜂 𝛾 Qtd 𝜖 = 2.8 Qtd 𝜖 = 2.9 Qtd 𝜖 = 3
DM 0.15 0.15 2 3 7
DM 0.15 0.1 2 5 8
DM 0.15 0.05 2 5 11
DM 0.1 0.15 2 3 7
DM 0.1 0.1 2 5 8
DM 0.1 0.05 2 5 11
DM 0.05 0.15 2 3 7
DM 0.05 0.1 2 5 8
DM 0.05 0.05 2 5 11
MD 0.15 0.15 2 3 7
MD 0.15 0.1 2 5 8
MD 0.15 0.05 2 5 11
MD 0.1 0.15 2 3 7
MD 0.1 0.1 2 5 8
MD 0.1 0.05 2 5 11
MD 0.05 0.15 2 3 7
MD 0.05 0.1 2 5 8
MD 0.05 0.05 2 5 11

Table 6 shows the quantity of biclusters obtained by the aggregation with Micro-
Cluster. When 𝜖 = 2.8, the solution of MicroCluster agrees with the aggregation with single
linkage and by overlapping. The 2 found biclusters were exactly the same, independently of
the parametrization. When 𝜖 = 2.9, we can see that only the parameter 𝛾 interfered on the
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quantity of biclusters. Despite that, the final biclusters were again the same. When 𝜖 = 3,
for each value of 𝛾 we have a quantity of biclusters that are identical again.

The triclustering algorithm was configured to find 2 biclusters when 𝜖 = 2.8, 4 when
𝜖 = 2.9 and 5 when 𝜖 = 3.

As all different methods agreed on the final quantity of biclusters, we are left with
the GOEA to see the quality of the results.

6.5.1 Gene Ontology Enrichment Analysis

As explained in Section 4.2.1, GOEA is a common analysis for groups of genes obtained
by clustering or biclustering in gene expression data.

When 𝜖 = 2.8, except from triclustering, all the algorithms returned only enriched
biclusters. In fact, the four main enriched terms were always the same, sometimes on different
orders but with very close p-values. Only the first bicluster from the triclustering algorithm
was enriched.

Table 7 shows the main enriched terms of the first bicluster from the aggregation by
overlapping with a rate of 70%, after outlier removal, when 𝜖 = 2.8.

Table 8 shows the main enriched terms of the first bicluster from the aggregation with
MicroCluster, when 𝜖 = 2.8.

Table 9 shows the main enriched terms of the first bicluster from the aggregation with
triclustering when 𝜖 = 2.8.

When 𝜖 = 2.9, all algorithms returned only enriched biclusters, including tricluster-
ing. When 𝜖 = 3, all algorithms, except for triclustering, returned only enriched biclusters.
triclustering returned 4 from 5 enriched biclusters.

In this experiment, we could see that the aggregation was able to significantly reduce
the quantity of biclusters, and recovered enriched biclusters.

6.6 Experiment 5: Application to Food dataset

As we have seen in the previous experiment, our proposals for aggregation got only
enriched biclusters for the gene expression dataset. In this experiment we will verify how
the aggregation changes the coverage of the dataset when compared to the enumeration,
considering another real dataset. As the aggregation will severely reduce the quantity of final
biclusters, it is important to see if it will leave uncovered areas that were previously covered.
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Table 7 – Enrichment analysis of the first bicluster from the aggregation by overlapping with
rate of 70%.

GO Term p-val counts definition
GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural

and functional unit of all organisms. [GOC:jl]...
GO:0044444 0.00000011 19 / 608 Any constituent part of the cytoplasm, all of the con-

tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 19 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 16 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate filaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate filaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

If this happens, it means that the aggregation may be eliminating objects and / or attributes
that can be important for some applications.

In this experiment we will run the RIn-Close algorithm and aggregate the enumerated
biclusters of the Food dataset. We will then compare the final solutions to see the differences
between the results of each agglomerative algorithm. As the true biclusters of this dataset
are unknown, we will compare how the aggregation differs from the enumeration in terms
of coverage of the dataset. In the comparison, we will report our proposals after the outlier
removal step.

However, this concern can be more or less relevant depending on the application. Our
proposals may increase the coverage, as their basic operator is the union of sets. Even after
the outlier removal step, we can end covering more area than the enumerative solution.

We replicated the experiment from Veroneze et al. (2014) on this dataset and we
will use 𝜖 = 1.25 as recommended on that work. In Table 10 we can see the quantity of
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Table 8 – Enrichment analysis of the first bicluster from the aggregation with MicroCluster.

GO Term p-val counts definition
GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural

and functional unit of all organisms. [GOC:jl]...
GO:0044444 0.00000011 18 / 608 Any constituent part of the cytoplasm, all of the con-

tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 18 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 15 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate filaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate filaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

enumerated biclusters for several values of 𝜖, and for 𝜖 = 1.25 we have 8676.

Figure 48 shows the dendrogram of the aggregation with single linkage for the FOOD
dataset, when 𝜖 = 1.25. We can see that the cuts between 2 and 7 are quite acceptable. In
fact, cutting in two groups seems the best option, but 2 may be considered a small quantity
of biclusters. As from 4 to 5 the height is more pronounced, for the comparison it seems
acceptable to cut the dendrogram on 4 biclusters.

Table 11 shows the quantity of final biclusters for the aggregation by overlapping,
for several rates. When the rate of overlapping was ≤ 80%, we found always the same 4
biclusters. As for the next rate the quantity of final biclusters is much bigger, we will use the
solution from the rate 80% for the comparison.

Table 12 shows the quantity of biclusters from the aggregation with MicroCluster. We
can see that when the deleting operation came first, the procedure was not able to properly
aggregate the biclusters. It is important to highlight that this behavior is the opposite of
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Table 9 – Enrichment analysis of the first bicluster from the aggregation with triclustering.

GO Term p-val counts definition
GO:0044464 0.00000000 38 / 774 Any constituent part of a cell, the basic structural

and functional unit of all organisms. [GOC:jl]...
GO:0044444 0.00000017 18 / 608 Any constituent part of the cytoplasm, all of the con-

tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000488 18 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00011049 15 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate filaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate filaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

what happened with the artificial datasets. There, when the deleting operation came first
the results were more effective. When the merging operation came first, the aggregation was
able to reach 13 to 27 biclusters, depending on the 𝛾 parameter. As on the artificial datasets
the best parameters were 𝜂 = 𝛾 = 0.15, for the comparison we will use this parameterization
with the merging operation occurring first.

For the triclustering algorithm we set 𝑘 = 4, using insider information from the
aggregation by overlapping.

6.6.1 Comparison of the coverage

Table 13 shows the pairwise comparison of coverage of the chosen solutions and the
enumerated solution from RIn-Close. We can see that the triclustering algorithm produces
the most distinct solution when compared with the enumerated solution obtained with RIn-
Close. The difference in coverage of the solutions was ≈ 61.33%. The solutions from the
aggregation by overlapping and with single linkage were not so close as on the artificial
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Table 10 – Quantity of biclusters enumerated with the RIn-Close algorithm on the FOOD
dataset.

𝜖 Qtd
0 29
0.25 390
0.5 1752
0.75 2946
1 6603
1.25 8676
1.5 13915
1.75 15767
2 23906
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Figure 48 – Dendrogram for the aggregation with single linkage when 𝜖 = 1.25, on the Food
dataset.

datasets, showing a difference in coverage of ≈ 12.50%.

At the end, the closest solution to the RIn-Close results was the aggregation by
overlapping filtered, with a difference in coverage of 9.1%. If we consider that this solution
reduced the quantity of biclusters from 8676 to 4 biclusters, the difference in coverage of only
9.1% seems very promising.
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Table 11 – Quantity of biclusters for the aggregation by overlapping, for several rates.

Rate Qtd
60 % 4
65 % 4
70 % 4
75 % 4
80 % 4
85 % 40
90 % 65
95 % 368

Table 12 – Quantity of biclusters for the aggregation with MicroCluster.

Order 𝜂 𝛾 Qtd
DM 0.15 0.15 809
DM 0.15 0.1 810
DM 0.15 0.05 818
DM 0.1 0.15 545
DM 0.1 0.1 550
DM 0.1 0.05 555
DM 0.05 0.15 553
DM 0.05 0.1 557
DM 0.05 0.05 564
MD 0.15 0.15 13
MD 0.15 0.1 17
MD 0.15 0.05 27
MD 0.1 0.15 14
MD 0.1 0.1 17
MD 0.1 0.05 27
MD 0.05 0.15 14
MD 0.05 0.1 17
MD 0.05 0.05 27

6.7 Further analysis

The experiments presented in this chapter indicate that the aggregation can improve
the quality while removing redundancy caused by the noise on enumerative algorithms. How-
ever, some aspects of the analysis drew our attention while performing the experiments.
Although these details are not part of any experiment, we draw some conclusions of practical
interest from this analysis.

The first aspect is associated with the following question: how does the quantity of
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Table 13 – Pairwise comparison of difference in coverage among the solutions of aggregation
and RIn-Close, on FOOD dataset.

Single Linkage MicroCluster Triclustering RIn-Close
By Ov. 12.50% 35.50% 70.31% 9.1%
Single Linkage - 46.60% 81.51% 20.17%
MicroCluster - - 45.73% 27.38%
Triclustering - - - 61.33%

biclusters increase on the aggregation, while they explode on the enumeration? We decided
to verify this behavior on the real datasets.
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Figure 49 – Comparison of quantity of biclusters as a function of 𝜖, of the aggregation by
overlapping with rate = 80% and of RIn-Close, on the Food dataset.

Figure 49 shows the comparison of the quantity of biclusters, varying the 𝜖 parameter
on the GDS2587 dataset. The comparison is just on the RIn-Close results versus the aggrega-
tion by overlapping with rate = 80%. We can see that while the quantity of biclusters found
by RIn-Close increases exponentially, the aggregation seems to produce a stable quantity of
biclusters, that we expect to be close to the true value.

Figure 50 shows the same analysis, but for the FOOD dataset. We decided to show
several rates of overlapping now, and we can see that the behavior of the aggregation is the
same, independently of the rate used. All rates of aggregation showed a stable quantity of
biclusters that do not exhibit an apparent increase.

Another aspect that drew our attention was: is the aggregation by overlapping robust
to the values of 𝜖? Obviously we expected that, independently of 𝜖, the bigger the rate, the
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Figure 50 – Comparison of quantity of biclusters as a function of 𝜖, of the aggregation by
overlapping with several rates and of RIn-Close, on the Food dataset.

more biclusters we would have, as we are making it more difficult to aggregate when we
expect 95% of overlapping, for example. But does 𝜖 change that behavior? We run for more
values of 𝜖 on the FOOD dataset, and the obtained results are presented in Figure 51.

60 65 70 75 80 85 90 95
0

50

100

150

200

250

300

350

400

450

500

Tax of aggregation

Q
ua

nt
ity

 o
f b

ic
lu

st
er

s

 

 
ε = 0
ε = 0.25
ε = 0.50
ε = 0.75
ε = 1
ε = 1.25
ε = 1.5
ε = 1.75
ε = 2

Figure 51 – Quantity of biclusters as a function of the rate of aggregation by overlapping, on
the Food dataset. Each curve is parameterized by the value of 𝜖.

Figure 51 shows the quantity of bicluster by the rate of aggregation, for several values
of 𝜖. We can see that, when 𝜖 = 0, the quantity of biclusters remains stable, while when 𝜖 ≥ 0.5
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the quantity of biclusters increases exponentially when we increase the rate of aggregation.
It shows that the rate of overlapping and the value of 𝜖 are somehow related to the final
quantity of biclusters, when the rate is greater than 80%. If 𝜖 assumes high values and the
rate is equal to or greater then 80%, the aggregation may end up with too much biclusters.
But even with high values of 𝜖, if the rate of overlapping is low (between 60% and 80%), we
are able to get fewer biclusters.



Part IV

Final Considerations
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7 Conclusions and future work

In this chapter, we present our concluding remarks. We review the problem of bicluster
aggregation and the motivation for this work and also review the settings of the experiments.
After that we highlight the main conclusions that can be derived from the results of the
experiments. Finally, we indicate potential next steps of the research.

7.1 Concluding remarks

Hartigan (1972) proposed one of the earliest biclustering algorithms, the block clus-
tering. From there, the area drew the attention of many communities, becoming an important
non-supervised analysis. The term “biclustering” was first used by Cheng & Church (2000)
in their seminal work on gene expression data analysis, one of the major applications of
biclustering techniques.

Since finding all biclusters in a data set is an NP-hard problem �it is equivalent to
enumerating all bicliques in a bipartite graph �, the majority of the biclustering algorithms
are heuristics, that usually miss important biclusters (VERONEZE et al., 2014). Even with
this drawback, the usefulness of this task is unquestionable, given the amount of applications
and proposed heuristics. In the literature, we can find applications in gene expression data
analysis, recommendation systems and marketing (MADEIRA; OLIVEIRA, 2004).

With the development of several algorithms, it was noticed that the inherent noise
of the data fragments the original biclusters into many with high overlapping. This frag-
mentation heavily influenced the outcome of the recent enumerative algorithms, leading to a
large quantity of highly overlapped biclusters. Also, the high overlapping of the enumerated
biclusters leads to a redundant result, which also increases the complexity of the analysis.

At first, the problem of aggregation is very similar to bicluster ensemble. Ensemble is
a common practice in supervised learning (and is gaining attention in unsupervised learning),
where we combine the outcome of several results into a single one that is more robust to noise
interferences. Ideally, we obtain different results from different algorithms, or by distinct views
of the dataset, which increases the diversity of the results. This diversity is directly related
to the robustness of the final combination of the distinct results. Bicluster ensemble is very
similar. First we obtain several different results, then we combine them to get a single one.
But the aggregation poses different challenges. The differences between bicluster ensemble
and bicluster aggregation are:
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Source of results In the ensemble setup we need diversity of the input results. In aggre-
gation we can work just with results that show a high degree of overlapping among
their components, which are generally of low diversity. This is common in bicluster
enumeration.

Importance of a single bicluster If an area of the dataset is covered just by one bicluster,
the ensemble should consider this bicluster insignificant, as it was not encountered by
any other solutions. The aggregation does not eliminate biclusters.

We focused on the aggregation of biclusters from enumeration, and we proposed two ap-
proaches. The first one transforms each bicluster into a binary vector. After that we apply
the single linkage hierarchical clustering using the Hamming distance. After cutting the den-
drogram, we aggregate the biclusters of the same partitions by uniting the rows and columns
of each one. This approach has the drawback of having one parameter that is the number of
final biclusters. However, the dendrogram can be helpful in this task and there already are
several methods for properly defining the cut location.

The other approach is based on the overlapping between two biclusters. The method
can be summarized as: while having two biclusters with an overlapping area larger than
a pre-defined threshold, aggregate them. Again, the aggregation is the union of rows and
columns of the involved biclusters.

The aggregation not only severely reduced the final quantity of biclusters, but ended
up impacting a little the Precision of the final biclusters. The way that we perform the
aggregation explains this behavior. By just uniting the rows and columns of the involved
biclusters, we may end up including intruder rows or columns that should not be included.
This requires a step of outlier removal. To this end, we provided a method to remove possible
outlier elements from the biclusters of the final result. This method showed to be robust,
improving the quality of the solution.

We compared the performance of our proposals against the most similar proposal
in the literature, which is the last step of the MicroCluster algorithm. We also included in
the comparison an algorithm of bicluster ensemble, which is the triclustering algorithm. We
executed 5 experiments to verify distinct hypotheses.

The first experiment aimed at viewing the effects of the noise fragmenting the original
biclusters. We only used artificial datasets. Using the RIn-Close algorithm, we could verify
the fragmentation of the original biclusters into many with high overlapping. As the variance
of the noise increases, we could see that: the quantity of biclusters increases reaching a high
value and then goes down to zero; the Precision starts low and also increases; and when we
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have enough noise, the Recall decreases.

On the second experiment we tested several approaches of aggregation, including our
proposals. We were able to reach the true number of biclusters without decreasing the Recall,
but decreasing a little the Precision. Despite that, our proposals had a nice performance,
getting the best results when compared with the MicroCluster and the triclustering algorithm
on the datasets art1 and art2. The art3 dataset showed to be the most challenging one. Our
two proposals had very similar results, and when we run the Wilcoxon Rank Sum Test, they
did not show significant difference. On this experiment we could also see that the aggregation
in fact is able to get much less biclusters with a comparable or even better quality results
when compared with the enumeration. The main challenge is to parameterize the algorithms.
The deleting step of the MicroCluster algorithm acts as an outlier removal, and our proposals
did not exclude bad objects and attributes from the biclusters. Our proposals could benefit
from a step of outlier removal, which is the subject of experiment 3.

On the third experiment, we added the step of outlier removal to the aggregation
with single linkage and by overlapping. These proposals achieved a high performance score
on the art1 dataset, and were able to increase the Precision on the art2 dataset. On the art3
dataset, the outlier removal was not able to increase the Precision and in fact decreased a
little the Recall. But we could conclude that this step is very important to avoid biclusters
with objects and attributes that should not be part of any bicluster.

The purpose of the fourth experiment was to verify if the aggregation could get en-
riched biclusters of a gene expression dataset. For different values of 𝜖 on the RIn-Close
algorithm, we could see that the different methods of aggregation reached very similar re-
sults. The main challenge of the aggregation with single linkage is to decide where to cut
the dendrogram, but as we could see, on this dataset this task was very easy. Likewise, it
was easy to identify a good rate of overlapping, as the results of several rates were identical.
Except for the triclustering, all aggregations returned only enriched biclusters.

And finally, we applied the aggregation methods to the FOOD dataset and analyzed
how the aggregation changed the covered area when compared to the enumeration. Triclus-
tering led to the most different result, and the aggregation by overlapping covered an area
very similar to the area covered by the enumeration.

We could see that while the quantity of biclusters increases exponentially on the
enumeration, the aggregation can keep a stable quantity of biclusters, independently of the
value of 𝜖. We could also see that the value of 𝜖 changes the behavior of the aggregation by
overlapping when the rate is high. For values greater than 80%, some values of 𝜖 led to a high
quantity of biclusters. It indicates that the rate of overlapping must be reasonable, given that
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high values cannot guide to an effective aggregation.

We can conclude that the aggregation is suitable and can be indicated when enumer-
ating all biclusters from a dataset. The aggregation will not only significantly reduce the
quantity of biclusters, but tends to improve the quality of the final result. A post-processing
step for outlier removal brings additional robustness to the methodology.

7.2 Future Work
As a further step of the research, we need to compare the time / memory complexity of

the proposals, and explore recommendations for the parameterization (cut on the dendrogram
and rate of overlapping). The chaining effect on single linkage hierarchical clustering using
Hamming distances should be more explored to verify its impacts in the aggregation. Another
further step is to test our proposals in biclustering heuristics results.

We can also adapt our proposals to work on an ensemble configuration, and extend
this work to deal with time series biclusters, which require contiguous attributes.
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