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Este exemplar corresponde à versão
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Abstract

The presence of uncertainty in future outcomes can lead to indecision in choice

processes, especially when eliciting the relative importances of multiple decision cri-

teria and of long-term vs. near-term performance. Some decisions, however, must be

taken under incomplete information, what may result in precipitated actions with

unforeseen consequences. When a solution must be selected under multiple con-

flicting views for operating in time-varying and noisy environments, implementing

flexible provisional alternatives can be critical to circumvent the lack of complete

information by keeping future options open. Anticipatory engineering can be then

regarded as the strategy of designing flexible solutions that enable decision makers

to respond robustly to unpredictable scenarios. This strategy can thus mitigate the

risks of strong unintended commitments to uncertain alternatives, while increas-

ing adaptability to future changes. In this thesis, the roles of anticipation and of

flexibility on automating sequential multiple criteria decision-making processes un-

der uncertainty are investigated. The dilemma of assigning relative importances

to decision criteria and to immediate rewards under incomplete information is then

handled by autonomously anticipating flexible decisions predicted to maximally pre-

serve diversity of future choices. An online anticipatory learning methodology is

then proposed for improving the range and quality of future trade-off solution sets.

This goal is achieved by predicting maximal expected hypervolume sets, for which

the anticipation capabilities of multi-objective metaheuristics are augmented with

Bayesian tracking in both the objective and search spaces. The methodology has

been applied for obtaining investment decisions that are shown to significantly im-

prove the future hypervolume of sets of trade-off financial portfolios for out-of-sample

stock data, when compared to a myopic strategy. Moreover, implementing flexible

portfolio rebalancing decisions was confirmed as a significantly better strategy than

to randomly choosing an investment decision from the evolved stochastic efficient

frontier in all tested artificial and real-world markets. Finally, the results suggest

that anticipating flexible choices has lead to portfolio compositions that are signifi-

cantly correlated with the observed improvements in out-of-sample future expected

hypervolume.

Key-words: Intelligent systems. Anticipatory engineering. Multiple criteria decision-

making. Multi-objective optimization. Uncertainty handling. Stochastic optimiza-

tion. Metaheuristics. Portfolio optimization.
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Resumo
A presença de incerteza em resultados futuros pode levar a indecisões em processos

de escolha, especialmente ao elicitar as importâncias relativas de múltiplos critérios

de decisão e de desempenhos de curto vs. longo prazo. Algumas decisões, no en-

tanto, devem ser tomadas sob informação incompleta, o que pode resultar em ações

precipitadas com consequências impreviśıveis. Quando uma solução deve ser sele-

cionada sob vários pontos de vista conflitantes para operar em ambientes ruidosos

e variantes no tempo, implementar alternativas provisórias flex́ıveis pode ser funda-

mental para contornar a falta de informação completa, mantendo opções futuras em

aberto. A engenharia antecipatória pode então ser considerada como a estratégia

de conceber soluções flex́ıveis as quais permitem aos tomadores de decisão respon-

der de forma robusta a cenários impreviśıveis. Essa estratégia pode, assim, mitigar

os riscos de, sem intenção, se comprometer fortemente a alternativas incertas, ao

mesmo tempo em que aumenta a adaptabilidade às mudanças futuras. Nesta tese,

os papéis da antecipação e da flexibilidade na automação de processos de tomada

de decisão sequencial com múltiplos critérios sob incerteza é investigado. O dilema

de atribuir importâncias relativas aos critérios de decisão e a recompensas imediatas

sob informação incompleta é então tratado pela antecipação autônoma de decisões

flex́ıveis capazes de preservar ao máximo a diversidade de escolhas futuras. Uma

metodologia de aprendizagem antecipatória on-line é então proposta para melhorar

a variedade e qualidade dos conjuntos futuros de soluções de trade-off. Esse objetivo

é alcançado por meio da previsão de conjuntos de máximo hipervolume esperado,

para a qual as capacidades de antecipação de metaheuŕısticas multi-objetivo são

incrementadas com rastreamento bayesiano em ambos os espaços de busca e dos

objetivos. A metodologia foi aplicada para a obtenção de decisões de investimento,

as quais levaram a melhoras significativas do hipervolume futuro de conjuntos de

carteiras financeiras de trade-off avaliadas com dados de ações fora da amostra de

treino, quando comparada a uma estratégia mı́ope. Além disso, a tomada de decisões

flex́ıveis para o rebalanceamento de carteiras foi confirmada como uma estratégia

significativamente melhor do que a de escolher aleatoriamente uma decisão de in-

vestimento a partir da fronteira estocástica eficiente evolúıda, em todos os mercados

artificiais e reais testados. Finalmente, os resultados sugerem que a antecipação

de opções flex́ıveis levou a composições de carteiras que se mostraram significativa-

mente correlacionadas com as melhorias observadas no hipervolume futuro esperado,

avaliado com dados fora das amostras de treino.

Palavras-chave: Sistemas inteligentes. Engenharia antecipatória. Tomada de de-

cisão com múltiplos critérios. Otimização multiobjetivo. Tratamento de incerteza.

Otimização estocástica. Metaheuŕısticas. Otimização de carteiras.
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not be aware of that, to use Kalman Filters for Bayesian learning instead of Gaussian Processes,

as was originally specified in my PhD project. I definitely think in retrospect that this was the

most flexible choice for this thesis. Besides being a top-notch researcher, André is one of the
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Palaiseau), Renata Wassermann (IME/USP), Ricardo Gudwin (FEEC/UNICAMP), and Romis

Attux (FEEC/UNICAMP) for their insightful and brilliant participation in the series of debates

organized by our IEEE CIS student chapter on the practical and philosophical aspects regarding

the future development of Artificial Intelligence.

I thank the FEEC/UNICAMP Profs. Fernando Von Zuben, Max Costa, Reginaldo Palazzo

Jr., and Romis Attux for their passion and commitment to making the IEEE CIS student

chapter organized debate on the intersections between artificial intelligence and information

theory a memorable one.

I thank Prof. Reginaldo Palazzo Jr. for encouraging me to come to Campinas in 2009,

although I ended up not attending the FEEC master degree program, staying safe in Recife.

During the IEEE CIS organized debate, Prof. Reginaldo also encouraged us to focus on the

geometric aspects of data analysis, instead of only reasoning over patterns of occurrences. His

insight was key in motivating me to think about the subtle yet beautiful geometric interpreta-

tions of representing uncertainty in simplex spaces using Dirichlet distributions.

A special thank you to all my friends from the undergrad and master courses, who have

inspired me in many different ways. The list is large, but I wish to pick my friend, Rafael

Xavier, as a representative. “Dr. Ralph” was my classmate during the undergrad years and

has also been through a tough journey for the pursuit of knowledge and for the sake of being

professionally recognized as a scientist – we are all scientists since the childhood. Among many

acts of generosity and comprehension, he presented me in 2009 with the famous book “The

Evolution of Cooperation” by Robert Axelrod, a classic of the game theoretic literature on

how competition and cooperation evolve over time, based on the study of elementary models

of social and individual rewards arising from the interaction between two “rational” agents.

This was one small but persistent seed that has somehow greatly influenced my views and my

way of understanding the world. Thank you, Ralph, for your patience and for your generosity

throughout all those years.

A special thank you to Dr. Rodrigo Pasti, who, besides being an admired scientist and

great appreciator of Nature, was the first to greet us when we arrived in Campinas. I’ve never

forgotten his willingness to help a young couple to find a place and to be integrated into the

city. Thank you, Rodrigo!

Another special thank you to Conrado Miranda who, besides being a super-reliable and

humorous friend, took the time to revise all the manuscript and contributed to substantially

improve it, after a laborious reviewing work that took him weeks. If only more people were that

dedicated and concerned with the quality and purpose of science...

I also thank Prof. Fabricio Olivetti who, besides being an inspiring creative and brilliant

scientist, also did the same laborious reviewing work for the first version of this manuscript,

as a member of my doctoral qualification exam board, and also helped me with the resulting

submitted journal paper. I admire his altruism and willingness to make the world a better place.

Thank you, Fabricio!

Besides Conrado and Prof. Fabricio, I’d like to thank Saullo Oliveira, Rodrigo Setti, and

xxi



Eliezer da Silva for accepting my challenge of improving not only the way scientists collaborate

and work together, but, mainly, to help them to reunite with the very reasons of why they have

chosen to pursue such career. It was certainly not only to publish papers and be personally

rewarded by the resulting professional reputation that comes out of it; but to search for the truth

and to engineer a better future for all humanity. I’m sure someday the world will hear about

Sci-Torrent (http://scitorrent.github.io) and/or similar initiatives. Thank you for believing in

this joint effort, my friends!

Last, but not least, I thank my good friends and tennis partners in Campinas with whom

I enjoyed so many memorable experiences: Evandro Silva, Felipe Martinez, Guilherme, and

Marcelo Ramos.

This thesis is also dedicated in memoriam of my good friend, lab colleague, brilliant scientist,

and remarkable human being, Salomão Madeiro (2013). I shall never forget his enthusiasm for

discovering new things; the tennis and soccer matches; the free Warcraft 3 strategy lessons; the

jokes told while sharing a cup of coffee; the political discussions; and the mentally demanding

yet enjoyable work done together. You’ll never be forgotten; your ideas will live on and your

dreams will be carried on by each of us. Thank you for every moment, my friend!

I acknowledge and thank the Brazilian funding agencies CNPq and FAPESP for the two

doctoral scholarships that allowed me to develop my research under the best conditions. The

research presented in this manuscript benefited from a CNPq PhD scholarship from March 2011

to September 2012, and from a FAPESP PhD scholarship from October 2012 until August 2014.

Finally, a big thank you for all dreamers all around the world (alive or dead) who have been

working hard every day for a sustainable future wherein the human society can awake to its full

potential and take action so that social balance, justice, and freedom can prevail over all forms

of psychological impairment and intellectual slavery.

Campinas, September 23, 2014,

Carlos Renato Belo Azevedo

xxii



“You can have peace. Or you can have freedom.
Don’t ever count on having both at once.”

Robert Anson Heinlein

xxiii



xxiv



List of Figures

1.1 Diagram with the layered architecture proposed in this thesis. . . . . . . . . . . 16

1.2 Research roadmap showing the goal and contributions of the thesis. . . . . . . . 18

2.1 Gaussian Process models estimated over (a) four and (b) six samples. The hor-

izontal axes depict time. The blue lines are the mean processes; whereas the

red shadowed areas depict 95% confidence intervals computed from the variance

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Q-Q normal plot for FTSE 100 25 day horizon returns data for the last 6 years. 34

2.3 The Shannon entropy function (vertical axis) for a binary source (p1 is represented

in the horizontal axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Contour plots for the Dirichlet distribution in the 2-simplex. . . . . . . . . . . . 50

3.1 In part (a), the hypervolume of an approximation set of three objective vectors

for a mean (µ) maximization/variance (σ2) minimization bi-objective problem

can be computed by summing over the Pareto dominance regions bounded by

each alternative, its neighbor in the objective space, and the reference point.

The sets of alternatives A =
{
a(1), a(2), a(3)

}
convey higher (b) proximity to the

PF; (c) spread; and (d) coverage than the sets B =
{
b(1),b(2),b(3)

}
, respectively. 58

3.2 PF partitioning associated with the placement of two mutually non-dominated

alternatives. In the leftmost figure, the Hypv is minimal when computed from the

extrema alternatives and, hence, the approximation quality is the lowest among

all possible distributions of two points lying in the PF. On the other hand, diver-

sity of choice in this case is high because both alternatives have approximately

the same likelihoods of being chosen when considering the universe of all possible

DMs preference specifications along the PF. The optimal µ-distribution obtained

with maximal Hypv in the rightmost figure not only achieves high approximation

quality, but also high diversity of choice. . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The contour plot of risk as a function of the weight w and of c = 2ρ− 1. . . . . 76

4.2 The Sharpe Ratio measures the slope between a risk-free asset return rate and

the objective vector associated with a portfolio in the PF. . . . . . . . . . . . . 78

xxv



4.3 Two types of stability are investigated: (a) when rebalancing an old portfolio

matching a fixed preference investment profile in the objective space (so that

it can remain over the Pareto frontier), portfolio compositions yielding lower

turnover rates are desired; (b) for a fixed portfolio, upon the update of the joint

returns distribution, its performance evaluation (risk and return) should change

as little as possible between one investment round to another. . . . . . . . . . . 81

4.4 Boxplots reporting the average estimated risk and return for all obtained efficient

portfolios, for algorithms solving the robust and the original MVP. (a)–(b) Ro-

bustly estimated risk/return; (c)–(d) Maximum-likelihood estimated risk/return. 90

4.5 Boxplots reporting relevant performance measures for the algorithms solving the

robust and the original MVP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Boxplots reporting the observed Spearman rank correlation. (a)–(c) Algorithms

solving the robust and the original MVP; (d)–(f) Algorithms solving only the

robust MVP, including the regularized versions. . . . . . . . . . . . . . . . . . . 95

5.1 Effects of prediction in the search space. On the left, the evolved candidate

solutions in the 2-simplex using myopic optimization overfit the current Pareto

Set, whereas, on the right, anticipatory learning allows for better adaptability

and the evolved solutions are in-between the current and the future Pareto Set.

The assumption is that fixed optimal trade-off solutions can become dominated

between two decision periods. Note however, there might be portions of the

dynamical Pareto Set wherein one or more solutions can still be non-dominated

between consecutive periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Example of a SPF approximation evolved with the proposed algorithm for the

portfolio selection application. The objective functions are risk (variance, to be

minimized) and mean return (to be maximized). When the evolved mutually non-

dominated portfolios are evaluated under several market scenarios sampled from

the ground joint assets return distribution, different risk/return evaluations are

obtained. The objective function evaluations for each portfolio are then collected

to estimate the parameters of the corresponding bivariate Gaussians, by comput-

ing the sample mean vectors and covariance matrices. The visualization of the

SPF provides insights not only about the stability of the risk/return estimation

of each portfolio to prices variability, but also about the underlying correlations

between risk/return, which are noticeably different, depending on the location of

the portfolio along the SPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 The set of m half-spaces γ specifies the PFR Zγ defined as the intersection of

the half-spaces with the original feasible objective space region, F(Ω). . . . . . . 104

5.4 In the AS-MOO methodology, a Pareto-efficient alternative zmax
t is chosen among

N options in ZNt . This choice influences the future stochastic Pareto frontier ap-

proximations that can be formed to maximize the expected Hypv over discounted

future efficient objective vectors, ZN?t+h|zmax
t . . . . . . . . . . . . . . . . . . . . . 108

xxvi



5.5 Example of (a) myopic; and (b) anticipatory sequences of choices in an objective

space composed of mean return maximization (N) and variance (risk) minimiza-

tion (σ2). In (a), a myopic DM always choose the most risky Pareto-efficient

investment, hoping to maximize near-term wealth. The implemented portfolios

influence the future diversity of choice measured by the Hypv (gray area). In (b),

a DM anticipating the future maximal Hypv portfolios obtains more efficient and

diverse future range of options, and may end up earning higher returns over time

by taking safer, flexible choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Outline of the AS-MOO methodology for online MCDM under uncertainty. . . . 111

5.7 Interrelations between the five components of the proposed AS-MOO method. . 112

6.1 On the left, the KF tracks performance for a fixed investment portfolio and
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Anticipatory distribution of ẑt given the predictive distributions
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Chapter 1
Introductory Remarks

Those who cannot tell what they desire or expect, still sigh and struggle with

indefinite thoughts and vast wishes.

– Ralph Waldo Emerson

Each choice is made in the context of whatever value system we have selected

to govern our lives. In selecting that value system, we are, in a very

real way, making the most important choice we will ever make.

– Benjamin Franklin

1.1 On the Nature of Change and the Emergence of Con-

flicts

The most self-evident and therefore fundamental property of Nature is that of change. Under-

standing and explaining how physical, chemical, and biological processes change is the ultimate

goal of all natural sciences. As part of those processes, human behavior is at the same time

constrained and driven by forces of natural change. The impetus of changing oneself towards an

imagined and idealized future goal is nonetheless not exclusive of humans, but must be common

to all sentient beings capable of planning ahead – whether when hunting a prey, climbing a tree,

or landing safely at a target, regardless of circumstances.

Furthermore, if desires are considered as drivers of action towards change, then the inability

of anticipating such desires (or preferences) of citizens, customers, users – or whatever group

of individuals one is trying to cooperate with – may contribute to severe mismatches. Such

discrepancies between what is (wrongly) expected and what is actually observed can thus gen-

erate frustration and, hence, lead to conflicts of interest. Failure to understand such processes

of change – and to effectively cope with the conflicts that emerge out of it – can thus increase

our perception of the world as uncertain.

In this context, it is not uncommon to hear about companies that spend significant time and

effort planning, developing, and marketing products only to find that customer interests have

1
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already shifted toward new niches and opportunities. For example, in the emerging niche market

of wearable computers, customers are reportedly concerned about the privacy of smart-glasses

users and their driving safety1. Suddenly, preference for fancy and flyweight smart-glasses

designs lost importance for less intrusive and distracting optical interfaces.

Fortunately, despite the frustration that comes from failures in planning and execution (and

because of it), the ability of learning from experience provides sentient beings, organizations,

and societies with the means for adapting such plans – as well as their execution – so better

alignments between now refined future goals and reality can be achieved.

1.1.1 Three Grand Challenges Solved by Automation

In this thesis, we argue that three grand challenges for effectively adapting plans towards refined

goals in scales wherein there is little central coordination between independent decision-makers,

such as in certain human organizations, are

1. How to cope with multiple conflicting objectives – such as safety improvement, risk miti-

gation, quality control, and cost reduction;

2. How to best coordinate resources and direct effort to search for effective new solutions

that can fill the needs which are foreseen to allow for improved future decisions; and

3. How to define what decisions would be better when assessing them under multiple views.

Clearly, the answers to any of the aforementioned challenges also shape the answers to the

remaining ones. This thesis thus claims to investigate, for the first time, computational answers

to all three challenges. In fact, to the best of our knowledge, the reported research is the first

to jointly address such issues within an algorithmic and computational approach, and under a

machine learning framework.

1.2 Research Goal: The Automation of Multiple Criteria

Decision-Making

We summarize the logical chain followed until now in order to set the research problem addressed

in this thesis: (a) processes change ⇒ (b) people change ⇒ (c) mismatches between imagined

goals and reality occur ⇒ (d) conflicts emerge ⇒ (e) we thus perceive the world as uncertain.

It turns out artificial intelligence and machine learning provide the cornerstones for cop-

ing with such uncertainty regarding how to deal with the three aforementioned challenges.

Nonetheless, we argue that most researches in (narrow) artificial intelligence have been rushing

into a conservative, myopic agenda of rapid near-term incremental progress towards engineering

inflexible and unadaptable algorithmic behavior and designs.

Furthermore, we argue that such narrow designs have been mostly aimed to reducing un-

certainty, instead of embracing it. As a result, the research outcome of narrow artificial intelli-

gence has been mostly composed of ad-hoc and problem-specific decision-making tools, which

1http://en.wikipedia.org/wiki/Smartglasses#Safety considerations
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are hindered by offline parameter tuning and unreasonable assumptions, and whose applica-

bility cannot be easily extended to other problem domains. Although such inflexible machine

learning algorithms can efficiently converge and identify “optimal” solutions to a given narrow

context/objective, they usually cannot effectively cope with changes of the context/objective.

The resulting inflexible decision-making systems that take advantage of optimization tech-

nologies found in the narrow artificial intelligence literature have nonetheless mostly been de-

signed for a priori planning, where one fixed solution is developed beforehand to operate in

the same way, regardless of any eventual changes that may occur in the operational environ-

ment. Because those systems are built from the premise that the optimization problem, i.e.,

the objective-function to be optimized, is static, they do not possess the capability of reacting

to changes and adapting old decisions to novel operational scenarios [211].

Therefore, this thesis proposes automating Multiple Criteria Decision-Making (MCDM) pro-

cesses so that uncertainty can be fully embraced, instead of being myopically reduced. In or-

der to achieve that, we developed methods for self-adapting the confidence which is internally

represented by the proposed flexible machine learning algorithms in response to both (a) the

observed discrepancies between expected and realized consequences of trade-off actions; and (b)

the underlying uncertainty regarding predictions of future trade-off actions. See chapter 5 and

chapter 6 for an in-depth discussion.

1.2.1 Research Agenda: Automating the Resolution of Conflicts

In 1772, Benjamin Franklin wrote a letter to a friend seeking advise from him on a complex

matter. In that letter, he showed one of the early references to a systematic decision-making

methodology based on evaluating pros and cons of all consequences resulting from a decision

taken under uncertainty, including the assignment of weights of importances to each future

consequence [143]. This letter is considered by the International Society on Multiple Criteria

Decision Making as the “earliest known reference relating to” MCDM2. The full text of this

letter is reproduced in this thesis appendix.

In a bold defense of a pragmatic agenda for human and social development, Roberto M.

Unger indicated automation as a means to “accelerate the production of the new” [209]:

“A way to accelerate the production of the new is to turn the way people work together

into a social embodiment of the imagination: their dealings with one another mimic

the moves of experimental thought. To this end, the first requirement is that we

save energy and time for whatever cannot yet be repeated. Whatever we can repeat

we express in a formula and then embody in a machine. Thus, we shift the focus of

energy and attention away from the already repeatable, toward the not yet repeatable.”

It turns out, however, that it is not only narrow tasks that humanity has already learned

how to repeat. In fact, several natural and biologically-inspired complex behavior have been

modeled and experimented with in computational simulations for a myriad of general tasks,

ranging from facial recognition using artificial neural networks; intrusion detection with artificial

2Source: http://mcdmsociety.org /facts.html.
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immunological systems; or the automated search for a set of “best” solutions inspired by natural

evolution – what is indeed performed and investigated in this thesis [65].

The inception of bio-inspired metaheuristics and hyper-heuristics can be also considered as

attempts of modeling natural behavior for automating complex and otherwise computationally

intractable problem-solving. Research on hyper-heuristics has been described in Burke et al. [45]

as that comprising “a set of approaches” for “automating the design of heuristic methods to solve

hard computational search problems” [45].

The research agenda posed in this thesis follows a similar path in which the goal is to

automate a general decision-making process subject to multiple conflicting views about how to

generate and select a sequence of candidate trade-off solutions for operating in changing and

uncertain environments. Such sequential MCDM process could model in principle e.g. the same

task automated by hyper-heuristics: that of generating and allocating computational resources

for the most promising (and less risky) candidate heuristics to solve a given problem over time.

On the Unreliability of Preferences Elicitation Under Uncertainty

Automating MCDM processes is nonetheless an ambitious challenge and it would be a reckless

move to claim that humanity is close to learning how to represent in a formula or algorithm

the whole experience of rationality towards acting consciously about current and future choice

trade-offs so to autonomously commit to a dynamic range of different preferences over time.

As shown by the 2002 economics Nobel laureate, Daniel Kahneman, human beings are

subject to a myriad of cognitive biases [129] underlying their intuitive thought processes. In

fact, the recent myriad of experimental research on social sciences has been challenging the

assumptions of reductionists rational models of decision-making based on value and risk.

The idea that decision-makers in general always know what they truly want is obviously

illusory when confronted to daily subjective and social experiences. One of the core reasons

behind this indeterminacy of desires and goals are the often neglected interplay between primary

needs, emotional states, and conscious thought about choice trade-offs.

For instance, in the book “Predictably Irrational” [7], research on how emotional states affect

daily decisions that are modeled under simplistic assumptions in the decision theory literature

was summarized by the Duke University professor of behavioral economics, Dan Ariely. In one

of such studies, students from Duke University took part in a tickets lottery for the title match

of the National College Athletic Association men’s basketball league. When 100 students among

winners and losers of the lottery were asked to price the tickets (for selling to non-owners or

for buying from owners), a huge discrepancy (by a factor of 14) was observed: owners asked on

average $2,400 dollars and buyers were willing to pay on average only $175. Ariely then had

the following comment about such discrepancy [7]:

“From a rational perspective, both the ticket holders and the non-ticket holders should

have thought of the game in exactly the same way. After all, the anticipated atmo-

sphere at the game and the enjoyment one could expect from the experience should

not depend on winning a lottery. Then how could a random lottery drawing have

changed the students’ view of the game – and the value of the tickets – so dramati-

cally?”
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He later argued that cognitive biases related to the over-valuation (for ticket holders) and

undervaluation (for non-ticket holders) of ownership could have been responsible for triggering

different emotional states that affected the pricing of the tickets [7].

Recent works support the notion that human decision-makers are subject to a vast range of

psychological effects that influence their answers and choices, contributing to a deviation from

what would be considered as “rationality” by decision-theoretic accounts based on e.g. utility

theory (see chapter 2, section 2.1.4 for a more in-depth discussion).

For instance, Nyhan and Reifler [162] showed that incentivizing American citizens partici-

pants to write about good life experiences that increased their self-esteem tended to increase the

likelihood of the participants revealing, when asked about, previously known economical facts

which contradict their prior political beliefs about the US economical agenda. The authors then

concluded that “(...) people may already know the correct answers but resist acknowledging them

due to their threatening nature under normal circumstances”.

In addition, Kremer et al. [139] conducted a series of payed experiments which assessed the

decisions taken by each of a total of 152 participants selected for managing a newsvendor supply

under uncertain demand. The participants were asked to take decisions so to maximize profit,

but were always offered the option of paying an additional fee to make the order decisions under

full knowledge about the demand. The results showed that the decision-makers over-payed for

eliminating the risks of the supply not matching the demand, what corroborated to the notion

that the participants had hidden contextual preferences that did not match any utility-based

risky choice model, such as risk-aversion or risk-neutrality. The authors concluded that their

results “(...) point to context-sensitive decision accounts such as the desire to minimize ex post

inventory errors” [139].

1.2.2 On Three Heuristic Meta-Preferences for Automating Sequen-
tial MCDM

In order to circumvent the necessity of eliciting preferences from psychologically and emotionally

impaired decision-makers, this thesis proposes three meta-preferences for automating sequential

MCDM processes, backed by the economics; the decision-theoretic; the neuroscience literature;

and derived from the author’s own intuition and subjective reflections. Those heuristic meta-

preferences are:

1. Preference for flexibility;

2. Preference for long-term predictability; and

3. Preference for trajectories of minimal historical errors.

This thesis thus engineers those three heuristics into an autonomous decision maker (or agent)

with continuous access to (a) a memory of multiple trade-off candidate choices; (b) complete

historical information about discrepancies w.r.t. expected and observed choice outcomes; and (c)

an internal predictive model. With those and other key components (see chapter 6), including a

flexible and anticipatory mathematical model of behavior (see chapter 5), we design Bayesian
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predictive methods and optimization algorithms enabling resolution of conflicts3, despite the

absence of any a priori preference specification by human supervisors, except for the a priori

choice of the value system, which comprises the specification of:

• Which set of decision criteria (or objective-functions) should be considered in the trade-off

analysis4 (e.g., the moments of multiple cost function distributions, see chapter 3);

• Meta-preferences automating the dynamic commitment to lower-level preferences over

temporal rewards (e.g., long-term predictability, see chapter 6);

• Meta-preferences automating the dynamic commitment to lower-level preferences over

error distributions (e.g., trajectories of minimal mean square historical prediction errors,

see chapter 6); and

• Meta-preferences automating the dynamic commitment to lower-level preferences over

choice menus (e.g. flexibility, see chapter 3 and chapter 5).

Our proposal of automating MCDM implies the design of flexible machine learning algo-

rithms and decision-making tools which are capable of operating under severe uncertainty,

despite erroneous modeling assumptions about the changing behavior of the problem being

solved. As a result, the flexible tools and methods proposed in this thesis are designed so

as to be capable of self-adapting to the problem characteristics and of acting despite lack of

complete information about future consequences of candidate actions. By doing so, we hope

to improve the learning experience resulting from their application to challenging sequential5

MCDM problems.

1.2.3 Research Applicability

Open-ended research on computational systems for automating decision-making has been rapidly

unfolding within many application areas of machine learning and operation research. Perhaps

the most popular examples are intelligent systems allowing for self-driving cars, e.g. [208], and

certain types of industrial robots, e.g. [207]. Other examples of automated decision-making

in practice include interactive recommendation and automated negotiation in distributed elec-

tronic commerce systems [144]; and the automatic revision of routes and schedules in vehicle

routing subject to dynamic requests [183].

One of the most essential technologies at the core of such endeavor – of computing, via algo-

rithms, new solutions emerging from mathematical formulas expressing what we have already

learned how to repeat – is that of optimization systems, whose goal is to search for the best

3By conflict resolution we mean the ability of autonomously deciding, i.e., deciding without a fixed and a
priori specification of preferences, which action to take among several options, each providing different trade-offs
between a given set of conflicting criteria.

4A natural suggestion for future works is to investigate the ability of evolving meaningful objective-functions
directly from data, perhaps using widespread surrogate models approaches such as Gaussian Processes that are
commonly applied for expensive objective-function evaluations, c.f. [167].

5In sequential (or multi-period) decision-making, a sequence of decisions must be generated, one for each
optimization environment (or decision period) over time.
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possible decisions for the problem at hand. Optimization systems are useful when the compu-

tational requirements for identifying the best decisions exceed the amount of available human

cognitive resources, as it is the case when the number of decision variables increases toward a

combinatorial explosion of the number of feasible solutions; or when the rate of decisions to be

taken over time is very large.

Such systems must cope with the fact that the decision outcomes are often not known in

advance. Predicting the outcomes of decisions in environments subject to statistical fluctuations

and time-varying conditions – foreseeing the reaction of customers, suppliers and competitors –

can provide important information for decision-making and can be therefore key to reduce the

mismatch between goals and reality.

Among the many industries relying on optimization for automating decision-making in a

daily basis so as to satisfy a large set of conflicting criteria are airline and cruise companies,

which must choose an optimal allocation for their fleet, crew, land personnel, and passengers in

order to satisfy the demand and minimize time delays and fuel consumption [11,95]; and product

portfolio managers, who must decide how to allocate their budget among many available product

development projects [146] and how to schedule the development steps such that the estimated

market success is maximal [220].

The list of applications is nearly endless, but the point is that the optimization criteria often

resolve into finding a trade-off between minimizing operational costs and maximizing customer

satisfaction, what calls for Multi-Objective Optimization (MOO) approaches. Presenting a finite

set of optimal trade-off decisions found by an MOO algorithm to a Decision Maker (DM) allows

for the design of Multiple Criteria Decision Making (MCDM) systems in which the DM must

account for multiple conflicting views for evaluating candidate solutions – such as profitability,

reliability, safety, responsiveness, etc.

In the MOO/MCDM approach, the DM does not interfere in the optimization process until

he/she is required to identify the decision that most complies with his/her preferences among

a set of trade-off decisions found by the MOO algorithm. The approach is therefore applicable

when either (a) very little is known about the problem; or (b) when the current and future pref-

erences of the DM over the optimization criteria are not known a priori. In this thesis, we pro-

pose advancing this approach towards an autonomous flexible and anticipatory MOO/MCDM

framework, so that the need for eliciting preferences from a human decision-maker who has little

subsides for assigning importances to conflicting criteria is alleviated.

1.2.4 Research Questions

The questions of when and how to automate a MCDM process have been nevertheless largely

ignored in the literature. Despite what can be speculated about the reasons for the lack of

research activity in this area, we argue that there is no fundamental bottleneck preventing such

case to be addressed. In fact, we make the points that:

1. The MCDM process should be automated when the actual DM preferences over the con-

flicting criteria are missing or cannot be determined when required; and

2. A reasonable way of coping with preferences indeterminacy in a sequential MCDM setting
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is to implement flexible provisional decisions that are expected to lead to improved sets

of trade-off solutions in future decision stages.

Remark: With the proposed online MCDM automation strategy, the DM preference specifica-

tion can be thus indefinitely postponed as he/she learns about choice consequences and refines

his/her own set of preferences, thus progressively assuming control of the decision process.

One key enabler of such strategy is therefore the search for flexible provisional choices that

are predicted to lead to high quality future admissible trade-off alternative sets. Before giving

a precise definition of what is meant by the “quality” of future trade-off sets, we present the

concept of flexible anticipatory engineering.

1.2.5 Approach: Engineering Flexible Anticipatory Systems

Anticipatory engineering [184] can be regarded as the strategy of designing solutions that enable

DMs to respond to future changes. When simulating plausible futures, a DM can look after

minimizing regret in the worst-case future scenario. In general, the worst-case scenario may

never be realized and, thus, an opportunity loss also takes place because the resources invested

in the solution could have been allocated to other purposes. Moreover, the strategy of preparing

for an specific scenario does not fully address the underlying uncertainty about the future,

especially when the DM does not know what are the trade-offs resulting from each possible

alternative with regard to multiple conflicting performance measures.

Indecision in choice under uncertainty may in fact result in precipitated actions, yielding

unforeseen consequences. However, when there is room for adapting the solutions in operation

according to upcoming data, implementing flexible provisional alternatives can be critical to

keeping future options open. Flexible decisions therefore not only mitigate the risks of early

commitments to uncertain alternatives, but also may increase adaptability to future changes.

In this thesis, the role of flexibility on mitigating preference indeterminacy in online MCDM

under uncertainty is thoroughly investigated.

On the Intuitive Role of Flexibility in Decision-Making Under Uncertainty

In effect, we argue that a more flexible anticipatory strategy could search for provisional solu-

tions, allowing for further adaptations by the time the uncertainty is reduced or revealed. In

fact, Hart [108] considered flexibility as “a law of response to uncertainty”. The basic reasoning

is that, if a decision maker cannot guess the future states of Nature which will influence the

success prospects of an action that must be taken immediately, flexibility becomes one of the

most important aspects of the decision process.

Put in a more simple way, in an uncertain and changing world, the concept of optimality

may be ill-defined (see e.g. section 3.2 in chapter 3). Hence, it might be futile to search for

an “optimal” solution. In the strict mathematical sense, an optimal decision is one which is

guaranteed to minimize a given cost function. For instance, the optimal decision within the

set {run away, stand still} when a tree is falling towards an autonomous agent is certainly

to run away, which minimizes the potential future hazards to his/her safety arising from the
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consequences of being hit. There is virtually no doubt regarding the payoffs associated with

each available decision in this case: extremely negative in the worst scenario when standing still

and almost always positive when running away – except on the scenarios in which the agent

would dramatically stumble while executing his/her escaping plan.

It is worth emphasizing that, while the precise damages that would result from being hit are

uncertain to the agent – e.g. he/she might be slightly hit in the shoulder and get only a minor

cut, or might be hit directly in the head and die instantly –, standing still certainly leads to a

worse off situation by all accounts, when compared to the safe scenario resulting from running

away. Therefore, there is virtually no doubt that running away is worth the effort. It is then

clear that for such kind of decisions under severe uncertainty – i.e., under a vast number of

scenarios which cannot be all precisely evaluated by an agent –, on-the-fly (online) approximate

reasoning is required. It turns out that this is one of the main research topics in this thesis.

Nevertheless, while it might be true that an agent does not always need to predict exactly

what will happen to act optimally in uncertain environments, sometimes there are no such

guarantees. Consider a second scenario in which an agent is lost in the wild and runs into a

huge bear that stares right at him/her, and consider the same set of options: {run away, stand

still}. The question is whether it is still clear what the “optimal” decision is among those two,

in terms of minimizing the potential hazards of having the bear attacking the agent. The answer

is no in this case. That is because bears can feel threatened by abrupt moves and turn into

an attacking mode. Besides, one never knows precisely what are the real odds of a previously

unseen bear doing so, or even what are the odds of escaping given that the agent decided to

flee.

Hence, while it might be scaring to stand still in front of a wild bear, and while the agent

cannot predict whether it will attack, standing still can be seen as the most flexible decision

among those two. The reason is standing still allows the agent to reassess the hazards as the

bear comes closer, keeping the agent’s future set of options open by postponing the use of the

most risky option until when absolutely necessary. That is to say, by standing still, the agent

will always have the option of running at a future moment when the hostile intentions of the

bear becomes completely clear. With proper planning and enough luck, the agent can escape.

While the agent could have run earlier and improved his/her chances of escaping, the problem

with the strategy of running right away is that it is more probable that the bear will simply

leave while standing still than it is when trying to escape. So, the payoff of running away is

perceived to be more worthy than to stand still only later in the decision-making process, in

the rare case of the bear attacking an inoffensive standing human. Of course, after running

and turning the bear into attacking mode, suddenly stopping is not a viable option anymore,

unless the agent wants to be seriously hurt. Clearly, running right away reduces the agent future

freedom of choice, while leaving him/her more exposed to the risks of being attacked.

When Increasing Flexibility Might be Worthy

What then distinguishes the first scenario (the falling tree) from the second (the staring bear)

so that in the first one an agent can rapidly identify the best action and instantly react to the

environment, whereas in the second he/she might prefer to postpone the decision of running in
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favor of keeping his/her future set of options open?

We argue in this thesis that two answers for the aforementioned question are (1) the quality of

the available predictive knowledge; and (2) the interaction between actions and the environment.

It turns out that, for the falling tree problem, humans have evolved and learned the dynamical

model which corresponds to the observed effect of gravity, allowing us to predict that no external

force will likely deviate a falling tree from its inevitable trajectory of hitting the ground.

On the other hand, the dynamical model for accurately predicting what an animal as complex

as a mother bear protecting her cubs might do in response to the threatening proximity of a

human and the optimal plan of action are unfortunately much more complex to be learned and

to be properly executed, respectively. In chapter 7, section 7.3.7, we investigate how using the

wrong prediction models impacts the strategy of taking flexible decisions on future diversity of

choice, while also accounting for the interaction between past actions and current actions.

Evidence Favoring Flexibility and Diversity Maximization

Axiomatic accounts of preference for flexibility [136,140] assume that DMs always enjoy enlarg-

ing their set of options. A related account of freedom of choice [169] regards essential options

as those whose exclusion “would reduce an agent’s freedom”. Essential sets were interpreted

as those containing the best options “once future preferences are well determined” [8], whereas

flexibility in a two-period setting was defined as “the size of the remaining second-period action

set” [149].

The concept of keeping track of the future consequences of action on multiple conflicting

criteria has also been interpreted in terms of freedom of choice in Skulimowski [193], although in

a non-axiomatic account. It has been defined as “(...) the ability to choose an optimal solution

from a given set of admissible alternatives with respect to a set of [future] selected optimality

criteria that are specified explicitly” [193].

Although flexibility (defined as the cardinality of future admissible option sets) was deemed

as useless in deterministic environments or when no future information can be gained over time,

Benjaafar et al. [25] developed formal relationships between flexibility, value, information, and

risk, and presented theorems asserting that increasing flexibility does not conflict with value

maximization and risk minimization. The work of Benjaafar et al. [25] thus indicates that

maximizing flexibility may be a rare win-win situation in decision-making under uncertainty.

Kumar [142] generalized flexibility as “diversity of choice” and quantified it using entropic

measures, where a set of µ options Aµ would convey more freedom than Bµ if the likelihoods of

any a ∈ Aµ being chosen are closer to 1
µ

than those of b ∈ Bµ.

Another striking evidence that diversity maximization can lead to robust search methods is

given in Lehman and Stanley [145] in the paper entitled “Evolvability Is Inevitable: Increas-

ing Evolvability without the Pressure to Adapt”. The authors showed experimentally that by

following a heuristic to maximize the diversity of candidate solutions in several simulated opti-

mization problems, an observed increase in complexity of the candidate solutions – interpreted

as “evolvability” by the authors – was observed, even without specifying any objective-functions

to be explicitly optimized.

Finally, as this thesis was being wrapped up, the contemporary breakthrough work of
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Wissner-Gross and Freer [221] experimentally showed how intelligent and even cooperative be-

havior can emerge in dynamical systems evolving to maximize the causal entropic diversity of

future possible system macrostates. The causal entropic principle [221] thus states that intelli-

gence not only emerges but is actually defined by the strategy of taking the actions predicted

to maximize the conditional entropy of the distribution of future states of the world at which a

decision maker can be. Thus, by maximizing the number of future achievable macrostates, an

intelligent agent would enjoy more future freedom of choice, in a hedge against failure.

The intuitive yet remarkable connection between the proposed strategy of anticipating flex-

ible decisions by maximizing the conditional future Hypervolume indicator in MCDM (see sec-

tion 1.4) [10] and that of improving future freedom of choice as in Wissner-Gross and Freer [221]

can be therefore regarded as one of the main contributions of this thesis.

In fact, we argue that taking actions predicted to yield maximal hypervolume future sets of

trade-off options yields an even stronger notion of future freedom of choice in MCDM systems.

That is because two future sets conveying the same entropy value, i.e., the same “diversity

of choice” in Kumar’s [142] account, can be distinguished by either comparing their proxim-

ity and/or coverage to/of the optimal trade-off surface (see chapter 3, section 3.1.1, for a

more technical discussion). Therefore, our intuitive claim is that the conditional hypervolume

maximization leads to an even stronger notion of future freedom of essential trade-off choices.

1.3 Motivating Scenario: Preference Indeterminacy

In a posteriori MCDM, a set of trade-off alternatives is usually searched for by a MOO algorithm.

The DM does not interfere until he/she is asked to identify the most suitable alternative.

Evolutionary MOO [66] (EMOO) may aid MCDM when preferences are undefined, by using

the Pareto Dominance (PD, see [229]) for ranking alternatives and approximating the Pareto

Frontier (PF) with a set of mutually Pareto-incomparable alternatives that can be presented to

the DM. In the decision-making step, the classical approach is to aggregate the decision criteria

into a utility function [40]. Preference elicitation is nevertheless prone to severe misspecification.

For instance, the DM may not be able to rank every pair of alternatives [21], or the resulting

rankings can prevent preferences to be represented with utility functions [216]. Still, the premise

in MCDM is that the criteria importances can always be elicited after the DM examines a

set of alternatives. This is however unrealistic when it is unclear how the trade-offs between

the decision criteria change over time and when choice consequences are subject to stochastic

uncertainty.

Therefore, when preferences cannot be reliably specified due to non-stationarity and noise,

we propose modeling a DM whose goal becomes achieving future improved flexible and pre-

dictable sets of alternatives to choose from in later stages. In the following, we discuss mo-

tivating hypothetical scenarios. The bottom line is that automating MCDM systems makes

sense when the DM is unable to determine the relevance of each criterion to his/her decision, in

which case the use of simulation and anticipation can provide such systems with the required

flexibility to operate autonomously. It is worth noting that this motivation is provided for di-

dactic purposes. The goal is to aid the reader to better comprehend the research reported in
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the remaining chapters.

1.3.1 Handling Preferences Indeterminacy: Indifference vs. Flexi-
bility

One of the most common pitfalls in sequential decision-making, however, is the temptation to

compromise at early stages for immediate rewards: not only such rewards may have a multi-

faceted nature, but they can also be embedded into a cloud of uncertainties, making it nearly

impossible to determine which decisions will succeed in satisfying longer-term goals. What is

worse, such goals are often subject to changes over time and may very well become undefined

e.g. during periods of organizational restructuring.

This issue may arise for example when a decision for cutting operational expenses under-

mines the quality of service to a much greater degree than what might have been expected.

This happens because the interplay between those two decision criteria is often subject to un-

certainties. For instance, suppose a decision is made to reduce a supplier vehicle fleet and sales

personnel in response to a steady reduction in the demand observed over the past few years.

Contrary to the expectations, the demand might instead abruptly grow due to an unantici-

pated competitor bankruptcy event. As a result, it might then become impossible to satisfy

all customers requests, what may cause the loss of many selling opportunities. This kind of

disruptive scenario may be difficult to predict under imperfect information and, thus, the DM

should safeguard the system against uninformed decisions, by carefully anticipating their out-

comes according to an extensive set of plausible future scenarios, which is usually carried out

by stochastic simulation.

It turns out that cost and quality are always conflicting goals in any system of interest.

However, assigning precise importances to each criterion may be too complex to be determined

beforehand (i.e., before an optimal decision could be pursued), often because the DM might

yet not know in advance how customers will respond to e.g. the delivered quality or to the

implemented pricing strategy, especially in the context of an unexplored market niche. Hence,

having the ability to learn from experience may allow for correcting prediction models. Such

corrections may in turn allow for improved simulations of the future consequences of diverse set

of trade-off decisions, which can greatly aid the decision-making process.

Example: Flexible Anticipatory Career Choices

In order to get a better picture of how the assessment of alternative trade-off solutions could

make the decision process more flexible, consider a DM who is hesitant between an engineering or

a business career. The source of indecision may lie in the DM inability to assign importances to

conflicting criteria such as average wage, spare time with family, and prospects of promotions.

This is a byproduct of indeterminacy, which should be differentiated from indifference: the

former implies that the DM does not have enough information to fully adhere to a goal in the

present, whereas the latter simply means that, regardless of how much knowledge about the

problem is available, two or more decision paths may end up being equally satisfying.

Shortage of future options may incur from biased decisions taken under little information.
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When taking actions under undetermined (or partially determined) preferences, thus, care

should be taken to not compromise by acting with indifference (e.g., randomly choosing an

optimal trade-off decision), when such indeterminacy will be resolved as all relevant informa-

tion is revealed over time. This may happen when an early decision favors more one goal over

another, making it difficult to backtrack from certain choices. Therefore, instead of committing

too early by enrolling in an engineering or in a business major, a DM following our methodology

may anticipate that enrolling in e.g. an operations research major might optimally preserve the

future options of pursuing either career after graduating, when he/she will be more experienced

and in a better position to make a fully informed choice between those two career paths.

We thus make the case for an automated flexible MCDM strategy that can postpone pref-

erence specification under uncertainty, while allowing for a more diverse range of options in

future decision stages, when the DM may have access to all relevant required knowledge to fully

specify his/her preferences. The decision taken is then said to be flexible because it unleashes

a larger set of future preferences; otherwise, if the DM compromises earlier for one path and

later gravitates towards other, the cost to adapt can be too high.

1.3.2 Handling Uncertainty via Anticipation of Flexible Choices

Handling dynamic and stochastic MOO problems is challenging [102] because, while efficient

alternatives can be identified in retrospect, their performance for upcoming data is unknown. To

the best of our knowledge, despite existing EMOO approaches that can either cope with noisy

(e.g. [121, 205]) or dynamic conditions (e.g. [135, 226]), research on designing MOO systems

capable of simultaneously handling stochastic uncertainty and temporal changes is virtually

nonexistent. As a consequence, there are no EMOO algorithms for simultaneously coping with

noisy and time-varying objective functions. In a recent 2013 survey article on the modeling

aspects of MOO problems subject to stochastic uncertainty in the objective functions, the so

called Stochastic MOO Problems (SMOOPs), Gutjahr and Pichler [102] concluded that:

(...) the field of multistage SMOO (...) is still widely unexplored, even on the

modeling level. A considerable amount of conceptual work, as well as the development

of efficient solution algorithms and their test on applied problems, will still be needed

to cope successfully with multistage SMOOPs.

It is therefore evident that, despite its potential expressiveness for modeling complex, real-world

problems, research on sequential SMOO has been scarce6. One interesting research challenge

arising from SMOOPs – one that is set to be addressed in this thesis – is that it appears to be

no silver bullet for integrating the ‘what might be’ part into a problem solver, i.e., there is no

simple answer to how the perceived future uncertainty pertaining a decision should alter the

evaluation of its worthiness. Therefore, in order to reduce this gap in the literature, we pose

the following specific research goal:

6In fact, current research on complex dynamical systems modeling has been mostly credited for best handling
such real-world problems. See chapter 2, section 2.3.1 for a more detailed discussion.
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Research goal: To deliver mathematical and algorithmic frameworks of flexi-

ble online anticipatory learning methods for automatically handling uncertainty in

sequential SMOO.

The term anticipatory learning accounts for methods that can handle uncertainty based on

predictive knowledge. By making best use of prediction, the hopes are to augment problem

solving tools with enough flexibility to effectively cope with multiple conflicting, time-varying,

and stochastic optimization criteria, so that adaptable sequences of trade-off decisions can be

anticipated over time.

Such online anticipatory learning rules are thus intended to incorporate available predictive

knowledge (e.g. in the form of predictive distributions) into the optimization tools so they

can adapt to expectations regarding the future outcomes of candidate decisions available in the

present, mediated by the uncertainty conveyed in the predictive model.

1.4 Research Vision: How It All Comes Together

The vision conveyed in this thesis regarding the research and development of automated decision-

making systems relies on the rendering of optimization tools augmented with the following

non-exhaustive list of capabilities:

• Conflict and preference indeterminacy resolution;

• Uncertainty/risk awareness;

• Adaptation to change;

• Anticipatory learning; among others.

All those skills are thought to compose the building blocks for rational decision-making and

are often object of philosophical debate as well as of intensive research in psychology, biology,

and neuroscience; they also constitute the central topics of inquiry in the doctorate research

reported hereafter.

We thus propose the so called Anticipatory Stochastic Multi-Objective Optimization (AS-

MOO) model [14] that can, in principle, be used to represent sequential SMOOPs with undefined

preferences. When solving an AS-MOO problem, we are interested in obtaining a sequence of

flexible trade-off decisions that are not inferior to any other decision and, at the same time,

preserve the DM preferences indeterminacy over time regarding the stated optimization criteria.

In order to improve the diversity of future set of options, we propose maximizing set-based quality

indicators (see [227]) over time, among which we argue that the Hypervolume (Hypv, S) [10]

is consistent with our notion of flexibility (see chapter 3).

The property of foremost interest to this thesis is that the maximization of the S-Metric

measured over N mutually non-dominated solutions is guaranteed to yield a subset of N solu-

tions in the optimal trade-off surface known as the Pareto Frontier (PF, see chapter 3) [10].

It is this guarantee that allows us to express the AS-MOO model as a recursive equation in

which the optimal trade-off solutions at any decision period depend on the optimal solutions at
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later stages. Moreover, the resulting set of trade-off solutions is expected to provide good near-

optimal approximation of the PF [41]. When solving real-world AS-MOO problems, however,

high levels of uncertainty about the future decision stages can undermine the search for exact

solutions.

It is arguable in statistical decision theory and, particularly, in Bayesian inference [172], that

the quantified uncertainty can be used for updating predictions and other estimates based on

accumulated historical evidence. The proposed AS-MOO models are therefore approximately

solved by a hypervolume maximizer, the Anticipatory S-Metric Selection Evolutionary Multi-

Objective Algorithm (ASMS-EMOA) [14].

We thus propose principled ways of augmenting the anticipatory capabilities of multi-

objective solvers (metaheuristics) with Bayesian models to aid sequential MCDM in uncer-

tain environments. The ASMS-EMOA proposal makes use of the Kalman Filter (KF) esti-

mation [100] (see chapter 2, section 2.3.4) and of Online Anticipatory Learning (OAL, see

chapter 6), for updating the performance vector (section 6.1) and the decision vector (section

6.2) of each candidate solution.

Each trade-off solution is ranked according to its expected anticipatory S-Metric contribu-

tion, E [∆S ] (see chapter 6). The pairwise covariance terms appearing in the computation of

E [∆S ] (see chapter 6, Theorem 6.3.1) merge trade-off information between multiple neighbor-

ing anticipatory distributions in the objective space, thus allowing for the mutual interference

and exchange of trade-off information between parallel neighboring anticipatory paths.

Nevertheless, the AS-MOO model can hardly be exactly solved because, first and foremost,

the underlying probability distributions are unknown and must be estimated from the available

data, what requires the specification of models (such as the Gaussian assumption made in the

KF estimation) that, while contributing to make the problem tractable, are often subject to in-

formation loss and inaccuracies7. Another reason for approximately solving the AS-MOO model

is due to the fact that it is expressed as a recursive equation whose exact solution would require

an exponential number of re-optimizations. That is why we argue that efficient approximated

AS-MOO solution methods are the most suited for real-world practical applications, what ended

up being the focus of this thesis.

1.4.1 On Anticipatory Multiple Criteria Decision-Making

The layer diagram shown in Fig. 1.1 provides a broader view of the proposed anticipatory MCDM

architecture. The three heuristic meta-preferences described in section 1.2.2 are modeled by the

proposed online anticipatory learning method. Uncertainty in the specification of the DM lower-

level preferences for ranking and assigning importances to the underlying objective-functions

prompts the definition of intermediate-level meta-preferences, such as preference for flexibility

and preference for long-term predictability. By its turn, the uncertainty regarding those meta-

preferences are set to be coordinated by higher-level hyper-preferences heuristics, such as Online

Anticipatory Learning (OAL), which actuates directly over the uncertainty estimated from

anticipatory Pareto order information among candidate trade-off decisions (see chapter 6).

7See chapter 2, section 2.1.3 for a more in-depth discussion.
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Figure 1.1: Diagram with the layered architecture proposed in this thesis.

In this architecture, the uncertainty of lower preference layers is propagated and handled by

subsequent higher-level layers.

The closest related MCDM theoretical model that we found in the literature was that of

Skulimowski [192], whose goal was:

“To use anticipated future consequences of a decision as a source of additional pref-

erence information in multivariate decision problems.”

That framework has been further developed and culminated in the recently proposal of the

so-called “anticipatory networks” [194], in which “(...) non-cooperative future decision makers

influence the same decision unit”.

It should be noted that our anticipatory proposals for automating sequential MCDM pro-

cesses were developed without any influence of those past works and that we only became aware

of their existence when the thesis was being wrapped up. Besides, although those early models

have identified the key role of prediction of future consequences of actions in MCDM processes,

they were not necessarily intended to automate the MCDM process.

Nevertheless, we acknowledge that Skulimowski [192] provided impressively vanguard and

advanced models for anticipatory MCDM at the early 1980’s, when the computational and

engineering resources to design and experiment with algorithmic solutions were unfortunately

most likely prohibitive at the time.

Therefore, we believe that the flexible anticipatory MCDM models as well as the algorithmic

and computational contributions provided in this thesis also represent a first step on making

Skulimowski’s [192–194] theoretical contributions implementable.
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1.4.2 Research Roadmap and Main Contributions

The thesis main contributions are thus as follows (see Fig. 1.2):

Contribution 1 An open-ended research problem: how can a DM behave over time when

preferences cannot be reliably elicited?

Contribution 2 An answer to that question motivated in decision theory: the DM may exhibit

preference (a) for flexibility; (b) for long-term predictability; and (c) for decisions whose

estimated outcomes possess minimal historical error (see chapter 6);

Contribution 3 An online decision-making model: select a (flexible) Pareto-efficient alterna-

tive predicted to maximize future Hypervolume;

Contribution 4 A flexible anticipatory MCDM methodology: solve an online sequence of

Anticipatory Stochastic MOO (AS-MOO) problems over time;

• An Anticipatory S-Metric Selection EMOO algorithm (ASMS-EMOA) for solving

AS-MOO problems;

• Online Anticipatory Learning rules incorporating Bayesian tracking into ASMS-

EMOA for self-adjusting time preferences based on the estimated future uncertainty

and on historical prediction errors; and

Contribution 5 An experimental validation of the proposed online anticipatory MCDM method-

ology in financial portfolio selection.

1.4.3 Potential Real-World Applications

There are several real-world applications that can benefit from AS-MOO, including:

• Air traffic tactical planning – to obtain a set of non-inferior daily flight plans minimizing

the probability of congestion within flight sectors while minimizing the total expected

delay to takeoff [51];

• Vendor-managed inventory replenishment – to obtain a set of non-inferior daily replen-

ishment and vehicle routing plans minimizing transportation and inventory costs while

minimizing the probability of product shortage [132];

• Portfolio selection – to obtain a set of non-inferior daily wealth allocations maximizing

the expected return over investment while minimizing the expected risk [2]; etc.

All those problems rely on stochastic simulation, in which scenarios are sampled from a

model describing uncertain quantities such as time to arrival, demand, and return. Besides,

while one can search in retrospect for decisions that would be optimal for historical, observed

data, there are no guarantees that such decisions will remain optimal when adopted in future

environments. Hence, the role of anticipation is crucial for those problems, especially when
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Figure 1.2: Research roadmap showing the goal and contributions of the thesis.

there are temporal dependencies (time-linkage) between the decisions taken and the upcoming

future optimization environments.

It is natural to assess our methodology and algorithmic contributions in portfolio selection

because, besides its real-world interest, financial markets invite the handling of strong sources of

uncertainty. Active asset allocation implies that the implemented portfolio should be monitored

and rebalanced to reflect market changes. Markowitz’s modern portfolio theory [151] provides

only a backward-looking (myopic) strategy, in the sense that the analysis suggests outdated

portfolios upon market changes. The tracking of changing portfolios has been recently described

as a promising future research avenue in Kolm et al. [134], who suggested that all “trade-offs

between risk-adjusted returns and trading costs” should be considered. As put by the 2003

economic Nobel laureate, Robert Engle, “(...) the risk of a portfolio depends not on what the

correlations were in the past, but on what they will be in the future” [80] and, thus, “(...) we

must ‘anticipate correlations’ if we want to have optimal risk management, portfolio selection,

and hedging” [80].

Our experiments are thus designed to determine the degree to which anticipating predicted

flexible trade-off alternatives in ASMS-EMOA can improve the quality of the obtained sets of

candidate non-inferior decisions in out-of-sample environments, as measured by the Hypervol-

ume indicator. We investigate the performance of ASMS-EMOA and of its myopic counterpart

(SMS-EMOA [32]) on artificial scenarios of portfolio selection, for which we have designed a

dynamic instance generator, controlling for periodicity and for severity of disruptive change,

representing different regime switching scenarios, that, in financial markets, may result from

periods of crisis or abrupt changes in governmental policies. In addition, we present results for
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real-world data from three stock indexes: London’s FTSE-100, Dow Jones Index, and Hong

Kong’s HSI.

1.4.4 Applications for Optimization within Simplex Spaces

In this thesis, it is assumed that the feasible search space is defined over the (d − 1)-simplex

Sd−1 ⊂ Rd, where d is the number of decision variables to be optimized (see chapter 2,

section 2.3.5, Eq. (2.34)). We have thus designed specific anticipatory methods for handling this

setting, motivated by our choice of assessing the proposed anticipatory methods in the portfolio

optimization domain (see [14, 15] and chapter 7), although optimizing over the simplex has

many other practical applications in machine learning, bioinformatics, social network analysis,

and computational chemistry.

For instance, Motzkin and Straus [157] highlighted the remarkable connection between the

problem of maximizing the Lagrangian of a graph G over the simplex and the clique number

of G. It turns out the the maximum clique problem in graphs is of interest to many real-world

problems. Tang et al. [203] and Bulò and Pelillo [176] generalized the Motzkin-Straus theorem

for hypergraphs, and the latter proved that the problem of hypergraph clustering – defined as

“(...) the process of extracting maximally coherent groups from a set of objects using high-order

(rather than pairwise) similarities” [176] – can be posed as one of finding the equilibria of a

cooperative game expressed as an optimization of a polynomial function over the simplex.

Other applications that can benefit from finding maximal cliques by maximizing the La-

grangian in hypergraphs include the computational analysis of high-throughput gene expression

and transcriptomic data [77], and the prediction of biologically active compounds for drug

discovery and chemical genomics [49].

Bunea et al. [43] have studied the problem of the optimal (minimal loss) convex aggregation

of (Gaussian) statistical models for regression, in which the aggregation function Q is expressed

in terms of the mapping Q : X × Sd−1 7→ R, where X is the sample space of the individual

statistical models. Because the true probability distributions governing the data are unknown,

they modeled the problem as a stochastic optimization program.

Mørup [156] has provided an exact, continuous optimization relaxation in the simplex for

handling the combinatorial explosion of hard assignments in clustering problems, in which the

vertices of the simplex are shown to lead to stable hard assignment solutions. Examples of a

simplex-based clustering algorithm are provided for community detection in complex networks.

Finally, Kotropoulos and Moschou [138] addressed the problem of reducing the number of

classes in speech classification by applying clustering techniques over simplex subspaces, for

which feature vectors describing probability assignments from samples to classes are available.

The application considered the probabilistic re-assignment of neutral speech features into more

informative classes describing emotional states.

Before addressing the technical aspects of how anticipation is implemented in our models

and problem-solving tools to handle uncertainty, we pave the way for a better understanding of

the science of anticipation, from its biological basis to how it has been studied theoretically. In

fact, this concept has influenced the scientific thought in many different areas, but has yet to

be elevated to a discipline on its own.
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1.5 Biological Basis of Anticipatory Systems

One of the first serious accounts for the emergence of anticipation in biological systems is due

to Rosen [174], who defined an anticipatory system as:

“(...) a system containing a predictive model of itself and/or of its environment

that allows it to change state at an instant in accord with the model’s predictions

pertaining to a later instant.”

At this point, it is worth making a distinction between prediction and anticipation. The

former is merely a representation of a future event or outcome, whereas the latter is a future-

oriented decision, based on prediction. Butz et al. [47] described anticipation as:

(...) a process or behavior that does not only depends on past and present but

also on predictions, expectations, or beliefs about the future.

Among the many examples of biological anticipation found in Rosen [174], we highlight the

case of negatively phototropic organisms, i.e., organisms that are attracted to darkness. Rosen

argues that while darkness in itself is physiologically neutral, it is correlated with non-neutral

environmental features such as the absence of sighted predators. Effectively, such organisms

would act in accordance with a built-in model that has somehow learned the correlation between

moving towards darkness and higher chances of survival [174]. In this thesis, we argue for this

particular viewpoint of anticipation as being triggered by learned correlations.

1.5.1 Signaling Theory

Meaningful correlations triggering anticipatory actions permeate the field of signaling theory.

For instance, Thomas and Stoddart [206] made the case that some tree species react to the

shortening of daylight in autumn by changing color and shedding their leafs in anticipation to

the high physiological costs of maintaining them during winter, what otherwise could supersede

the benefits from photosynthesis. Hamilton [105] suggested that “autumn coloration serves as

an honest signal of defensive commitment against autumn colonizing insect pests”.

Signaling theory plays an important role for explaining the co-evolutionary dynamics be-

tween different species. Signals would evolve to influence the behavior of the receiver to benefit

the signaler. While those signals can be honest or dishonest8, they may in effect anticipate

a counteraction to mitigate or nullify the potential future actions of the receiver as predicted

by the signaler. Models of mate selection are heavily influenced by this theory. For exam-

ple, experiments with the mating dynamics of the jumping spider Phidippus clarus species in

Sivalinghem et al. [191] showed that signaling rates “significantly predicted mating success in

all copulations”. Males of other species such as Habronattus dossenus that made strong use of

courtship signals were also found to suffer lower pre-mating cannibalism rates.

In an application of signaling theory to explain the dynamics of the job-market, Spence [197]

defined hiring as an “investment under uncertainty” in which applicants signal their skills to

8The adaptive dynamics of the proportions of individuals within species relying on honest and dishonest
strategies are commonly predicted by evolutionary invasion analyzes.
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the employer by showcasing their credentials. The informational value of such signals to the

contractor emerges when he/she analyzes the benefits of hiring the applicants for which they

predict positive correlation between the credentials shown and superior work performance.

1.5.2 Hormonal Regulation and Sensorimotor Control

In vertebrate species, anticipatory hormonal regulations can be triggered by the autonomic

nervous system in response to stressful stimuli followed by the perception of endangerment.

For instance, subconscious processes triggered by acute stress may release hormones such as

epinephrine (adrenaline) into the bloodstream causing a diverse range of physiological responses

in different organs, including increased heart and respiratory rates, increased blood vessels

diameter, and muscle contraction.

Because such anticipatory responses prepare the body to respond to a potential future

(harmful) event, not only they are thought to be crucial to triggering fight-or-flight-or-freeze [48]

behavior, but also they play an essential role in sensorimotor control. For instance, muscle

contractions can compensate eventual disturbances in the body’s balance, in anticipation of

the potential harms of falling to the ground. Several experiments regarding the motor system

dynamics have supported the existence of an internal model accountable for estimating the

relative location of body members, what is essential when sensorial feedback is not available, as

it is the case e.g. when walking in a dark room [222].

1.5.3 Anticipation as a Built in Feature of the Brain

It seems to us that the concept of a self-referential conscious brain fits nicely into Rosen’s

definition of anticipatory systems. For instance, the acclaimed evolutionary biologist Richard

Dawkins presented an interesting explanatory narrative of how the capacity of simulating the

future may have evolved to enable animals to benefit from vicarious experience9 [64]:

“Natural selection built in the capacity to simulate the world as it is because this

was necessary in order to perceive the world. You cannot see that two-dimensional

patterns of lines on two retinas amount to a single solid cube unless you simulate,

in your brain, a model of the cube. Having built in the capacity to simulate mod-

els of things as they are, natural selection found that it was but a short step to

simulate things as they are not quite yet-to simulate the future. This turned out

to have valuable consequences, for it enabled animals to benefit from ’experience’,

not trial-and-error experience in their own past (...), but vicarious experience in the

safe interior of the skull. And once natural selection had built brains capable of

simulating slight departures from reality into the imagined future, a further capacity

automatically flowered. Now it was but another short step to the wilder reaches of

imagination revealed in dreams and in art, an escape from mundane reality that has

no obvious limits.”

9We understand “vicarious experiences” as those gained after generating and processing the feelings arising
from the imagined (or perceived) consequences of potential actions upon oneself (or someone else’s self).
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One of the most prominent evidences that (primates) brains indeed encode mechanisms sup-

porting simulation and vicarious experiences was the discovery of the so-called mirror neurons

in the premotor cortex [171]. They are regarded as a distinctive class of neurons because they

exhibit activity both when a motor task is executed and when the subject has access to a visual

feedback of another subject performing the same motor task.

Barbey et al. [20] suggested that counter-factual thinking about the past (e.g. “Had I studied

harder, I would have passed the exam.”) for improving future performance or simulating future

behavior (e.g. “What would I do if X happens in the future?”) depend on structures in the

prefrontal cortex. From functional magnetic resonance imaging (fMRI) experimental analyzes,

Van Hoeck et al. [212] concluded that counter-factual and standard episodic thinking “(...)

share a common brain network, involving a core memory network (hippocampal area, temporal

lobes, midline, and lateral parietal lobes) and prefrontal areas that might be related to mentalizing

(medial prefrontal cortex) and performance monitoring (right prefrontal cortex)”.

1.5.4 Game Theoretic Analyzes of Anticipation

It turns out that anticipation accordingly to feelings and expectations about the future can lead

to a form of personal equilibria in a game theoretic framework. Kószegi [137] conceived a model

of sequential decision-making wherein the utility function of a DM is elicited not only by physical

outcomes but also from their own expectations over future outcomes. He then argued that those

two payoff components – future expectations and present actions – can interact and jointly lead

to personal equilibrium, subject to the requirement that the current action conditioned on past

expectations must attain a certain degree of consistency.

Kószegi’s [137] model thus predicts equilibrium points resulting from the positive feedback

between expectations and behavior, what resembles Merton’s notion of self-fulfilling prophe-

cies [154]. This viewpoint may explain to a certain extent human behavior and emotions

arising from the degree to which the DM is consistent over time. For instance, the willingness

of a pessimistic DM to keep doing a riskless, low rewarding action can be higher if he/she had

been wrongly believing that all other available options would also yield low rewards. Because of

this prior belief, he/she may also not be willing to assume the cost of acquiring more informa-

tion about alternative options – whose rewards could actually have been greatly improved since

when the DM formulated his/her beliefs. Hence, because of the time consistency constraint,

such DM will end up materializing his/her own prior expectations of acquiring low rewards.

1.6 Meaning and Purpose of Anticipation in the Thesis

Much has been said throughout this chapter about the role of anticipation in explaining natural

phenomena or biological/sociological behavior, as well as in engineering flexible and robust

systems. Nonetheless, the meaning of “anticipation” used in this thesis is still non-orthodox with

regard to its general understanding. That is because we are following the broad notion conveyed

in Rosen’s definition [174] that any decision or action mediated by prediction is anticipation.

The daily common sense understanding, on the other hand, is more restrictive and almost

always only refers to decisions or actions that are brought forward ahead of time (in advance),
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i.e., actions or decisions that are taken at an earlier time than they normally would without

further consideration.

Rosen [174] made no such distinction about the timing of specific decisions when defining

anticipation, nor do we do that in this thesis. It follows from this broader perspective that

specific decisions or actions that are postponed (i.e., that are set to be taken at a later time than

they normally would without further consideration) are also anticipations, since such postpone-

ments are justified by predictive knowledge. It turns out that the sequence of decisions/actions

taken mediated by prediction will look much different from other sequences produced under

different assumptions and expectations about the future (see section 3.3.1 of chapter 3).

The purpose of anticipation in this thesis should also be elucidated and distinguished from

the common sense. We claim that there are at least three reasons that makes anticipation in

decision-making absolutely necessary:

1. Value maximization – anticipation as a means of capitalizing on and taking advantage of

foreseen opportunities. Consider for instance the negotiation of a contract renewal. The

DM can either decide to approach the other party ahead of time (e.g. several months or

years before the contract expiration date) or even at a later time (i.e., after the contract

expiration) because he/she foresees a favorable environment to bargain better conditions;

2. Risk mitigation – anticipation as a means of avoiding unnecessary risks and mitigating

inevitable ones. The DM can decide to take immediate action to completely eliminate or

reduce the likelihood and impact of a foreseen undesired outcome, including investing time

and effort on building contingency plans so he/she is prepared to mitigate the outcome

shall it occur. Sometimes, however, the DM can realize that the undesirable outcome

is acceptable to make no changes to his/her plan or strategy and just hope that it does

not materialize. Consider for instance the payment of e.g. municipal taxes. The DM

may decide to pay his/her taxes in advance because he/she foresees to take advantage of

promotional discounts and also to avoid the risk of being penalized with the high interests

rates and fees for forgetting to do so within the imposed deadline;

3. Uncertainty handling – anticipation as a means of handling the uncertainty arising from

lack of information (indeterminacy). The DM can postpone a decision because he/she

foresees to be in a better position to take an informed decision after investing in (often

costly) information acquisition, therefore reducing his/her uncertainty and the possibility

of taking unnecessary risks and/or underperforming decisions. Such DM thus may search

for robust intermediate actions that can account for the current uncertainty levels without

compromising into the unknown. This is the scenario in which anticipation will be essential

in this thesis for sequential MCDM under uncertainty.

Another concept that should be highlighted in our understanding of anticipatory systems is

the presence of internal models. This is an important aspect to autonomous behavior because

it is what allows such systems to construct their own beliefs about the environment and about

the consequences of their actions. Such models thus enable the system to process their own

uncertainty and to modify their own behavior accordingly. For instance, we argue that the
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capability of relying on internal models to predict and to estimate the underlying uncertainty

about the dynamics of the optimal trade-off solutions in the search space and their corresponding

evaluations in the objective space is what distinguishes our proposed anticipatory problem-

solving tools from existing optimization tools passively relying on external prediction models

(e.g. [89]).

It should be made clear that we are not suggesting to know how anticipatory systems should

be engineered. Actually, we do not even know whether the anticipatory systems perspective

possess what it takes to completely explain and handle complex dynamic systems. We ad-

mit, though, that this particular understanding of anticipation and of anticipatory systems has

strongly influenced our models and problem solving tools for sequential MCDM under uncer-

tainty and, thus, anticipation plays a very definite role in our proposals presented in section 5.2.

1.7 Thesis Organization

The remaining contents of the thesis are organized as follow:

Chapter 2 An overall introduction to sources of uncertainty in decision-making, as well as

of models for representing it, is presented, including Shannon’s entropy, which is one

of the main concepts permeating the algorithmic contributions of chapter 6. Besides,

the Bayesian tracking methods utilized in this thesis for estimating and predicting time-

varying distributions in both the objective and the search space are discussed. Those

tools are the Kalman Filter and a recursive maximum a posteriori for tracking Dirichlet

distributions in simplex spaces.

Chapter 3 The technical background for MOO and sequential MCDM is presented, including

the Hypervolume indicator and its not surprising – yet incomprehensibly neglected –

axiomatic relation with the concepts of preference for flexibility and diversity of choice

appearing in the economics and decision-theoretic literature. The chapter thus provides

the foundations for the thesis main algorithmic and modeling contributions.

Chapter 4 The application scenario of financial portfolio optimization is described and the

classical Markowitz [151] mean-variance problem is detailed. In addition, a preemptive

multi-objective strategy for improving the stability of portfolios in changing (albeit de-

terministic) environments is suggested. In other words, regularization of the hypervolume

indicator is utilized as a preemptive strategy to account for unpredictable changes, in the

absence of a predictive model.

Chapter 5 The thesis contributions on the modeling of flexibile and anticipatory behavior are

described, including an anticipatory stochastic MOO model, and an anticipatory flexible

methodology for improving future diversity of choice.

Chapter 6 The thesis main algorithmic contributions are described, including an anticipa-

tory MOO hypervolume-based maximization algorithm, an anticipatory learning strategy

for self-adjusting meta-preferences in terms of the entropy of the probability of Pareto
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dominance between two temporal performance distributions, and in terms of historical

estimation errors, and the computation of the expected anticipatory hypervolume con-

tribution of a candidate trade-off solution in the objective space, under a joint Gaussian

assumption.

Chapter 7 The application of the proposed anticipatory methodology for portfolio selection

subject to expected return maximization and expected risk minimization is presented. The

experimental design and the results achieved are discussed in details and confronted with

the thesis main goals, considering controlled experimental scenarios with nonstationary

stochastic processes and real-world financial data.

Chapter 8 Conclusions, limitations, and suggestions of future research avenues supported by

our anticipatory MOO approach are presented.

1.8 Publications Related to the Thesis

As of September 9, 2014, the list of research papers published by Carlos R. B. Azevedo during

his time as a doctoral student at the Laboratory of Bioinformatics and Bio-inspired Computing

(LBiC), UNICAMP, are listed in Table 1.1. Three papers contain material that appears in

the thesis and/or that is directly derived from the results of the thesis. Other papers have

been published on related research initiatives, but were not directly derived from the thesis

contributions. Other journal submissions are under preparation for publishing additional results

that are not contained in the thesis, but that were generated while the thesis was being wrapped

up.
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Table 1.1: List of papers published by Carlos R. B. Azevedo during the doctoral project.
Paper reference Summary In thesis? Chapters
C. R. B. Azevedo and F. J. Von Zuben. Learning
to Anticipate Flexible Choices in Multiple Criteria
Decision-Making Under Uncertainty. IEEE Trans.
On Cybernetics, (under review), 2014.

Presents the main results from
the application of the time-
linkage AS-MOO methodology
to portfolio selection.

yes 1–3, 5–8

C. R. B. Azevedo and F. J. Von Zuben. Anticipa-
tory stochastic multi-objective optimization for un-
certainty handling in portfolio selection. In Evolu-
tionary Computation (CEC), 2013 IEEE Congress
on, pages 157–164, June 2013

Presents results from the appli-
cation of the time-linkage free
AS-MOO methodology to port-
folio selection.

yes 1–3, 5, 6

C. R. B. Azevedo and F. J. Von Zuben. Regular-
ized hypervolume selection for robust portfolio opti-
mization in dynamic environments. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages
2146–2153, June 2013.

Presents results from the appli-
cation of a preemptive multi-
objective metaheuristic to port-
folio selection.

yes 2–4

C. Aranha, C. R. B. Azevedo, and H. Iba. Money
in trees: How memes, trees, and isolation can opti-
mize financial portfolios. Inf. Sci., 182(1):184–198,
2012.

Presents results from the ap-
plication of population-based
Nature-inspired metaheuristics
for dynamic portfolio selection.

no 4

C. Aranha, C. R. B. Azevedo, V. S. Gordon, H.
Iba. Topological and Motion Strategies for Cellu-
lar Memetic Tree-Based Portfolio Optimization, X
Brazilian Congress on Computational Intelligence,
November 2011.

Presents results from the appli-
cation of Nature-inspired meta-
heuristics for dynamic portfolio
selection.

no 4

C. R. B. Azevedo and A. F. R. Araújo. Non-
dominance landscapes for guiding diversity genera-
tion in dynamic environments. In VIII Best MSc
Dissertation/PhD Thesis Contest in Artificial Intel-
ligence (CTDIA). Proceedings of The Brazilian Con-
ference on Intelligent System, 2012.

Presents results from the appli-
cation of preemptive diversity-
based metaheuristics to dynamic
multi-objective optimization
benchmark problems.

no 3

A. R. Gonçalves, R. Veroneze, S. S. Madeiro, C. R.
B. Azevedo, F. J. Von Zuben. The Influence of Su-
pervised Clustering for RBFNN Centers Definition:
A Comparative Study. In: International Conference
on Artificial Neural Networks (ICANN), 2012, Lau-
sana. Lecture Notes in Computer Science: ICANN
2012 - Part II. Berlin: Springer, 2012. v. 7553. p.
148–155.

Presents results from the study
of the influence of using label in-
formation for data clustering al-
gorithms in pattern classification
benchmark problems.

no n/a



Chapter 2
Representing, Measuring, and Handling
Uncertainty in Decision-Making

Not only does God play dice, but sometimes he throws the dice where we can’t

see them.

– Stephen Hawking

When one admits that nothing is certain one must, I think, also add that some

things are more nearly certain than others.

– Bertrand Russell

This chapter discusses statistical tools for modeling and processing stochastic uncertainty

in decision-making, including Bayesian methods for estimation and prediction of time-varying

uncertain quantities in discrete and continuous spaces. The algorithmic innovations proposed

in this thesis have benefited from the techniques addressed in the following.

2.1 Sources of Uncertainty

A reliable decision-making system requires a means to understand its surrounding environment

as well as the consequences of its potential decisions. While, conceptually, understanding is not

the same as modeling, it is convenient to conceive rough descriptions of the object of interest,

known as models, to aid understanding. The act of modeling conveys reduction techniques,

grounded on the Scientific Method, that amounts to (1) discarding what is irrelevant; and (2)

representing to some extent what is relevant to explain the behavior of an object of inter-

est. Models can thus be useful for reducing the gap in a system’s knowledge by exploring the

simulated behavior of whatever we are trying to gain a better understanding.

Such descriptions are of course incomplete by construction and a certain amount of uncer-

tainty on the system’s understanding about what is being modeled is inevitable. The resulting

granularity loss undermines the system’s knowledge about its environment, but it is not the

only source of uncertainty the system has to deal with. In fact, Parsons [165] discussed several

taxonomies about types of uncertainty proposed in the literature and agreed with Elkan’s [78]

conclusion, stated in 1994:

27
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“A complete and consistent analysis of all the many varieties of uncertainty involved

in human thinking and revealed in human language is a philosophical goal that we

should not expect to achieve soon.”

After 20 years, while it still appears to be no evidence that such philosophical achievement

is near, there are a few common sense1 notions of what uncertainty means, including:

• Lack of precision arising from imperfect measurement;

• Lack of reliability arising from the passage of time;

• Lack of confidence arising when trying to abstract complex phenomena; or

• Lack of definiteness arising from gaps in the system’s knowledge.

The four aforementioned notions are indirectly addressed in our proposal for sequential

(multi-period) Multi-Criteria Decision-Making (MCDM) under uncertainty (see chapter 5 and

chapter 6). Some of them need to be handled during the design of sequential SMOO problem-

solvers, while others require a better modeling of the optimization problem, as will be discussed

in the following.

2.1.1 Uncertainty Arising from Imperfect Measurement

One fundamental source of uncertainty in the real-world comes from measurements. Although

through mathematics we have an expressive alphabet such as the set of real numbers to represent

any measurable quantity up to arbitrary precision, our physical measuring tools and mechanisms

are still limited. Werner Heisenberg’s famous uncertainty principle [111] indeed showed that

there are, at the quantum scale, physical limits to the precision one can measure a system of

two conjugate variables, such as the position and momentum of a subatomic particle.

Taylor [204] goes as far as to speak of “inevitable uncertainty” and gives a dramatic example

of how a carpenter could never be satisfied with his measurement of the height of a doorway

before installing a door. First and foremost, his measuring tape may be insufficiently or poorly

graduated (either because the marks are too far away or due to failures of the printing device).

Moreover, the carpenter may have to approximate the measurement if the top of the doorway

is not aligned with one of the marks. Not only that, but he/she may also find later that

the measured height differs at different locations, and even that the heights vary with time,

depending on the temperature and humidity conditions at the room. Granted, the carpenter

frustration illustrates several aspects of uncertainty arising from measurement, even at one of

the most controllable and deterministic environments one can think of. Experimental evidences

also suggest us that there might be external sources of interference in our measurements that

we might not even be aware of.

1Here we apply the criterion of what can be found in mainstream English language dictionaries.
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Imperfect Measurement in Financial Markets

The lack of awareness is a topic at the heart of the controversy regarding the efficiency of

financial markets. The efficient market hypothesis [180, 181] suggests that, unless an investor

has access to inside information that other investors are not aware of (e.g. privileged access

to quarterly earning reports, or intended acquisitions, etc.), he/she cannot tell with certainty

if assets prices are too low, too high, or just right. This implies that, on average, “(...) it is

not possible to outperform the market consistently on a risk-adjusted basis after accounting for

transaction costs by using available information.” [83]. This impossibility comes from the belief

that every measure required for taking investment decisions are completely reflected in asset

prices [83], which, according to Fox [87], has lead many key characters of the global economy

to believe that markets were rational:

“Financial markets knew best. They moved capital from those who had it to those

who needed it. They spread risk. They gathered and dispersed information. They

regulated global economic affairs with a swiftness and decisiveness that governments

couldn’t match. (...) Financial markets possessed a wisdom that individuals, com-

panies, and governments did not.”

Alan Greenspan, the president of the U.S. Federal Reserve at the time, when testimoning

at the House of Representatives in the midst of the financial crisis of 2008, blamed the misuse

of the available data for the chaotic scenario that had been then unfolding [99]:

“The whole intellectual edifice collapsed in the summer of last year, however, because

[of ] the data inputted into the risk management models (...)”

and admitted that there was no such thing as a rational market: “it was the failure to properly

price such risky assets that precipitated the crisis.” [99]. Following Greenspan’s logic, it seems

that the decisions taken under uncertain and imperfect data can have a huge impact on the

real-world, implying dangerous feedback loops that may be difficult to mitigate with confidence.

Modeling Measurement Uncertainty

Among the many mathematical frameworks used to represent uncertainty, including possibility

theory [224] (from which fuzzy theory can be derived) and Dempster-Shafer theory of evi-

dence [72, 186], arguably probability theory is the most widespread. We shall not discuss the

merits of using probabilistic models for designing intelligent systems nor we will enter in the

details of the other frameworks, but we refer to Cheeseman’s essay [54], which generated many

responses from prominent researchers working on uncertainty models, including Judea Pearl

and Shafer himself. What is interesting to note, however, are the connections all alternative

frameworks possess to probability theory, suggesting that it may be difficult to not rely on

likelihoods and observed frequencies of occurrence of events for quantifying uncertainty.

Dubois and Prade [76], for instance, devised a possibilistic version of Bayes’ rule, used for

reversing the direction of reasoning in the same way as its probabilistic counterpart. Zadeh [224]

has more clearly exposed the connections between possibility and probability using the following
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example (also found in Parsons [165]): consider the statement “Hans ate x eggs for breakfast”.

One can model the uncertainty regarding the value of x by attributing a set of possibilistic

outcomes based on the ease with which Hans can afford eating x eggs, say, {1, · · · , 8}, and

then, one could assign a probability distribution over those possible outcomes. Although one

might conclude that it would be, in principle, possible for Hans to eat 8 eggs (thus assigning

a value of 0.2), in a probabilistic sense, the subjective attribution of the likelihood for him to

have such an outrageous breakfast would be much closer to zero.

When the determination of the value of a quantity x is not merely speculative but comes

from the results of measurements, one simple probabilistic model to represent such uncertainty

is that of an additive noise:

x̂ = x+ ε, (2.1)

in which x̂ is an estimation of the “true” value, x is the measured value and ε is an error factor

accounting for variations in the measurement. A commonly used model assumes the error to be

a normally distributed random variable, i.e., ε ∼ N (mε, σ
2
ε ). This is a drastic reduction because

it is usually impossible to determine the ground error distributions. Nonetheless, Robert [172]

points out that the choice of the normal distribution in this case is usually justified because

it allows for sound “statistical analysis, which remains valid even if the distribution of ε is not

exactly normal”2. Another reason [172] is due to the Central Limit Theorem, which suggests

that the additional external influence of many small factors of similar magnitude would converge

asymptotically to a normal distribution. The normal distribution assumption will also be used

in the uncertainty models devised throughout this thesis.

2.1.2 Uncertainty Arising from the Passage of Time

Variations and errors arising from non-stationarity are another common source of uncertainty.

For instance, when collecting observations at a constant sample rate – say, the daily closing prices

of a stock –, the volume of trades in any given day can drastically vary and, thus, valuable daily

trend information will not be reflected within the collected data. In fact, given a collection of

samples taken between equally spaced intervals, there are infinitely many continuous functions of

time that would output exactly those same values (see Fig. 2.1). This means that all measures of

return and risk in the stock market will be taken over incomplete information, since one cannot

know if what happened between any two given sampling intervals carries relevant information.

As a consequence, an estimative of risk taken from historical data will inevitably suffer from

lack of reliability after some time and, thus, such estimatives must be periodically recalculated

upon arrival of new data points.

The field of Stochastic Processes (SP) (or random processes) has evolved in statistics to deal

with such scenarios. Formally, a SP is a collection of random variables X(T ) = {Xt, t ∈ T} (T

is a set of indices that can be either discrete or continuous). If T is continuous, then, sampling

from a given SP model is equivalent to sampling from a subspace of continuous functions.

Such sample is known as an realization of the SP. In other words, each realization {xt, t ∈ T}
2Apparently, Robert [172] was referring to an equivalence between (a) least-square estimators of the slope of

linear regression models under only a simple assumption about the expected value of the independent variables;
and (b) maximum likelihood estimators of the slope under a normality assumption.
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(a) A GP model with 4 samples.

(b) A GP model with 6 samples.

Figure 2.1: Gaussian Process models estimated over (a) four and (b) six samples. The horizontal
axes depict time. The blue lines are the mean processes; whereas the red shadowed areas depict
95% confidence intervals computed from the variance processes.

sampled from the SP may represent one hypothesis for fitting a given finite set of observations.

For instance, a Gaussian Process (GP) [170] is a SP for which each Xt ∼ N (mt, σ
2
t ). Figure 2.1

illustrates how the uncertainty is modeled in GP models: (a) with an realization of only four

samples, the total variance of the GP is higher; whereas (b) with two additional samples, the

uncertainty about the behavior of the temporal measurement process is reduced.

Roughly speaking, assuming T to be a set of positive integers, a strict stationary process

is one whose joint probability distribution of a subset X(t1 : tl) of X(T ) is the same as of

X(t1 + h : tl + h), for all l, h. A weaker notion of stationarity relaxes the joint distribution

assumption and, instead, states that the mean and variance of the process is what remain

constant upon a shift in time. Conversely, (weak) non-stationary processes are those for which

the joint distribution (or the parameters) changes with a shift in time. Time-varying quantities

such as asset prices can be modeled as non-stationary processes. The most simple model is the

so called random walk :

Pt = Pt−1 + εt, (2.2)

which describes how the distribution of prices, Pt, depends on the previous price plus a time-

varying error distribution, εt ∼ N (mεt , σ
2
εt), modeling volatility. No matter what model one

takes to represent a non-stationary process, the data analysis involved requires clever techniques

to keep track of the varying statistics associated with the collected realizations. In section 2.3,

two such techniques will be described: (1) the Kalman Filter [100], for normally distributed data

following linear temporal dynamics (such as in the random walk model); and (2) an approach

for estimating time-varying probabilities modeled as Dirichlet distributions. Both of them are
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integrated in the problem-solving tools devised in this thesis.

Modeling Changes with the Sliding Window Approach

Intelligent systems for real-time monitoring and diagnosis can be of great practical interest in

a complex dynamic environment. A system capable of continuously tracking time-varying un-

certain statistics can pro-actively take exploratory actions for investigating potential problems,

which can be achieved by using active learning techniques [148]. In addition, such systems

can recommend promising trade-off actions or decisions for mitigating eventual bottlenecks and

problems that might be detected.

In many practical scenarios, tasks such as the monitoring, analysis, and prediction of time-

varying phenomena rely on the detection of changes in order to suggest adjustments so the

predictive models can remain consistent with the environment evolving dynamics. In the fol-

lowing, the problem of change detection in realizations from stochastic processes is roughly

described (we follow the notation of Dasu [62]). Let {x1, x2, · · · } be a data stream describing

some nonstationary process. For instance, xt can be taken as vectors in Rn representing the

observed consumption rates of a product inventory. The underlying probability distributions

can be estimated using sliding windows, denoted as Wt1,tl = (xt1 , ..., xtl). Then, for two empiri-

cal distributions, say, Ft1:tl and Ft1+h:tl+h, estimated from two adjacent windows (realizations)

Wt1:tl and Wt1+h:tl+h, the distance dt(Ft1:tl , Ft1+h:tl+h) can be computed and used to test if a

statistically significant change has occurred. The null hypothesis in this case is [62]

H0 : Ft1+h:tl+h = Ft1:tl . (2.3)

Note that, depending on the choice of h (particularly, if h < l), some samples in Wt1,tl will also

appear in Wt1+h,tl+h. The distance function dt can be taken as any statistics that represents the

discrepancy between two empirical distributions, such as the Kullback-Leibler divergence [62].

Besides change detection, some classes of change patterns can be diagnosed by analyzing data

streams. For instance, coagulation and dissolution regions in the state space can be detected

from the analysis of temporal and spatial profiles of the velocities with which the empirical

distributions modeling the phenomena are changing. This can be done from the estimation

of the gradient vector of the adjacent realizations for each spatial coordinate [3]. Specifically,

non-parametric Gaussian Kernel-based estimators are useful for this task because they are able

to represent multimodality.

By integrating the density of spatial velocity, one can estimate a global change rate that

can be useful to measure the evolution degree of a stochastic process. With this approach, it is

also possible to find a set of minimal evolving projections that can be valuable for multivariate

trend analysis [3].

2.1.3 Uncertainty Arising from Model Misspecification

In the absence of complete information, assumptions about the phenomenon of interest need to

be made (i.e., reductions in the form of models of behavior). Perhaps one of the most striking

example of model misspecification are claims about economic progress using Gross Domestic
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Product (GDP) statistics, which measures only output but cannot distinguish between the

variables that are more significant to long term economic stability, let alone the fact that

“progress” is a too much subjective concept to be modeled by GDP growth. In other words,

there is very low confidence about a nation’s economic progress when taking only the perspective

of GDP growth.

When it comes to statistical data-driven modeling approaches, two classes of probabilistic

models are possible: parametric and nonparametric ones. The latter ones make usage of minimal

assumptions and are therefore more flexible. The downside is that such models are more prone

to error when the sample size is small. Their main strength is that they can be asymptotically

optimal for estimating the ground probability distribution when the sample size goes to infin-

ity [172]. The parametric models, on the other hand, are more pragmatic in the sense that the

functional form of the probability density is first assumed, f(x|θ). Then, statistical techniques

such as Maximum Likelihood Estimation (MLE) are employed to determine the value of the

parameter θ that best fits the available data. The main advantage is that this may work well

even for small sample sizes, provided that the choice of f was a reasonable one. The downside

is of course that the choice of a fixed f is problematic for modeling ill-behaved phenomena.

Model Misspecification and Robustness in Financial Data

The model choice and other assumptions thus lead to a drastic and pragmatic reduction that

carries itself a lot of uncertainty. Returning to the financial market domain, Hutchison and

Pennachi [123] argued that the perfectly competitive market assumption prevents accurate

measures of interest rates risk. One evidence of this, they say, are banks that “exercise market

power in setting retail deposit interest rates”.

Even Henry Markowitz, the father of Modern Portfolio Theory, admitted at his Nobel Prize

speech that “Perhaps some other measure of portfolio risk will serve (...) Semi-variance seems

more plausible than variance as a measure of risk.” In fact, despite its intuitive appeal, the prac-

tical application of the Markowitz portfolio approach is not reliable and has been reported to

behave poorly in real-world out-of-sample data, e.g. [82,98]. This is mainly due to the prevalent

presence of outliers in stock data which makes the tails of the estimated returns distribution

fatter than those of the Gaussians assumed in Markowitz portfolio theory [88]. Hence, ap-

proaches to robustly estimate the returns distribution parameters have been investigated with

the purpose of mitigating such model risk, e.g. [83,98].

Robustness was defined by Huber and Ronchetti [120] as “insensitivity to small deviations

from [distributional] assumptions”, when estimating population parameters from finite samples.

This insensitivity is usually traded off by the efficiency of the estimator. Statistically, maximum

likelihood estimators, such as the sample mean and variance of the Gaussian, carry optimal

asymptotic efficiency when the data follow the assumed distribution. However, the presence of

outliers in the data may lead to large estimation errors.

Robust statistics may not have optimal efficiency for the assumed model, but they can

usually tolerate larger proportions of outliers in the sample before diverging from the true

population parameters. For instance, the sample median can tolerate levels up to 50% of

contamination (outliers) before breaking down, whereas the sample mean may tolerate none.
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Figure 2.2: Q-Q normal plot for FTSE 100 25 day horizon returns data for the last 6 years.

Venables and Ripley [214] pointed out that the goal of robust statistics is to maintain high

(although suboptimal) efficiency in the neighborhood of the assumed distributions.

The motivation for using robust statistics to measure risk and return is to improve the

estimation efficiency when the returns data deviates from the Gaussian distribution. In fact,

real-world financial data hardly fit the normality assumption. Figure 2.2 shows the normal Q-Q

plot for the 25 lagged FTSE 100 index fund daily data from November 2006 to November 2012.

It can be observed that the positive returns (profits) portion of the data presents a good fit to

normality, while the probability of extreme negative returns (losses) is underestimated by the

normality assumption. Remarkably, these are the same observations reported for NASDAQ and

S&P500 data by Frahm and Jaekel [88], even considering different time frame and lags. Such

violation of the elliptical assumption causes the sample standard deviation to underestimate

downside risk and, thus, one can expect the estimation error to impair the performance of

Markowitz’s portfolios in practice.

In the following, we present a general framework for robustly estimating the covariance

matrix under a normality assumption proposed by Alqallaf et al. [4]. This technique may allow

for a more robust model by smoothening the influence of outliers and is thus a means to mitigate

uncertainty due to model misspecification. Azevedo and Von Zuben [15] have investigated

the benefits of this estimation technique for a preemptive multi-objective metaheuristic for

evolving a set of robust mutually trade-off investment portfolios for real-world financial data,

with promising results when compared with the use of MLE [15] (see also chapter 4).

A Robust Pairwise Covariance Matrix Estimation

In this section, we describe a pairwise robust estimation technique for covariance matrices [4].

The main advantages of pairwise approaches are: (i) their quadratic complexity on the di-

mensionality of the sample vectors (N2) when compared to the exponential complexity (2N)

of other methods; (ii) the possibility of using any robust univariate statistic for the first and
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second moments of the distribution; and (ii) the resulting matrix is guaranteed to be positive

definite, what is not true for other pairwise approaches in the literature.

Despite providing a computationally efficient method, pairwise approaches had been some-

what ignored in the literature because the estimate does not guarantee the resulting matrix

to be positive definite. This scenario changed after Maronna and Zamar’s [153] work, who

proposed an intuitive spectral decomposition approach for restoring the positive definiteness

property. The pairwise proposal of Alqallaf et al. [4] is presented in the following.

Given a T ×N dataset matrix X, the N ×N robust covariance matrix estimator is given as

follows [4]:

• Compute the univariate robust statistics for the central tendency and dispersion for each

column:

m̂j = Q
(2)
j (xj) (2.4)

ŝj = b ·
(
Q

(3)
j (xj)−Q(1)

j (xj)
)
, (2.5)

with b = 0.7413 chosen to provide an unbiased estimate of the standard deviation when

the columns follow a Gaussian distribution. Note that Eq. (2.4) corresponds to the

computation of the median (breakdown point of 50%), while Eq. (2.5) corresponds to the

interquartile range, defined as the difference between the upper (Q(3)) and lower (Q(1))

quartiles (breakdown point of 25%).

• Compute the quadrant correlation estimate:

ĉlk =
1

Tlk,0

T∑
t=1

ψ (xtl − m̂l)ψ (xtk − m̂k) , (2.6)

in which

ψ(y) =

{
1, y ≥ 0
−1, y < 0

(2.7)

and Tlk,0 is the number of rows with non-zero entries for both (xtl −ml) and (xtk −mk).

Note that ĉlk is effectively a robust estimate of the correlation coefficient using rank

statistics, which has an intrinsic bias. For xtl and xtk jointly Gaussian, the bias is removed

by computing (see [120]):

ρ̂lk = sin
(π

2
ĉlk

)
, l 6= k; ρ̂lk = 1, l = k. (2.8)

The initial robust covariance matrix estimate is Σ̂0 = {ŝlŝkρ̂lk}, although not necessarily

positive definite.

• Compute the spectral decomposition, Σ̂0 = UΛU′, in which the columns of UN×N

form the orthonormal basis of eigenvectors and Λ is the diagonal matrix whose en-

tries are the corresponding eigenvalues, which are not necessarily positive. By (a) row-

wisely projecting the original dataset X onto the eigenvector basis, i.e., x̃t = U · xt (xt
is the t-th row of X); (b) computing the univariate robust dispersion statistics s̃j =
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0.7414 ·
(
Q

(3)
j (x̃j)−Q(1)

j (x̃j)
)

; and (c) noting that, for Σ̂0, the entries of Λ are the vari-

ances of the projected data on the eigenvector basis, one can simply replace all λj by s̃2
j

to form Λ̃ =
{
s̃2
jj

}
.

• The final step consists in applying a series of column permutations over Λ̃ so that the new

eigenvalues are ordered from the largest to the smallest one in the main diagonal. The

final unbiased robust estimative for the covariance matrix, with the positive definiteness

property restored is Σ̂ = UΛ̃U′.

2.1.4 Uncertainty Arising from Indeterminacy

Heisenberg mostly used the term indeterminacy when referring to what was later translated

as uncertainty in his original paper [111]. Indeterminacy (or indefiniteness) may thus arise

from disjunctive statements of the form the spin of the electron x is positive or negative. In

the context of MCDM – the main topic of this thesis –, a Decision Maker (DM) may have

undefined preferences among multiple conflicting decision criteria due to lack of knowledge

about all potential consequences of a given decision.

Consider for instance a DM who must decide between two alternative trade-off daily flights

schedules, one possessing a lower estimated congestion probability but with higher estimated

takeoff delays. How can the DM state with confidence that the lower takeoff delay schedule is

preferable to the one possessing lower congestion probability? What would be worse: dealing

with angry passengers because of takeoff delays or because of landing delays? One could argue

that takeoff delays would be easier to handle because passengers can comfortably await at the

boarding room, while others could argue that most would not even notice short landing delays

while entertained with movies and other inflight treats. Moreover, would the trade-offs between

takeoff and landing delays be subject to seasonal or regional effects? For instance, letting

customers awaiting at a very crowded boarding rooms during a Christmas eve could have far

worse consequences than usual. No matter what the DM may think about those subjective

questions, the uncertainty conveyed in such decision can be so high that he/she may simply

abstain from it, leaving preferences specification undetermined.

The classical decision theory requires the DM preferences to be specified by a total order

relation such that it is possible to rank every pair of decisions. This is not the case when the

DM cannot determine which among two decisions is preferable. If the DM cannot rank every

pair of decisions, then his/her preference relation can be modeled as a partial order. When

eliciting preferences by requesting the DM to rank pairs of decisions (e.g. [21, 131]), however,

one must be aware that the resulting DM rankings can lead to an order relation � that violates

the von Neumann-Morgenstern axioms of rationality [216], as defined in classical utility theory.

For instance, transitivity is absolutely necessary for preventing inconsistencies such as d1 � d2,

d2 � d3 but d1 � d3, not to mention cycles of the type d1 � d2 � d3 � d1.

One of the main contributions of this thesis is a strategy for handling the DM preferences

indeterminacy by automating the MCDM process. Preferences specification can be thus post-

poned through the identification of a sequence of flexible provisional trade-off decisions most

likely to lead to a larger range of options in future decision periods (see chapters 5 and 6).
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2.2 Measuring and Reasoning Under Probabilistic Un-

certainty

Information Theory (IT) is a theoretical framework with profound implications on automated

model building, including data representation (compression), which became widespread after

the work of Claude E. Shannon [188]. The most widespread concept contributed by IT to

the scientific community was the concept of Shannon’s entropy, which quantifies the average

information contained within a random variable. In this section, we explore the fundamental

properties of IT that ultimately contributed to the design of optimization-based multiple criteria

decision-making systems possessing uncertainty awareness (see chapter 6).

2.2.1 Information Theory as a Framework to Quantify Probabilistic
Uncertainty

It was then but a short step to use Shannon’s entropy to quantify the uncertainty contained

within a random variable. Mathematically, the Shannon’s entropy for a discrete random variable

X, H(X), is defined in terms of a probability distribution p = (p1, · · · , pn)ᵀ over the n possible

values in the domain of X:

H(X) = H(p1, · · · , pn) := −
n∑
i=1

pi log pi, (2.9)

with the logarithms usually taken to the base 2. When defined in this way, the assumption is

that the basic unit of information is the bit (derived from “binary digit”), which can be used

to represent and distinguish between two orthogonal3 states of a physical system of interest.

In communication systems, X is known as the source, and the n possible values taken by X,

i.e., x1, · · · , xn, are known as symbols. Hence, Shannon proposed quantifying the information

revealed by the occurrence of the symbol xk with probability pk in a data stream produced by

the source X as

I(pk) := log
1

pk
= − log pk. (2.10)

The choice of the logarithm of the probability distribution by Shannon in the definition of I(pk)

can be justified by its algebraic properties. For instance, the amount of information generated by

the toss of a fair coin (or, equivalently, the measurement of any system yielding two orthogonal

states with equal probability) is one bit. Hence, it makes sense to think that the repeated,

independent toss of N such coins will yield N bits of information (i.e., N bits will be required

to represent the output of the whole sequence of N tosses). The complete additive property of

the logarithm (i.e., log(ab) = log(a) + log(b) and log(1) = 0, for all a, b ∈ R), was thus crucial

in the development of the theory. Therefore, after inspecting Eq. (2.9), it can be concluded

that Shannon’s entropy for a source X can be interpreted as the expected value of information

3Here, orthogonal states should be understood as those which do not share any commonalities with each
other, i.e., no (linear) operation over any subset of orthogonal states can be used to perfectly reconstruct other
orthogonal state which was not originally present into the combination.
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Figure 2.3: The Shannon entropy function (vertical axis) for a binary source (p1 is represented
in the horizontal axis).

contained within a (discrete) source X with probability distribution p:

H(X) := E [I(p)] . (2.11)

Therefore, for a binary discrete source X (i.e., a Bernoulli random variable) yielding values

x1 and x2 with probabilities p1 and p2 = (1 − p1), H(X) = −(p1 log p1 + p2 log p2) represents

the average number of bits of information generated for all possible symbols of the source X.

From Fig. 2.3, it can be noted that the entropy (uncertainty) reaches its maximum value when

the symbols are equiprobable (i.e., p1 = 0.5), in which case the number of bits required to

represent a long sequence of N symbols produced by X is N . Conversely, for a source whose

probabilities are null except for one symbol xj for which pj = 1, then H(X) = 0, i.e., the

uncertainty is completely absent, what means that no bits are required to store an already

expected measurement result.

That is to say, a constant sequence of N symbols emitted by a deterministic discrete source X

does not need to be registered once the receiver knows about the determinism of X. Therefore,

besides the commonsense understanding of Shannon’s entropy as a measure of information,

uncertainty, and randomness (which are attributes of the source X), this line of reasoning

supports two other interpretations, when one allows the empirical probability distribution p̂ to

be updated online as more symbols are collected, and when one makes usage of p̂ to update the

entropy estimation of X and to measure the change in entropy upon receiving a new sequence of

symbols: entropy as a measure of surprise, an attribute of the receiver, and novelty, an attribute

of the data stream.

2.2.2 Information Theory as a Framework to Explain Autonomous
Behavior

The problem of explaining self-motivation towards new discoveries is ill-defined. It can be formu-

lated in terms of an endless list of multi-disciplinary approaches and it has been mostly studied
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within clinical and social psychology research circles. However, taking an information theoretic

perspective, Schmidhuber [182] provided an elegant theoretical principle explaining the emer-

gence of creativity, “fun”, and motivation. The principle is formulated in terms of information

theory; algorithmic complexity; machine learning; and pro-active learning. Schmidhuber [182]

postulated that self-motivation (i.e., autonomous behavior) is as intense as the availability of

sensorial input exhibiting: (1) novelty; (2) non-determinism (i.e., not fully predictable sequences

of symbols); and (3) enough regularity.

In other words, an intelligent agent would lose interest (self-motivation) for events (a) that

are unpredictable (or fully predictable); or (b) that do not exhibit enough regularity and, hence,

are computationally difficult to be represented by the agent’s internal models. On the other

hand, an agent would be self-motivated towards exploring input sequences that are surprising (or

novel), but regular enough to be comprehended. The main contribution of Schmidhuber [182]

to artificial intelligence was then:

“(...) theoretically optimal (but not necessarily practical) ways of implementing

the basic computational principles on exploratory, intrinsically motivated agents or

robots, encouraging them to provoke event sequences exhibiting previously unknown,

but learnable algorithmic regularities.”

Schmidhuber’s learning model [182] is then posed in terms of optimal predictors and com-

pressors of data streams. Implicit in such model, is a trade-off between data compressibility –

i.e., the agent’s ability to consistently summarize and recall events and patterns – and surprise

– i.e., how unlike is the observed event given the agent’s current internal model of the world

surrounding it. Interpreting this implicit trade-off, we can conclude that an autonomous agent

in Schmidhuber’s [182] perspective would not be motivated towards discovering facts or pat-

terns already known. On the other hand, an agent must be able to near-optimally compress

(or represent) the new knowledge according to its internal models. Otherwise, the data stream

would be regarded as too complex to be worth analyzing, given the agent’s current learning

capabilities.

Therefore, it becomes clear that the problem of defining and modeling an autonomous agent

exhibiting self-motivation towards new discoveries cannot be put in absolute terms, but only

in the context of the internal learning and predictive models an agent has access to, what cor-

roborates Rosen’s [174] anticipatory systems framework for explaining and designing complex,

intelligent behavior.

Very recently, Kaelbling and Lozano-Pérez [128] developed a framework for robot task plan-

ning under uncertainty about both the robot current and future states, prompting exploratory

actions that resulted in enhanced performance. The contributions provided in chapter 6 follows

a similar path by integrating the uncertainty about the current and future states of a multiple

criteria decision-making process into an flexible anticipatory machine learning framework.

2.2.3 Information-theoretic Measures of Autonomy and Synergy

Because there is no clear causal links and arrows in a complex system in which every node

influences one another, one way to evaluate the response of a decision-making system to changes
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in its surround environment may be given by an intuitive notion of autonomy. Bertschinger et

al. [27] proposed measuring the conditional mutual information between consecutive system

states and the whole history of the environment, which provides the input stream.

When the interaction model between the decision-making system and the environment is

known, Bertschinger et al. [27] proposal allowed the further derivation of a causal autonomy

measure, which resolves the ambiguity of whether it is the decision-making system which is

driving the environment state transitions, or if it is the environmental input stream that is

driving the system trajectory. From the experimental results regarding a study of such autonomy

measure in the so-called “game of life”, philosophical issues about the attribution of control were

raised [27].

The result of the complex interactions between intelligent agents (or decision-makers) and

the environment leads to the intuition of synergy, i.e., the notion that the macro effects of

such interactions carry more information than that conveyed when analyzing the information

generated by the agent and the environment separately. In this regard, a more general measure

of synergistic mutual information between random variables was proposed in Griffith et al. [101].

With this approach, it is possible to quantify the contribution of each node among a complex

network of random variable in predicting the behavior of another random variable [101]. In

practice, this can be viewed as a measure of how much information the network conveys about

the interactions between two or more individual nodes. Thus, the level of coupling between the

elements of such network can be studied. Quantifying how much such synergistic information

influences the network evolution through time is nevertheless another interesting open research

question.

2.2.4 On the Implicit Relation Between Shannon and Boltzmann-
Gibbs Entropies

When the symbols emitted by the source represent orthogonal states of a physical system, the

two concepts of entropy in information theory (after Shannon) and in thermodynamics (after

Boltzmann and Gibbs [34]) can be seen as closely related. For instance, suppose that the

orthogonal states of a classical bit (denoted as “zero”, |0〉, and “one”, |1〉) can be represented

in a vector space as the following orthogonal (in the linear algebra sense of an inner product

space) vectors:

|0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
. (2.12)

Moreover, consider that the joint state of two bits (i.e., |00〉, |01〉, |10〉, and |11〉) can be

represented in matrix form by the tensor product between the original bits, yielding the following

orthogonal vectors:

|00〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 . (2.13)

Then, the XOR operator is defined such that XOR(|00〉) = |0〉, XOR(|01〉) = |1〉, XOR(|10〉) =

|1〉, and XOR(|11〉) = |0〉. Note that there is no unitary operator (roughly speaking, a linear
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transformation represented by an invertible matrix) which can be used to represent the mapping

performed by the XOR operator. In addition, note that, given only the output of the XOR

operator, it is impossible to determine with certainty what the input states were, what result

in information loss. In other words, the phenomenon of information loss is strongly linked to

the increase of uncertainty (that can be measured by Shannon’s entropy) in the identification

of inverse mappings. In the particular case of the XOR operator, it is easy to see that the

probability of the input states being |00〉 given that the observed output was |0〉 is p|00〉||0〉 =

1/2. So is p|11〉||0〉 = 1/2. Hence, the Shannon’s entropy of the distribution of possible inverse

mappings associated with the XOR operator must be maximal.

Therefore, one of the main reasons why linear operators naturally appear in definitions of

orthogonality is to preserve the existence of inverse mappings. It turns out that the German-

American physicist Rolf Landauer discovered in the 1960’s that

“(...) any logically irreversible manipulation of information, such as the era-

sure of a bit or the merging of two computation paths, must be accompanied by a

corresponding entropy increase in non-information bearing degrees of freedom of the

information processing apparatus or its environment” [26].

In other words, the loss of information in a physical information processing system must

increase the Boltzmann-Gibbs entropy of the system – i.e., the number of possible macrostates

it can be at – in the form of heat dissipation. This is one of the main reasons why Quantum

Mechanics (QM), when accounting for the probabilistic uncertainty of the trajectories of a

physical system of interest, allows only unitary, reversible operators supporting linear physical

theories.

Hence, we can state that Shannon and Boltzmann-Gibbs entropies are intrinsically related

under the QM perspective and can be thus considered as normative measures of uncertainty

of physical dynamical systems when such uncertainty is modeled by probabilistic means4. In

chapter 6, we make intensive use of entropy functions to enable metaheuristics to reason under

uncertainty about present and future probabilistic outcomes, thus supporting the automation

of complex multiple criteria decision-making processes.

2.2.5 Decision-Making Under Uncertainty

In decision-making under (probabilistic) uncertainty, a Decision Maker (DM) must choose an

action u among a set U whose consequence depends on an uncertain state x ∈ X . Regardless of

whether the state probability distribution p(x) can be estimated a priori, the exact next state

assumed as a consequence of the action taken, u, over x is unknown. The utility function, which

maps actions and states onto real values representing how desirable are the consequences of one

action u over a state x for the DM, may be represented as J(u, x).

4In the design of quantum information systems, the von Neumann entropy is commonly considered. It can
be seen as the quantum generalization of the classical Gibbs entropy. It turns out that the Shannon entropy is
also a special case and can be recovered from the von Neumann entropy, if its parameter (the density matrix) is
written in terms of its eigenvectors, which are orthonormal base (classical) states [24].
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An optimal action u?B can be determined by maximizing the expected utility :

u?B = arg max
u∈U

∫
X
J(u, x)p(x)dx. (2.14)

The obvious drawback about solving Eq. 2.14 is that the ground state distribution p(x) is

unknown and must be estimated from past realizations. However, except when the process

generating the realizations is ergodic5, this strategy can lead to severe model misspecification.

One way to cope with this difficulty is by making use of the sliding window estimation approach

(see section 2.1.2) so that the state distribution can be updated over time without the influence

of past uncorrelated realizations. Besides, one can use statistical tracking techniques such as

the Kalman Filter (KF, see section 2.3.4) to obtain p̂(x). In chapter 5, our contributions to

anticipatory multiple criteria decision-making utilizes a maximum expected utility approach,

with sliding window techniques (see chapter 6 and chapter 7), and KF estimation, although

the proposed utility function does not carry any information regarding the DM preferences and

desirabilities.

An alternative to the expected utility approach is a worst-case approach known as the

minimax method. The minimax rule does not require the specification of p(x) when selecting the

action u?M minimizing the maximal possible loss [164], but requires the estimation of L(u, x) =

supu∈U{J(u, x)}−J(u, x), i.e., the maximal difference in utility between the optimal action and

a candidate action for state x. The minimax rule is expressed as follows:

u?M = arg min
u∈U

max
x∈X

L(u, x),

L(u, x) = sup
u∈U
{J(u, x)} − J(u, x). (2.15)

Hence, the minimax decision is that leading to the minimal maximal loss over all possible states.

The maximum expected utility and the minimax approach generally do not lead to the same

choice, but there are specific conditions over p(x) for u?B = u?M [164].

2.3 Learning and Prediction Under Uncertainty

A real-valued time series X can be represented as a mapping X : T × E → R such that, for

each fixed t, X(t, e) is a random variable in a probability space, where e represent elementary

events and T = 1, ..., T is a set of indices that enumerate the resulting real-valued measures

sequentially. The notation Xt describes the probabilistic state of a system of interest at time

t. The problem of time series prediction can be thus consider observing a system of interest

until time t. The goal is to predict the value of Xt+H , where H is known as the prediction

horizon. The prediction of Xt+H is denoted as X̂t+H , and can be represented as a function of

the historical data samples collected at times 0, 1, · · · , t− 1.

5Ergodic processes can be intuitively viewed as those whose moments (e.g. mean, variance, skewness, kurtosis,
etc.) of the ground distribution can be inferred with arbitrary accuracy from sufficiently large samples of
the process. Non-ergodic processes, therefore, can be viewed as those whose changing patterns of the ground
distribution impair the confidence with which one can infer the process moments, despite the samples availability.
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2.3.1 On Dynamical Systems Modeling and The Takens Theorem

When representing dynamical systems with d interacting parts, it is reasonable to describe

the system by d independent real-valued variables: {X1, X2, · · · , Xd}. For instance, one can

represent the joint temporal evolution of a complex financial market by describing the trajectory

over time of a state vector in Rd, st. Each of the d components of st represent all different

relevant interacting factors that completely describe the system. For instance, one can encode in

st several economical output indicators, as well as relevant business related variables pertaining

to N different investment assets in a stock market, although such description will always be

incomplete for systems as complex as financial markets.

Current research on complex dynamical systems modeling has been mostly credited for best

representing large-scale real-world problems wherein a large number of agents interact with each

other, producing complex self-organizing and emergent macro effects. Despite its theoretical

appeal, one practical difficulty arising from such approach is that efficient methods for inference

and approximate reasoning within the complex systems paradigm are virtually non-existent.

Although the characterization of what is meant by the term “complex” varies across disci-

plines (e.g., game theory, dynamical systems, complex network theory, among others), we briefly

describe the notion of complexity in statistical mechanics. In a very recent work co-authored by

the 1969 physics Nobel laureate, Murray Gell-Mann, Hanel et al. [107] implicitly defined com-

plex systems as those that can be best modeled as non-Markovian and non-ergodic stochastic

processes.

Hanel et al. [107] also proved, for the first time, the existence of the principle of maximum

entropy for complex systems. The principle provides mathematical, and, hence, algorithmic

procedures for statistically reducing a priori knowledge bias when modeling a process by fitting

probability distributions, under a Bayesian inference framework. In addition, they derived a

class of entropy measures that satisfies Shannon-Khinchin axioms, which prescribe the intuitive

notions that should be satisfied by any measure of information, e.g., separability, complete

additiveness, among others.

The mathematical procedure requires finding a multiplicative factoring of the relative en-

tropy function. Nevertheless, Hanel et al. [107] provide the first exact derivation of the maximum

entropy principle for complex systems with long-term memory. The application of such principle

may lead to effective Bayesian inference in complex systems, what may result in a paradigm

shift for machine learning.

The Takens Theorem

Let M ⊆ Rd represent the manifold containing all possible trajectories of a complex dynamical

system, at any time frame. Let also X i be any constituent part of M . The Takens Theorem [202]

establishes the necessary conditions upon which it is possible to construct a “shadow” manifold,

MXi ∈ Rd, that preserves not only the topology of the original manifold M , but also its

Lyapunov exponents6 [200]. Such shadow manifold can be formed by carefully choosing the

6It is possible to estimate the exponents of the so-called Lyapunov functions describing discrepancies between
infinitesimally close trajectories within the phase state of a dynamical system. The analysis of the maximal
Lyapunov exponent can reveal information about the degree of predictability and chaos within such systems.
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minimum dimensionality of time lags (d) from the original time series so to encode any value

in the trajectory of X i as the mapping g : {X i
t−hd , · · · , X

i
t−h1} → X i

t .

Moreover, Takens [202] proves that there is a one-to-one map between MXi and M , what

means that all information contained within the dynamical system manifold M can be recov-

ered by carefully processing the historical measurements taken from any of its projections onto

an individual constituents, say, X i. Despite being a remarkable and intuitive result, Takens’

assumptions require the system to be stationary and free from quantization errors [195].

Application of The Takens Theorem for Causality Detection

Nevertheless, in a recent application, Sugihara et al. [200] made use of the following transitive

argument to design a test of causality between two or more time series, denoted as convergent

cross mapping, which takes advantage of the Takens Theorem. Let MXi and MXj be two shadow

manifolds of minimum dimensionality w.r.t. a dynamical system evolving in M . Since there are

one-to-one maps leading both MXi and MXj to M , then there must also be an one-to-one map

leading directly from MXi to MXj .

After measuring the similarity between the trajectories within MXi and MXj by finding

corresponding nearest neighbors states between both shadow manifolds, Sugihara et al. [200]

argued that it is possible to infer whether the time series X i and Xj describe concepts belonging

to the original dynamical system. The inference relies on comparing the convergence rates (in

terms of prediction error) upon increasing the available time series length (L) – i.e., the number

of available historical data samples – when cross-mapping from a shadow manifold to reconstruct

the other time series. In other words, with the increase of L, the correlation coefficient between

the ground and the reconstructed values of the cross-mapping X̂ i
t |MXj should converge above

a statistically significant level faster than that of the cross-mapping X̂j
t |MXi .

Although the non-stationarity assumption of the joint asset return time series used in the

experiments described in chapter 6 does not match the assumptions of the Takens Theorem,

we investigated (a) the effects of increasing the number of historical observations (window size

factor) on the prediction accuracy of the proposed Bayesian estimation tools; and (b) the impact

of that factor on the performance of the resulting anticipatory flexible decision-making system

for financial portfolio selection.

2.3.2 The Bayesian Learning Approach

In many problems, one has to infer unknown states from noisy and time-varying observations,

such as the position and velocity of objects in tracking systems, the volumetric flow rate and

temperature in industrial processes, or the interest rates in a financial market. More generally,

the moments of the distributions describing stochastic processes must be estimated. In such

scenarios, Bayesian models are commonly used because they allow for mathematical optimal

ways of combining observations to prior knowledge in order to reduce the uncertainty about a

given system of interest, by updating the posterior distribution using the Bayes Theorem [172].

The 2011 Turing Award recipient Judea Pearl [166] has made the compelling point that

while probabilistic knowledge of a system of N uncertain quantities is defined in terms of
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joint distributions in the traditional frequentist approach, the Bayesian approach for handling

uncertainty relies instead on the learning of conditional relations between two or more such

variables. Thus, in the frequentist point of view, conditional distributions are merely an artifact

without much importance relating joint distributions, whereas, in the Bayesian view, they are

the principal means by which uncertain knowledge is encoded. As put by Parsons [165], the

focus on conditionals implies that Bayes Theorem becomes “a normative rule for updating

probabilities in line with new information”.

Conditional probabilities such as Pr(Y |X) convey the notion that if I am given X, then I

can guess the value of Y . The Bayes Theorem provides a means to go the other way around as

to infer the probable values of X starting with Y . If X and Y are discrete events such that

Pr(X) 6= 0, then

Pr(Y |X) =
Pr(X|Y )Pr(Y )

Pr(X)
, (2.16)

in which Pr(X) = Pr(X|Y )Pr(Y )+Pr(X|Ȳ )Pr(Ȳ ) and Ȳ denotes the complement of Y . The

continuous counterpart (for continuous random variables) of the Theorem is:

g(y|x) =
f(x|y)g(y)∫
f(x|y)g(y)dy

. (2.17)

Interpreting Eq. (2.17), g(y|x) is proportional to the likelihood f(x|y) of y given that we

gathered the evidence x weighted by how likely we believe such value of y – whose probability

we want to update – to show up, i.e. g(y). As pointed out by Robert [172], Bayes and Laplace

quickly figured out that the Bayes Theorem would be of main importance for parametric estima-

tion. Particularly, the uncertainty on the parameters θ of a given probability density function

f could be modeled through a distribution π over the parameter space, known as the prior

distribution.

Given the sample distribution f(x|θ) and the prior distribution π(θ), there are four elements

at the core of learning with Bayes rule that can be inferred [172]:

• The joint distribution of x and θ: h(x, θ) = f(x|θ)π(θ)dθ;

• The marginal distribution of x: f(x) =
∫
h(x, θ)dθ =

∫
f(x|θ)π(θ)dθ;

• The posterior distribution of θ given evidence x: by using Bayes Theorem,

π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

; (2.18)

• The predictive distribution of a given value of interest y, considering y ∼ g(y|θ, x):

π(y|x) =

∫
g(y|θ, x)π(θ)dθ. (2.19)
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2.3.3 Maximum a Posteriori (MAP) Estimation

The posterior distribution derived using Bayes Theorem has another important role in the

estimation of parameters of probabilistic models. It can be used in a point estimation framework

to infer the most likely value of the parameter θ given a piece of evidence x. This approach is

known as the Maximum a Posteriori (MAP) estimation of θ, denoted as δ∗(θ), and is given as

the mode of the posterior distribution:

δ∗(θ) = arg max
θ

f(x|θ)π(θ)∫
f(x|φ)π(φ)dφ

= arg max
θ
f(x|θ)π(θ).

This point estimator possess some interesting theoretical properties, one being that it is

asymptotically optimal when the sample size goes to infinity (i.e., when the estimation is re-

peated for a long series of x’s), being equivalent to the MLE in such case. It is also a robust

estimator for small sample sizes in the sense that it can be interpreted as a regularized version

of the MLE [172].

Example: MAP estimation for a Gaussian mean

The MAP estimation for the mean vector of a multivariate Gaussian N (θ,Σ) with conjugate

distribution (the prior distribution) N (µ,A) and known covariance matrix given an observation

x yields

δ∗(x) =
(
Σ−1 + A−1

)−1 (
Σ−1x + A−1µ

)
. (2.20)

Note that δ∗(x) is expressed as a convex combination between the evidence x and the prior

mean µ, where the weights are proportional to the inverse of the covariance matrices [172].

In the following, a Bayesian network model for estimating noisy, time-varying quantities

assuming Gaussian priors and linear, Markovian dynamics is described.

2.3.4 The Kalman Filter

In several real-world applications, a solution must be deployed in a time-varying, noisy and

unseen environment for which it has not been optimized for. In this thesis, we make use of

Bayesian networks for computing the posterior state distribution of such quantities, so to allow

the search for solutions for which better performance on the targeted future environments is

predicted. For stochastic MCDM, the idea is to achieve this goal by estimating the trajectory

of random objective vectors over time.

The Kalman Filter [100] is the most widespread Bayesian network with countless successful

applications, providing closed-form expressions for updating the state posterior distributions if

the uncertainty can be modeled as a multivariate Gaussian and if the system dynamics are linear.

As a result, exact and computational inexpensive one-step ahead inference of the state predictive

distribution is available. The KF computes in closed-form the best possible estimation (in the

mean-square sense) for the distribution of the hidden state vector. The main assumption for the
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KF is that of a linear Gauss-Markov state-space model, given as the following joint distribution

factored representation of hidden states and measurements:

p(X,Y) = p(x1)p(y1|x1)
H∏
t=2

p(xt|xt−1)p(yt|xt) (factored joint distribution), (2.21)

x0 ∼ N (mx0 ,C0) (initial state distribution), (2.22)

xt|xt−1 ∼ N
(
Amxt−1 ,Ct|t−1

)
(predictive distribution), (2.23)

yt|xt ∼ N
(
Mmxt ,Rt|t−1

)
(measurement distribution), (2.24)

in which X = {x1, · · · ,xH} ⊂ Rn is the set of unknown states, and Y = {y1, · · · ,yH} ⊂ Rp is

the set of available measurements (which may have lower dimensionality, p < n). The matrices

A and M encode the state linear dynamics and the measurement function, respectively. The

uncertainty is encoded by one covariance matrix for the unknown states, Ct|t−1, and by another

covariance for the observations, Rt|t−1.

The equations for the KF come from the recursive application of the Bayes Theorem to the

conditional densities p(xt|yt) and p(xt+1|xt,yt), corresponding to the updating of the posterior

given a measurement at time t, and the prediction of the next state using the known dynam-

ical model, A. Both densities are Gaussian and can be analytically determined assuming the

stochastic dynamical model in (2.21)–(2.24).

The KF is then capable of tracking state vectors evolving according to linear dynamics

under Gaussian uncertainty. There are two steps required for recursively applying the KF

for estimating a Gaussian random vector evolving on time: (a) a prediction step; and (b) a

measurement correction step.

KF Prediction Step

This step makes use of the available dynamical model describing the trajectory of the hidden

state vector over time to compute an estimation for the distribution of the hidden state vector

in the current time step, given past estimations, as represented in Eq. (2.23). The dynamical

model is assumed to be7:

xt = Atxt−1 + qt, qt ∼ N (0,Qt) , (2.25)

where qt is a zero mean noise process with covariance Qt, which can be estimated from the

available historical data. The closed-form KF estimation is possible due to the mathematical

tractability resulting from the linear algebra over Gaussian random vectors.

The computation of the predictive estimation of x̂t|xt−1 from the prior distribution of x̂t−1

is done over the parameters:

mx̂t|xt−1 = Atmxt−1 (2.26)

Cx̂t|xt−1 = AtCt−1A
ᵀ
t + Qt, (2.27)

where Qt is the covariance of the additive noise process affecting the dynamics of xt. The

predictive distribution x̂t|xt−1 thus expresses the KF prior belief of what the true hidden state

distribution xt might be.

7We assume no control input in our tracking application, i.e., the objective vectors are assumed to evolve
independent of external actions.



48 Chapter 2. Representing, Measuring, and Handling Uncertainty in Decision-Making

KF Measurement Correction Step

This step updates the estimated x̂|xt−1 distribution obtained in the prediction step upon the

collection of a new sample yt resulting from measuring the hidden state xt. The measurement

distribution is denoted as yt|xt and results from the following expression:

yt = Mtxt + vt, with vt ∼ N (0,Rt), (2.28)

in which Mt is a measurement function model mapping the true state xt into a measurement

state yt and vt is a measurement noise process that is assumed as a zero mean Gaussian additive

noise process, with a noise covariance Rt that can also be estimated from available historical

data. The KF estimation for the current hidden state distribution given the measurement yt is

then represented as xt|yt and is also computed in closed-form over the parameters.

The closed-form equations arising from the KF measurement correction step make use of

feedback from the residual between the observed measurement yt in Eq. (2.28) and the mea-

surement expected from the estimation x̂t|xt−1 computed in the prediction step, i.e.,

ỹt = yt −Mtx̂t|xt−1, (2.29)

where the residual ỹt is also known as an innovation process containing novel statistical in-

formation that was not already known from the series of historical measurements y0, · · ·yt−1.

Similarly, the residual measurement covariance matrix is expressed as

St = MtCx̂t|xt−1M
ᵀ
t + Rt. (2.30)

The so-called Kalman gain – represented as the matrix Kt – adjusts the importance of the

residual relative to the prior estimate x̂t|xt−1 in the correction step of the true state distribution.

Intuitively, when the pairwise covariances in the measurement noise covariance matrix Rt are

high, less importance should be assigned to the observations and, therefore, the Kalman gain

should be small. Conversely, when the estimated prior covariance Cx̂t|xt−1 is high, the state

vector is expected to convey high variability and, hence, the Kalman gain should be high,

to more strongly account for the observed measurements. In fact, the Kalman gain is the

minimum mean-square error factor for correcting the prior estimation x̂t|xt−1 while accounting

for the residuals resulting from the observed measurements yt and is expressed as

Kt = Cx̂t|xt−1M
ᵀ
TS−1

t . (2.31)

The correction step is then completed by updating the parameters of the KF prior state esti-

mation in light of the residual:

x̂t = x̂t|xt−1 + Ktỹt, (2.32)

Cx̂t = (I−KtMt)Cx̂t|xt−1 . (2.33)

Prediction in Metaheuristics Using KF

The first attempt to integrate KF estimation into metaheuristics was due to Stroud [199],

who designed an extended KF to support an active learning heuristic for further reducing the
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uncertainty of the system by re-evaluating specific solutions. Particularly, an extended KF was

designed to support heuristic decisions on “(...) when to generate a new individual, when to

re-evaluate an existing individual, and which one to re-evaluate”.

Rossi et al. [175] applied the KF for tracking the optimum solution (for single-objective, uni-

modal problems) and proposed several ad-hoc heuristics to incorporate the predictive knowledge

in order to guide the evolutionary process toward promising regions. Three heuristic classes were

assessed: (i) incorporating the predictive knowledge into the metaheuristic variation operators

(ii) generating new solutions around the estimated optimum; and (iii) biasing the search by

increasing the fitness evaluation inversely proportional to the distance of the current solution

to the predictive optimum, discounted by the amount of uncertainty in the prediction.

The latest work found in the literature applying KF estimation in metaheuristics had just

been published by the time this thesis was being wrapped up and is due to Muruganantham

et al. [159], who proposed tracking each candidate solution in the decision space of a Multi-

Objective Optimization (MOO) solver in time-varying – yet deterministic – environments. The

general idea somewhat resembles our proposal for tracking mutually non-dominated decision vec-

tors presented in chapter 6, although, in our case, the estimation is done in the (d− 1)-simplex

and, thus, the linear Gaussian-Markov assumption does not hold, what leads to the need for a

different Bayesian estimation model based on the Dirichlet distribution.

2.3.5 Dirichlet Priors for Bayesian Estimation in Simplex Spaces

Sometimes, as it is the case in this thesis (see chapter 6), it will be useful to estimate uncertain

quantities in structured spaces other then Rn. For instance, the following expression describes

a vector w belonging to a simplex space:

w = (w1 w2 · · · wd)ᵀ ∈ Sd−1 =

{
w ∈ Rd :

d∑
k=1

wk = 1, ∀ j wj ≥ 0

}
. (2.34)

Note that we are interested on representing w as a random vector of proportions lying in the

(d−1)-simplex space, Sd−1. It is worth noting that simplex spaces possess elementary properties

that may simplify the resulting analytical expressions when performing Bayesian inference over

proportions. The first property regards a basic notion of complementarity. It describes the fact

that each individual variable (proportion) wi can be completely described as the complement of

the sum over the remaining variables to the unity, i.e., wi = 1−
(∑

k 6=iwk

)
. This is the reason

why simplex spaces are denoted as Sd−1 and why we only need to account for d − 1 variables

when depicting Sd−1 (see Fig. 2.4). In other words, each and every variable in a simplex space

complements one another; i.e., any subset of d − 1 variables from the simplex space yields

complete information about the value of the remaining variable.

The second intuitive property is given as a geometrical interpretation of the maximum

entropy discrete distribution represented as a point in Sd−1, when viewing the simplex as a

natural space for representing all possible discrete probability distributions over d orthogonal

states. Take d = 3 as an example, for which S2 can be depicted in an extended form as an

equilateral triangle. Then, the orthocenter, circumcenter, center of mass, and even the incenter
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(a) D(1, 1, 1) (b) D(2, 2, 2) (c) D(3, 3, 3)

Figure 2.4: Contour plots for the Dirichlet distribution in the 2-simplex.

of S2 all perfectly coincide at the point wC = (1/3 1/3 1/3)ᵀ, which results from the intersection

of the three lines of symmetry of S2 [81]8. It turns out that wC thus also represents the discrete

distribution of maximal Shannon’s entropy (see section 2.2.1).

The Dirichlet Distribution

One of the most important questions when designing Bayesian inference methods for simplex

spaces is: what distribution should we use to represent our uncertainty regarding w ∈ Sd−1?

We could in principle try fitting an unbounded distribution such as the multivariate Gaussian to

represent the data collected in Sd−1. But such parametric model would lead to large estimation

errors nearby the boundaries of Sd−1, since the Gaussian would always attribute positive density

to unfeasible samples, i.e., points that lie outside Sd−1.

A more plausible choice could be to fit distributions in the surface of a unit hypersphere, such

as the von Mises-Fisher distribution [18]. But while such distribution conveys some structure,

i.e., the elements in Sd−1 are also unit vectors and can be thus represented in the unit d − 1

hypersphere surface, there are still elements outside of Sd−1 that could be attributed positive

probability density.

One sound choice that is just right for modeling uncertainty in the Sd−1 simplex (i.e., that

indeed takes Sd−1 support) is the Dirichlet Distribution (DD) [160], which is a multivariate

version of the Beta distribution. Because any multinomial probability distribution can be rep-

resented as a point in Sd−1, the DD is also known as a distribution over distributions. Thus, the

DD can also be used to represent the underlying uncertainty over true probability distributions,

what conveys a notion of second-order uncertainty.

This is one of the main reasons why the DD is becoming popular in several Bayesian machine

learning applications, e.g. text mining and topic models [19]. Another reason is that the DD is

part of the exponential family [160], which means that the conjugate prior used for estimating

the posterior distribution using Bayes Theorem is also from the exponential family. This very

8This property only holds for equilateral triangles. For other triangles, Euler [81] proved that those notable
points (except the incenter) are always different, yet collinear, lying in the so-called Euler’s line.
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much simplifies the calculations, otherwise, one would need to rely on numerical methods to

estimate the posterior.

In order to motivate its usage, consider a simple coin flipping experiment. The goal is

to represent our uncertainty about the probability that a coin flip will yield heads, based on

previously observed flippings. We may be very well dealing with a fair coin and therefore we

may want to assign P (heads) = P (tails) = 1
2
. On the other hand, we have no idea from where

this coin came from or how it was fabricated. So we do not want to rule out the possibility

that the coin is biased. Here is when the DD usage becomes very handy: we can assign positive

probability density to all the possible heads odds. Not only that, but also, by using the DD9,

we can model the decrement of our uncertainty about the heads odds as we observe more and

more flippings, making the probability distribution P to progressively peak at the true odds

value.

Let w denote a vector of proportions so that wk represents the proportion of the k-th item.

For example, in financial portfolio applications, wk can be the proportion of wealth invested in

the k-th asset. The DD can be written as:

w ∼ D(α) =
Γ (
∑

k αk)∏
k Γ(αk)

∏
k

wαk−1
k , (2.35)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function10 and the parameter α = (α1 · · · αN)ᵀ

determines the shape of the distribution (with αk > 0 for all k). Note that if the value of

all but one of the N components of w are given, then the value of the remaining one is also

known because
∑

k wk = 1. Thus, the Dirichlet density will lie in a d − 1 hyperplane (the

(d− 1)-simplex) in d-dimensional space.

The DD can be re-parametrized by the mean vector m =
(
α1

αC
· · · αN

αC

)ᵀ
, where αC =

∑
k αk is

known as the concentration parameter, which controls the dispersion of the distribution around

m: the higher αC is, the more concentrated the density will be around the mean vector in the

(d− 1)-simplex (see Fig. 2.4).

The concentration parameter has an interesting interpretation in terms of learning (and

therefore uncertainty reduction): if each αk is interpreted as pseudo-counts11, then the more we

accumulate evidence, the more certain we will be about the location of w in the (d−1)-simplex.

Remark: When α = 1, the DD describes a uniform distribution in the (d−1)-simplex, which is

the maximum entropy distribution for random vectors whose moments are not constrained [163],

i.e., whose only constraint is that it is contained in the distribution support.

The moments of the DD are:

E[wk] =
αk
αC

, (2.36)

9In the case of a simple coin experiment, the DD actually reduces to a Beta distribution.
10Γ(x) is an extension of the factorial function in the real line, defined as Γ(x) = (x−1)Γ(x−1) and Γ(1) = 1.

For a positive integer n, Γ(n) = (n− 1)!.
11Pseudo-counts are used to adjust models based on observed frequencies of occurrences. Rare (but not

impossible) events that were not yet observed are usually inaccurately attributed zero probability, but this can
be artificially corrected by adding small quantities to such frequencies so the model can account for such events.
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Var(wk) =
αk(αC − αk)
α2
C(αC + 1)

. (2.37)

The covariances are always non-positive for any two proportions in the DD, since whenever wk
is incremented, some or all other proportions must be necessarily decremented so as to satisfy∑

k wk = 1. Thus,

Cov(wi, wj) =
−αiαj

α2
C(αC + 1)

. (2.38)

It also is worth noting that the marginal distribution of wk is a Beta distribution, i.e.,

wk ∼ Beta(αk, αC − αk). (2.39)

Remark: James and Moisimann [124] showed that the Dirichlet distribution is characterized

by neutrality, which is a strong notion of statistical independence on spaces whose coordinates

must add up to a certain sum. That is to say, if w ∼ D(α), then the vector w is completely

neutral because wk ∼ Beta(αk, αC − αk) is provenly independent of

w(−k) = (
w1

1− wk
· · · wk−1

1− wk
wk+1

1− wk
· · · wd

1− wk
)ᵀ ∼ D(α(−k)), (2.40)

for all 1 ≤ k ≤ d, what implies that any permutation of w is neutral [124]. We can thus

see that the neutrality property of the DD is thus intuitively linked with the complementarity

property of Sd−1 (see section 2.3.5): although every element in w perfectly complement the sum

of the others, removing an element wk from w while equally redistributing its mass across the

remaining d − 1 elements yields a new Dirichlet distribution which is completely independent

of wk.

The Dirichlet Distribution as the Conjugate Prior of a Multinomial

It is also well-known that the DD and the multinomial distribution are the conjugate priors of

each other [160]. Let x be a vector of N observed frequencies of occurrence (counts) following a

multinomial distribution with parameter p (here, p is a proportion vector in the (d−1)-simplex

specifying the probabilities of observing an item k). Its probability mass function is expressed

as:

x ∼Mult(x|p) =
(
∑

k xk)!∏
k xk!

∏
k

θxkk . (2.41)

If p follows a DD (i.e., p ∼ D(p|α)), then the posterior distribution of p given that we observed

the counts x also follows a Dirichlet:

p(p|x) = p(x|p)p(p)

= Mult(x|p)D(p|α)

∝
∏
k

θxkk
∏
k

θαk−1
k

∝
∏
k

θαk−1+xk
k

= D(α + x).
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This suggests an intuitive strategy for updating our beliefs about proportions evolving over

time: start with a Dirichlet prior p ∼ D(α) and just add the observed counts to the history

of observed frequencies α, thus increasing the concentration parameter (αC) and, as a result,

decreasing our uncertainty.

Tracking Changing Probabilities Over Time with Dirichlet Priors

Bertuccelli and How [30] devised a Bayesian dynamic model to track the transition probabil-

ities of a Markov-Chain model evolving in time. By using one Dirichlet prior for each row of

the transition matrix, they derived an online, recursive mean-variance Maximum A Posteriori

(MAP) approach to estimate the transition matrix as counts on the number of state transitions

were collected.

Classical MAP estimators may however fail to respond in a timely manner to changes in the

transition matrix because, since the estimators are based on the whole history of observed counts,

“a large number of new transitions will be required for the change detection.” [30]. The authors

have then proposed adding pseudo-noise by heuristically scaling the variance of the Dirichlet

distributions, which may help to reduce the dependency of the model on old observations. The

recursive MAP equation for updating the posterior mean is as follows [30]:

p̄k(t+ 1|t+ 1) = p̄k(t+ 1|t) + Σkk(t+ 1|t) δk,k′ − p̄k(t+ 1|t)
p̄k(t+ 1|t)(1− p̄k(t+ 1|t))

, (2.42)

where δk,k′ is an indicator function for transitions observed from a state k to any new state

k′, and Σkk = V ar[pk]. Moreover, in the absence of a known dynamical model for how the

transition probabilities evolve over time, they simply assumed the following prediction steps:

p̄k(t+ 1|t) = p̄k(t|t), and (2.43)

Σkk(t+ 1|t) = Σkk(t|t). (2.44)

In this thesis, we make use of the Dirichlet mean MAP recursive estimation to update

our beliefs about how trade-off investment proportions evolve over time in financial portfolio

applications. One of our contributions is to devise a dynamical model for the mean prediction

step of Eq. 2.43), considering a sliding window update approach (see section 2.1.2 and chapter

6).

2.4 Summary of the Contributions

This chapter’s contributions to the thesis are as follows:

1. Several notions of what it is meant by uncertainty throughout the thesis are presented

and motivated, as well as practical approaches to model and handle it. Although this

concept can be easily mistaken for risk, we are sympathetic with the points made by

Hybbard [119], that we summarize in the following way: risk = (uncertainty, undesirable

outcomes);
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2. A robust covariance matrix estimation technique for mitigating model misspecification

under a Gaussian assumption was presented in section 2.1.3. This technique is investigated

in our preemptive multi-objective metaheuristic proposal presented in chapter 4. The

algorithm has been designed to search for stable investment portfolios over time, i.e.,

portfolios for which the expected return and risk estimates change as little as possible

between investment environments;

3. Finally, two Bayesian models that are used and adapted in the anticipatory learning tools

proposed in chapter 6 were presented: (1) the Kalman Filter, which is used to keep

track of evolving Gaussian distributions over time under Markovian, linear dynamics; and

(2) an approach to track the mean of the Dirichlet priors used to represent uncertain,

time-varying proportions.

In the next chapter, we provide an overview of what we mean by multi-objective optimization

under uncertainty, the central topic of this thesis.



Chapter 3
Multi-Objective Optimization Under
Uncertainty

Do not quench your inspiration and your imagination; do not become the

slave of your model.

– Vincent Van Gogh

The test of a first-rate intelligence is the ability to hold two opposed ideas in

the mind at the same time, and still retain the ability to function.

– Francis Scott Fitzgerald, The Crack-Up (1936)

This chapter summarizes the main concepts required for a better understanding of the doc-

torate research scope. In addition, a literature review is presented comprising the historical

roots of Multi-Objective Optimization (MOO) under uncertainty. Recent research on Evolu-

tionary MOO (EMOO) in uncertain environments is also covered. From this point forward, we

assume minimization of the objective functions, unless indicated otherwise.

3.1 Foundations of Multi-Objective Optimization

The simultaneous optimization of two or more objective functions requires a trade-off analysis

over the candidate decisions. This is so because the notion of optimality in an MOO problem is

not straightforward as in mono-objective optimization. In the latter, a global optimum can be

defined as a point u∗ ∈ Ω in the set of feasible solutions (search space), Ω ⊂ Rd (d is the number

of decision variables), such that f(u∗) ≤ f(u), ∀ u ∈ Ω; whereas, in MOO, we are given a vector

of m objective functions, f(u) = [f1(u), · · · , fm(u)], which provides m different evaluations of

a candidate decision, u ∈ Ω. All f1, · · · fm must be simultaneously minimized. If one wants to

replace f for f , then the standard order relation ≤, which ranks decisions according to their

objective value, must also be replaced for one that can rank objective vectors (a.k.a. performance

vectors). An early formulation of an MOO problem appeared in Kuhn and Tucker [141].

While ≤ leads to a total order in the real line, it turns out that there is no total order

for ranking elements of Z ⊆ Rm, for m ≥ 2, unless one makes use of a real-valued (ordered)

55
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aggregation function (e.g. weighted sum, min, max, etc.) that specifies the importance of each

objective function. This requires a complete a priori preference expression by the decision

maker (DM)1, but if this were the case, then we could transform the MOO problem back into

a mono-objective one which minimizes the aggregation function.

True MOO problems, thus, deal with optimization in the absence of a priori preferences, in

which the Pareto Dominance (PD), �, is the standard order relation used for ranking objective

vectors. The PD is defined as u � y ⇐⇒ ui ≤ yi, ∀ i and ∃ j such that uj < yj. The PD

was shown by Voorneveld [217] to be “(...) the unique nontrivial partial order on the set of

finite-dimensional real vectors satisfying [at the same time] a number of intuitive properties”,

including the axiom of independence of duplicated states, i.e., if dim(u) = dim(y) ≥ 2 and there

are coordinates i, j for which i 6= j, ui = uj, and yi = yj, then u � y ⇐⇒ u−i � y−i (the

subscript −i notation denotes the removal of the i-th element).

This axiom implies that the PD depends only on objectives with different evaluations, what

conveys a notion of ignorance w.r.t. the probability distributions of each variable: if the variables

having identical values did matter, the implicit considerations of the probability of occurrence

of those values would be required to modify the ranking, but this is not the case for the PD.

That is to say, a DM relying on the PD is ignorant w.r.t. the underlying uncertainty regarding

the objective vectors. One of the tasks of MOO under uncertainty, therefore, is to design a

dominance relation possessing uncertainty awareness. Before showing how this can be achieved,

we present a basic model of MOO for static and deterministic environments:

min f(u) = (f1(u) · · · fm(u))ᵀ , s.t. u ∈ Ω, (3.1)

in which f : Rd 7→ Rm and fi : Rd 7→ R, i = 1, · · · ,m. When solving (3.1), there are no

guarantees of finding a unique decision that simultaneously minimizes all objective functions,

as this would require no conflict between the objective functions, in the whole domain. Thus,

the min operator (or max, when maximizing) is understood as: obtain the set of all decisions

for which improving the value of one objective function worsens the value of at least one other

objective.

We therefore require an optimality concept that is compliant with PD for revealing the

underlying trade-off among the objectives. The Pareto optimality property does just that: it

reveals all feasible non-inferior (a.k.a. efficient, Pareto optimal, or non-dominated) decisions.

Definition 3.1 (Noninferior decision). A decision u∗ ∈ Ω with an associate objective vector

z∗ ∈ F(Ω) is non-inferior iff f(u′) � f(u?),∀ u′ ∈ Ω.

The set of non-inferior decisions, Ω? ⊂ Ω, is also known as the Pareto Set (PS), whereas

its image in the objective space, F? = F(Ω?) ⊂ F(Ω), is known as the efficient frontier, or

the Pareto Frontier (PF), which reveals the geometry of the underlying trade-off among all m

objective functions.

The idea behind solving MOO problems in Multi-Criteria Decision-Making (MCDM) is to

find a diverse set of efficient solutions providing a good representation of the existing trade-off

1The DM preferences are encoded into the dominance relation. Even when using an ordered aggregation
function (e.g. min, max, etc.) there is an implicit indifference assumption about the importance of each
objective.
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between the conflicting optimization criteria, so that the decision-making process can be done

a posteriori. One important advantage of the a posteriori approach is that the DM can acquire

a better knowledge about the nature of the problem, which is not always available before the

visualization of the obtained approximation of the efficient frontier solutions. The DM can thus

solve an MOO problem to obtain a finite approximation of the PS, U? = {u?1, · · · ,u?N} ⊂ Ω?, and

then analyze the corresponding objective vectors in F(U?) = {z?1, · · · , z?N}, in which z?k = f(u?k),

k = 1, · · · , N , for selecting the non-inferior decision that better represents his/her preferences,

not directly incorporated into the existing objective functions.

Depending on the geometric properties of the objective functions (e.g. on whether they are

convex, quasi-convex or non-convex) and of the feasible region in the search space, the shape of

the PF in the objective space can pose significant challenges to classical MOO problem solvers.

For instance, several MOO solvers struggle to handle concave or discontinuous PFs. Such solvers

often require several runs to approximate the non-inferior solutions set by e.g. optimizing at

each run a single objective function, while iteratively parameterizing the remaining optimization

criteria as constraints over the objective space, which are difficult to tune unless one has complete

information about the feasible region in the objective space.

Therefore, depending on the extent to which each objective function presents multi-modality

(i.e., induce several local optima), those classical methods may converge to local PFs. It turns

out that most classical MOO solvers do not possess the ability of escaping from such local PFs

and, thus, there is often no guarantee that they will manage to converge to the true, global

PF, except under very special circumstances, which very rarely are directly found in real-world

problems. In general, the MOO solver is required to be stochastic to have a chance of escaping

from local optima.

3.1.1 The Hypervolume (S-Metric) Indicator

Let Z = F(Ω) ⊂ Rm be the feasible alternatives set in the objective space (with m objective

functions) and π(Z) the set of all non-empty subsets of Z. Indicators of the form I : π(Z) 7→ R
can be used to measure the quality of sets [227]. The Hypervolume (Hypv or S-Metric) [10] is

a sound theoretical indicator that captures in a single real value the proximity to the true PF,

the coverage, and spread of a set of candidate non-inferior decisions along the objective-space.

Moreover, S is the only known indicator that reflects the PD [10], meaning that it is strictly

monotonic w.r.t. the PD [86]. In other words, if a finite approximation set A dominates a finite

approximation set B, then this fact will be reflected in the hypervolume values of the two sets2.

Mathematically,

A 4 B ∧B 64 A⇒ S(A) > S(B). (3.2)

When comparing sets of arbitrary sizes, the following other statements can be made without

any further preference information:

1. AC B (A is better than B) if A 4 B and B 64 A; or

2. A ‖ B (incomparable) if A 64 B and B 64 A.

2The PD can be easily generalized for comparing two sets of trade-off alternatives: A is said to Pareto-
dominate B if every alternative in B is Pareto-dominated by at least one alternative in A.
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(a) Measured Hypv

(b) Higher proximity (c) Higher spread (d) Higher coverage

Figure 3.1: In part (a), the hypervolume of an approximation set of three objective vectors for
a mean (µ) maximization/variance (σ2) minimization bi-objective problem can be computed by
summing over the Pareto dominance regions bounded by each alternative, its neighbor in the
objective space, and the reference point. The sets of alternatives A =

{
a(1), a(2), a(3)

}
convey

higher (b) proximity to the PF; (c) spread; and (d) coverage than the sets B =
{
b(1),b(2),b(3)

}
,

respectively.

Another property of the Hypv indicator is the so-called 6C-compatibility [228], i.e.,

∀ A,B ∈ π(Z) : S(A) ≥ S(B)⇒ A 6CB, (3.3)

what motivates the design of heuristics for maximizing Hypv as a means to improve sets of

trade-off options. Given a reference point zref, the Hypv of A is defined as [227]:

S(A) =

∫
z∈Z

αA(z)dz, (3.4)

αA(z) =

{
1, if ∃z′ ∈ A : z′ � z � zref

0, otherwise.
(3.5)
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Geometrically, the S-Metric measures the hypervolume of the polytope formed by the union

of all dominance regions of each z ∈ F (F is a finite approximation set of objective vectors),

bounded by a reference point zref ∈ Z and the ideal objective vector (see Fig. 3.1). The indicator

can also be described as a composition of mappings of the form

Rd × · · · × Rd︸ ︷︷ ︸
N decision vectors (U)

f−−−→ Rm × · · · × Rm︸ ︷︷ ︸
N + 1 objective vectors (F ∪ {zref})

S−−→ R︸︷︷︸
The hypervolume value

(3.6)

and is computed as

S(F(U), zref) = Λ

 ⋃
z∈F(U)

{z′ ∈ Z : z � z′ � zref}

 , (3.7)

where Λ =
∏m

i=1 [ai, bi]
m is a Lebesgue measure over hyperboxes in Rm. Its maximization over

infinite sets of candidate non-inferior solutions has been shown to be equivalent to finding the

true PF [86], which has lead to the development of sound hypervolume maximization-based

methods such as SMS-EMOA [32] (Section 3.4.1). Before presenting another interesting prop-

erty of the hypervolume, we define a Nadir point.

Definition 3.2 (Nadir point). The objective vector znad ∈ Z is a Nadir point if it is composed

of the worst components of the objective vectors representing the extrema of the Pareto Frontier.

It turns out that, given a finite set of feasible solutions U , if zref � znad, then maximizing S
corresponds to finding the Pareto Set Ω? when |U| → ∞ [86]. It has also been experimentally

observed that the maximization of S for finite sets leads to subsets of the PF presenting high

levels of diversity, coverage and spread of points in the objective space [10] (see Fig. 3.1 (b)–(d)).

Because of the theoretical guarantees and implications of the hypervolume maximization for

MOO, this thesis devotes substantial emphasis on its usage as a global criterion for automating

sequential MCDM. In fact, when maximizing S, we can think of the original MOO problem as

a mono-objective optimization problem over sets of mutually non-dominated (or incomparable)

decisions. As pointed out by Zitzler et al. [229], ”(...) the search space Ψ consists of all potential

Pareto set approximations rather than single solutions, i.e., Ψ is a set of sets”.

3.1.2 Hypervolume and the convexity of the Pareto Frontier

One important fact concerning the geometry of the PF is that it will be convex if every individual

objective fi are convex functions [85]. Under those conditions, a non-inferior solution u? ∈ Ω?

can be characterized by at least one weight vector w, where wj ∈ [0, 1] and
∑m

j wj = 1, which

is associated with the following multi-objective weighted sum formulation [85]:

〈w, f〉 := min
u∈Ω

m∑
j=1

wjfj(u). (3.8)

The convexity of the PF in this case allows for the use of scalarization methods for which

there are discretization strategies for w to generate N non inferior decisions, by independently
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solvingN weighted mono-objective problems in the form of Eq. (3.8) [85]. However, one practical

difficulty of such scalarization is that a uniform discretization over the weights does not lead

to uniformly distributed objective vectors over the PF, except when all objective-functions are

linear, in which case the PF is a hyperplane. The maximization of S, on the other hand, is

guaranteed to obtain a finite subset of objective vectors belonging to the PF with good additive

approximation [41], although the resulting distribution of points is also not guaranteed to be

uniform.

3.1.3 Non-convexity of Hypervolume

When one attempts to obtain a finite approximation of the PS (i.e., U) composed of N non-

inferior solutions, it is straightforward to verify that the maximization of S leads to a non-convex

problem over ΩN . One first has to note from Eq. (3.7) that S can be described by a sum over

products of differences between the objective functions evaluated at the ordered elements of U .

For instance, considering two objective functions (for m = 2, and assuming minimization of

both objectives), note that we can write S as

S(U) =
N−1∑
i=1

[f1(ui+1)− f1(ui)] [z2,ref − f2(ui+1)] (3.9)

+ [z1,ref − f1(u1)] [z2,ref − f2(u1)] .

In other words, following the direct application of the Lebesgue measure in Eq. (3.7), the

Hypv computation can be decomposed by summing over the areas (products of the differences

between individual objective values) of the dominance regions that are exclusively contributed

by neighboring pairs of objective vectors, following a lexical order in the objective space (see

Fig. 3.1 (a)).

It then becomes clear that the product of differences violates the conditions for S(U) to be

a convex function in ΩN , even when each individual fj is a convex function. This is because

the product of two non-negative convex functions, say, g and h, of the form h ◦ g : Rn 7→ R, is

convex iff (g(x)− g(y))(h(x)− h(y)) ≥ 0 for each x,y in the domain of g and h [37,63]. Thus,

for S(U) to be convex, it would be required for each fj to not conflict with any other objective

function (i.e., the signs of the gradient vectors components, ∇fj, should be the same coordinate-

wise) and, hence, the Pareto Set associated with the MOO problem would contain the unique

global solution, common to each individual optimization criteria, i.e., u∗ = u∗j ∀ j, where u∗j =

arg minu fj(u) and u∗ is the unique non-inferior solution to the MOO problem. It is evident,

however, that, because of the non-convexity of S, sophisticated problem-solving techniques

are required for hypervolume maximization, such as biologically-inspired metaheuristics, which

turns out to be the technique of choice of this thesis (see section 3.4).

3.1.4 Flexibility in Multiple Criteria Decision-Making

In the following, we explore a logical chain of results connecting three key concepts henceforth

discussed: maximal Hypv ⇒ PD compatibility ⇒ preference for flexibility. The set-based

extension of the PD is defined as follows [227].
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Definition 3.3 (Set-based Pareto Dominance). For two sets of alternatives A,B ∈ π(Z), A
is said to (Pareto) dominate B (A 4 B) iff (∀z(b) ∈ B), (∃z(a) ∈ A) : z(a) � z(b).

In decision theory, no rational DM will deliberately choose elements in the set of dominated

options ĒA = {z ∈ A : ∃z′ ∈ A, z′ � z} [126]. Hence, the set of incomparable options that are

not dominated by any other option is A? = A \ ĒA. Removing ĒA from A does not reduce

flexibility, whereas removing any z? ∈ A? from A does reduce it, and, thus, we regard A? as

the essential set of A [169].

Flexibility of Set-Based PD

Recall that π(Z) denotes the set of all non-empty subsets of Z. We now show that the set-based

PD is consistent with preference for flexibility [8]:

Definition 3.4 (Flexibility Consistency). Let P be a binary relation on Z (zaPzb means that

za is preferred to zb). A relation R ⊆ π(Z)× π(Z) is P -consistent with flexibility if:

∀A ∈ π(Z),∀z ∈ Z \ A
{
A ∪ {z} ‖ A ⇔ ∃z′ ∈ A : z′Pz,
A ∪ {z}R A otherwise.

Def. 3.4 establishes that adding a new alternative z to a set A is only preferable if z is

essential to A. Moreover, the relation R on π(Z) is P -consistent with preference for flexibility

iff it satisfies the following axioms [8]:

Axiom 3.1.1 (Restricted Monotonicity). ∀z, z′ ∈ Z, zPz′ ⇒ {z, z′} ‖ {z} and ¬(zPz′) ⇒
{z, z′}R {z}.

Axiom 3.1.2 (Incomparability Consistency). ∀z ∈ Z,∀A,B ∈ π(Z) : A ⊆ B,A ∪ {z} ‖ A ⇒
B ∪ {z} ‖ B.

Axiom 3.1.3 (Preference Consistency). ∀z ∈ Z,∀A,B ∈ π(Z) : (A∪{z}R A ∧ B∪{z}R B)⇒
A∪ B ∪ {z}R A ∪ B.

Axiom 1 states that the DM is indifferent to adding a non-essential alternative to a singleton,

but enjoys enlarging it when the original element is not inferior to the new one; Axiom 2 states

that adding a non-essential z to A implies it is also non-essential to a set containing A; whereas

axiom 3 states that adding an essential z to a pair of sets implies it is also essential to their

union [8]. The orders PD � (P ) and the set-based PD 4 (R) satisfy axioms 1–3 and, thus 4 is

�-consistent with flexibility, according to Def. 3.4.

Flexibility of the Hypervolume Indicator

If Hypv comparisons are used in a relation 4S in π(Z) × π(Z), 4S can also be verified to be

�-consistent with flexibility. In fact, 4S refines 4 [227], i.e., ranking according to S values
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Figure 3.2: PF partitioning associated with the placement of two mutually non-dominated
alternatives. In the leftmost figure, the Hypv is minimal when computed from the extrema
alternatives and, hence, the approximation quality is the lowest among all possible distributions
of two points lying in the PF. On the other hand, diversity of choice in this case is high because
both alternatives have approximately the same likelihoods of being chosen when considering the
universe of all possible DMs preference specifications along the PF. The optimal µ-distribution
obtained with maximal Hypv in the rightmost figure not only achieves high approximation
quality, but also high diversity of choice.

refines the partial order obtained by 4, in which case Hypv also satisfies axioms 1–3. Generally,

any indicator I refines 4 if the following holds (see Theorem 3.1 in [227]):

A 4 {z} ⇒ I(A ∪ {z}) = I(A) and (3.10)

A 64 {z} ⇒ I(A ∪ {z}) > I(A), (3.11)

i.e., adding an essential option improves I, but adding a non-essential one does not alter its

value.

3.1.5 On Optimal µ-Distributions and Diversity of Choice

Maximal Hypv has been investigated in terms of the distributions of µ alternatives over the

PF [9,31]. Note that the set attaining maximal S value is a subset of the PF [86]. One question

is how the µ-distributions over the PF are related with Kumar’s [142] notion of diversity of

choice. It turns out that the goal of maximal Hypv is to achieve a µ-distribution representative

of all admissible choices. Suboptimal Hypv µ-distributions can leave vast portions of the PF

underrepresented. The point of taking decisions to achieve future maximal Hypv µ-distributions

is thus to have higher quality approximation of the PF with higher diversity of choice for future

preference specifications (see Figs. 5.5 and 3.2).

As it can be noted from Fig. 3.2, the Hypv maximization favors distributions of options lying

on knee regions of the Pareto Frontier, thus avoiding the extrema.
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3.2 Stochastic Multi-Objective Optimization

Stochastic MOO (SMOO) problems can be modeled in a similar way as that in (3.1):

min f(u, ξ) = (f1(u, ξ) · · · fm(u, ξ))ᵀ , s.t. u ∈ Ω, (3.12)

where ξ is a vector of random variables (r.v.’s). In most cases, ξ will represent an exogenous

noise process. Note that, as a consequence of each objective function being dependent on ξ,

each objective value is also a r.v., and, hence, z = f(u, ξ) is a random vector. It is often assumed

that Ω is still a deterministic feasible set, although chance constraints can also be incorporated

as a proxy for integrating the DM attitude to risk into the SMOO model.

It should be noted that the model in Eq. (3.12) is an abstraction, without a precise mathe-

matical meaning, i.e., it does not specify how multiple, conflicting, stochastic objective functions

should be simultaneously optimized. Abdelaziz [1] identifies two reduction techniques for solving

Eq. (3.12) in the literature: the so called multi-objective method and the stochastic method. In

the former, the SMOO problem is reduced to an MOO one, whereas, in the latter, it is reduced

to a Stochastic Optimization (SO) one. One example of the SMOO → MOO reduction is:

min (E [f1(u, ξ)] · · · E [fm(u, ξ)])ᵀ , s.t. u ∈ Ω, (3.13)

where one can approximate the expected PF by taking e.g. the sample means of each objective

function over a certain number of repeated evaluations of u. Another possibility is to minimize

the second moment of the distribution of the objective functions as well, yielding the model

min (E [f1(u, ξ)] · · · E [fm(u, ξ)] Var [f1(u, ξ)] · · · Var [fm(u, ξ)])ᵀ , s.t. u ∈ Ω. (3.14)

A more general model considers minimizing r functionals V(1)
j [fj(u, ξ)] , · · · ,V(r)

j [fj(u, ξ)] for

each objective function j = 1, · · · ,m, which can be either moments of the probability distri-

bution (expectation, variance, skewness, etc.) or e.g. risk measures. Cardoso et al. [50] have

generalized this approach by using Monte Carlo simulation to approximate the objective vec-

tors distributions subject to non-Gaussian disturbances. The approach was utilized so that the

decision maker can base his/her decisions on any quantile of interest.

The SMOO → SO reduction, on the other hand, works by means of aggregation functions,

and may take, for instance, the following forms:

max u (E [f1(u, ξ)] , · · · ,E [fm(u, ξ)]) , s.t. u ∈ Ω, or (3.15)

max E [u (f1(u, ξ), · · · , fm(u, ξ))] , s.t. u ∈ Ω, (3.16)

in which u : Rm 7→ R is the DM utility function (to be maximized). If u is linear, then, due to

the linearity of the expectation operator, the two formulations are equivalent.

An alternative SMOO → SO reduction model that is still unexplored in the literature is

the explicit maximization of the joint cumulative distribution function over the objective space

such as, e.g.,

max Pr [f(u, ξ) � η] , s.t. u ∈ Ω, (3.17)

in which η is some desired benchmark performance vector.
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For instance, Azevedo and Araújo [13] have proposed a kernel-based method for estimating

the joint distribution of a population of candidate sets of non-inferior solutions in the objective

space by means of multivariate Pareto order statistics, although the estimated distribution (the

so called Non-Dominance Landscape, NDL) was secondary to the optimization process. This

approach is promising for heuristically solving SMOOPs, mainly because the estimated distri-

bution allows for the direct computation of the Pareto Non-Dominance Probability (PNDP) of

any given solution – i.e., the probability of u being a non-inferior solution relative to a fixed

population of candidate mutually non-dominated solutions, U [13].

Coelho and Bouillard [57] have instead used the joint probability approach as a constraint

in a reliability-based model, while Coelho [56] has used it within an intricate SMOO model,

solved with a co-evolutionary metaheuristic:

s.t.

{
minu,η η
Pr [f(u, ξ) � η] ≥ α,

(3.18)

where both the decision variables, u, and the “quantiles”, η, must be simultaneously tuned.

Assuming minimization, the goal was to search for the lowest quantile (or benchmark perfor-

mance) which can be dominated by a solution to be searched for in the search space, while

guaranteeing that the probability of dominance stays at a minimum, pre-defined critical level,

α. While the SMOO → SO reduction can be straightforward, it is not suitable for treating

undefined preferences, in which one is interested in approximating the PF.

The contribution of this thesis in terms of SMOO modeling, thus, is to show how a higher-

level set-based optimization meta-model for maximizing the expected hypervolume over sets of

non-inferior solutions can preserve the guarantees of approximating the whole PF with arbitrary

accuracy. The thesis also shows how to incorporate uncertainty-awareness into metaheuristics

for maximizing E [S] (see chapter 6, section 6.3, Theorem 6.3.1).

3.3 Sequential Decision-Making

When time is taken into account, the most simple and intuitive problem-solving strategy is to

break the problem into decision periods over time and to solve them independently, as separate

and non-interacting entities. This strategy is known as the myopic approach. The limitations

arising from the myopic strategies become evident when there are time-linkages between the de-

cision periods, i.e., when some or all decisions taken in the past directly influence the optimality

properties of the problem in future periods. This issue was recognized in the late 1950’s by

Bellman [23], who devised the so called optimality principle from a set of recurrence equations

governing the right decomposition of decision sequences so as to guarantee that the decisions

taken at any period will allow for optimal decisions to be found in subsequent ones.

This has resulted into the development of two important research fields: (i) in computer

science, Bellman equations are used to derive an optimal problem decomposition strategy for

solving constructive, sequential problems in discrete spaces that can allow for a complete solution

being represented as a path in a directed acyclic graph [61]; and (ii) in control engineering, the

equations are used to find a unique control law, or policy, which can guarantee that each and

every decision (or control action) taken at any decision period are optimal. This is possible
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because Bellman’s equation convey a way to track all relevant information flow about future

states which allow for an optimal decision at the current state [168].

3.3.1 Optimal Sequential Decision Models

When it comes to applications for which a sequence of decisions must be taken over time, there

are three mainstream models of optimal behavior that are commonly adopted in the reinforce-

ment learning literature, which is rooted in Bellman’s dynamic programming approach [127]:

(1) the finite horizon; (2) the discounted infinite horizon; and (3) the average-reward model.

The first model is the most simple one:

min
u
E

[
H∑
t=1

ft(u)

]
, (3.19)

where the value of the decisions are additive, i.e., it is a sum of the objective function value

at each period t. Implicit in this model is the assumption that the DM is indifferent w.r.t.

shorter and longer-term rewards, since the importance of ft(u) is constant over t = 1, · · · , H
(H is the number of decision periods). At the first step, the DM must ideally take the so called

H-step optimal decision, that is, the best possible decision knowing that there are H remaining

decisions to be taken, and so forth. Note that the value of H limits how far ahead the DM

should look into the future in order to take a decision. Clearly, if the DM does not have access

to predictive knowledge regarding the probability distribution of the future values of ft, then

the decision may not be optimal.

The second, discounted model is the most common in the literature:

min
u
E

[
∞∑
t=1

γtft(u)

]
. (3.20)

Note that the model is discounted by γ ∈ [0, 1), what can be interpreted as a way of modeling

impatience: the closer γ is to zero, the more eager the DM is to take decisions that perform well

in the shorter-term. As pointed out by Kaelbling et al. [127], γ also conveys a trick to bound

the infinite sum, making the model more tractable when compared to the finite-horizon case.

The last mainstream model is the limiting case of the infinite model when the discount factor

approaches one:

min
u

lim
H→∞

E

[
1

H

H∑
t=1

ft(u)

]
, (3.21)

where the notion of indifference of the DM regarding shorter or longer-term rewards is even

stronger then in the finite-horizon model.

The point that is most worth noting about the optimal models in sequential decision-making

problems is the fact that very different sequences of decisions can be obtained, depending on

the model choice. Because in this thesis we are dealing with vector-valued functions, none of

the aforementioned models can be directly used for MCDM. Moreover, due to the fact we are

dealing with the interesting case of undefined preferences over the optimization criteria on the

DM’s end, we will also assume that the DM cannot in principle reveal her preference regarding



66 Chapter 3. Multi-Objective Optimization Under Uncertainty

the discount factor choice. In fact, we will later argue that one principled way to deal with

this issue is to set the discount factor automatically, as a function of the perceived uncertainty

which is conveyed in the available predictive knowledge, regarding the future decision periods.

3.3.2 Sequential Multiple Criteria Decision-Making

Guaranteeing optimality properties in decision-making under multiple conflicting objectives is,

however, not intuitive, unless the preferences of the DM are fully specified beforehand, reduc-

ing the problem back to a mono-objective one. As a problem solving technique, the rigorous

mathematical treatment concerning MOO for sequential problems began in the early 1970’s,

following the work of Klötzler [133] and his collaborators. It became evident from that work the

difficulty in proving Bellman optimality for a vector-valued objective function, since usual rules

would generally fail when dealing with sets of non-dominated decisions. The Bellman-Pareto

equations for the sequential SMOO/MCDM case were derived for one-step transition probabil-

ities after Furukawa [92], who defined an m-dimensional vector-valued function evaluated when

going from states i to j, fuij : N × Ω × N 7→ Rm, in which N is a countable set of states at

which the system may be. Note how the underlying time-linkage is explicitly encoded in fuij.

This was an important result because it showed, under a one-step time-linkage (also known as

the Markov assumption), the existence of optimal decision-making policies allowing the DM to

achieve a non-inferior optimal set of Pareto optimal decisions for each decision period. Three

years later, Nollau [161] extended the Bellman-Pareto equation for general state transition func-

tions in sequential SMOO/MCDM. Finally, Sukulimowskil [192] addressed the solution to an

MOO/MCDM problem by predicting the consequences of implementing each non-dominated

decision from the Pareto set as to the future Pareto Sets that could be obtained.

Bellman equations for dynamic SMOO under the Markov Decision Processes framework

began to emerge in the late 1970’s through the early 1980’s, after various incremental works

of Viswanathan et al. [215], Furukawa [91, 92], White [219], Hening [116], and others, both for

finite and infinite decision horizons. While those early works set the theoretical ground for

exactly solving sequential SMOO problems under general dynamic and stochastic models, they

have not lead to effective problem-solving tools. In fact, the combinatorial explosion of the

search space as the number of states and decision periods grow (for discrete state-spaces) makes

the practical application of such optimality guarantees prohibitive [168]. That is why research

activity on various approximation techniques became intense during the last decades.

In Roijers et al. [173], it can be found the latest up-to-date survey on sequential MCDM

(assuming an infinite number of decision periods). It brings one of the first attempts to discuss in

a more thoughtful way in which circumstances a decision-making process should be approached

as a multi-criteria one, although the discussion implicitly assumes that the DM preferences

can be modeled as a linear scalarization function parameterized by a weight vector. The three

scenarios analyzed by Roijers et al. [173] are:

1. The unknown weights scenario, in which scalarization is impossible before the optimization

but is trivial when a decision needs to be taken;

2. The decision support scenario, where scalarization is impossible at all because it can be
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too difficult to specify the weights or the precise formulation of the objective functions.

This can be the case, e.g., when taking a group decision involving a committee of DMs;

and

3. The known weights scenario, for which scalarization is possible before the optimization is

performed, although, if the objective functions are not convex, the chosen weights may

not guarantee that a valid non-inferior decision will be found.

3.3.3 Hypervolume-based Sequential Multiple Criteria Decision-Making

There have been some initial attempts of adopting the hypervolume indicator as a proxy for ob-

taining non-inferior policies and decisions in Multi-Objective Reinforcement Learning (MORL).

Those developments are very recent, and, therefore, contemporary to the research reported in

this thesis. Wang and Sebag [218] designed a MORL algorithm based on the Monte-Carlo Tree

Search (MCTS) method, which consists on searching for non-inferior online policies given the

current state of the decision process. The tree is explored heuristically by selecting the decisions

(actions) that maximally improve the hypervolume value computed over the upper confidence

bounds on the multiple conflicting reward functions over all the history of decisions taken so

far. In this way, the decision process converges in the long run to a learned non-inferior policy

of maximal hypervolume (in the case of the MCTS, merely a sequence of decisions).

A very similar approach is taken in the recent paper of Van Moffaert et al. [213]. Instead

of using a MCTS method, a standard offline Q-learning approach using the same hypervolume

contribution reward idea as of Wang and Sebag [218] for selecting a decision at each period was

employed. As in Wang and Sebag [218], the hypervolume-based MORL Q-learning algorithm

was benchmarked on standard RL toy-problems, such as Deep Sea Treasure, and it has out-

performed competing scalarization methods with different discretization strategies in terms of

spread, coverage and other qualitative measures of the resulting non-inferior policies.

Both approaches, however, require several runs of the MORL algorithm so that the DM can

then analyze the non-inferior policies produced and select the one that is best suited to her

preferences. Van Moffaert et al. [213] pointed out that

“When the policies obtained by different runs of the algorithm are collected, the

user can still make her/his decision on which policies or trade-offs are preferred, but

the advantage is that emphasis on particular objectives is not required beforehand.”

It is worth mentioning that the approach taken in this thesis for hypervolume-based MCDM

(see chapter 5) is completely distinct in principle from the aforementioned contemporary

MORL methods. Because we are not interested in obtaining non-inferior policies, our meth-

ods do not require offline training phases. Actually, our approach much more resembles the

multi-objective model based predictive control system of Butans [46], who proposed the so

called Pareto Decision Tree (PDT) algorithm for selecting a control action maximizing the

hypervolume of the next time step for a multi-objective inverted pendulum control problem.

A bottleneck of this approach, however, is the exponential complexity involved in performing

re-optimizations. Moreover, the dynamic model was perfectly matched to the controlled deter-

ministic system. In contrast, Bayesian tracking in AS-MOO not only avoids re-optimizations,
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but also handles uncertainty when the dynamics can be approximated by a linear Gauss-Markov

assumption.

3.4 Multi-Objective Metaheuristics

When it comes to MOO methods for approximating the PF, evolution-inspired metaheuris-

tics [97] densely populate the state of the art. Evolutionary MOO techniques for coping with

noisy and dynamic environments (but not with both at the same time) began to emerge in the

early 2000’s after Farina et al. [84], Teich [205], Hughes [121], and others. The idea is to take

advantage of the implicit parallelism [44] inherent to Evolutionary Algorithms (EAs) in order

to guide a diverse set of candidate non-inferior decisions toward the PF.

Multi-Objective Evolutionary Algorithms (MOEAs) intend to find in a single run (due to

their population-based nature) a finite subset of solutions in Ω∗, diverse enough to represent

the entire PF in the objective space. Despite convergence to the true PF with MOEAs be only

guaranteed in probabilistic terms, the motivation for using them to solve MOO problems is to

take advantage of their stochastic behavior and of the Pareto dominance information over the

objective space as the main driving force to guide the search towards the PF [66]. By doing so,

one can often obtain a good finite set of mutually non-inferior solutions which tends to be at

the same time (i) as close as possible to the PF (i.e., attempts to minimize a set-based distance

metric in the objective space between the approximated efficient solution set to the PF); (ii)

as evenly spaced as possible over the objective space; and (iii) covering as much as possible the

whole extent of the PF hypersurface in the objective space, from one extreme to the others.

3.4.1 The Fast Non-Dominated Sorting Genetic Algorithm

The Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) [66] is one of the most popular

choices among MOEAs when it comes to solving real-world problems, mainly because of its ease

of implementation; its well-documented results in the literature when applied to several engi-

neering problems; and its algorithmic efficiency. The NSGA-II is a Darwinian evolution-inspired

meta-heuristic consisting of several cycles (generations) comprising the following procedures:

1. A ranking procedure over the candidate solutions based on the Pareto dominance;

2. A local density estimation procedure known as crowding distance estimation;

3. A selection procedure based on binary tournaments among candidate solutions, in which

one solution wins the tourney if it has the best rank or if it is located in a less crowded

region in the objective space when compared with solutions belonging to the same ranks;

4. The probabilistic application of stochastic operators to generate new candidate solutions

by crossing over existing solutions selected by independent binary tourneys and by mu-

tating the resulting offspring solutions; and

5. A survival procedure based on truncate selection in which the population of candidate so-

lutions is kept at a constant size from generation to generation by eliminating all offspring
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1: Initialize P0 = {up} with N candidate decisions and set t← 0
2: repeat
3: Generate a new decision u′ from Pt
4: Set Pt+1 ← Reduce(Pt ∪ {u′}) and t← t+ 1
5: until Termination condition is satisfied

Pseudocode 1: S-Metric Selection EMOA

1: Compute {C1, · · · , CC} by non-dominated sorting Q [32]
2: Select zr = arg minz∈CC ∆S(z, CC)
3: return Q \ zr

Pseudocode 2: Reduce(Q)

and parent solutions which are worst ranked (with the crowding distance estimation values

serving as tie-breakers).

When provided with suitable stochastic heuristic search operators and parameter settings,

this simple algorithmic outline often leads to superior performance over classical MOO solvers,

as extensively reported in the literature for challenging benchmark and real-world problems [66].

3.4.2 S-Metric Selection Evolutionary Algorithm (SMS-EMOA)

The S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [32] is an indicator-

based metaheuristic designed for maximizing the hypervolume (S). As the NSGA-II, it works

by partitioning the population of candidate decisions into C classes C1, · · · , CC , so that elements

belonging to the first class (C1, the class of mutually non-dominated decisions) are not (Pareto)

dominated by any other decision and, thus, are always preferred over decisions from the other

classes. In general, given a class Cj,

(@ u ∈ Cj), (u � v, v ∈
j−1⋃
i=1

Ci). (3.22)

When two decisions belong to the same class, the one yielding the highest S-Metric contribution

(∆S) to its class is preferred. The ∆S value is simply the measure of how much a given objective

vector associated to a certain decision contributes to its class hypervolume:

∆S(z, C) = S(C)− S(C \ {z}). (3.23)

By iteratively replacing the least preferred solutions with novel decisions generated via heuristic

operators, the hopes are that the maximization of S can be promoted. Beume et al. [32] argued

that S(Pt+1) ≥ S(Pt) holds after one iteration of SMS-EMOA. The algorithmic description of

SMS-EMOA is given in Pseudocodes 1 and 2.

Until this point, MOEAs operating in stationary and deterministic environments have been

discussed. In the following, MOEAs that are capable of operating in time-varying environments

are reviewed.
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3.4.3 Overview of Reactive and Preemptive Approaches

Previous studies on how metaheuristics should behave in face of environmental changes diverge,

though. We can distinguish from three different approaches: (i) reactive ones, that only take

action for handling changes upon detection e.g. by either raising mutation rates or lowering

selective pressure [223]; (ii) preemptive3 (myopic) ones which, having no knowledge regarding

when or with which intensity the next change will occur, attempt to alleviate their consequences

by e.g. generating diversity throughout all optimization process [12] or through problem-specific

ad-hoc strategies [38]; and (iii) predictive ones, which try to guess when the next change will

occur and how intense it will be by e.g. using regression models [190].

One early example of an ad-hoc preemptive single-objective metaheuristic considered the

problems of online task scheduling and vehicle routing. For the first problem, Branke and

Mattfeld [38] designed preemptive heuristics for incorporating on their solutions the principle

that if the tasks requiring the highest execution times are scheduled for the first production

periods (but still respecting priority constraints), then the resulting solutions would exhibit

higher flexibility upon unexpected changes in the production plan. Note, however, that such

strategy is problem dependent and cannot be directly transfered to different problems. As for

the second problem [39], the ad-hoc preemptive strategy was to increase the waiting time of the

vehicles departing from stations, thus making the routing plan more robust to unexpected rises

in passengers demands.

Since such reactive and preemptive approaches do not operate upon the knowledge of the

probabilities and the severity with which such atypical disruptive events might occur, it is

not always possible for them to foresee the long-term influence of such policies in the system

performance.

Multi-Objective Reactive/Preemptive Algorithms

Farina et al. [84] discussed the challenges posed by temporal changes for approximating the

dynamic PF. Besides, they grouped sequential MOO problems into four categories, based on

whether the PF and the PS would change over time (t):

• Type I – PS changes with t, whereas PF does not;

• Type II – both PS and PF change with t;

• Type III – PF changes, whereas PS does not;

• Type IV – Neither PS or PF change with t.

More precisely, the sequential MOO problems of Type I are those for which, whenever the

objective function evaluation changes between subsequent decision periods (i.e., ft(u) 6= ft+1(u)

3Our usage of the term “preemptive” should not be mistaken with the traditional usage in computer sci-
ence, mainly in operational systems, which refers to privileged computational tasks possessing the ability of
interrupting and later resuming other tasks. Instead, we use the strict dictionary meaning found e.g. in the
Wiktionary.com, which refers to actions “Made so as to deter an anticipated unpleasant situation”, or e.g., that
found in the Thesaurus dictionary, which refers to actions “designed or having the power to deter or prevent an
anticipated situation or occurrence”.
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for some fixed u ∈ Ω), although the decision vectors that are mapped to the PF may also

change (i.e., Ω∗t 6= Ω∗t+1), the objective vectors in Ft(Ω∗t ) are the same as in Ft+1(Ω∗t+1); and

so forth. Farina et al. [84] designed a set of numerical sequential MOO benchmarks for each

category to facilitate comparisons between new dynamic MOEAs (DMOEAs). With regard to

the design of DMOEAs specifically suited to changing environments, little work has been done

in the literature and only recently the first works discussing e.g. “How performance should be

measured for comparing sequential MOEAs?” have appeared [113].

One well-known reactive DMOEA is due to Goh and Tan [96], who presented a compet-

itive/cooperative paradigm for sequential MOO. The authors have adopted a Latin hyper-

cube sampling process to generate diversity in the search space. The sampled solutions, called

“stochastic competitors”, are generated whenever environmental changes are detected. The con-

tribution of the random solutions subpopulation is evaluated under a competition mechanism in

which contestants are chosen among other evolving subpopulations. If the stochastic competi-

tors emerge as the winner subpopulation, the defeated subpopulation is restarted in the region

in which the random solutions were sampled. In addition, whenever change is detected, part of

the non-dominated solutions before the change is stored in memory. The chosen non-dominated

solutions correspond to the extrema of each objective and, if there is available space in memory,

randomly chosen solutions are also taken to be later reinserted in the population.

Other relatively recent works have considered the application of DMOEAs as well as non-

evolutionary MOO metaheuristics for tracking the PF in a variety of problems. For instance,

Bingul [33] applied a reactive fuzzy-adaptive genetic algorithm for evolving military strategies

in a complex dynamic four-objective combat simulation environment. Deb et al. [68] preemptly

solved a bi-objective dynamic hydro-thermal power scheduling problem by inserting random

and mutated solutions in the population evolved by NSGA-II.

Azevedo and Araújo [12,13] also proposed the preemptive insertion of random solutions (al-

beit with guidance from the estimated joint cumulative distribution of objective vectors in [13])

as a means to continuously generate diversity in order to cope with changes in the objec-

tive functions. Zhang [225] proposed a preemptive artificial immune system framework with

memory and diversity management for obtaining a three-variable discrete greenhouse control

system. Helbig and Engelbrecht [112] considered different reactive archive management policies

in a vector-evaluated particle swarm optimization algorithm for a number of sequential MOO

benchmarks. Di Barba [74], on the other hand, developed a reactive ε-constraint-time-domain

method for the dynamic bi-objective design of the shapes of electromagnetic devices.

Note, however, that all of the aforementioned DMOEAs for sequential MOO rely on either

the reactive or preemptive (myopic) paradigms, which makes them strongly dependent on the

several heuristics put together to trigger complex algorithmic behavior. Not only such excess

of heuristics makes it almost impossible to analyze the DMOEAs behavior, but also they end

up leading to lots of ad-hoc parameter tuning. This thesis, on the other hand, makes the

case for principled, adaptive metaheuristics that do not require offline parameter tuning in

order to handle changes in the objective functions. This is possible because such parameters

are described as functions of the underlying perceived uncertainty. For the latest up-to-date

literature overview on existing sequential MOEAs, c.f. [115].
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On Preemptive Diversity-Based Metaheuristics

Premature convergence is a phenomenon that can be manifested in virtually all population-

based search methods (a.k.a. metaheuristics) when optimizing over multimodal search spaces. A

multimodal search space is one for which there are several local optima that may be understood

as attractors in the search dynamics, i.e., the progress of the population across iterations can

be directed to one or more local optima, making individual solutions progressively more similar

to each other. This process is known as diversity loss4.

Therefore, the inability of generating and maintaining diversity at the population level is

strongly correlated with premature convergence. In dynamical environments, i.e., in problems

whose objective-functions are subject to change over time, a low diversified population of can-

didate solutions will have less chance of adapting to changes [12,13].

Different metaheuristics provide different parameters and strategies for diversity mainte-

nance. For instance, in genetic algorithms, one can adjust the mutation rates or the selection

pressure (e.g. adjusting the number of competing solutions in tournament selection), whereas

in swarm intelligence, one can adjust e.g. repulsion factors – in particle swarm optimization –

or evaporation rates – in ant colony optimization.

In related areas of machine learning, such as reinforcement learning, research on diversity

maintenance is also refereed to as the “exploration vs. exploitation” trade-off, e.g. [55]. Ex-

ploitation roughly means intensifying the search towards promising regions, so better solutions

can be found more quickly. The price to be paid when exploiting promising regions is that of

diversity loss. In order to mitigate diversity loss, an exploration strategy can be employed, in

which new candidate solutions are generated (or sampled) around previously unvisited regions

of the search space. The key for an efficient search procedure is thus the efficient adaptive

handling of such trade-off that arises in diversity management.

3.4.4 Overview of Ad-Hoc Predictive Approaches

The incorporation of prediction-based techniques into EAs can be traced back to the early 2000’s,

although one could argue that the self-adaptation concept conceived in the 1970’s implicitly

incorporated predictive information (e.g. [185]). Many ad-hoc prediction-based techniques have

been proposed for coping with changing environments using different heuristics. For instance,

van Hemert et al. [210] were the first to propose a two population-based approach, in which

one population of candidate Pareto optimal decisions is evolved considering only the current

available environmental information, whereas the second is evolved using an estimation of the

future fitness values. By allowing solutions in the “future” population to migrate at a given rate

to the current population, they were able to improve the genetic algorithm ability to track the

dynamically changing optimum. That is because, although such mechanism is tailored to static

environments, the metaheuristic parameters (mutation rates) are evolved based on a historical

assessment of previous success rates on the task of generating improved solutions.

4Not every premature convergence event necessarily leads to a local optima. Sometimes, diversity loss (e.g.
a constant value appearing in some locus of the decision vector throughout all candidate solutions) incurs in
early stoppage of the search process in a region which does not necessarily represent a local optima. This is true
specially for discrete search spaces.



3.4. Multi-Objective Metaheuristics 73

Simões and Costa [190] used Markov chains and linear regression in a memory-based Evo-

lutionary Algorithm (EA). The goal was to predict when the next change would happen and

to estimate which kind of dynamic regime would follow, assuming periodic dynamics. In this

scheme, the most promising representative solutions for the next environment are reinserted

into the EA population. Although achieving positive results on numerical benchmark functions

(which mostly complied with the assumptions), even assuming the predictors to be accurate,

there are no guarantee that the level of similarity between the old and the upcoming environ-

ments is sufficient for the representative solutions to readapt, or even that the right building

blocks will be propagated to generate novel, adapted solutions.

Koo et al. [135] used a global predictive gradient for estimating the trajectory of the PS.

A convex combination of all objective functions with randomly sampled weights is used in the

estimation. The solutions are then perturbed along a random direction leading to the predicted

dynamical PS. The approach can thus improve the performance of dynamic EMOAs without

the need for making unrealistic assumptions about the environmental dynamics. One drawback,

however, is that the use of randomly drawn aggregation functions may fail when one or more

objective functions are locally non-convex.

Hatzakis and Wallace [110] and Zhou et al. [226] used autoregressive models for tracking the

dynamical PS. The main difference between the two approaches resides on the points used for

representing the PS. The former uses two anchor points, whereas the later tracks the PS center

of mass and the manifold defined by the difference of each non-dominated solution in the PS to

its center of mass. Both approaches rely on inserting solutions from the predicted population

into the actual population.

The main drawback of the discussed related prediction-based approaches is the inability to

estimate the performance of the predicted solutions in the upcoming optimization environments.

Also, it is not clear how many and which solutions should be inserted. All the existing predic-

tive metaheuristics rely on problem-dependent ad-hoc strategies and rules that also introduce

additional parameters to be tuned offline. Also, the lack of estimation of the solutions perfor-

mance in future environments leaves the user clueless regarding the expected performance of

the solutions obtained by those methods.

Although one could rely on ad-hoc predictive methods for handling uncertain environments,

we propose a fourth yet unexplored principled approach: anticipatory MOO metaheuristics [14].

The main differences relies on the modeling of the optimization problem solved by such antici-

patory methods and their uncertainty-awareness and adaptive capabilities in terms of online pa-

rameter tuning. Those properties are achieved through the conception of problem-independent

techniques for estimating the future behavior of candidate decisions. Such ideas are developed

in chapter 6.

The Effects of Prediction in Metaheuristics

In the context of metaheuristics applied for solving sequential decision-making problems, very

few works have been dedicated to assess the incorporation of predictive models, which are indis-

pensable to the synthesis of anticipatory metaheuristics. In the following, the two most broad

studies about the effects of prediction within metaheuristics are discussed. Bosman [36], and
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Bosman and La Poutré [35] reported a study on evolutionary prediction-based metaheuristics

for dynamic optimization – problems for which the objective function is parameterized by time.

In those works, preliminary results regarding the effects of incorporating predictive knowledge

about the behavior of the objective function were reported, for simple metaheuristics.

In the first work [36], the metaheuristic performance was assessed in the following scenarios:

(a) no access to predictive knowledge (the blind version); (b) partial access to predictive knowl-

edge; and (c) complete access to perfect predictive knowledge. Bosman designed simplified

objective functions over only one decision variable in the real line.

Not surprisingly, the metaheuristic with full access to the future objective values was always

able to find the optimal solution throughout the optimization process. The versions with access

to partial knowledge were designed by using linear and quadratic regression models for predicting

the future objective values. Both predictors were trained using a least squares procedure.

Bosman reported that the version utilizing the more flexible predictive model obtained smaller

prediction errors and, as a result, the performance of the metaheuristic was only slightly inferior

when compared to that with full knowledge of the future. This discrepancy was attributed to

the timespan required for the accumulation of enough samples for training the predictor. As

expected, the “blind” version obtained very poor performance regarding the distance between

the solutions found to the true optimal solutions.

It should be noted that Bosman did not invest in the design of an efficient metaheuristic,

but rather in understanding the implications of incorporating predictive knowledge on their

performance in very simple toy problems. Besides, only deterministic, single-objective problems

were considered. In the follow-up paper [35], the study was extended to stochastic scenarios,

in which randomly distributed packages should be collected by a vehicle in the real plane. The

results again showed there are significant performance gains when utilizing partial knowledge

from the underlying distributions.

3.5 Summary of the Contributions

This chapter’s contributions to the thesis are as follows:

1. It presented the foundations of Multi-Objective Optimization (MOO) under uncertainty

and the limitation in existing Stochastic MOO (SMOO) models;

2. Early models of sequential MOO and Multiple Criteria Decision-Making (MCDM), in-

cluding hypervolume-based approaches, were discussed. Early predictive metaheuristics

were also covered. In both cases, limitations and drawbacks were addressed;

3. Finally, a logical chain of results connecting three key concepts for the anticipatory pro-

posal in chapter 5 and chapter 6 was suggested: maximal hypervolume⇒ PD compat-

ibility ⇒ preference for flexibility.

In the next chapter, we not only discuss MOO models for the financial portfolio selection

application, but also suggest and experiment with preemptive evolutionary MOO algorithms to

improve portfolios stability in dynamic investment environments.



Chapter 4
Preemptive Multi-Objective Strategies for
Active Asset Allocation

Apportion what you have into seven, or even eight parts, because you don’t

know what disaster might befall the land.

– Solomon (Ecclesiates 11:2)

A man who suffers before it is necessary, suffers more than is necessary.

– Lucius Annaeus Seneca

Following the Modern Portfolio Theory (MPT) paradigm inaugurated by Markowitz [151],

investors seek to spread risk over uncorrelated (or negatively correlated) assets. The inception of

MPT has formalized in mathematical terms a principle that is well-known to humanity perhaps

since its very beginnings: the principle of diversification. This chapter describes the problem of

how to allocate wealth among N risky assets, so as to maximize expected return and minimize

the expected risk, known as portfolio selection [151]. Although this problem has been long

addressed as a single-objective optimization one (by maximizing risk-return ratios), we discuss

the advantages of solving its multi-objective counterpart. We also propose in this chapter

preemptive strategies for mitigating investment risk based on hypervolume regularization1 [15].

4.1 Risk Management: The Wisdom of Diversification

The motivation for diversifying investments is straightforward and intuitive: when some invest-

ment instruments go wrong, the investor is better off if significant portions of wealth had been

also allocated to other well performing instruments. In fact, the loss of a Decision Maker (DM)

who invested in the best-performing stocks of 2007 and held them throughout the 2008 financial

collapse would be more than 60%, while investors who spread their money as to follow the S&P

500 index lost 37%2. Still a poor performance, but comparatively much better.

1Parts of this chapter have appeared in Azevedo and Von Zuben [15].
2http://usatoday30.usatoday.com/money/perfi/retirement/story/2011-12-08/investment-diversification/

51749298/1
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Figure 4.1: The contour plot of risk as a function of the weight w and of c = 2ρ− 1.

In order to illustrate how diversification works, let x and y be two normally distributed

random variables representing the returns of two stocks, with equal variances, i.e., σ2
x = σ2

y = σ2,

and covariance Cov(x, y) = ρσxσy = ρσ2, where ρ is the linear correlation between x and y.

If we take the variance as a measure of risk3, then we can compute the risk of a portfolio

w = (w1 w2)ᵀ ∈ S1 as:

V ar[w1x+ w2y] = w2
1σ

2
x + w2

2σ
2
y + 2w1w2ρσxσy

= w2
1σ

2 + w2
2σ

2 + 2w1w2ρσ
2

= (w2
1 + w2

2 + 2ρw1w2)σ2

= (w2
1 + (1− w1)2 + 2ρw1(1− w1))σ2

= (w2
1 + (1− w1)((1− w1) + 2ρw1))σ2

= (w2
1 + (1− w1)(1 + (2ρ− 1)w1))σ2.

Note that, for fixed weights w and fixed σ2, the risk is minimized as ρ → −1. In other words,

the more the assets returns are negatively correlated (thus yielding opposite behaviors), the

more diverse the portfolio is regarded and less risk incurs. Also, taking the correlation ρ and

the variance σ2 as constants, the weights minimizing the risk in this case are w? = (1
2

1
2
)ᵀ.

Supposing σ2 = 1, the minimum risk value is then c+3
4

, where c = 2ρ− 1 and −3 ≤ c ≤ 1. The

risk of the portfolio in this case is thus completely eliminated when it is equally weighted and

3Markowitz modeled risk as the variance of the return distributions in MPT, but later admitted that it has
serious flaws and proposed a measure of semi-variance to account only from variations below the average return.
In fact, investors are actually more concerned in minimizing potential losses.
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the assets are perfectly negatively correlated. Note how the benefits of diversification vanishes

as ρ→ 1, in which case any allocation yields virtually the same risk (Figure 4.1).

4.2 Trade-offs of Active Investment Management

The MPT is rooted on the idea of diversifying capital across assets so to establish an investment

portfolio that lies on the Pareto Frontier (PF), when considering expected return and risk. The

impossibility of simultaneously improving both return and risk results from the fact that assets

yielding higher returns usually are those leading to the gravest risks and vice-versa. It becomes

an arduous task to compose a portfolio to maximize the expected utility of an investor – mainly

because eliciting a utility function that accurately represents the investor attitude to risk is

challenging and prone to inconsistencies. Moreover, as already discussed in previous chapters,

the preferences of the DM can be undefined, what calls for multi-objective approaches to handle

the underlying trade-off arising from MPT.

4.2.1 Single-Criteria Downside Investment Rules

Despite the practical appeal of multi-objective techniques, single-criteria decision-making heuris-

tic rules in active investment management, which combine return and risk, are still common

among practitioners. Those rules are often referred to as downside (or disaster level) meth-

ods [104] and are as old as Markowitz’s MPT itself. One of the earliest methods came after

Roy’s 1952 paper [177] and has been known as the Safety First (SF) principle. The down-

side methods seek to search for the portfolio minimizing the chances of a return realization

below some predetermined threshold4. Regardless of whether it is possible to determine an in-

vestor’s actual utility function, Roy argued against expected utility maximization and claimed

instead that investors are more concerned about preserving a certain amount of their invested

capital [177]:

“A man who seeks advice about his actions will not be grateful for the suggestion

that he maximizes expected utility.”

The SF principle is realized when the DM chooses a minimal acceptable return rate. The

optimal SF portfolio selected is the one satisfying:

w?
SF = arg min

w
Pr{Rw ≤ R0}, (4.1)

where Rw = wᵀR is the portfolio (random) return, and R0 is the chosen disaster level (usually

set to zero or some small negative rate). In practical scenarios, however, the true returns

probability distribution is unknown. Nevertheless, using Tchebycheff’s inequality,

Pr{Rw ≤ R0} = Pr{µw −Rw ≥ µw −R0}

≤ σ2
w

(µw −R0)2
,

4In chapter 3, we described general stochastic multi-objective optimization models (e.g. [56]) that were
clearly inspired by those old risk management ideas.
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Figure 4.2: The Sharpe Ratio measures the slope between a risk-free asset return rate and the
objective vector associated with a portfolio in the PF.

where µw is the mean vector of the returns, whereas σ2
w is the variance (Markowitz’s risk).

Thus, when the (empirical) distribution of the returns is unknown, the DM following the SF

principle can approximate the problem by choosing the portfolio w?
SF’ such that

w?
SF’ = arg min

w

σw
(µw −R0)

. (4.2)

Because of the SF influence over theoretical and practical investing, Arthur D. Roy was recently

described by Sullivan [201] as “the forgotten father of portfolio theory”.

Another remarkable property of the SF principle is that if R0 is the fixed return rate (e.g.

an inflation-indexed government bonds rate) of a risk-free asset, then w?
SF is equivalent to the

portfolio maximizing another popular downside measure, known as the Sharpe Ratio (SR) [189]

(Figure 4.2). In practice, many investors search for portfolios that are shown to maximize

average historical return per unity of risk. The SR is then defined as the expected return of

w in excess of the available risk-free return rate divided by the volatility (standard deviation).

Thus,

w?
SR = arg max

w

(Rw −R0)

σw
. (4.3)

In the experiments reported in section 4.4.5, we use the SR as a decision-making rule for selecting

a portfolio from the obtained efficient frontier.

4.3 The Case for Active Sequential Portfolio Selection

When solving sequential optimization problems for which there is no available predictive knowl-

edge, sometimes heuristic rules are used for modifying the solution on the fly, as new data

is collected. The demand for such online optimization techniques are emerging in modern

applications like computational advertising and automated trading in the stock market (algo

trading) [211]. The famous “Universal Portfolio” (UP) algorithm developed in the 1990’s by

Thomas Cover is one noteworthy example [59].
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Without assuming anything about the statistical behavior of the market, Cover has shown

that the portfolios selected online by his algorithm asymptotically outperform over time the

performance of the best fixed portfolio in hindsight. This remarkable theoretical result has been

tested – with somewhat positive results – using real-world data for finite investment horizons

(e.g. [103]). Cover’s UP is perhaps the most important result to date supporting active in-

vestment management strategies, because it explicitly states that the portfolios obtained with

UP will outperform the best possible buy-and-hold, passive strategy, in the limit. The obvious

practical drawback of the UP algorithm is that investors are not willing to wait indefinitely for

collecting such promising returns. Another important drawback is that there are little hopes of

accurately characterizing the inherent risks of the generated sequence of portfolios.

4.3.1 A Follow-The-Leader Preemptive Strategy

An example of a much simpler and general data-driven online heuristic rule is the following: let

wt be the weights of our portfolio at time t. We want to maximize the return, which is now

time dependent, Rwt . A general procedure for solving the problem online is:

1. For t = 1, 2, · · · , do

(a) Choose a portfolio ŵt ∈ SN−1

(b) Observe the returns Rt,i(i = 1, · · · , N)

(c) Compute the portfolio return Rwt =
∑N

i=1wi,tRi

Note that ŵt must be blindly chosen before the assets returns Rt,i are realized. Because there

is no predictive knowledge available, the choice of ŵt must be based on the available historical

data. A simple heuristic rule for Step 1 of this algorithm selects ŵt as the portfolio maximizing

the (sample) return for all the past t− 1 known investment periods, i.e.,

∀t, ŵt = arg max
w∈SN−1

t−1∑
t=1

Rt(w). (4.4)

This rule is known as Follow-The-Leader (FTL), which is shown to lead to small regret for

certain classes of convex objective functions (ft) [187]. The regret is a simple measure taken

over the temporal sequence of decisions that were produced by the FTL rule:

RegretT ({x̂1, · · · , x̂T}) =
T∑
t=1

ft(x̂t)−min
x∈Ω

T∑
t=1

ft(x), (4.5)

in which T is the number of decision periods. Note from Eq. (4.5) that the performance of the

decisions is compared to that of the best fixed decision in hindsight [187].

It turns out Markowitz’s analysis is also a backward-looking (myopic) strategy, in the sense

that if the investment environment changes going forward, the analysis will suggest portfolios

that are efficient only when evaluated using the outdated information. Although risk is reduced

as the pairwise correlations between assets decrease, such correlations are subject to change over

time and therefore should be predicted [80] – and so should the expected returns. Predictive
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strategies are nevertheless often overlooked in the literature of portfolio selection, perhaps due to

the conservative pragmatic view that timing the market is futile. In fact, when using such myopic

approach, the DM is impliciting investing (often wrongly) on a static investment environment.

The sequential (or multi-period) paradigm for active portfolio selection has been identified

in the recent survey of Kolm et al. [134] as one of the most promising new research trends in this

area. In this view, portfolios are seeing as moving targets that should be tracked considering

all “trade-offs between risk-adjusted returns and trading costs” [134]. Before describing a multi-

objective anticipatory proposal for tracking such trade-off portfolios over time (see chapter

7), we propose in the following a novel preemptive and stable strategy based on the notion of

hypervolume regularization [15].

4.4 A Novel Multi-Objective Preemptive Strategy

In finance engineering, the formulation of the Markowitz’s Mean-Variance Problem (MVP) [152]

and its diversification principle have been the essence of theoretical investment risk management

for nearly half a century. The solution to the MVP leads to an optimal wealth allocation strategy

which maximizes the expected return rate under a maximum risk constraint5.

However, despite its intuitive appeal, the practical application of the Markowitz portfolio

approach is not reliable and has been reported to behave poorly in real-world out-of-sample

data, e.g. [82, 98]. This is mainly due to the prevalent presence of outliers in real-world data

which makes the tails of the estimated returns distribution fatter than those of the Gaussians

assumed in the MVP [88]. Hence, approaches to robustly estimate the parameters of the returns

distribution have been investigated for mitigating such model risk, e.g. [83,98].

In realistic scenarios, it is reasonable to assume that a multiple account portfolio manager

would desire to have a diverse set of mutually non-dominated portfolios at hand in order to serve

a vast number of preference profiles. Some of the portfolios turn out to perfectly fit investors

seeking higher returns at moderate risk, while others will suit stronger risk aversion profiles.

Hence, obtaining a finite approximation of efficient allocations in the PF can be very useful to

managers as new accounts arrive and preferences change.

Active asset allocation implies that the invested portfolio should be monitored and con-

stantly rebalanced to reflect changes in expectations of risk and return. Very active strategies,

however, generate transaction costs such as brokerage commissions and fees that may impair

the investment return in the long term.

A well-known technique to mitigate transaction costs, especially for smaller investors, con-

sists of introducing cardinality constraints in the optimization model so that the resulting port-

folios are sparse, i.e., composed of few assets [29,147]. For instance, Bertsimas and Shioda [29]

argue that

“(...) asset management companies that manage separate accounts for their clients

that only have say $100,000 can only realistically own a small number of securities,

since otherwise, the transaction costs would significantly affect performance.”

5Conversely, one can also minimize risk under a minimum expected return constraint.
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(a) Stability in Decision Space (b) Stability in Objective Space

Figure 4.3: Two types of stability are investigated: (a) when rebalancing an old portfolio
matching a fixed preference investment profile in the objective space (so that it can remain over
the Pareto frontier), portfolio compositions yielding lower turnover rates are desired; (b) for a
fixed portfolio, upon the update of the joint returns distribution, its performance evaluation
(risk and return) should change as little as possible between one investment round to another.

That is because keeping a large number of assets in a portfolio requires more buy/sells

operations in order to rebalance it according to updated data when compared with portfolios

keeping a lower number of assets. However, the MVP problem becomes NP-hard when practical

constraints are considered, such as bounded cardinality or transaction lots thresholds, for which

classical convex quadratic programming techniques to analytically compute the efficient frontier

no longer work [70]. Although there are exact algorithms for solving the mixed-integer quadratic

programs [58] resulting from the constrained portfolio selection versions, the computation of

optimal trade-off portfolios cannot be done in polynomial time. In those scenarios, multi-

objective metaheuristics have been reported to yield good approximations of the efficient frontier

for in-sample data (e.g. [5, 93, 178]), within reasonable (polynomial) computational cost.

When matching a portfolio at the efficient frontier to a certain preference profile, i.e., when

selecting a trade-off portfolio according to the investor risk-averse level, account managers want

the matched portfolio to remain stable between two subsequent investment rounds, upon the

arrival of new data, in two senses:

1. The new rebalanced portfolio which matches the preference profile should not differ too

much from the previously matched one, in the decision space (Fig. 4.3 (a)); and

2. The expected return and risk of a given portfolio should change as little as possible from

one investment environment to another, in the objective space (Fig. 4.3 (b)).

Stable portfolios of the first kind usually possess lower turnover rates than unstable ones.



82 Chapter 4. Preemptive Multi-Objective Strategies for Active Asset Allocation

Higher turnover rates imply higher transaction costs. Hence, buy-and-hold passive strategies

leads to minimum transaction costs, but are more susceptible to the market volatility. On

the other hand, overly active rebalancing strategies can undermine the potential gains of the

portfolio by incurring higher costs. This form of portfolio stability has been undergoing some

research activity in the literature (e.g. [109]).

The second form of stability is also important because it implicitly means that the decision is

adaptable and robust over time [90,125]. In other words, for a fixed portfolio, as new temporal

data arrive, the estimated expected return and risk will likely change much less than what it

would for unadaptable portfolios. In this sense, being adaptable means being resilient to new

and possibly unpredictable disruptions in the joint returns distribution process.

By proposing a new preemptive, stable multi-objective framework for portfolio optimization

and assessing it on real-world data, this investigation leads to the following original contribu-

tions:

1. It proposes using a pairwise robust covariance matrix estimator [4] (see chapter 2) so that

different robust statistics can be assessed at ease for MVP due to its quadratic complexity,

when compared to exponential complexity of alternative techniques;

2. It proposes utilizing the robustness-integrating hypervolume [16] in order to obtain stable

efficient frontiers, by integrating it into a novel regularized extension of the SMS-EMOA

algorithm [32] (see chapter 3);

3. It assesses the stability of the obtained portfolios on out-of-sample real-world data, what,

surprisingly, is an often neglected procedure in the literature; and

4. It benchmarks active management decision-making strategies under transaction costs,

reporting the resulting return over investment and the corresponding turnover rates.

The main goal of those experiments are thus to assess whether the Regularized SMS-EMOA

(RSMS-EMOA) proposal [15] outperforms the original SMS-EMOA on producing stable solu-

tions in dynamic environments. For evaluating the merit of each algorithm, we selected two

MVP scenarios: one for which unstable maximum likelihood estimators are used, and other for

which robust estimators provide a more smooth change between investment rounds. We also

compare the RSMS-EMOA with the NSGA-II algorithm, which has been reported to perform

satisfactorily for multi-objective, single-period MVP frameworks (e.g. [5]).

It is expected that the RSMS-EMOA proposal is able to incorporate structural preferences

over the candidate solutions into the optimization process. In the case of portfolio selection,

a few of such desirable structural features may include: lower cardinality, balanced weight

distribution, and stability in validation and test data sets.

4.4.1 The Sequential Markowitz’s Mean-Variance Problem (MVP)

Let r = (r1 r2 · · · rN)ᵀ ∈ RN be a random vector composed of random returns of N risky

assets, in which µr and Σr are its mean and covariance matrix, and let w = (w1 w2 · · · wN)ᵀ ∈
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SN−1 =
{

w ∈ RN : wk ≥ 0 ∀ k ,
∑N

j=1wj = 1
}

be the weight vector of the portfolio, denot-

ing the proportion of wealth to be invested in each available asset, in which SN−1 denotes

the (N − 1)-simplex. Then, the classical Mean-Variance Problem (MVP) was formulated by

Markowitz [151] as the following constrained quadratic program for risk minimization:

w? = arg min
w

{
wᵀΣw : µᵀw ≥ µ0, w ∈ SN−1

}
, (4.6)

in which µ0 is the minimum acceptable expected return for w?. If the first and second moments

are known in advance, the MVP can be directly solved. However, {µ,Σ} must be first estimated

from the available historical data in real-world applications.

We propose transforming (4.6) into a mixed-binary bi-objective sequential formulation:

min
At,wt

wᵀ
tAtΣ̂tAtwt (4.7)

max
At,wt

µ̂ᵀ
tAtwt (4.8)

s.t. 1ᵀ
NAtwt = 1, wt,j ≥ 0 (4.9)

tr(At) ≤ au (4.10)

in which At is an N ×N binary diagonal matrix so that At(j, j) = 1 ⇐⇒ wtj > 0, i.e., if and

only if the j-th asset belongs to the portfolio, and At(j, j) = 0 ⇐⇒ wtj = 0. Note that the

constraint wt,j ≥ 0 implies that no short-selling is allowed, otherwise, negative weights would

be acceptable in the model.

The motivation for including binary variables into problem (4.7) to (4.10) is to allow for an

increased search power6 over the feasible decision space. In other words, by explicitly incor-

porating the information of whether an asset belongs to the portfolio, we can design heuristic

search operators to exploit this information. By directly switching on and off the participation

of specific assets in the allocations, we expect to provide the problem solver with the ability of

escaping from local optima more quickly than if binary variables were not present in the model.

It is also worth noting that the use of search operators over the binary diagonal matrix

At complies with the bounded cardinality constraint of Eq. (4.10) (in which tr(At) denotes

the trace of At), allowing for the optimization procedure to quickly reduce (or increase) the

cardinality of the portfolios (see Section 4.4.2 for details).

Moreover, incorporating cardinality constraints into the MVP model has lead to the experi-

mental observation that the portfolios with the highest expected returns in the efficient frontier

are generally those with lower cardinality and vice-versa, e.g. [53]. Cardinality is thus expected

to be correlated with the position of the portfolios when mapped to the Pareto frontier in the

objective space.

Furthermore, {µ̂t, Σ̂t} can be estimated by either using the standard MLE estimators, or by

taking instead the sample median and the robust covariance estimator discussed in chapter 2.

We recall that the motivation for robustly estimating the parameters of the return distributions

is to mitigate model misspecification, as it is evident that real-world stock data rarely comply

with the Gaussian assumption of Markowitz’s MPT.

6We follow Deb and Agrawal’s [67] definition of search power, which corresponds to the probability of moving
to an arbitrary location of the decision space when applying one search operator on any given solution.
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Finally, it is worth mentioning that, despite the Gaussian assumption is evidently wrong

for financial data (see chapter 2, section 2.1.3), the point of investigating the effect of robust

estimators and of regularization while still following the Gaussian assumption is to assess the

extent to which those two factors can help our resulting portfolio selection algorithms to be

more tolerant to outliers, and thus, lead to more stable portfolios.

The Sliding Window Plugin-Rule

When inputting available historical data into our algorithms, we want to somehow capture the

changing behavior reflected in the assets prices between subsequent periods of time. This goal

is achieved by using a sliding-window approach (see chapter 2), also known in the literature

as rolling horizon [71]. The idea is to go through the historical data using a fixed-size window

and advance it at a constant time step, so as to discard outdated information and progressively

incorporate more recent data.

Let t be the current time index, that is initially set as t← t0(t0 ≥ K). The sliding-window

approach then considers the following three-step procedure:

1. Given the time series of observed returns from the latest K time-steps for each asset, i.e.,

Rt−1
t−K = {rk}, estimate {µ̂t, Σ̂t} from Rt−1

t−K .

2. Solve Eqs. (4.7)-(4.10) after setting the unknown distribution parameters with those es-

timated from the data in the previous step. This procedure is called the plug-in-rule (see

e.g. [83]).

3. Implement the efficient portfolio ŵ?
t at time t, respecting the preferences of the DM.

In a buy-and-hold strategy, the chosen efficient portfolio can be hold unchanged for the

next T time-steps, in which T is the investment horizon, although in this chapter we select a

potentially different portfolio at each decision period. During the investment period ∆t(T ) =

[t, t+ T ], the Return Over Investment (ROI) associated with ŵ?
t at the end of ∆t(T ) is given

by

ROI(ŵ?
t ,∆t(T )) =

Vt+T (ŵ?
t )− Vt(ŵ?

t )

Vt(ŵ?
t )

, (4.11)

in which Vt(w) is the net asset value of wt at time t. In the rolling horizon approach [71], the

time index is then set as t ← t + T , the returns matrix Rt−1
t−K is updated to include the new

observations arrived during ∆t(T ), discarding the oldest T data points, and the procedure goes

on as the portfolios are rebalanced for the subsequent environments.

4.4.2 Single and Multi-Objective Metaheuristics for MVP

When constraints such as bounded cardinality (Eq. (4.10)) are integrated into the MVP, the

problem becomes a mixed-binary quadratic programming, which is NP-hard [150]. Moreover,

Mansini and Speranza [150] showed that the MVP with minimum transaction lots is NP-

complete. Therefore, in practical settings, where such constraints are considered, mixed-binary

MVP versions become computationally intractable for exact solution methods, hence, stochastic
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approximation methods such as metaheuristics are often considered to handle the computational

complexity.

Single-objective metaheuristics such as simulated annealing, memetic, genetic, and estima-

tion of distribution algorithms have been applied for the MVP [6,60,178]. Those works can be

categorized as follows:

• Lagrangian methods, in which the problem becomes maxw µᵀw − λwᵀΣw. In this case,

the metaheuristic is executed several times over many values of λ for approximating the

efficient frontier, e.g. [5].

• Maximization of the Sharpe Ratio (Sec. 4.2.1), which combines the returns maximization

and risk minimization into a single objective function. In this case, one single solution is

obtained, e.g. [6].

Fewer studies assessed multi-objective versions (e.g. [5, 70, 93, 109]) but none of them con-

sidered sequential, dynamic environments settings, or the integration of robust statistics and

regularization terms. Some even failed to report performance in out-of-sample data.

Due to its good reported performance for the standard MVP [5], we use NSGA-II as a

baseline for solving (4.7) to (4.10). In the following, we present our preemptive proposal for

solving the cardinality-constrained sequential multi-objective MVP, which is an extension of the

SMS-EMOA algorithm [32], introduced in chapter 3.

4.4.3 Regularized SMS-EMOA

The hypervolume (S, S-Metric) [10] is a theoretically sound performance indicator that was

presented in chapter 3. An alternative mathematical formulation of this indicator is given as:

S(Fi, zref) =

∫
z∈F(Ω)

1H(Fi,zref)dz, (4.12)

H(Fi, zref) = {z | ∃ z′ ∈ Fi : z′ ≺ z ≺ zref} , (4.13)

in which 1H(Fi,zref) is the characteristic function of H(Fi, zref), that is 1 if z ∈ H(Fi, zref) and 0

otherwise.

Robustness Integrating Hypervolume (Sφ)

Its robustness integrating version was defined by Bader and Zitzler as [16]:

Sφ(Fi, zref) =

∫
z∈FM

αφFi(z)dz, (4.14)

in which the characteristic function in S (Eq. (4.12)) is replaced by the attainment function

αφFi(z):

αφFi(z) =

 φ

min
z′∈Fi,
z′≺z

r(z′)

 , if z ∈ H(Fi, zref)

0, otherwise.

(4.15)
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1: Initialize P0 = {wp} with µ portfolios and set t← 0
2: repeat
3: Generate a new portfolio (A,w)′ from Pt
4: Set Pt+1 ← Regularized Reduce(Pt ∪ {(A,w)′}) and t← t+ 1
5: until Termination condition is satisfied

Pseudocode 3: Regularized SMS-EMOA for Portfolio Optimization

1: Compute {F1, · · · ,Fv} by non-dominated sorting Q [32]
2: Select zr = arg minz∈Fv ∆S(z,Fv)φ(r(z))
3: return Q \ zr

Pseudocode 4: Regularized Reduce(Q)

The function r : F(Ω) → [0, 1] is designed such that the maximally robust solutions are as-

signed 0 and the least robust ones are assigned 1. It should be noted that although Bader and

Zitzler [16] have named this modified hypervolume indicator as a “robustness integrating” one,

it conveys a much more general framework for regularizing solutions according to any desirable

structural characteristic (e.g. sparsity of the decision vectors).

The desirability function φ : [0, 1] → [0, 1] can then assume various forms to account for

structural preferences over the decision vectors. In Eq. (4.14), z ∈ H(Fi, zref) contributes 100%

to Sφ only if it is fully desired in terms of robustness. For r(z) > 0, though, the contribution

of z to Sφ is discounted by the desirability assigned to the most “robust” solution z′ ∈ Fi that

dominates z.

We propose integrating r into Pseudocode 4 as a multiplicative regularization term by means

of the desirability function, i.e. ∆S(z,Fv)φ(r(z)). This leads to the Regularized SMS-EMOA

(RSMS-EMOA) proposal (Pseudocode 3), which is equivalent to maximizing Sφ within classes.

The choice of r allows for integrating selective pressure towards the following three desirable

aspects of portfolio optimization: diversification, cardinality reduction, and stability. For the

original SMS-EMOA, we define r0(z) = 0, ∀ z ∈ FN . For all versions of the algorithm, the

desirability function is a linear decreasing mapping: φ(r(z)) = 1− r(z).

Entropy Regularization

In order to simplify the exposition, we abuse notation so that the objective vector z = f(A,w) ∈
R2 is composed of the expected risk and return of the portfolio, computed as

z = (wᵀAΣ̂Aw µ̂ᵀAw)ᵀ. (4.16)

Moreover, we allow r to take as parameter either the objective function or the decision param-

eter, in which case both notations are equivalent, i.e., r(z) ≡ r(A,w).

With the goal of improving the diversification of the candidate portfolios, we define the

regularization function rE as the normalized (negative) entropy.

rE(A,w) = 1 +
1

tr(A)

N∑
i=0

aiiwi log aiiwi, (4.17)
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in which portfolio (A,w) attains maximum diversification when its weights are equally dis-

tributed among the assets that take part in it, i.e., wi = 1
tr(A)

∀ i such that aii = 1 =⇒
rE(A,w) = 0. Also, tr(A) = 1 =⇒ rE(A,w) = 1, i.e., imbalanced portfolios are less de-

sired. It is worth noting that rE is insensitive to the portfolio cardinality and, therefore, if an

equally-weighted two-assets portfolio attains maximum diversification, so do the N -assets index

portfolio.

Note that an equally weighted portfolio is not necessarily the one that minimizes risk, but

the practical goal of introducing this regularization term into the RSMS-EMOA algorithm is to

penalize extremely imbalanced portfolios that induce higher risks.

Cardinality Regularization

Besides diversification, another desirable feature are low cardinality portfolios, inducing sparse

weight vectors. Such portfolios may be easier to manage in practice, but may also conflict with

risk minimization. The regularization function rC is given as

rC(A,w) =
1

N
tr(A), (4.18)

in which N -assets portfolios are the least desired ones.

Objective Space Stability Regularization

Finally, we focus on the second form of portfolio stability discussed in Sec. 4.4. This is important

because it means that the solution is adaptable over time, even if the market enters a more

volatile phase (see e.g. [109]). As new data arrive, the estimated expected return and risk of

such stable portfolios will likely change less than what it would do for unadaptable portfolios.

In order to leverage stability in the objective space, we estimate the change in the risk and

return of the candidate portfolio in a validation dataset which is temporally adjacent to the

training set – and therefore expected to reflect changes in the returns distribution. Let Rt−1
t−K be

the returns data matrix in period ∆t−K(K). We then partition that matrix into T = Rt−H−1
t−K

and V = Rt−1
t−H (T � K), in which T,V are the training and validation returns datasets for

period ∆t−K(K). Let zT , zV be the objective vectors of the portfolio evaluated in T and in V,

respectively. Then,

rS(z) = 1− 1

1 + ||zT − zV ||2
, (4.19)

in which the objective vectors that remain stable under the same time varying conditions are

most desired.

4.4.4 Experimental Setup

We assessed two RSMS-EMOA(r) versions7 in our experiments. The RSMS-EMOA(rS) utilizes

the regularization function of Eq. (4.19) and tries to regularize the portfolios so that their

estimatives are stable in subsequent environments. For the second version, we mixed rE and

7Source codes at http://www.researchgate.net/profile/Carlos Azevedo2
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rC to form rEC = (1 − α)rE + αrC , yielding the RSMS-EMOA(rEC), whose goal is to achieve

lower cardinality portfolios with a diversified wealth allocation, as a plausible ad-hoc preemptive

strategy for mitigating risk and for making the portfolios easier to manage.

We set α = 1/2 for the experiments so to provide a better balance between the tensions of

reducing portfolio cardinality and of simultaneously improving their diversification.

Because NSGA-II, SMS-EMOA, and RSMS-EMOA(r) all share the same evolutionary algo-

rithmic framework, we were able to render all parameters values the same for each version. The

setup utilized is as follows: population size was set as µ = 100; mutation rate of 0.2; crossover

probability of 1.0; and binary tournament selection. Binary selection in a multi-objective con-

text means that (a) two portfolios are randomly selected from the population of candidate

solutions; (b) if either one Pareto dominates the other, it is chosen for undergoing crossover and

mutation; (c) if they are mutually non-dominated, then the one yielding the highest S-Metric

contribution (or Crowding Distance for the NSGA-II) is declared the winner.

Because our focus is on analyzing the effects of robust parameter estimation and regular-

ization, we utilized a very simple uniform crossover in which two offspring inherit each weight

of the portfolios from either parents with 1/2 probability. For mutation, we randomly choose

between two operators: (1) modify the non-zero weights; or (2) modify the binary diagonal ma-

trix (A). If operator (1) is selected, then, with probability 1/2, we either increase or decrease

the investment on a randomly chosen asset by a uniformly drawn factor from 10 to 50%. If (2)

is selected, then, with probability 1/2, we either add or remove a randomly chosen asset from

the portfolio. If it is removed, we simply set its weight (and its entry in A) to zero. If it is

added, we set its entry to one in A and randomly set its weight within a ±10% range from an

equally-balanced weight, 1/tr(A). After any operation, the portfolio weights are renormalized.

Other parameters for the simulations were: 100 generations for each algorithm in each

environment; 30 runs; 89 FTSE 100 assets, using the adjusted close prices from 20/11/2006 to

20/11/2012 (including the financial crisis period); three investment horizons (H ∈ {25, 50, 100});
the training periods length K were chosen such that H/K ≈ 0.13, meaning that the rate of

change between environments is constant for all horizons. This rate of change was chosen to

yield model a slowed-paced time-varying investment environment.

We also used Mann-Whitney paired significance tests at a 5% level where appropriate. In

addition, we narrowed the scope of the experimental study, relaxing the cardinality constraint

and allowing all 89 assets to take part in the portfolios, but added a minimum investment

constraint of 0.5%, which is easily handled by pruning the asset which violates that condition

and renormalizing the portfolio.

Finally, we adopted a seeding approach in which, whenever the environment changes, the

previous efficient portfolios serve as starting points for the optimization in the subsequent opti-

mization period. In this way, every portfolio in the population is rebalanced between investment

environments. In the following, we describe additional metrics used for discussing and compar-

ing the performance of each algorithm.
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Ranks Correlation Between Periods

We compute the Spearman Correlation (SC) coefficient between the portfolios in the efficient

frontier, between the expected return estimated before and after each rebalancing operation.

Differently from Pearson correlation, the SC coefficient computation is based on the relative

rank orders between the observed samples. Thus, it can capture some non-linear correlations as

well, provided that the relationship between the two measured variables is monotonic. Because

it is based on order statistics, it is also considered a more robust estimate when compared to

Pearson correlation.

Stable frontiers are expected to possess high rank correlation, keeping the relative order of

the portfolios so that e.g. low risk portfolios will likely remain so in a subsequent investment

period, when evaluated under new data.

Turnover Rates

For measuring the Turnover Rate (TR) of a given investment strategy s over time, we follow

DeMiguel and Nogales [71] and define TR as the average absolute difference in the portfolios

weight allocations, traded between subsequent investment periods:

TR(ws) =
1

T −K − 1

T−1∑
t=K

N∑
j=1

∣∣ws(t+1),j − wst,j
∣∣ , (4.20)

in which s is an index for identifying the portfolio. High turnover has direct consequences for

trading, since it generates high transaction fees and costs. Are stable portfolios in the objective

space also stable in the decision space? By measuring turnover from our experiments, we expect

to be able to answer this question.

Decision-making Rule

In real-world portfolio management, it is common for investors to search for the portfolio which

is the most rewarding for each risk unit taken. Therefore, at the beginning of each investment

period, we identify the efficient portfolio which possesses the highest Sharpe Ratio (SR) value

(Eq. (4.3)), w?
SR, and implement it in a rolling horizon, out-of-sample data simulation, rebal-

ancing the portfolio for 6, 22, and 56 periods of H = 100, 50, and 25 days, respectively. Those

rebalancing periodicities where chosen so to approximately respect the defined rate of change of

H/K ≈ 0.13. For the SR computation, we set R0 = 0. Besides the maximum SR value achieved

by w?
SR, we also report the turnover rates, entropy, and the cardinality of the portfolio. The

results are contrasted to those of the naive equally-weighted portfolio, wIndex, implementing a

buy-and-hold strategy for the whole test period.

4.4.5 Results and Discussion

We separate the results reporting in two parts: first, we point out the observed benefits of

solving the robust MVP over the original non-robust version in terms of portfolio diversification

and stability; then, we discuss the effects of integrating regularization terms under the RSMS-

EMOA(r) framework.
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Figure 4.4: Boxplots reporting the average estimated risk and return for all obtained efficient
portfolios, for algorithms solving the robust and the original MVP. (a)–(b) Robustly estimated
risk/return; (c)–(d) Maximum-likelihood estimated risk/return.

The Effects of Robust Estimation

The first interesting observation we can draw regards what happens to the robustly estimated

return and risk8 when considering the portfolios obtained by the algorithms solving the non-

8All boxplots represent offline measures, meaning that we collect the statistics at the end of each training
period, before rebalancing the portfolios.
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Figure 4.5: Boxplots reporting relevant performance measures for the algorithms solving the
robust and the original MVP.

robust MVP, and vice-versa. For instance, we observe that, despite solving MVP by utilizing the

robust covariance matrix for estimating risk, both NSGA-II(R) and SMS-EMOA(R) produced

portfolios with much lower risk when evaluated using the non-robust sample covariance estima-

tor (Figure 4.4(c)). The same did not happen with regard to return (Figure 4.4(d)), as those

algorithms evolved efficient portfolios with lower estimated (sample average) return, although

the estimated median return was statistically significantly higher than for the non-robust port-
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Table 4.1: Ex-post performance for the maximum Sharpe Ratio portfolio from the efficient
frontier.

Algorithm MaxSR Turnover Cardinality Entropy
NSGA-IINR 1.219 0.866 7.370 0.725
NSGA-IIR 3.628 0.749 26.610 0.854

SMS-EMOANR 1.193 0.876 6.00 0.743
SMS-EMOAR 3.652 0.717 25.550 0.859

RSMS-EMOA(rEC) 3.692 0.720 26.036 0.861
RSMS-EMOA(rS) 4.106 0.791 25.440 0.847

Index (wIndex) − 0.000 89.000 1.000

folios. This result suggests that (i) solving the original MVP may lead to more risk-inclined

portfolios; and (ii) the robust MVP may lead to less risk-inclined portfolios.

Another remarkable effect of integrating the robust statistics into the original MVP was

observed for the portfolios diversification. While the algorithms solving the non-robust MVP,

NSGA-II(NR) and SMS-EMOA(NR), obtained low cardinality (see Table 4.1) and low entropy

portfolios, the opposite happened with NSGA-II(R) and SMS-EMOA(R), which favored medium

cardinality portfolios with more balanced wealth allocations (Fig. 4.5(a)). This observation

strongly complies with the observed lower estimated risk for the robust versions previously

noted.

Regarding the effects of solving the robust and original MVP formulations on stability in

the objective space, we note from Fig 4.6(d)–(f) that the robust versions did not always lead to

the most stable Pareto frontiers, as measured by the rank correlation, although for the FTSE

100 data with the shortest investment horizon, H = 25 (Fig 4.6(d)), which requires the most

frequent rebalancing operations (56 in total), the NSGA-II(R) obtained the most stable frontiers

(with statistical significance), followed by SMS-EMOA(R), what is also a remarkable outcome.

Finally, from the ex-post simulations, in which the maximum SR (MaxSR) portfolio is im-

plemented in each period, we observe from Table 4.1 that the non-robust versions were outper-

formed by all other robust versions in terms of stability in the decision space, as measured by

the turnover rates. Here, we find intuitive the fact that, due to the lower cardinality portfolios

evolved by NSGA-II(NR) and SMS-EMOA(NR), more effort is needed to rebalance the portfolio

in order to handle changes in the non-robust return/risk estimates as new data arrive, which

was somewhat expected.

The Effects of Regularization

Among the algorithms solving the robust MVP formulation, the RSMS-EMOA(rEC) was suc-

cessful on obtaining the highest diversified portfolios (with statistical significance), as expected

(Fig. 4.5(b)), followed by the other regularized version, RSMS-EMOA(rS). The plain SMS-

EMOA(R), on the other hand, appeared to have greedily traded off diversification by return

maximization, what may explain the lowest entropy portfolios for the robust MVP while attain-
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ing higher hypervolume9 values than those achieved by NSGA-II(R) (Fig. 4.5(d)). In terms of

offline hypervolume, RSMS-EMOA(rS) outperformed its contenders, followed by the other SMS-

EMOA versions, which outperformed NSGA-II. The striking performance of RSMS-EMOA(rS)

in terms of hypervolume is coherent with the fact that it also obtained the portfolios with the

lowest median class values among all versions. After the non-dominated sorting procedure is

applied for all population, each portfolio is assigned a class value, ranging from zero to the

number of partitions found. It can be seen that RSMS-EMOA(rS) is the version that keeps the

highest number of mutually non-dominated portfolios in the population, what may contribute

for a more effective exploitation of the efficient frontier, thus greatly improving its population

hypervolume.

The version that seeks to incorporate stability in the objective space, RSMS-EMOA(rS),

has achieved its goal (see Figure 4.6(a)–(c)), although tied with NSGA-II(R) for H = 25, and,

therefore, for investors seeking portfolios which are less likely to be affected by market volatility

over time in terms of the estimated return and risk, it is the recommended choice among the

algorithms we tested. What is interesting about this result, however, is that such objective

space stability leads to higher instability in the decision space (as measured by turnover rates,

Table 4.1), when compared to the other algorithms solving the robust MVP.

This apparent conflict between the two forms of stability makes sense when recalling that

RSMS-EMOA(rS) also achieved the highest hypervolume values: when attempting to stabilize

the return and risk estimatives between rebalancing periods, the algorithm may have become

more effective at improving over local Pareto sets in the decision space, given that it showed

the highest levels of improvement in hypervolume between training periods. However, this goal

was attained at the cost of more dramatically modifying the weights of the seeded population

of efficient portfolios from one investment environment to another.

4.4.6 Concluding Remarks

The regularized, robust algorithms proposed in this chapter stands under the class of preemptive

approaches for model (the robust part) and structural (the regularization part) risk mitigation.

The results obtained with the proposed rolling horizon multi-objective portfolio framework for

the robust Mean-Variance Problem (MVP) support the following remarks:

• The plain SMS-EMOA have outperformed NSGA-II on approximating the MVP efficient

frontier for real-world stock data, both under robust and non-robust estimators for the

mean and covariance matrix of returns, but the Pareto frontiers obtained with NSGA-II

were the most stable ones;

• The consideration of robust statistics in the MVP formulation, specifically the pairwise

robust covariance matrix estimation, allowed for more stable portfolios in the decision

space, as significantly lower turnover rates have been observed;

9Because we did not know what to expect from the range of values that would be taken by both return and
risk, we set the reference point to arbitrary high values (in magnitude) as (50,-50) for risk/return.
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• The proposed RSMS-EMOA framework was effective on incorporating desired structural

aspects in the final portfolios, such as reduced cardinality and improved diversification

and stability; and

• The two concepts of stability discussed for both spaces (objective and decision) are de-

sirable, but, as indicated in our results, they may be conflicting for different investment

profiles.

Finally, despite the focus on the MVP application, we claim that the RSMS-EMOA can

be used in virtually any problem for which regularization plays an essential role, such as on

avoiding overfitting in machine learning multi-objective model building (e.g. in neural networks

architecture optimization).

Further Developments and Investigations

Motivated by such positive results, we suggest assessing an RSMS-EMOA version explicitly

incorporating the turnover rate (measured in reduced validation sets) as the regularization

term. The higher computational effort of such task, however, would not pose a problem, since

this step can be done offline within reasonable time, even for databases containing thousands

of assets. Investigation on the evaluation of such preemptive algorithms in controlled scenarios

with generative models should also be pursued.

4.5 Summary of the Contributions

This chapter’s contributions to the thesis are as follows:

1. It presented and motivated the principle of diversification, as well as several notions of risk

mitigation when deciding how to perform investment allocation in financial instruments;

2. The plausibility of active investment management strategies was analyzed, and the po-

tential benefits of using preemptive strategies were assessed;

3. Finally, an original multi-objective proposal for sequential portfolio selection under car-

dinality constraints was experimentally investigated using real-world stock data, with

encouraging results.

The next chapter describes anticipatory multi-objective optimization and decision-making

models, providing one of the main contributions of this thesis.
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Figure 4.6: Boxplots reporting the observed Spearman rank correlation. (a)–(c) Algorithms
solving the robust and the original MVP; (d)–(f) Algorithms solving only the robust MVP,
including the regularized versions.
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Chapter 5
Hypervolume-Based Anticipatory Multiple
Criteria Decision-Making

We choose the thoughts we allow ourselves to think, the passions we allow

ourselves to feel, and the actions we allow ourselves to perform.

– Benjamin Franklin

An intense anticipation itself transforms possibility into reality; our desires

being often but precursors of the things which we are capable of per-

forming.

– Samuel Smiles

The role of flexibility and anticipation for decision-making is discussed in this chapter and

two novel anticipatory models for online Stochastic Multi-Objective Optimization (SMOO) are

proposed. The implications of such flexible Anticipatory SMOO (AS-MOO) models for online

multi-criteria decision-making are addressed. In addition, a proposal for effectively incorporat-

ing prediction into multi-objective problem-solving tools is presented, leading to a novel class

of anticipatory multi-objective metaheuristics. The proposed metaheuristics are designed to

approximately solve the AS-MOO models discussed hereinafter. Finally, an online anticipatory

learning methodology is devised for self-adjusting time preferences according to observed his-

torical prediction errors and to predictive future uncertainty estimated from Bayesian tracking

tools that are integrated into MOO metaheuristics.

The models and algorithms developed in this chapter thus provide the basis for the au-

tomation of Multiple Criteria Decision Making (MCDM) processes when it is unclear how the

trade-offs between the decision criteria change over time and when choice consequences are

subject to stochastic uncertainty.

The autonomous behavior that emerges from the proposed flexible anticipatory metaheuris-

tics is achieved by modeling and automating a Decision Maker (DM, or agent) whose preferences

become achieving future improved flexible and predictable sets of alternatives to choose from in

later periods, for what the search and implementation of solutions predicted to maximize the

expected hypervolume over sets of future non-dominated alternatives is pursued.

97
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5.1 Challenges of Solving Sequential Stochastic Multi-

Objective Optimization

The traditional premise when designing optimization systems for decision-making under un-

certainty, as discussed in previous chapters, is that all relevant parameters for characterizing

the problem’s random variables are readily available, as well as the preferences of the Decision

Maker (DM) and his/her attitude to optimizing near and long-term performance. This is how-

ever an unrealistic statement in practical scenarios, wherein: (1) the system must instead resort

to noisy historical observations for model building and parameter estimation; (2) the DM has

often little to zero knowledge about the relative importance of the optimization criteria; and (3)

the DM has no subsidies for deciding whether near-term performance levels are more valuable

than long-term ones relative to the current decision period.

As shown in chapter 4, the former challenge can be addressed by data-driven optimization

approaches to enable the DM to overcome the dependency on unrealistic modeling assumptions.

This was the case when the parameters of the Gaussian distribution chosen to represent the

returns empirical distribution were estimated using robust statistics. Such estimatives were

then plugged-in directly into the optimization model. The challenges (2) and (3), however, are

extremely overlooked in the literature and little progress has been made to address them in the

context of sequential MCDM. We argue in this thesis that addressing challenges (2)–(3) should

require as little involvement as possible from the DM. That is because eliciting the DM complete

preferences and eagerness to near-term optimized performance under little knowledge about the

problem can be unattainable at best and too much speculative and deceptive at worst.

The focal innovations of this thesis for automating MCDM under uncertainty are thus de-

voted to tackle those two challenges by integrating anticipation into Multi-Objective Optimiza-

tion (MOO) solvers. The intended goal is to design online anticipatory MOO solvers to search

for the Anticipated Maximal Flexible Choices (AMFCs). The implementation of flexible choices

is justified as to allow the DM to not compromise into the unknown. In other words, AMFCs

pave the way for the DM to progressively assume control of the decision-making process, as full

knowledge becomes available in the future. On the modeling side, we presume that more prin-

cipled yet tractable online Stochastic MOO (SMOO) models are attainable. On the algorithmic

side, the premise is that the optimization tools should require the least involvement from the

DM in terms of parameter tuning.

We begin the exposition by addressing the modeling aspects of those novel anticipatory

MCDM strategies. The third challenge is handled in this thesis through a strategy to automat-

ically determine the DM eagerness to near-term optimized performance that is incorporated

into the proposed anticipatory MOO algorithms via the concept of Online Anticipatory Learn-

ing (OAL, see chapter 6, section 6.1).
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Figure 5.1: Effects of prediction in the search space. On the left, the evolved candidate solutions
in the 2-simplex using myopic optimization overfit the current Pareto Set, whereas, on the right,
anticipatory learning allows for better adaptability and the evolved solutions are in-between the
current and the future Pareto Set. The assumption is that fixed optimal trade-off solutions
can become dominated between two decision periods. Note however, there might be portions
of the dynamical Pareto Set wherein one or more solutions can still be non-dominated between
consecutive periods.

5.2 The Anticipatory Stochastic Multi-Objective Opti-

mization (AS-MOO) Model

The expected effects of adopting an anticipatory strategy in a time-varying optimization problem

are depicted in Fig. 5.1, as opposed to solving a myopic SMOO formulation. Suppose w1, w2, w3

are three decision variables in the 2-simplex S2 (i.e., w1 + w2 + w3 = 1 and w1, w2, w3 ≥ 0).

Suppose also that we are solving a two-period decision multi-objective optimization problem.

Optimizing over the predicted value of hypervolume of the current candidate non-inferior solu-

tions set for t + 1 allows for obtaining trade-off solutions that are in between the Pareto Sets

(PS) for the decisions periods t and t+1, depending on the anticipation rate (or discount factor)

chosen by the DM. When compared to a myopic strategy making no use of internal predictive

models, an anticipatory strategy is therefore expected to provide mutually non-dominated solu-

tions representing a better trade-off between near and long-term performance levels. Therefore,

the obtained solutions can be said to anticipate the upcoming environment change. If the di-

rections toward which the PS is moving over time are unpredictable, however, then prediction

should have no effect at all in the search process. In chapter 6, section 6.1, this adaptive

behavior is showcased in the proposed online anticipatory learning.

We thus make the case for a online MCDM strategy that can find candidate solutions

requiring as little commitment as possible from the DM in terms of preference specification. Ef-

fectively, the anticipated decision mitigate the need for the DM to disclose his/her preferences

over the conflicting optimization criteria at early, uncertain decision periods. The proposed

strategy is thus a means for robustly postponing preference specification when the DM is un-
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certain about what the underlying trade-offs resulting from each optimization criteria are as

well as how they are changing over time. The decision identified under the proposed MCDM

strategy is the one for which it is predicted to attain, on average, the best possible diverse range

of trade-off solutions in subsequent decision periods, when the DM can be in a better position

to make an informed decision grounded on more established preferences.

5.2.1 Notation and Definitions

There are two possible formulations for AS-MOO: the (a) Time-Linkage (TL); and the (b)

Time-Linkage Free (TLF) one; the difference being whether the objective functions at time t

depend on the decisions taken at time t − k (t ≥ k > 0). Before stating the two formulations,

some notation is needed. We propose modeling the dynamics of the objective functions by means

of a hidden random state vector (xt), subject to stochastic dynamics over time. For instance,

in the TL regime, one can assume the state vector to depend linearly on both its previous state

and on the decision taken at time t− 1, where the stochastic part may be modeled as additive

noise represented in a vector of random disturbances ξt (and e.g. x0 ∼ N (m,Σ)):

xt+1|ut = Axt + But + ξt, (5.1)

whereas, for the TLF regime, one may simply take B = 0 and write:

xt+1 = Axt + ξt. (5.2)

Definition 5.1 (Time-Linkage regime). A TL regime is one wherein either:

a) the temporal evolution of the state vector xt is influenced by external actions or decisions

ut−k taken at previous periods; and/or

b) the objective functions f evaluation of a given decision ut depends on the decisions ut−k taken

at previous periods.

Definition 5.2 (Time-Linkage Free regime). A TLF regime is one wherein both:

a) the temporal evolution of the state vector xt is independent of external actions or decisions

ut−k taken at previous periods; and

b) the objective functions f evaluation of a given decision ut is independent of the decisions

ut−k taken at previous periods.

The classification of a temporal regime depicted in Definitions 5.1 and 5.2 is divided in two

parts: (a) how past decisions affect the evolution of the state vector; and (b) how they affect

the objective functions evaluation. In the TLF regime, both the state vector and the objective

functions are independent of previous decisions, whereas in the TL regime, two situations can

happen: firstly, if past decisions influence the evolution of the state vector (i.e., if B 6= 0), then

they also necessarily influence the current objective functions evaluation, since f is parameterized

by the state vector xt. On the other hand, even when the state vector evolution is independent

of past decisions, the objective functions evaluation may still be influenced by past decisions.

This is the case, for instance, when there are resource costs for adapting previous decisions

towards new ones [179]. The consideration of such costs may alter the optimal anticipatory
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trajectories in the search space over time, when compared to the scenario in which the costs are

ignored.

The TL regime can be identified by the notation xt|ut−1:t−k, for 0 < k < t, which denotes

the current hidden state vector given a sequence of past decisions ut−1, · · · ,ut−k. However,

in both the TL and TLF regimes, the state may not depend on past decisions. Hence, when

xt|ut−1:t−k ≡ xt, the TL regime is distinguished from the TLF one by the conditional objective

vector notation zt|ut−1:t−k, which denotes that the objective functions evaluation of a current

candidate decision ut depends on a sequence of decisions taken at previous periods of the

decision-making process. In this thesis, we consider the Markov property :

xt|ut−1:t−k ≡ xt|ut−1, (5.3)

zt|ut−1:t−k ≡ zt|ut−1,

that is, the current state vector and objective vector conditioned on the latest k decisions

depend only on the near-termly preceding decision. Moreover, we consider that the past state

vectors encode all historical data that is relevant for computing the value of the stochastic

objective functions at any given decision period. In general, xt−k encodes the parameters of

the underlying probability distributions generating the observed data. For instance, in the case

of portfolio selection, xt−k represent the mean vectors of a multivariate Gaussian modeling the

returns distribution. On the other hand, the current state vector xt may represent a distribution

over the parameters of the data generating process because, generally, a decision must be taken

before the current environment can be known with certainty.

Given a fixed decision ut, the vector of objective functions can be denoted in four different

scenarios, depending on the temporal regime we are addressing:

1. In the TLF regime as zt = f(ut,xt), wherein neither the state and the objective vectors

depend on previous decisions;

2. In the TL regime as zt = f(ut,xt|ut−1) to account for the dependency of the state vector

on the previous decision;

3. In the TL regime as zt|ut−1 = f(ut,xt,ut−1) to account for the dependency of the objective

vector on the previous decision, in which case the objective functions are parameterized

by both the current candidate decision being evaluated, ut, and the decision taken at the

preceding period, ut−1; or

4. In the TL regime as zt|ut−1 = f(ut,xt|ut−1,ut−1) to account for the dependency of both

the state and objective vectors on the previous decision. The objective vector notation in

this case is the same as in the scenario 3.

Note: When hereafter referring to the TL regime, we assume the scenario 3, which best de-

scribes the portfolio selection application that will be presented in chapter 7.

The vector-valued objective function f can thus be decomposed in the scenario 3 as follows:

zt|ut−1 = f(ut,xt,ut−1) = g(ut,xt) + h(ut,ut−1), (5.4)
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where g encodes the original m conflicting objective functions of the MCDM problem and h

denotes the costs incurring over each optimization criteria when evaluating the decision ut given

that the decision ut−1 had been taken.

Remark: While the functional form of f is static, it is parameterized by the hidden random

state vector, what implies that the statistics from repeated evaluations of f for a fixed decision

vector ut may evolve over subsequent decision periods.

We denote the Stochastic Pareto Frontier (SPF) in the TLF regime as

Z?t |ut−1 = Ft(Ω?
t ,xt) = {f(u?t ,xt) : u?t ∈ Ω?

t}, (5.5)

where Ω?
t is the Pareto Set (PS) at time t and f is evaluated for all u?t ∈ Ω?

t . It turns out our

SPF definition is based on the Pareto dominance applied over the objective mean vectors:

Definition 5.3 (Stochastic Pareto Frontier). The Stochastic Pareto Frontier (SPF) is the set

Z?t = F(Ω?) composed of all random objective vectors satisfying the property

∀ z? ∈ Z?, @ z′ ∈ F(Ω) such that E [z′] � E [z?] . (5.6)

Put differently, the definition implies that, although the Pareto set is deterministically

formed by all non-inferior solutions concerning the mean objective vectors, the SPF is a ran-

dom set whose support are subsets of the objective space Z = F(Ω). An example of a SPF

approximation with four mutually non-dominated random objective vectors is shown in Fig. 5.2.

Moreover, if UNt = {ut,1, · · ·ut,N} is a finite candidate set of N mutually non-dominated

solutions at time t, then ZNt = FNt (UNt ,xt) can be written in short as the set1 ZNt = {zt,i}Ni=1.

The notation used for the TL case is analogous: ZNt |ut−1 = {zt,i|ut−1}Ni=1, for a decision ut−1

implemented at time t− 1.

Before presenting the proposed AS-MOO models, we demonstrate a novel way of performing

partial preference elicitation requiring minimal accountability and involvement for the DM.

5.2.2 Representing Partial Preferences

The assumption is that there is no access to the complete specification of the DM preferences2.

In order to model the DM partial preferences, we therefore assume that it is possible to define a

set of m constraints in the objective space (m is the number of objective functions). Hence, the

DM preferences are encoded in our model as a set of m separating hyperplanes in the objective

space (Fig. 5.3). Each hyperplane can be directly specified by the DM at each decision period.

The set γt is thus used to encode the m resulting half-spaces specifying the regions on the

trade-off hypersurface that might be of interest to the DM.

With our partial preference specification approach, the DM effectively reduces the problem

to finding the optimal trade-off solutions whose objective vectors fall into the interior of the

half-spaces, bounded by the separating hyperplanes – what leads us to the following definition:

1Whenever possible, we omit the state vector xt from the notation, to simplify the exposition. Thus, the
SPF Z?t is simply denoted as Ft(Ω?t ). Moreover, we denote a finite subset of the true Pareto set composed of N
mutually non-dominated solutions as UN?t . Therefore, the corresponding finite subset of the true SPF is denoted
as ZN?t .

2Otherwise, the optimization criteria could be aggregated and approached as a single-objective one.
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Figure 5.2: Example of a SPF approximation evolved with the proposed algorithm for the port-
folio selection application. The objective functions are risk (variance, to be minimized) and
mean return (to be maximized). When the evolved mutually non-dominated portfolios are eval-
uated under several market scenarios sampled from the ground joint assets return distribution,
different risk/return evaluations are obtained. The objective function evaluations for each port-
folio are then collected to estimate the parameters of the corresponding bivariate Gaussians,
by computing the sample mean vectors and covariance matrices. The visualization of the SPF
provides insights not only about the stability of the risk/return estimation of each portfolio
to prices variability, but also about the underlying correlations between risk/return, which are
noticeably different, depending on the location of the portfolio along the SPF.

Definition 5.4 (Preferred Feasible Region). The so-called Preferred Feasible Region (PFR)

in the objective space Zγ is the intersection between the interior of the half-spaces specified in

γ and the original feasible set in the objective space.

By optimizing over the PFR, any candidate decision u whose image in the objective space,

z = f(u), does not fall within the PFR should be disregarded. A special case occurs when

defining the PFR in terms of a notable point in the original feasible space Z = F(Ω). We recall

Definition 3.2 in chapter 3 of a Nadir point znad and write

znad
j = sup

u?∈Ω?
fj(u

?), (5.7)

where Ω? is the Pareto Set (z = f(u? ∈ Ω?) thus belongs to the Pareto Frontier, F(Ω?)). Let
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Figure 5.3: The set of m half-spaces γ specifies the PFR Zγ defined as the intersection of the
half-spaces with the original feasible objective space region, F(Ω).

Hj be the half-space composed of all objective vectors whose j-th component is less than or

equal to the value of the j-th component of the Nadir point, i.e.,

Hj =
{
z : zj ≤ znad

j

}
. (5.8)

Denote the union of all the m corresponding half-spaces as

H =
m⋃
j=1

Hj =
{
z : z � znad

}
. (5.9)

Then, if the DM sets γ = {H1, · · · ,Hm}, the resulting PFR is then defined as Zγ = H∩F(Ω).

It turns out that this scenario corresponds to the complete absence of preference information

and is then termed in this thesis as the canonical PFR. Conversely, any preference specification

γt that is not defined in this way leads to a non-canonical PFR (Fig. 5.3 (b)), in which case the

hyperplanes can be defined with respect to any reference point zref.

Remark: For the canonical PFR defined in terms of the Nadir point, the Pareto Frontier (PF)

will coincide with the optimal trade-off frontier of the PFR (i.e., Zγ? = F(Ω?))3.

The rationale behind the PFR approach is to require very little to no accountability for

the DM when specifying preferences under uncertainty, as little effort would be required to

specify hyperplanes to bound the regions of interest in the objective space, when compared to

the precise assignment of the importances of each individual objective function. In fact, in the

absence of any useful knowledge about the MOO problem characteristics, the DM may simply

3The extrema points of the Pareto Frontier (PF) trivially falls within Zγ in this case, and since there is no
point of the PF dominating the extrema, it follows the whole PF must be contained in the PFR.



5.2. The Anticipatory Stochastic Multi-Objective Optimization (AS-MOO) Model 105

abstain from such responsibility and set γt and decide to optimize over the canonical PFR,

without a priori preference specification. Another motivation for setting a PFR is the potential

for building straightforward, simple human-computer interfaces based on the visualization4 of N

objective vectors corresponding to N trade-off solutions that were available in previous periods,

in which case the DM can directly specify the required half-spaces by just drawing lines into

2-dimensional projections onto planes resulting from all paired combinations of m objective

functions.

5.2.3 Chance Constraints Over Partial Preferences

Because we are dealing with data-driven online SMOO problems, the objective vectors are actu-

ally random objective vectors, i.e., the candidate decision vectors are evaluated under different

scenarios, that may be either simulated (sampled) from a probabilistic model randomly taken

from the already available data using bootstrap techniques. It is thus a natural consequence

that no candidate decision will satisfy the preferences constraints that are implicit in the chosen

PFR with full certainty. The best one can do is to talk about how likely the decision is to

satisfy the preferences constraints. The DM may thus require the candidate decisions to satisfy

his/her preferences at a minimum probability level:

Definition 5.5 (ε-feasibility). Given a decision vector u with an associated random objective

vector z = f(u), we consider u to be ε-feasible with regard to the DM’s PFR iff

Pr {z ∈ Zγ} ≥ ε. (5.10)

Remark: If the stochastic uncertainty in the objective space is modeled by fitting multivariate

Gaussians for each objective vector, then Eq. (5.10) can be computed by querying the joint

cumulative distribution function.

5.2.4 Time-Linkage Formulation

We present in this section the proposed optimization model for the TL regime. The solution of

the TL-AS-MOO model is a finite approximation for the dynamic Pareto Set (PS), UN?t |ut−1 ⊂
Ω?
t , obtained by maximizing the expected S-Metric (Hypervolume, Hypv) [32] computed over

the weighted sum of the temporal random objective vectors of the current candidate set of

N mutually non-dominated solutions, UNt |ut−1, and of the sequence of H − 1 future optimal

trade-off sets, UN?t+1|ut, · · · ,UN?t+H−1|ut+H−2 (H is the number of remaining decision periods and,

hence, the number of steps ahead the DM must anticipate is H − 1).

The model explicitly assesses the future discounted objective vectors, accumulating them

with the observed objective vectors ZNt |ut−1 in the current optimization environment. This

combination is mediated by discount factors, λt+h (for 1 ≤ h ≤ H−1), which limit the influence

of future performance. Note that the S-Metric in this thesis is a function of N random objective

vectors and, thus, it turns out S is also a random variable.

4For stochastic objective vectors, the visualization may include level curves representing the underlying
distributions centered at each mean objective vector.
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Note: The notation UNt |ut−1 indicates that the current candidate set of mutually non-dominated

solutions is optimized under the influence of the immediately preceding decision ut−1, which is

considered in the evaluation of the current objective functions. For the sake of simplicity, we

omit the conditional part whenever the TL context is clear. Thus, UNt |ut−1 ≡ UNt .

5.2.5 Anticipating Maximal Flexible Choices

The key to improve the range of future options is to anticipate flexible alternatives. Consider a

finite objective set ZNt and let ZN?t+h|umax
t denote a future stochastic Pareto frontier approxima-

tion solving the AS-MOO model at time t+ h, given that umax
t ∈ UNt is chosen.

Definition 5.6 (Anticipated Maximal Flexible Choice, AMFC). The maximal future Hypv

alternative umax
t satisfies

umax
t = arg max

ut∈Ωt
E

S
H−1∑

h=1

λt+h ZN?t+h|ut︸ ︷︷ ︸
future trade-offs


 , (5.11)

and is denoted as the Anticipated Maximal Flexible Choice (AMFC).

From all N choices ut ∈ Ωt in Eq. (5.11), umax
t is foreseen to lead to future SPF approx-

imations with maximal expected Hypv, where H is the anticipation horizon. The proposed

anticipatory decision-making model limit the influence of future objective distributions, medi-

ated by the anticipation rates λt+h. Hypv is thus measured over a temporal convex combination

between each ordered objective distribution over time. Given two arbitrary sets, A and B,

of ordered elements, the summation is defined for a lexical order over the decision criteria

as, e.g., A + B = {a(1) + b(1), · · · , a(N) + b(N)}, so as the multiplication by a scale factor:

λA = {λa(1), · · · , λa(N)}.

Remark: The maximal future Hypv alternative umax
t in Eq. (5.11) can be thus interpreted as:

Among all candidate alternatives in the current feasible search space Ωt, which is

the one whose implementation would allow for the best possible future cost-adjusted

trade-off performances, ZN?t+h|ut, in terms of expected hypervolume over finite sets of

N future Pareto-efficient solutions?

5.2.6 The TL-AS-MOO Mathematical Model

Consider a finite candidate set of trade-off objective vectors ZNt (with |ZNt | = N). Let also

ZN?t+h|umax
t denote a future finite trade-off set solving the TL-AS-MOO model at time t+h, given

that a decision umax
t ∈ UNt maximizing the future S-Metric is taken5. Then the TL-AS-MOO

model aims to obtain the set ZN?t satisfying:

5For notation convenience, we sometimes use zt ∈ ZN?t and ut ∈ UN?t interchangeably, but, in fact, ut is the
actual alternative being searched for.
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ZN?t = arg max
ZNt |umax

t−1

⊂Zt|umax
t−1

E

S
 ZNt |ZN?t+1:t+H−1︸ ︷︷ ︸

anticipatory trade-off sets


 , (5.12)

where,

ZNt |ZN?t+1:t+H−1︸ ︷︷ ︸
anticipatory trade-offs

≡ λt ZNt |ut−1︸ ︷︷ ︸
current trade-offs

+
H−1∑
h=1

λt+hZN?t+h|umax
t+h−1︸ ︷︷ ︸

future trade-offs

,

s.t.


λt +

∑H−1
h=1 λt+h = 1, λt ≥ 0, λt+h ≥ 0,

xt = T(xt−1, ξt−1),

(z
(a)
t , z

(b)
t ∈ ZNt ) ∧ (z

(a)
t 6= z

(b)
t ), z

(a)
t ‖ z

(b)
t ,

Pr {zt+h ∈ Zt+h} ≥ ε, ∀ h ∈ {0, · · · , H − 1}.

Remark: The maximal anticipatory Hypv set ZN?
t in Eq. (5.12) can be thus interpreted as:

Among all candidate sets of N mutually non-dominated vectors in the feasible objec-

tive space Zt, which is the one attaining the best possible combined cost-adjusted

trade-off performance in terms of expected hypervolume evaluated in the current and

in the H − 1 subsequent optimization environments?

In order to assess ZN?t |ut−1, however, one must first obtain in advance umax
t , · · · ,ut+H−2

and ZN?t+1, · · · ZN?t+H−1, i.e., the AS-MOO problem at time t depends on the solutions obtained

for periods t+ 1, · · · , t+H − 1. That means the TL-AS-MOO model is a recurrence model.

Note: The set ZN?t+h|umax
t+h−1 represents the future SPF at time t+h maximizing the expected S

values computed for even further periods at t+h+1, · · · , t+h+H−1, following future preceding

choices leading to maximal subsequent future Hypv for the whole anticipation horizon. It is

worth noting that we assume the Markov property. The set ZN?t+h|ut then denotes the decision-

tree path (Fig. 5.4):

ZNt+1|ut → ZNt+2|ut+1 → · · · → ZNt+h|ut+h−1 ≡ ZNt+h|ut. (5.13)

Note: In Eq. (5.12), the DM willingness for near-term optimized performance – i.e., for maximal

hypervolume non-dominated sets given the current available historical data – will be maximal

when λt = 1, being equivalent to not looking ahead into the future at all, whereas, for λt = 0,

the DM is willing to achieve maximum performance in future decision periods, even if that

means the non-dominated trade-off solutions do not yield the best possible performance when

evaluated from the available historical data.

Note: In Eq. (5.12), we have the following cost-adjusted trade-off objective vector:

ZN?t+h|umax
t+h−1 = {f(u

(1)
t+h,xt+h,u

max
t+h−1), · · · , f(u

(N)
t+h,xt+h,u

max
t+h−1)}, (5.14)

where umax
t+h−1 is the preceding implemented future AMFC (Eq. (5.11)). This model implies that

the future implemented AMFCs must also be estimated (see Eq (5.15)).
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Figure 5.4: In the AS-MOO methodology, a Pareto-efficient alternative zmax
t is chosen among

N options in ZNt . This choice influences the future stochastic Pareto frontier approximations
that can be formed to maximize the expected Hypv over discounted future efficient objective
vectors, ZN?t+h|zmax

t .

5.2.7 Approximate Predictive Bayesian Solutions to TL-AS-MOO

In the TL-AS-MOO solvers proposed in this thesis (see chapter 6, section 6.5), however, the

future sets of Pareto-optimal decisions, UN?t+h|ut, are replaced with the predicted sets ÛN?t+1|ut,
· · · , ÛN?t+H−1|ut obtained from tracking the candidate trade-off solution vectors over time – along

with the associated objective vectors – with internal Bayesian models. The future AMFCs

are also replaced with the predictions û?t+1, · · · , û?t+H−1, for which no online re-optimizations

are necessary. Therefore, our anticipatory methodology is a means for approximately solving

AS-MOO models.

Moreover, upon obtaining Ût after approximately solving the TL-AS-MOO model for the

current decision period at t, the Anticipated Maximal Flexible Choice û?t ∈ ÛN?t is chosen from

the optimal trade-off set which was the solution to Eq. (5.12), i.e. UN?t , what leads to the

following definition.

Definition 5.7 (Estimated Maximal Flexible Choice, EMFC). The Estimated Maximal Flexible

Choice (EMFC) û?t for the current decision period is the one chosen from the finite set of

mutually non-dominated solutions ÛN?t approximately satisfying Eq. (5.12) such that

û?t = arg max
ût∈ÛN?t

E

S
H−1∑

h=1

λt+h ẐN?t+h|ût︸ ︷︷ ︸
predicted trade-offs


 , (5.15)
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where ẐN?t+h|ût is the predicted maximal Hypv stochastic Pareto frontier approximation of N

alternatives that would be obtained at time t+ h, given that an alternative ût ∈ ÛN?t is taken at

a current decision period.

It is also worth noting we assume the state vector xt to be unknown at the current decision

period. However, it is possible to come up with the estimate x̂t from the available historical

data stream {x0, · · · ,xt−1}. In other words, the whole sequence of previous states is known and

can be inputted as a training set into an algorithm for approximately solving TL-AS-MOO.

The AMFC (û?t ) obtained after solving the TL-AS-MOO model at the current decision period

is then implemented before the data at t can be observed. Put another way, the anticipatory

decision û?t is to be implemented in an unseen environment.

5.2.8 Effects of Not Committing to the Anticipated Maximal Flexi-
ble Choice

We intuitively examine in this section the nature of the system trajectories resulting from the

TL-AS-MOO flexible choices. It turns out that a DM without a complete a priori preference

specification could choose a candidate solution randomly drawn from ÛN?t , say, v̂t. In this case,

regardless of the form assumed by the state transition function T, it is clear from Eq. (5.11)

that v̂t is not guaranteed to lead to the maximization of the expected hypervolume in future

decision periods, implying in suboptimal future Stochastic Pareto Frontiers (SPFs) in terms of

expected hypervolume. This means that: (1) the resulting trajectories can be biased towards

favoring one objective over another; (2) higher costs can be induced; and (3) the diversity and

quality of future admissible options can be compromised.

The implementation of biased decisions in the TL-AS-MOO model can therefore reduces

the range of future options to the DM. It follows that, if a DM with undefined preferences

deviates from the TL-AS-MOO decision-making process depicted in Eqs. (5.12)–(5.15) (i.e., if

he/she abstains from predicting the future consequences of implementing each available trade-off

solution), as he/she narrows down his/her preferences in later decision periods, the resulting sets

of available non-dominated solutions at those future instants are not expected to attain maximal

hypervolume. As a consequence, they are also not expected to attain as much diversity and

coverage over the future SPFs as they could have for a DM following Eqs. (5.12)–(5.15), thus

undermining the range of trade-off solutions compliant with future preferences (see Fig. 5.5).

Finally, it should be made clear that, because of the constrained size of the flexible-Pareto

Set, implementing the EMFC by solving Eq. (5.15) implies that the DM is in fact choosing

future alternative paths over others under the influence of noise and of available dynamical

predictive models.

5.2.9 Anticipating Future Preferences

What remains is to discuss in light of the TL-AS-MOO model the effects of advancing through

time on the preferences chance constraints of Eq. (5.12), when computing UN?t+h for h = 1, · · · , H−
1 (or when predicting ÛN?t+h). It turns out there is no way to compute in advance the future

Preferred Feasible Regions (PFRs) Zγt+1 , · · · ,Zγt+H−1 , since the TL-AS-MOO model does not
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(a) An example of a myopic trajectory.
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(b) An example of an anticipatory maximal Hypv trajectory.

Figure 5.5: Example of (a) myopic; and (b) anticipatory sequences of choices in an objective
space composed of mean return maximization (N) and variance (risk) minimization (σ2). In
(a), a myopic DM always choose the most risky Pareto-efficient investment, hoping to maximize
near-term wealth. The implemented portfolios influence the future diversity of choice measured
by the Hypv (gray area). In (b), a DM anticipating the future maximal Hypv portfolios obtains
more efficient and diverse future range of options, and may end up earning higher returns over
time by taking safer, flexible choices.

prescribe how a DM should update his/her preferences in response to the observed performance

of his/her decisions. Therefore, because the PFRs at every future decision period are unknown,

and no reasonable dynamical model is available in principle, the assumption used in TL-AS-

MOO is that the PFRs remain constant at future periods, i.e., the DM does not alter his/her

uncertainty over time about the relative importances of each objective function.

The investigation of behavioral models that could explain how a DM would adjust the PFR

over time as a function of the observed past outcomes is therefore an interesting open problem.

Despite the absence of such a model, in the approximate TL-AS-MOO solvers proposed in this

thesis, this problem can be analogously handled as in how the objective vectors and trade-off

solutions are predicted: by tracking the hyperplanes coefficients in γ1, · · · γt and by predicting

γ̂t+1, and so forth. If any trend regarding the DMs preferences evolution is captured (e.g.

progressively narrowing preferences down towards a specific direction), this information can

enable the TL-AS-MOO model to obtain approximate ε-feasible Anticipated Maximal Flexible

Choices w.r.t. the predicted PFRs Ẑγt+h .

5.2.10 Time-Linkage Free Formulation

The TL-AS-MOO formulation assumed that one decision per period should be taken. There

are, however, scenarios for which a fixed decision is intended to operate for multiple periods.

It is so e.g. when the costs to modify the solution in execution are prohibitive, what leads to
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Figure 5.6: Outline of the AS-MOO methodology for online MCDM under uncertainty.

lower frequency re-optimizations. There may also be time constraints that make it impossible

to keep the pace of environmental change for optimally adapting current decisions [52]. In such

scenarios, a fixed decision should therefore be made robust against all possible disruptive future

variations in the operational environment.

The TLF-AS-MOO model thus conveys a similar concept as that of the recently proposed

single-objective optimization model known as Robust Optimization Over Time (ROOT) [90,125],

whose aim is to find solutions requiring minimal to no change for maintaining good performance

in future environments. The intuitive concept of ROOT was described in Jin et al. [125] as the

ability of finding solutions “(...) whose quality is acceptable over a certain time interval, although

they [may] not be the global optima at any time instant”.

The task of obtaining fixed decisions is conceptually easier when the dynamics of the problem

is not affected by the DM. The TLF-AS-MOO model therefore does not prescribe a decision-

making strategy, since that is irrelevant for the dynamics of the problem. Nevertheless, a DM

solving a TLF-AS-MOO problem is interested in obtaining a fixed finite approximation to the

changing Pareto Set composed of N mutually non-dominated solutions that is robust against

predicted changes in the optimization environment over time. The model is defined as:

UN?t = arg max
UNt ⊂Ωt

E

{
S

(
λtFNt

[
UNt
]

+
H−1∑
h=1

λt+hFNt+h
[
UNt
])}

, (5.16)

s.t.


xt = T(xt−1, ξt−1),
ut ⊀ vt ∧ vt ⊀ ut (for ut,vt ∈ UNt and ut 6= vt),
Pr {zt+h|ut+h−1 ∈ Zγt+h} ≥ ε, ∀ (0 ≤ h ≤ H − 1),

where zt+h = f(ut+h,xt+h) ∈ FNt+h(UNt+h).

(5.17)

Contrasting the two AS-MOO models with each other, it is clear from Eqs. (5.16) and (5.17)

that not only the vector-valued objective function f in the TLF variant does not depend on

past decisions, but also the future random objective vectors within the right-hand side of the

summation are computed over the fixed candidate approximation trade-off set, UNt . Note that

the term in Eq. (5.16) denotes the future set of random objective vectors when the candidate
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Figure 5.7: Interrelations between the five components of the proposed AS-MOO method.

trade-off solutions in UNt are evaluated over the upcoming environments, i.e.,

FNt+h(UNt ) = {f(ut,1,xt+h), · · · , f(ut,N ,xt+h)}. (5.18)

For those reasons, the TLF-AS-MOO model does not imply a recurrence equation and the only

way to assess the future objective values for a current candidate decision is hence by means of

prediction. As likewise indicated in section 5.2.4, this thesis proposes tracking the evolution of

a given objective vector over time with Bayesian models, by taking advantage of the observed

historical data stream {x0, · · ·xt−1} at disposal.

Figure 5.2.10 outlines the information flow in both two proposed AS-MOO models, wherein

it is emphasized the unawareness of an AS-MOO solver about the exact value of the current

state vector xt, whose outcome is only revealed after an anticipatory decision is taken (in the

TL regime) and/or a finite approximation to the Pareto set is obtained. Also noteworthy is

how the available historical data is accumulated over time, allowing the AS-MOO solver to

more accurately track the objective vectors/decision vectors/preferred feasible regions bounds

distributions.

Remark: The AS-MOO problem is repeatedly solved for each decision period upon the input

of new data from the optimization environment.

A general sketch of the AS-MOO solver for approximating the dynamic PF and selecting a

trade-off solution from the anticipatory SPF can be visualized in Fig. 5.2.10, assuming a one

step ahead prediction (anticipation horizon of, H = 2). The result of one application of an

AS-MOO solver at a decision period t is a set of mutually non-dominated ε-feasible candidate

solutions (UN?t ) maximizing expected hypervolume for H−1 steps ahead (for both TL and TLF

variants) and the indication of the AMFC u?t ∈ UN?t that is expected to maximally preserve the

DM partial preference specification for the periods t+ h (1 ≤ h ≤ H), for the TL variant.

There are five possible modules that can be integrated into AS-MOO, namely: (1) a pre-

dictor for the future preference specification of the DM; (2) a predictor for the next state of

the optimization environment; (3) a Bayesian estimation module for tracking the decision and

objective vectors over time and to compute the corresponding predictive distributions; (4) an
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S-Metric MOO maximizer; and (5) a procedure for identifying the AMFC that maximizes the

expected hypervolume for the future decision periods.

The light gray blocks (1), (2), and (5) are optional, since in the first case, the (partial)

preferences of the DM can be given a priori. For instance, when there are multiple DMs with a

vast range of preferences using the proposed anticipatory MCDM system, the canonical PFRs

can be assumed throughout. The second module is optional because it can be very costly

and challenging to identify a proper dynamical model for the environment, what requires the

AS-MOO methodology to anticipate robust decisions by relying on its own internal prediction

models which operate over the decision and objective spaces. That is exactly what module (3)

is designed for. The methods used in the third module are described in chapter 6, section 6.1,

whereas the anticipatory methods for approximately performing the tasks in module (4) and

module (5) are described in section 6.5.

5.3 Summary of the Contributions

This chapter’s contributions to the thesis are as follows:

1. It argued for anticipation as a means to handle uncertainty in Multi-Criteria Decision-

Making (MCDM);

2. It presented novel and useful definitions such as Stochastic Pareto Frontier (SPF) and

Preferable Feasible Region (PFR) to allow for a better and more comprehensible modeling

of Stochastic Multi-Objective Problems (SMOOPs);

3. Two novel Anticipatory SMOO (AS-MOO) models have been formulated in terms of the

maximization of hypervolume over time;

4. The concept of preference for flexibility has been explicitly incorporated into the AS-MOO

model by suggesting an automated online decision-making strategy for choosing a solution

which is foreseen to yield to future stochastic Pareto Frontiers of maximal hypervolume;

5. Prediction has been susggested to reduce the exponential computational costs of traversing

the decision-tree which is implicit when solving the time-linkage AS-MOO model.

In the next chapter, we provide Bayesian anticipatory learning models and anticipatory

multi-objective meta-heuristics for evolving a population of candidate trade-off choices approx-

imating the anticipatory stochastic Pareto Frontier. Moreover, a procedure to identify the

Anticipated Maximal Flexible Choice (AMFC) is proposed.
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Chapter 6
Learning to Anticipate Flexible Trade-off
Choices

Humility is the only true wisdom by which we prepare our minds for all the

possible changes of life.

– George Arliss

The important thing is this: to be able at any moment to sacrifice what we are

for what we could become.

– Charles Du Bos

While future hypervolume maximization can postpone the assignment of relative impor-

tances over the decision criteria, the DM hesitation about time performance can be handled

via Online Anticipatory Learning (OAL). OAL refer to methods for (i) self-adjusting the DM

willingness to near-term performance; and (ii) for incorporating predictive knowledge into Antic-

ipatory Stochastic Multi-Objective Optimization (AS-MOO) solvers, mediated by the perceived

temporal predictability based both on historical trajectory errors and predictive knowledge.

The assumption in OAL is that the more unpredictable the future, the more eager for

immediate performance the DM should be, since, by construction, optimizing solutions for early

performance is safer in this case. Conversely, the more certain the future, the more the DM

is willing to capitalize on foreseen opportunities. OAL thus make use of Bayesian tracking in

both the objective and the search spaces to approximate AS-MOO solutions for which improved

performance on the targeted environments is predicted, in terms of PD.

In AS-MOO, the set Λt:t+H−1 = {λt, · · · , λt+H−1} encodes time preferences. In dynamic

models, such discount factors are often heuristically determined a priori as a monotonically

decreasing function – often decaying at an exponential rate – over time, in order to model a

DM that prefers more near-term optimized performance. As previously discussed in chapter 3,

section 3.3.1, the parameterization of an optimization model can drastically alter the obtained

sequence of decisions satisfying the chosen parameters. Furthermore, eliciting Λt:t+H−1 when N

incomparable solutions are to be simultaneously searched for is challenging: the future outcomes

of some alternatives may be more predictable than those of others. Hence, instead of pursuing a

115
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global set, we propose self-adjusting N independent sets, Λ
(1)
t:t+H−1, · · · ,Λ

(N)
t:t+H−1, so that portions

of the stochastic Pareto frontier can be approximated under varying time preferences.

In the following, we present the proposed OAL methods for incorporating predictive knowl-

edge into (a) the objective (or performance) space; and (b) the search space of an AS-MOO

solver. We hereafter refer to any λ ∈ Λt:t+H−1 as the anticipation rate.

6.1 Online Anticipatory Learning in the Objective Space

Since the current environment xt is unknown, for the sake of applying OAL in the objec-

tive space, we need a way to estimate the current objective values (performance levels) zt =

(f1(ut,xt) · · · fm(ut,xt))
ᵀ for a fixed trade-off solution vector1, based on the observed trajec-

tory Zt−k:t−1 = {zt−k, · · · , zt−1} (see Fig. 6.1). The underlying stochastic uncertainty regarding

the true value of zt is modeled as a multivariate Gaussian distribution over the j = 1, · · · ,m
values received from each of the m objective functions, i.e., zt ∼ N (mzt ,Σzt), for any decision

period at t − k, · · · , t, · · · , t + H − 1. For a given candidate trade-off solution, we thus pro-

pose predicting the unknown objective vector zt by using the Kalman Filter (KF) estimation

presented in chapter 2, see section 2.3.4.

6.1.1 KF Prediction in the Objective Space

The notation ẑt+h|zt−1 (for h = 1, · · · , H − 1) implies that the prediction step of the KF

is repeatedly applied h times to yield a long term estimation about the performance levels

distribution at future optimization environments:

ẑt|zt−1 → ẑt+1|ẑt → · · · → ẑt+h|ẑt+h−1 ≡ ẑt+h|zt−1. (6.1)

The main idea is to use the KF to predict the distributions of ẑt|zt−1 and then to combine the

prediction with the current estimated distributions for zt mediated by the underlying uncertainty

measured from the current and predicted states (see section 6.1.2).

We assume simple linear dynamics for the objective vectors: zt ∼ zt−1 + But−1 + żt−1, i.e.,

the next state is distributed as the previous state plus a small (deterministic) displacement,

that we call velocity, żt. The dynamic also accounts for an external action or decision ut−1, for

which B = 0 in the time-linkage free regime. We thus want to track the extended state vector

via KF estimation:

z+
t = (z1,t · · · zm,t ż1,t · · · żm,t)ᵀ, (6.2)

where m is the number of objective functions. It can be noted that the KF will not only estimate

the current value of each objective function for a given decision ut, but also how each of them

are changing over time (i.e., by estimating the velocities). All those information are encoded in

the estimation for the joint distribution of z+
t (Fig. 6.1).

Hence, the dynamical model is represented as z+
t = Az+

t−1, where

A =

(
Im×m Im×m
0m×m Im×m

)
2m×2m

, (6.3)

1Recall that in the TL regime, we would write zt|ut−1 = (f1(ut,xt,ut−1) · · · fm(ut,xt,ut−1))
ᵀ

instead.
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Figure 6.1: On the left, the KF tracks performance for a fixed investment portfolio and estimates
the predictive distribution ẑt+1|ẑt. The portfolio evolves from a low-risk/low-return estimative
to a high-risk/high-return prediction. On the right, OAL is detailed. Given the up-to-date
estimation ẑt and the predictive ẑt+1|ẑt, online anticipatory learning produces an anticipatory
distribution ẑt|ẑt+1 expressed as the convex combination between ẑt and ẑt+1|ẑt.

whereas the measurement function M outputs the noisy values for the first half of z+. A point

worth mentioning is that it is not always possible to apply the KF directly to the decision vari-

ables, especially when dealing with problems where the search space has some structure, what

is the case of the financial portfolio applications discussed in chapter 4 (see also section 6.2).

The Pseudocode 5 describes how the KF operates to estimate and predict the current and future

objective vector distributions associated with a given, fixed candidate trade-off solution ut.

Remark: In the TL regime, the KF prediction takes into account the historical sequence of

implemented Estimated Maximal Flexible Choices (EMFCs, see Eq (5.15), chapter 5) UN?t−K:t−1

and computes the historical random objective vectors for a given fixed decision vector u as

zt−k = f(ut−k,xt−k,u
?
t−k−1), for k = 1, · · · , K.

6.1.2 Preference for Long-Term Predictability

The key for self-adjusting the H ×N anticipation rates is to model a DM exhibiting preference

for long-term predictability w.r.t. the PD over temporal performance. It is assumed that

prediction is completely incorporated by a DM as the probability of either of the following

events approaches one (i.e., Pr{event} → 1}):

1. The predicted future objective distribution dominates the current objective distribution;

2. The predicted future objective distribution is dominated by the current objective distri-

bution; or
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Input: The prediction horizon H
Input: A decision vector u ∈ Sd−1

Input: A historical state vector data stream Xt−K:t−1 = {xt−K , · · · ,xt−1}
Output: A H step ahead prediction ẑt+H

1: procedure KFPrediction(H, ut, Xt−K:t−1)
2: for k = K to 1 do
3: Predict ẑt−k|żt−k−1 using Eq. (2.26)
4: Update ẑt−k|zt−k using Eq. (2.32)
5: end for
6: for h = 0 to H do . H steps-ahead prediction
7: Predict ẑt+h|ˆ̇zt+h−1 using Eq. (2.26)
8: end for
9: return ẑt+H |zt−1

10: end procedure

Pseudocode 5: Kalman Filter Tracking and Prediction

3. The predicted future objective distribution is incomparable to the current objective dis-

tribution.

Prediction is thus ignored when the DM cannot tell above the chance level whether one of the

three events (1)–(3) is satisfied, in which case near-term performance is preferred. Therefore,

prediction is only useful to AS-MOO when it can yield safe information about the PD relation

of temporal performance. In order to self-adjust the degree to which prediction is incorporated

into AS-MOO, it suffices to estimate the probability for the incomparability case.

It is worth noting that, in the KF prediction, the total variance of ẑt+h|zt−1 for h ≥ 1 is

always larger then that of ẑt|zt−1 [207]. In fact, the more one looks ahead into the future, the

higher the total variance is. In order to take advantage of this property, we define Λt:t+H−1 as a

function of the underlying temporal uncertainty measured over the distributions of the current

(ẑt|zt−1) and the future (ẑt+h|zt−1) objective vectors predicted with the KF.

Because the Pareto Dominance is the figure of merit to determine when a decision is preferred

to another, we propose defining the uncertainty measure regarding ẑt|zt−1 and ẑt+h|zt−1 as a

function of the Temporal Non-Dominance Probability (TIP) between the two objective vector

predictions.

Definition 6.1 (Temporal Non-Dominance Probability). The probability of the current and

the future predicted random objective vectors being mutually non-dominated – and therefore not

comparable to each other is expressed as

pt,t+h = Pr [ẑt ‖ ẑt+h|ẑt] (6.4)

= Pr [ẑt|zt−1 � ẑt+h|zt−1 and ẑt|zt−1 � ẑt+h|zt−1] , (6.5)

and is denoted Temporal Incomparability Probability (TIP).

Because a high TIP conveys high predictability regarding time incomparability, and consider-

ing the postponement of the decision criteria preference specification conveyed in preference for
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flexibility, we assume the DM prefers longer-term performance in this case. In fact, Kumar [142]

interpreted flexibility as an adaptive response to unpredictability.

Predictability is also high when TIP is low, in which case the DM can be confident that

either (a) performance will improve so as to be preferable in the PD sense; or (b) performance

will deteriorate and, thus, such alternative should be avoided. If, on the other hand, the

estimated TIP is roughly 1/2, unpredictability is maximal, which is indicative that the overlap

between the temporal distributions is large. The anticipation rates can then be determined as

the complement of the estimated temporal uncertainty:

λt+h =
1

H − 1
[1−H(pt,t+h)] , (6.6)

where H is a binary entropy function, with H(1/2) = 1 and H(0) = H(1) = 0, e.g.,

H(pt,t+h) = −pt,t+h log pt,t+h − (1− pt,t+h) log(1− pt,t+h), (6.7)

in which the parameter pt,t+h stands for the temporal non-dominance probability (definition 6.1).

The entropy function thus quantifies the temporal uncertainty about the comparability of the

current and future estimated objective vectors.

Remark: The factor 1
H−1

normalizes the anticipatory sum term in AS-MOO Eqs. (5.12) and

(5.16) (chapter 5) so λt +
∑H−1

h=1 λt+h = 1.

Assuming minimization of two conflicting objective functions, the TIP can be expressed as:

pt,t+h = Pr [ẑt+h,1|ẑt,1 < ẑt,1|zt−1,1 and ẑt+h,2|ẑt,2 > ẑt,2|zt−1,2] +

Pr [ẑt+h,1|ẑt,1 > ẑt,1|zt−1,1 and ẑt+h,2|ẑt,2 < ẑt,2|zt−1,2] ,

and can be directly computed by querying the Gaussians marginal cumulative distributions.

6.1.3 Preference for Minimal Predictive Error Trajectories

Another proposal implemented in this thesis for enabling anticipatory learning in our AS-MOO

solvers is to self-adjust the anticipation rates in Λt:t+H−1 according to the sum of KF observed

historical squared residuals (or innovation terms, see chapter 2, section 2.3.4, Eq. (2.29)):

Z̃1:t−1 =
t−1∑
k=1

||z̃t−k||2, (6.8)

where z̃t−k is the difference between the measured objective vector and the predictive mean

objective vector at t − k. Let Z̃i
1:t−1 be the sum of historical residuals for the objective vector

of the i-th candidate decision in Ut. Let also Z̃min
1:t−1 and Z̃max

1:t−1 be the minimum and maximum

sum of residuals observed within Ut. Then, the anticipation rates λt+1, · · · , λt+H−1 for a given

candidate decision ut,i ∈ Ut can be determined in terms of its normalized sum of historical

residuals:

λt+h =
1

H − 1

(
1−

Z̃i
1:t−1 − Z̃min

1:t−1

Z̃max
1:t−1 − Z̃min

1:t−1

)
. (6.9)
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Remark: The normalized sum of residuals falls within [0, 1], and the factor 1
H−1

assures that

the anticipation rates sum to the unity.

The reasoning behind Eq. (6.9) is virtually the same as that behind Eq. (6.6): the higher the

normalized sum of KF historical residuals is, the less confident the DM is about the accuracy of

the KF predictive distribution ẑt+h|zt−1 and vice-versa. This strategy implements a corrective

retrospective assessment providing a means for self-adjusting the DM confidence and willingness

to wait for future optimal performance in terms of how reliable the past KF predictions were

for the fixed decision ut,i.

6.1.4 The Anticipatory Learning Rule in the Objective Space

Regardless of how the anticipation rates are determined, their self-adjustment is intended to

automatically control the extent to which the KF future objective vectors predictions are ac-

counted for guiding the search process towards robust candidate decisions. This principle is

implemented in the following anticipatory learning rule2:

ẑt|ẑt+1:t+H−1 = zt +
H−1∑
h=1

λt+h(ẑt+h|zt − zt) (6.10)

=

(
1−

H−1∑
h=1

λt+h

)
zt +

H−1∑
h=1

λt+hẑt+h|zt (6.11)

(for 0 ≤ λt+h ≤ 1). The equation states that the adjusted anticipatory objective distribution

is a convex combination between the current zt and the predictive ẑt+h|zt distributions for the

objective vector, where λt = 1−
∑H−1

h=1 λt+h. The anticipatory distribution ẑt|ẑt+h conveys the

important notion that the current estimative for the objective vector depends on the estimated

predictive distribution ẑt+h, in the same vain of Rosen’s [174] interpretation of anticipatory

systems as those whose current states are mediated prediction (see chapter 1).

It turns out that, in the KF estimation, the current and future objective vectors are dis-

tributed as multivariate Gaussians, and, hence, the anticipatory objective distribution of ẑt is

also multivariate Gaussian.

Remark: The linear combination of two multivariate Gaussians, x and y, through matrices A

and B is given as:

Ax + By ∼ N (Amx + Bmy,AΣxA
ᵀ + BΣyB

ᵀ), (6.12)

and, thus, the incorporation of prediction into Σ is more conservative (e.g. with T = 2):

ẑt|ẑt+1 ∼ N
(
λtmzt + λt+1mẑt+1|zt , λ

2
tΣzt + λ2

t+1Σẑt+1|zt
)
, (6.13)

where λt = 1− λt+1.

2The subscript notation zt+1:t+H−1 denotes a sequence zt+1, · · · , zt+H−1.
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It follows that the proposed anticipatory learning rule (see Fig. 6.1) is expressed in the param-

eters of the anticipatory objective distribution as (assuming T = 2):

mẑt|ẑt+1 = mzt + λt+1

(
mẑt+1|zt −mzt

)
, (6.14)

Σẑt|ẑt+1 = Σzt + λ2
t+1

(
Σẑt+1|zt −Σzt

)
, (6.15)

what results in a linear combination between the parameters of the anticipatory objective distri-

bution and those of the current estimated objective distribution. Since a Gaussian distribution

requires the covariance matrix Σ to be positive semidefinite, it is worth verifying the following

remark:

Remark: Any nonnegative linear combination of positive semidefinite matrices is also positive

semidefinite [118].

Let Ai ∈ Rn×n be a series of symmetric positive semidefinite matrices. Then, xᵀAix ≥ 0, ∀ x ∈
Rn, for i = 0, · · · , N . It turns out that multiplying Ai by a nonnegative constant c ≥ 0 yields

cAi = c(xᵀAix) ≥ 0, (6.16)

and adding any two Ai,Aj results in

∀ x ∈ Rn,

≥0︷ ︸︸ ︷
(xᵀAix) +

≥0︷ ︸︸ ︷
(xᵀAjx) ≥ 0⇒ xᵀ(Ai + Aj)x ≥ 0. (6.17)

Thus, c1A1 + · · ·+ cNAN � 0, and hence, if the original covariance matrices in the anticipatory

learning rule of Eq. (6.15) are not ill-conditioned, Σẑt|ẑt+1:t+H−1
is guaranteed to be positive

semidefinite. Note that “�” defines a partial order in the space of real-valued symmetric ma-

trices, known as the Loewner order [22]:

A1 � A2 ⇐⇒ A1 −A2 is positive semidefinite. (6.18)

Figure 6.1 illustrates the effects of applying the proposed OAL rule for combining the dis-

tributions of two temporal estimatives for the objective vector of a given candidate trade-off

solution in a two-objective space.

6.2 Online Anticipatory Learning in Simplex Decision

Spaces

Anticipation in the search space is what enables the solution to a TL-AS-MOO problem. The

goal of OAL in the search space is to learn to which directions each Pareto-efficient decision is

moving so as to predict what they will be like in future periods (see Fig. 6.2). That is to say,

what are the changes required to transform an outdated decision that was Pareto-optimal in a

previous decision period into a Pareto-optimal decision for the current (or future) period?
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(a) Decision vectors trajectory.

ut-1
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ut+1
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(b) Prediction in the search space.

Figure 6.2: Dynamics of mutually non-dominated solution vectors over time.

6.2.1 Unconditional Expectation as a Surrogate for Anticipatory
Trade-off Sets

Inspecting the AS-MOO Eq. (5.12) in chapter 5, it is clear that the anticipatory sets UN?t+h|umax
t

must be computed in advance. While this would ideally require an exponentialO(NH) number of

re-optimizations to identify exaclty the Anticipated Maximal Flexible Choice umax
t (see chapter

5, Fig. 5.4), we propose using instead the following estimative:

E
[
ÛN?t+h

]
, (6.19)

where ÛN?t+h is an unconditional predictive distribution resulting from the Bayesian updating of

a prior over the evolving Pareto set. Note from Eq. (6.19) that we alleviate the need to identify

umax
t by assuming that this information is implicitly learned when tracking the trajectory of the

Pareto Estimated Maximal Flexible Choices set over time (Eq. (5.15), chapter 5). Although an

unconditional predictive distribution provides a less accurate estimative, the computational cost

to obtain such estimatives is negligible when compared to the cost of recursively re-optimizing.

The unconditional expected value is then used as a surrogate to the conditional anticipatory

Pareto Sets for approximately solving a TL-AS-MOO problem.

6.2.2 Correspondence Mapping for Multiple Decision Vectors Track-
ing

The proposed tracking methods for estimating the finite Pareto candidate solutions set approx-

imations trajectories over time conveys the same path described in Eq. (6.1):

ÛN?t |UN?t−1 → ÛN?t+1|ÛN?t → · · · → ÛN?t+h|ÛN?t+h−1 ≡ ÛN?t+h|UN?t−1. (6.20)

Nevertheless, the proposed tracking method is applied independently for each non-inferior so-

lution in ÛN?t+h. In the case of online anticipatory learning in the objective space, discussed in

section 6.1, independently tracking and predicting the evolving objective vectors is not an issue
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because those tasks are carried out w.r.t. fixed candidate solutions. But in the search space

case, that begs the following question: how to make the correspondence between each EMFC

in subsequent optimization environments, i.e., which decision in ÛN?t+h−1 corresponds to which

decision in ÛN?t+h?

In order to handle the correspondence mapping of individual solutions evolving over time,

we first sort all candidate trade-off solutions at any given decision state w.r.t. one of the

objective functions. Hence, u
(i)
t+h represents the candidate solution which is ranked in the i-th

position. For example, let ÛN?t = {ût,1, ût,2, ût,3} be the set of candidate solutions3 at time

t and m̂zt,1 = (1 1)ᵀ, m̂zt,2 = (0 2)ᵀ, m̂zt,3 = (2 0)ᵀ the corresponding mean objective vectors.

When sorting in increasing order the elements in ÛN?t by their first objective values, we obtain

the order

û
(1)
t = ût,2, û

(2)
t = ût,1, û

(3)
t = ût,3,

which indicates that the best candidate solution (û
(1)
t ) w.r.t. the first optimization criterion

is ût,2 and so forth. Figure 6.2(a) depicts the independent trajectory of four ordered decision

vectors over time in a hypothetical scenario when the optimization is performed in the 2-simplex.

After sorting the candidate solutions in the predicted approximated Pareto set ÛN?t+1, we

are then able to track the approximated ordered trade-off solutions evolution over time. For

instance, the resulting prediction chain for the i-th ranked trade-off solution is:

û
(i)
t |u

(i)
t−1 → û

(i)
t+1|û

(i)
t → · · · → û

(i)
t+h|û

(i)
t+h−1 ≡ û

(i)
t+h|u

(i)
t−1. (6.21)

6.2.3 A Sliding Window Dirichlet Dynamical Model

As discussed in chapter 2, section 2.3.5, the Dirichlet Distribution (DD) [160] is a natural

choice for modeling random variables whose sample spaces are defined over the (d− 1)-simplex.

In this thesis, despite the decision variables being deterministic (i.e., we are not interested in

modeling a stochastic DM), we propose representing the N candidate decision vectors in Sd−1

as the mean vectors (Eq. 2.36) of N independent DDs evolving over time.

We also recall from chapter 2 that the variances (Eq. 2.37) in the DD depend on the scale

parameter (a.k.a. concentration, αC): αC =
∑d

l=1 αl. The higher αC is, the lower the variances

of each decision variable are, and vice-versa. Furthermore, when discussing the application

of the DD as a prior for the multinomial distribution, we concluded that the posterior of the

multinomial proportions, conditioned on evidence on the counts for each category, is also a DD

with the concentration parameter being updated by adding the vector of observed counts, c.

Here we provide a different scenario for the DD posterior other than to accumulate counts.

We use α to encode the uncertainty about the evolving decision variables in the (d−1)-simplex.

Depending on the optimization environment described by the incoming data, we assume that the

uncertainty can either decrease or increase over time and, thus, the decrease in total variance of

the DD upon arrival of new data is not necessarily strictly monotone. We then propose updating

the posterior distributions in this scenario is by removing old observations from the Dirichlet

process history. We thus define a forgetting factor K so as to subtract observations collected

3The hat notation in this case indicates that ÛN?t is an estimative of the optimal anticipatory Pareto Set,
while the true optimal finite Pareto Set is still denoted as UN?t .
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from decision periods previous to t − K. Let the posterior uncertainty about the candidate

trade-off solutions4 be represented as

u
(i)
0 ∼ D(α

(i)
0 ),u

(i)
1 |u

(i)
0 ∼ D(α

(i)
1 |u

(i)
0 ), · · · ,u(i)

t |u
(i)
t−1 ∼ D(α

(i)
t |u

(i)
t−1). (6.22)

Let α
(i)
t |u

(i)
t−1 denote the update of concentration α

(i)
t given that evidence on the proportions

decision vector u
(i)
t−1 was collected. Assuming a forgetting factor (window size) of K = 2, and

an even-handed concentration parameter at t = 0, the envisioned strategy yields the following

recursive parameter update of the DD posterior over time:

α
(i)
0 = s(

1

d
· · · 1

d
)ᵀ,

α
(i)
1 |u

(i)
0 = α

(i)
0 + su

(i)
0 = s(

1

d
+ u

(i)
1,0 · · ·

1

d
+ u

(i)
d,0)ᵀ,

α
(i)
2 |u

(i)
1 = α

(i)
1 |u

(i)
0 + su

(i)
1 −α

(i)
0 = s(u

(i)
1,0 + u

(i)
1,1 · · · u

(i)
d,0 + u

(i)
d,1)ᵀ

α
(i)
3 |u

(i)
2 = α

(i)
2 |u

(i)
1 + su

(i)
2 − su

(i)
0 = s(u

(i)
1,1 + u

(i)
1,2 · · · u

(i)
d,1 + u

(i)
d,2)ᵀ

...

α
(i)
t |u

(i)
t−1 = α

(i)
t−1|u

(i)
t−2 + su

(i)
t−1 − su

(i)
t−3 = s(u

(i)
1,t−2 + u

(i)
1,t−1 · · · u

(i)
d,t−2 + u

(i)
d,t−1)ᵀ. (6.23)

The general case for K ∈ {1, · · · , t− 1} is then

u
(i)
t |u

(i)
t−1 ∼ D(α

(i)
t |u

(i)
t−1), where

α
(i)
t |u

(i)
t−1 =


α

(i)
t−1|u

(i)
t−2 + su

(i)
t−1, if t < K,

α
(i)
t−1|u

(i)
t−2 + su

(i)
t−1 −α

(i)
0 , if t = K,

α
(i)
t−1|u

(i)
t−2 + su

(i)
t−1 − su

(i)
t−K−1, otherwise.

(6.24)

Note that, for t > K,

α
(i)
t−1|u

(i)
t−2 + su

(i)
t−1 − su

(i)
t−K−1 = s

(
K∑
k=1

u
(i)
1,t−k · · ·

K∑
k=1

u
(i)
d,t−k

)ᵀ

. (6.25)

We denote the term α̇
(i)
t = su

(i)
t−1 − α

(i)
t−K |u

(i)
t−K−1 as the velocity (or rate of change) with

which the decision vectors distributions are moving throughout the (d − 1)-simplex (depicted

as the arrow vectors in Fig. 6.2 (b)) per each K units of time. The velocities thus encode the

underlying dynamical model (similarly to the KF velocities, see section 6.1.1). Also, for K = 1,

note how the distribution of u
(i)
t depends only on the previous observation, su

(i)
t−1. The scale

parameter s controls the dispersion of the DD process over time and must be set in advance.

With this strategy, the concentration of u
(i)
t |u

(i)
t−1 goes through a K-fold increase from t = 0 to

t = K and from then on remains constant (for t > K), as historical data is removed to give

4Differently from the objective space case, we emphasize the decision vectors are actually deterministic.
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place to the most recent observations (recalling u
(i)
t ∈ Sd−1):

α
(i)
C,0 =

d∑
l=1

s

d
= s,

α
(i)
C,1 =

d∑
l=1

s

d
+ s

d∑
l=1

u
(i)
l,0 = 2s,

α
(i)
C,2 =

d∑
l=1

s

d
+ s

d∑
l=1

u
(i)
l,0 + s

d∑
l=1

u
(i)
l,1 = 3s,

...

α
(i)
C,K = s

d∑
l=1

u
(i)
l,0 + · · ·+ s

d∑
l=1

u
(i)
l,K︸ ︷︷ ︸

K terms

= Ks,

...

α
(i)
C,t = s

d∑
l=1

u
(i)
l,t−K + · · ·+ s

d∑
l=1

u
(i)
l,t︸ ︷︷ ︸

K terms

= Ks. (6.26)

Because of the increase in concentration, it is then evident from Eq. (6.26) that the proposed

posterior update model of Eq. (6.24) assumes the uncertainty to decrease after K decision

periods and to remain constant for t ≥ K.

Remark: It follows from Eq. (6.24) that the expected value of u
(i)
t |u

(i)
t−1 is

E
[
u

(i)
t |u

(i)
t−1

]
=
(
E
[
u

(i)
1,t|u

(i)
1,t−1

]
· · · E

[
u

(i)
d,t|u

(i)
d,t−1

])ᵀ
, where

E
[
u

(i)
j,t |u

(i)
j,t−1

]
= m

u
(i)
j,t
|u(i)
j,t−1 =

∑K
k=1 u

(i)
j,t−k

s
∑d

l=1

∑K
k=1 u

(i)
l,t−k

. (6.27)

6.2.4 Predicting DD Mean Decision Vectors

It is then of interest to the proposed anticipatory learning methods the estimation of the pre-

dictive mean vectors m̂
u
(i)
t+h
|m

u
(i)
t−1

, for h = 1, · · · , H. As shown in chapter 2, section 2.3.5,

Bertuccelli and How [30] proposed a Maximum A Posteriori (MAP) recursive point estimation

to track the evolving DD means and variances over time (see Eqs. (2.42) and (2.43)), but the

dynamical model assumed the constant predictor m̂
u
(i)
t+h
|m

u
(i)
t−1

= m
u
(i)
t−1

. Without loss of gener-

ality, sticking to the simpler case of K = 1, defining the velocities for the DD mean vectors as

ṁ
u
(i)
t

= m
u
(i)
t
−m

u
(i)
t−1

, and assuming a one step ahead prediction (h = 1), we propose a linear
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Input: The prediction horizon H
Input: The concentration scaling parameter s
Input: A current trade-off solution ut not necessarily in UNt
Input: A historical sequence of trade-off solutions Ut−K:t−1 = {ut−K , · · · ,ut−1}

1: procedure DDPrediction(H, s, ut, Ut−K:t−1)
2: for k = K to 0 do . Historical DD MAP mean tracking
3: Estimate the belief coefficient υt−k using Eq. (6.30)
4: Predict m̂ut−k using Eq. (6.31)
5: Update m̂ut−k |mut−k using Eq. (6.33)
6: end for
7: for h = 1 to H do . H steps ahead prediction
8: Estimate the belief coefficient υt+h using Eq. (6.30)
9: Predict m̂ut+h using Eq. (6.31)

10: end for
11: return ût+H |ut−1 ∼ D(s

∑K
k=1 m̂ut+H−k) (Eq. (6.24))

12: end procedure

Pseudocode 6: Dirichlet MAP Tracking and Prediction

dynamical model that assumes the velocity to remain constant at t+ 1, i.e., ṁ
u
(i)
t

= ṁ
u
(i)
t−1

:

m̂
u
(i)
t+1

= m
u
(i)
t

+ ˆ̇m
u
(i)
t

= m
u
(i)
t

+ ṁ
u
(i)
t−1

= m
u
(i)
t

+ m
u
(i)
t
−m

u
(i)
t−1

= 2m
u
(i)
t
−m

u
(i)
t−1

= 2m
u
(i)
t

+ (m
u
(i)
t−1
− 2m

u
(i)
t−1

) = m
u
(i)
t−1

+ 2m
u
(i)
t
− 2m

u
(i)
t−1

= m
u
(i)
t−1

+ 2(m
u
(i)
t
−m

u
(i)
t−1

)

= m
u
(i)
t−1

+ 2ṁ
u
(i)
t−1
. (6.28)

However, extrapolating a linear trend is prone to error if the trend changes abruptly and,

thus, we define υt+1 ∈
[

1
2
, 1
]

as the belief coefficient which controls the confidence that the

predictive decision vector distribution will keep its motion according to the same velocity as

measured at the preceding decision period. Hence, the confidence is maximal for υt+1 = 1,

whereas for υt+1 = 1
2
, the prediction will be conservative and just assume the decision vector

distribution will not change between subsequent periods, being equivalent to Bertuccelli and

How’s [30] static model (see Fig. 6.2(b) for an example with h = 1), i.e., m̂
u
(i)
t+1

= m
u
(i)
t

:

m̂
u
(i)
t+1

= m
u
(i)
t−1

+ υt+12ṁ
u
(i)
t−1
. (6.29)

We propose self-adjusting υt+1 for each candidate solution as the complement of the binary

entropy function measured over the TIP between u
(i)
t and u

(i)
t−1, for which case we make use of

the KF estimation ẑ
(i)
t |z

(i)
t−1 and of z

(i)
t−1, where z

(i)
t−1 = f(u

(i)
t−1):

υt+1 = 1− 1

2
H(pt−1,t), (6.30)

where pt−1,t is the estimated TIP between ẑ
(i)
t |z

(i)
t−1 and z

(i)
t−1. With this strategy, we propagate

the current uncertainty about whether the current i-th ranked candidate decision vector u
(i)
t at

t is mutually non-dominated with respect to the preceding i-th decision vector at t− 1, u
(i)
t−1.
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Input: The anticipation horizon H
Input: The concentration scaling parameter s
Input: A candidate ût ∈ Ût and the Ût set
Input: The sets ÛNt−K:t and Xt−K:t−1 = {xt−K , · · · ,xt−1}
Output: The estimated anticipatory distribution for ût

1: procedure AnticipatoryDistribution
2: Compute the rank i of ût w.r.t. Ut, yielding û

(i)
t

3: Set Ẑ(i)
t:t+H−1 ← ∅

4: if (TLF Regime) then
5: for h = 0 to H − 1 do
6: ẑ

(i)
t+h ← KFPrediction(h, u

(i)
t , Xt−K:t−1)

7: Ẑ(i)
t:t+H−1 ← Ẑ

(i)
t:t+H−1 ∪ {ẑ

(i)
t+h}

8: end for
9: else if (TL Regime) then

10: Retrieve rank i decisions in Û (i)
t−K:t ⊂ Ût−K:t

11: for h = 0 to H − 1 do
12: Predict û

(i)
t+h using Û (i)

t−K:t with Eqs. 6.31–6.33

13: Predict ẑ
(i)
t+h using Ẑ(i)

t−K:t with the KF (Fig. 6.1)

14: ẑ
(i)
t+h ← ẑ

(i)
t+h + h(m

û
(i)
t+h
,m

û
(i)
t+h−1

)

15: Ẑ(i)
t:t+H−1 ← Ẑ

(i)
t:t+H−1 ∪ {ẑ

(i)
t+h}

16: end for
17: end if
18: Apply OAL over Ẑ(i)

t:t+H−1 using Eq. (6.10)

19: return The anticipatory distribution ẑ
(i)
t |ẑ

(i)
t+1:t+H−1

20: end procedure

Pseudocode 7: Anticipatory Distribution Estimation

The prediction of m̂
u
(i)?
t+1

from all historical estimated non-inferior mean candidate solutions

m̂
u
(i)?
t−1
∈ E

[
ÛN?t−1

]
and m̂

u
(i)?
t−2
∈ E

[
ÛN?t−2

]
(for i = 1, · · · , N) is thus performed as:

m̂
u
(i)?
t+1

= m̂
u
(i)?
t−1

+ υt+12ṁ
u
(i)?
t−1
, (6.31)

where ṁ
u
(i)?
t−1

= m̂
u
(i)?
t−1
−m

u
(i)?
t−2

.

Therefore, our surrogate estimate for UN?t+1 is obtained as:

E
[
ÛN?t+1

]
≈
{

m̂
u
(1)?
t+1
, · · · , m̂

u
(N)?
t+1

}
, (6.32)
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6.2.5 Maximum A Posteriori Correction for DD Mean Decision Vec-
tors

The MAP recursive update step for correcting m̂
u
(i)?
l,t+1

upon the observation of the d candidate

mean decision variables m
u
(i)
l,t+1

at t+ 1 (for l = 1, · · · , d) is then [30] (see Eq. (2.42)):

m̂
u
(i)?
l,t+1
|u(i)
l,t+1 = m̂

u
(i)?
l,t+1

+
Var

[
û

(i)?
l,t+1

]
m̂
u
(i)?
l,t+1

(1− m̂
u
(i)?
l,t+1

)
(m

u
(i)
l,t+1
− m̂

u
(i)?
l,t+1

), (6.33)

Note from Eq. (6.33) that, whenever each component u
(i)
l,t+1 of a decision vector is observed,

i.e., when the optimal flexible Pareto-optimal decision vector of rank i is finally observed (com-

puted) at time t + 1, the prediction made at time t, m̂
u
(i)?
l,t+1

, is corrected towards the direction

of the actual observed DD mean vector, m
u
(i)
l,t+1

. Such update is weighted by a correction factor

which is estimated from the underlying uncertainty of the DD model regarding the prediction

m̂
u
(i)?
l,t+1

. Such factor is expressed as the ratio between the variance of the predicted DD distribu-

tion, Var
[
û

(i)?
l,t+1

]
, and the product between the predicted DD components and its complement,

m̂
u
(i)?
l,t+1

(1− m̂
u
(i)?
l,t+1

).

The Pseudocode 6 describes the steps to track and predict the trajectory of a given propor-

tion vector given the last K observations. In line 5, note that the MAP update m̂ut−k |mut−k

requires the computation of the variance of the corresponding DD, which depends on the con-

centration scaling input parameter s (see Eq. (6.33)).

The Pseudocode 7 describes the full procedure for computing the anticipatory distributions

ẑ
(i)
t |ẑ

(i)
t+1:t+H−1 for each u

(i)
t ∈ UNt , utilizing tracking and prediction in both the objective and

search spaces with the KF (Pseudocode 5), for both TLF and TL regimes, and the Dirichlet pro-

cedure, for the TL regime (Pseudocode 6). Tracking and prediction begin in the search space,

where the trajectories of each candidate Anticipated Maximal Flexible Choice are predicted

according to the previously implemented choices, after which the KF is applied for the resulting

objective vectors, which are then adjusted with the predicted cost component h. The anticipa-

tion rates λt+h, · · · , λt+H−1 are then determined and used to combine the resulting predictive

random objective vectors to finally yield the anticipatory distributions.

6.3 Computing the Expected Anticipatory Hypervolume

Contributions

Given a partition set (class) of objective distributions, C, whose mean vectors are mutually

(Pareto) non-dominated, we recall Eq. (3.23) at chapter 3 which defined the S-Metric contri-

bution of the objective vector associated with a candidate decision to its non-dominance class

(z ∈ C) as:

∆S(z, C) = S(C)− S(C \ {z}). (6.34)

The expected value of ∆S for a given anticipatory random objective vector ẑ
(i)
t |ẑ

(i)
t+h (Eq. 6.10) is

essential for solving AS-MOO problems because it provides valuable information for heuristically
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h

h

Figure 6.3: Computing E [∆S ] in the objective space by conditioning the decision criteria at
their mean values, assuming max return and min risk.

improving the expected overall S-Metric value of a given candidate trade-off set (see section 6.5).

Without loss of generality, let z
(i)
t ∈ C be a non-extremal5 bivariate random objective vector

(|C| ≥ 3). Then, assuming minimization of g1 (risk) and maximization of g2 (return), and given

two neighboring objective vectors w.r.t. their mean objective values (z
(i−1)
t , z

(i+1)
t ∈ C), the S

contribution of z
(i)
t to C is expressed as

∆S(z
(i)
t ) =

[
z

(i)
1,t − z

(i−1)
1,t

] [
z

(i+1)
2,t − z(i−1)

2,t

]
. (6.35)

Remark: The conditional distribution of a multivariate Gaussian is also Gaussian and, thus,

δ1, δ2 are Gaussian random variables.

Because the KF estimation assumes g1 and g2 to be jointly Gaussian, it follows that the marginal

distributions for each ẑ
(i)
j,t (j ∈ {1, 2}) are univariate Gaussian6. In Eq. (6.35), however, we make

5The extrema objective vectors within a given non-dominance class C are those containing the minimum
mean value w.r.t. one of the objective functions among the other vectors in C. The S-Metric contributions of
such extrema vectors are computed in terms of a reference point zref, which bounds the preferred feasible region
in the performance space.

6In order to simplify the exposition, from this point on, we write ẑ
(i)
t ≡ ẑ

(i)
t |ẑ

(i)
t+h and ẑ

(i)
j,t ≡ ẑ

(i)
j,t |ẑ

(i)
j,t+h.
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use of conditional distributions instead of the marginals, which can also shown to be univari-

ate Gaussian. The reason for using the conditional distributions in the S-Metric contribution

estimation is due to our Stochastic Pareto Frontier (SPF) definition, that is given in terms of

the expected value of the random objective vectors. Therefore, when partitioning the candi-

date decisions into non-dominance classes in the proposed AS-MOO solver (see section 6.5),

the Pareto Dominance is applied over the mean objective vectors. It is mentioning that the

conditional distributions would be truncated Gaussians if the conditioning were done so as to

require ∆S > 0, but conditioning on the means has the advantage of preserving the original

partitioning obtained by the non-dominated sorting procedure over the mean vectors.

In simple terms, we compute ∆S for an anticipatory random objective vector ẑ
(i)
t using the

conditional distribution of the j-th objective value given that the k-th objective (for k, j ∈ {1, 2}
and k 6= j) is fixed at its mean value (mk) (see Fig. 6.3):

∆S(ẑ
(i)
t ) = (ẑ

(i)
1,t|m̂

(i)
2,t − ẑ

(i−1)
1,t |m̂

(i−1)
2,t )(ẑ

(i+1)
2,t |m̂

(i+1)
1,t − ẑ(i)

2,t|m̂
(i)
1,t). (6.36)

The product between two Gaussians is a product-normal distribution, though. Nevertheless,

for the sake of approximately solving AS-MOO problems, we are only interested in estimating

the expected value of ∆S(ẑ
(i)
t ). In order to do so, we describe in the following a few useful facts.

Remark: The conditional expected value for a bivariate Gaussian, x = (x1 x2)ᵀ ∼ N (m,Σ), is

expressed as

E [x1|(x2 = c)] = m1 +
σ1

σ2

ρ(c−m2), (6.37)

where ρ is the correlation coefficient between x1 and x2.

If the conditioning is done over the mean value of the second variable (i.e., c = m2), it is then

easy to verify that:

E [x1|(x2 = m2)] = m1. (6.38)

Remark: The expected value of the product of any two random variables with arbitrary prob-

ability densities can be expressed as the sum of the product of the individual expectancies and

the covariance:

Cov(x1, x2) = E [(x1 − E [x1])(x2 − E [x2])]

= E [x1x2 − x1E [x2]− x2E [x1] + E [x1]E [x2]]

= E [x1x2]− E [x1]E [x2]

=⇒ E [x1x2] = E [x1]E [x2] + Cov(x1, x2). (6.39)

Remark: Another useful property about covariances is the following identity: let a, b, c, and

d be constant values in the real line. Then,

Cov(ax1 + bx2, cx3 + dx4) = acCov(x1, x3) + adCov(x1, x4) (6.40)

+ bcCov(x2, x3) + bdCov(x2, x4).

Hence, the expected value of ∆S(ẑ
(i)
t ) can be expressed as in Theorem 6.3.1:
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Theorem 6.3.1. The expected value of ∆S(ẑ
(i)
t ) is

E
[
∆S(ẑ

(i)
t )
]

=
(
m̂

(i)
1,t − m̂

(i−1)
1,t

)(
m̂

(i+1)
2,t − m̂(i)

2,t

)
+ Cov(ẑ

(i)
1,t|m̂

(i)
2,t, ẑ

(i+1)
2,t |m̂

(i+1)
1,t )

− Cov(ẑ
(i)
1,t|m̂

(i)
2,t, ẑ

(i)
2,t|m̂

(i)
1,t)

− Cov(ẑ
(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i+1)
2,t |m̂

(i+1)
1,t )

+ Cov(ẑ
(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i)
2,t|m̂

(i)
1,t). (6.41)

Proof. Using the identities presented in the last four remarks, after simple algebraic rearrange-

ment using the aforementioned properties, we have:

E
[
∆S(ẑ

(i)
t )
]

= E
[
(ẑ

(i)
1,t|m̂

(i)
2,t − ẑ

(i−1)
1,t |m̂

(i−1)
2,t )(ẑ

(i+1)
2,t |m̂

(i+1)
1,t − ẑ(i)

2,t|m̂
(i)
1,t)
]

= E
[
ẑ

(i)
1,t|m̂

(i)
2,t − ẑ

(i−1)
1,t |m̂

(i−1)
2,t

]
× E

[
ẑ

(i+1)
2,t |m̂

(i+1)
1,t − ẑ(i)

2,t|m̂
(i)
1,t

]
+ Cov(ẑ

(i)
1,t|m̂

(i)
2,t − ẑ

(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i+1)
2,t |m̂

(i+1)
1,t − ẑ(i)

2,t|m̂
(i)
1,t)

=
(
E
[
ẑ

(i)
1,t|m̂

(i)
2,t

]
− E

[
ẑ

(i−1)
1,t |m̂

(i−1)
2,t

])(
E
[
ẑ

(i+1)
2,t |m̂

(i+1)
1,t

]
− E

[
ẑ

(i)
2,t|m̂

(i)
1,t

])
+ Cov(ẑ

(i)
1,t|m̂

(i)
2,t − ẑ

(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i+1)
2,t |m̂

(i+1)
1,t − ẑ(i)

2,t|m̂
(i)
1,t)

=
(
m̂

(i)
1,t − m̂

(i−1)
1,t

)(
m̂

(i+1)
2,t − m̂(i)

2,t

)
+ Cov(ẑ

(i)
1,t|m̂

(i)
2,t, ẑ

(i+1)
2,t |m̂

(i+1)
1,t )− Cov(ẑ

(i)
1,t|m̂

(i)
2,t, ẑ

(i)
2,t|m̂

(i)
1,t)

− Cov(ẑ
(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i+1)
2,t |m̂

(i+1)
1,t ) + Cov(ẑ

(i−1)
1,t |m̂

(i−1)
2,t , ẑ

(i)
2,t|m̂

(i)
1,t).

Note how E
[
∆S(ẑ

(i)
t |ẑ

(i)
t+h)

]
depends not only on the mean vectors of ẑ

(i)
t |ẑ

(i)
t+h and of its

non-dominance class neighbors in the objective space (ẑ
(i−1)
t |ẑ(i−1)

t+h and ẑ
(i+1)
t |ẑ(i+1)

t+h ), but also

on the covariances of the conditional (marginal) distributions. Therefore, the learned predictive

covariance structure among the objective functions is naturally used to provide uncertainty

awareness in the maximization in AS-MOO. That is to say, the expected ∆S value of a given

anticipatory objective distribution ẑ
(i)
t |ẑ

(i)
t+h also accounts for second order statistical information

between neighboring anticipatory distributions.

Remark: Although online anticipatory learning is applied independently for each candidate

solution, E
[
∆S(ẑ

(i)
t |ẑ

(i)
t+h)

]
provides a means to combine the learned covariance from neighboring

anticipatory distributions, with the goal of guiding the AS-MOO process towards the stochastic

Pareto frontier.

Remark: The learned covariances among the conflicting noisy objective-functions evaluations

encode valuable statistical trade-off information in the vicinity of each anticipatory distribution.
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|
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Figure 6.4: The N possible predictive trajectories for the sequence of future (H−1)N Estimated
Maximal Flexible Choices (EMFCs) over time, conditioned on each available candidate Pareto-
efficient decision in the estimated essential set ÛN?t .

Remark: The pairwise covariance terms appearing in Theorem 6.3.1 merge trade-off informa-

tion between multiple neighboring anticipatory distributions in the objective space. The ex-

pected anticipatory S-metric contribution thus allows for the mutual interference and exchange

of trade-off information between parallel neighboring anticipatory paths.

6.4 Estimating the Anticipated Maximal Flexible Choice

In the TL regime, the future anticipatory Pareto Sets attaining maximal future hypervolume

depends on the identification of the Anticipated Maximal Flexible Choices (AMFCs) in early

decision periods. We recall that such dependency is captured with the notation UN?t+h|u?t in

chapter 5, Eq. (5.11). The identification of which AMFC leads to maximal hypervolume Pareto

Sets in the future is thus required. In order to solve this problem with minimal approximation

error7, one would need to fully traverse the predicted decision tree depicted in Fig. 5.4, what

would require an exponential O(NH) number of recursive re-optimizations, where N is the

number of mutually non-dominated AMFCs specified in the AS-MOO problem and H is the

number of decision periods. This computational burden is infeasible for any practical means

when N and H are large.

In reinforcement learning methods arising in Approximate Dynamic Programming (ADP [168],

or neural-dynamic programming [28]), Monte Carlo (MC) simulation is often used to explore the

decision tree so to approximate the value of policies – which correspond to input/output tem-

poral mappings linking states at specific decision periods to optimal actions/decisions. Those

methods can be regarded as scenario-based approaches for solving online optimization prob-

lems. Although, in ADP, the MC methods can greatly reduce the exponential cost of exploring

a simulated graph of state transitions (known as a Markov Decision Process transition graph),

the goal of approximately learning a complete optimal policy is more ambitious (and therefore

considerably more computational intensive) than to produce decisions on-the-fly.

7This problem cannot be solved “exactly” (i.e., with minimum error), unless one has access to perfect infor-
mation about the future trajectory of the state vector xt.
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We therefore propose in this thesis an online prediction-based approach for assessing the

decision-tree of Fig. 5.4, requiring only bilinear complexityO(NH) for which, in general, H < N .

Besides, because our anticipatory learning methods rely on such surrogate future estimatives, no

re-optimizations are needed. The goal here is to take advantage of our problem-solving internal

predictive models with minimum computational effort in terms of repeated optimizations and

of objective function evaluations.

The reduction in computational complexity is achieved by independently tracking and pre-

dicting (1) each element of the sets of candidate alternatives ÛN?t+h (for 1 ≤ h ≤ H); (2) the

corresponding objective vectors z
(i)
t+h; and (3) the sequence of implemented and estimated AM-

FCs u?1, · · · ,u?t+h (for 0 ≤ h ≤ H):

Step 1 Predict the future sets ÛNt+1, · · · , ÛNt+H−1 element-wise;

Step 2 Predict the objective component g, without the cost component h (see chapter 5,

Eq. (5.4)): {ẑ(i)
t+h}

H−1
h=1 ;

Step 3 Estimate (H − 1)N AMFCs (see Fig. 6.4) conditioned at û
(i)
t ∈ ÛN?t :

{
û?t+h|û

(i)
t

}H−1

h=1
;

Step 4 Predict the N×N cost-adjusted objective distributions, given û
(j)
t (i, j ∈ {1, · · · , N}):

{ẑ(i)
t+h|û

(j)
t }H−1

h=1 ;

Step 5 Apply OAL and identify the AMFC using E Monte Carlo simulated scenarios (see

chapter 7, section 7.2.2):

û?t = arg max
ût∈ÛN?t

1

E

E∑
e=1

S

(
H−1∑
h=1

λt+h

{
ẑ

(i)
e,t+h|ût

}N
i=1

)
. (6.42)

With this approach, no re-optimizations are required because the predicted optimal AMFC

sets are taken into account instead. Stinis [198], for instance, has approached global stochastic

(single-objective) global optimization as a filtering (tracking) problem in the search space using

particle filters [75]. Our idea is somewhat related to Stinis’ [198], the difference being that

we aim to track multiple moving (Pareto) optima across decision periods, whereas Stinis [198]

treated the tracking of a single, static global best solution across the search process iterations.

6.5 An Anticipatory Metaheuristic for AS-MOO

We propose in this section a framework for MOO evolutionary-inspired metaheuristics that are

not only able to anticipate trade-off solutions attaining good performance in future environ-

ments, but also to estimate the future S-metric contributions, which are indispensable features

for optimizing the future hypervolume in AS-MOO problems. The proposed metaheuristics rely

on the estimation of the anticipatory distributions in the objective space, and on the tracking

and estimation of Anticipated Maximal Flexible Choices (AMFCs) in the search space (see sec-

tion 6.1). Although there are several ways to design MOO metaheuristics for approximating the
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Pareto Frontier, this thesis advocates the so called non-dominated sorting algorithms that oper-

ate by means of partitioning the population of candidate objective vectors into non-dominance

classes, such as the NSGA-II [66] (see chapter 3, section 3.4.1).

The non-dominated sorting MOO algorithms convey valuable properties that can be easily

explored for heuristically solving SMOO problems. For instance, given a set P of candidate

solutions, Azevedo and Araújo [13] showed that the solutions attaining maximal Pareto Non-

Dominance Probability (PNDP8) within a given non-dominance class Ci ⊂ P are always assigned

greater or equal PNDP than that assigned to the maximal PNDP solutions belonging to inferior

classes Cj (with j > i). This result, summarized in the Monotonicity of Maximal PNDPs

Theorem [13], strongly motivates the design of metaheuristics biased towards solutions belonging

to superior non-dominance classes, while progressively discarding those in inferior classes.

6.5.1 Sorting the Population of Random Objective Vectors

One significant challenge to overcome when designing non-dominated sorting metaheuristics for

SMOO problems, however, is how to sort and partition random objective vectors into non-

dominance classes. A natural approach is to consider multivariate stochastic dominance tech-

niques to determine whether z(i) (stochastically) dominates z(j) (with i 6= j). For instance,

there are known sufficient conditions for the Gaussian multivariate case when the DM has e.g.

an increasing convex utility function:

Theorem 6.5.1. The random objective vector z(i) is said to stochastically dominate z(j) if (a)

mz(i) �mz(j); and (b) Σz(j) −Σz(i) is positive semidefinite.

Proof. See Müller [158].

Note that the theorem relies on the deterministic Pareto order (�) over the expected ob-

jective values. In addition, it assumes that the (multiattribute) utility function of the DM is

chosen from a family of increasing convex utility functions mappingRm intoR (m is the number

of objective functions), and that z(i) ∼ N (mz(i) ,Σz(i)) and z(j) ∼ N (mz(j) ,Σz(j)). Neverthe-

less, finding two random objective vectors simultaneously satisfying both conditions (a) and (b)

of Theorem 6.5.1 can be challenging, undermining the selective pressure of a non-dominated

sorting metaheuristic designed for SMOO problems.

Another approach for sorting and partitioning random objective vectors is to assess the

probability of z(i) � z(j), which can be easily computed for multivariate Gaussians but requires

the determination of thresholds. For instance, the two objective vectors can be classified as

mutually non-dominated if neither one dominates the other with a probability higher than a

certain critical level. Nevertheless, we argue that, since we are already able to handle the

estimated uncertainty (see section 6.1) and to combine the learned predictive correlation into the

computation of E [∆S ] (see section 6.3), there is little need to incorporate uncertainty awareness

directly into the dominance relation. Therefore, our proposed non-dominated sorting procedures

are executed in terms of the deterministic Pareto Dominance over the estimated means of the

8The probability that a solution u ∈ P is not dominated by any other solution u′ ∈ P. It is equivalent to
the probability of u ∈ C1 ⊂ P, where C1 is the class of non-inferior solutions, see chapter 3, section 3.4.1.
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Input: The anticipation horizon H

Input: ÛNt−K:t−1 and the implemented EMFCs
{
u?t−h

}K
h=1

Input: Historical Xt−K:t−1 = {xt−K , · · · ,xt−1}
Output: A maximal Hypv set ÛN?t for H-1 steps ahead
Output: An EMFC û?t satisfying chapter 5 Eq. (5.15)

1: procedure ASMS-EMOA
2: Set the generation count as g ← 0
3: Set the current population as ÛNt ← ÛNt−1

4: for i = 1 to N do
5: Compute the anticipatory distribution ẑ

(i)
t |ẑ

(i)
t+1:t+H−1 using OAL . Pseudocode 7

6: end for
7: repeat

8: Compute {Cj}Cj=1 from E
[
{ẑ(i)

t |ẑ
(i)
t+1:t+H−1}Ni=1

]
9: Compute E

[
∆S(ẑ

(i)
t |ẑ

(i)
t+1:t+H−1, Cj)

]
, for each ẑ

(i)
t |ẑ

(i)
t+1:t+H−1 ∈ Cj and 1 ≤ j ≤ C

10: Generate a new decision û′t from ÛNt
11: Augment ÛN+1

t ← ÛNt ∪ {û′t}
12: Compute the anticipatory distribution ẑ′t|z′t+1:t+H−1 using OAL . Pseudocode 7

13: Reduce ÛNt ← Anticipatory Reduce(ÛN+1
t )

14: Advance to the next generation g ← g + 1
15: until Stopping criteria are not met
16: Identify the Anticipated Maximal Flexible Choice û?t using Eq. (6.42) . Section 6.4

17: return
{
ÛN?t , û?t

}
18: end procedure

Pseudocode 8: The Anticipatory S-Metric Selection EMOA

Input: An augmented candidate set ÛN+1
t

Output: A reduced candidate set ÛNt
1: procedure Reduce

2: Compute {Cj}Cj=1 from E
[
{ẑ(i)

t |ẑ
(i)
t+1:t+H−1}

N+1
i=1

]
3: Select û∗ = arg minû∈CC E [∆S(û, CC)]

4: return ÛN+1
t \ {û∗}

5: end procedure

Pseudocode 9: Anticipatory Reduce UN+1
t

random objective vectors, what is in accordance with our stochastic Pareto frontier definition

(see Fig. 6.5 and chapter 5, definition 5.3).

6.5.2 The Anticipatory S-Metric Selection EMOA

We recall from chapter 3 that the S-Metric Selection EMOA (SMS-EMOA) [32] attempts

to explicitly maximize S by progressively improving ∆S within the computed non-dominance

classes. The SMS-EMOA takes advantage of the Pareto dominance relations among (deter-

ministic) objective vectors by partitioning the population of candidate decisions into C classes
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C1, · · · , CC , so that the mutually non-dominated solutions composing the first class are never re-

placed by the dominated ones in
⋃C
n=2 Cn, whereas the least ∆S contributing decisions belonging

to CC are progressively replaced by heuristically generated candidate trade-off solutions. The

∆S contribution therefore determines the selective pressure within each non-dominance class.

By progressively replacing the least contributing solutions, the hopes are that the maximization

of S can be sustained along the optimization process in order to attain C1 ⊆ UN ⊂ UN?, what

is ultimately the goal of all set-based MOO solvers [229].

In this thesis, we propose tailoring the SMS-EMOA to approximately solve AS-MOO prob-

lems, leading to the Anticipatory SMS-EMOA (ASMS-EMOA)9. Not only the ASMS-EMOA

improves over its myopic and deterministic counterpart (SMS-EMOA) by providing internal

predictive and estimation Bayesian models to track time-varying decision and objective vectors

(sections 6.2 and 6.1), but also it provides the means for coping with stochastic uncertainty by

implementing the proposed anticipatory learning rules and by computing the expected antici-

patory S-Metric contributions E [∆S ] over the estimated anticipatory distributions.

The ASMS-EMOA thus utilizes the KF estimation and prediction in the objective space and

the proposed Dirichlet Bayesian MAP tracking and prediction in the search space. Moreover,

in the stochastic case, the candidate trade-off solutions and their respective random objective

vectors are partitioned into non-dominance classes (see section 6.5.1 and also Eq. (3.22) in

chapter 3) using the standard Pareto dominance over the estimated mean objective values,

so as to progressively improve over the partitioned decisions for approximating the stochastic

Pareto frontier.

The Pseudocodes 8 and 9 describe the proposed anticipatory MOO metaheuristic, whose

outputs are (1) the set of mutually non-dominated (w.r.t. the mean vectors) candidate solutions

set (UN?t ), for both the TL and TLF regimes, and the anticipatory decision (u?t ∈ UN?t ) satisfying

AS-MOO Eq. (5.15), chapter 5, in the TL regime.

6.6 Summary of the Contributions

This chapter’s contributions to the thesis are as follows:

1. Two novel approaches for tracking and predicting time varying quantities in the objective

and search spaces subject to stochastic uncertainty have been devised;

2. It proposed the principle of online anticipatory learning for combining stochastic predictive

knowledge, with different heuristics for automatically determine discount rates in terms

of the estimated stochastic uncertainty as well as of the observed residuals;

3. It showed a way to incorporate uncertainty awareness in the computation of the expected

anticipatory S-Metric contributions;

4. A procedure for identifying the candidate anticipatory decision maximizing the future

S-Metric in the time-linkage regime has been proposed; and

9Source codes at http://www.researchgate.net/profile/Carlos Azevedo2.
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Figure 6.5: Non-dominance sorting procedure over the mean objective vectors. The first class
is composed from alternatives C1 = {a(1), a(2), a(3)}, whose mean vectors are not dominated
by any other mean vector of other alternatives in the population. Classes two and three are
composed of alternatives C2 = {b(1),b(2),b(3)} and C3 = {c(1), c(2), c(3)}, respectively. Notice
that if alternatives from class C1 were removed from the population, then the mean vectors of
the alternatives from C2 would not been dominated by any other remaining alternative mean
vector. Moreover, notice that, in this sorting procedure, alternatives from lower classes still have
a chance (although with low probability) of dominating the alternatives from higher classes.

5. Finally, an anticipatory S-Metric selection algorithm has been proposed for approximately

solving anticipatory SMOO problems under two different temporal regimes.

In the next chapter, we provide the experimental results of the application of the flexible

anticipatory multi-objective machine learning and optimization models and algorithms devised

in this chapter for bi-objective, noisy, sequential, and cost-adjusted portfolio selection.
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Chapter 7
Online Anticipatory Learning for Flexible
Multi-Objective Portfolio Selection

The hardest hit, as everywhere, are those who have no choice.

– Theodor Adorno

Freedom is not worth having if it does not include the freedom to make mis-

takes.

–Mahatma Gandhi

This chapter presents the application of the AS-MOO/MCDM methodology for approxi-

mating sets of efficient portfolios lying in the Stochastic Pareto Frontier (SPF) that can reveal

the trade-offs between expected return maximization and expected risk minimization within a

non-stationary and stochastic investment environment. The trade-off portfolio predicted to lead

to future Pareto sets with maximal expected hypervolume is taken as a basis for rebalancing

the current implemented portfolio. Thus, the evolved portfolios are deployed in a time-varying,

post-optimization unseen environment. Experiments on three real-world financial stock markets

as well as on simulated benchmark data show that the ASMS-EMOA approach is able to obtain

future SPF approximation sets conveying higher average hypervolume for future out-of-sample

investment rounds when compared to the myopic SMS-EMOA [32]. Moreover, implementing

the Estimated Maximal Flexible Choices (EMFCs) was confirmed as a better strategy than to

randomly take a portfolio from the evolved approximated Pareto set.

7.1 Experimental Design

The aim of the experimental design is to investigate the effects of the following two factors on

the sample average Hypervolume (Hypv) computed over future out-of-sample investment data:

Factor 1 (a) tracking and prediction in the decision and objective spaces to evolve an antici-

patory SPF, compared to (b) the assumption of a static SPF of a myopic optimizer;

Factor 2 (a) identifying and implementing EMFCs over time, compared to (b) randomly se-

lecting portfolios from the Pareto-flexible set.

139
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AS-MOO
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solver
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Figure 7.1: Online AS-MOO methodology for anticipating Estimated Maximal Flexible Choices
(EMFCs), as a stream of state parameters is accumulated over time. For portfolio selection, u0

is an initial investment allocation and {µt,Σt}Tt=1 is a stream of parameters of the dynamic joint
return distribution, which is assumed to be a Gaussian process. The historical time-dependent
Pareto Sets and EMFCs also become available to the AS-MOO solvers at subsequent periods.

We name those the (1) anticipation and the (2) DM factors. The formulated hypotheses are thus

that the Hypv computed over the evolved SPF approximation for future unseen environments

is higher when utilizing strategies (F1.a) and (F2.a) as opposed to utilizing (F1.b) and (F2.b).

7.1.1 Investigated Algorithmic Variants: Indiffirence vs. Flexibility

As stated in chapter 1, the proposed anticipatory methodology does not find parallel in the

literature. That is to say, no previous studies that we are aware of experimented with evolving

stochastic Pareto frontiers over time, anticipating changes in multiple noisy objective functions,

while adjusting for costs in a time-linkage setting. The EMOO/MCDM literature thus lacks

competent algorithms that could met our methodology main requirement: outputting a sequence

of Pareto-efficient solutions predicted to improve future diversity of choice (see Fig. 7.1.1).

In light of the shortage of methods for AS-MOO, we follow a similar approach as that of Fa-

rina et al. [84], where the first (and now widespread) set of benchmark Dynamic MOO (DMOO)

problems was defined. Because DMOO algorithms were virtually nonexistent, they investigated

a baseline algorithm, but did not attempt to build over the static EMOO algorithms that were

available at the time. In this thesis, we not only adapt a state-of-the-art EMOO algorithm

as a myopic baseline for AS-MOO, but we build over it to compose the proposed anticipatory

algorithm (chapter 6, section 6.5). The SMS-EMOA [32] baseline is thus instantiated when (i)

the window size used for KF and DD tracking is zero; and (ii) portfolios are randomly chosen

from the evolved Pareto-flexible set.

Investigated Factors and Algorithms

The anticipation factor is controlled by four levels of window size (K): K ∈ {0, 1, 2, 3}. For

K = 0, we have the myopic baseline SMS-EMOA (SMS, in short) for which constant predictions

are made, i.e., ût+h ∼ ût and ẑt+h ∼ ẑt. The stationarity assumption implies the estimated

Temporal Incomparability Probabilities (TIPs, see chapter 6, Eq. (6.4)) equal 1/2 and, hence,

all anticipation rates are self-adjusted to λ
(i)
t = 1 (i = 1, · · · , N). This case is equivalent to

a DM betting on a static market. For K > 0, the past solutions and objective distributions
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obtained in the latest K periods serve as input to the KF and DD tracking methods, in which

case anticipation is enabled.

The DM factor determines whether (a) predicted maximal flexible choices or (b) randomly

drawn portfolios from the Pareto-flexible Set are implemented. The goal is to contrast an in-

different DM (Random DM, RDM) – for whom two or more paths may be equally satisfying

– from a flexible DM, whose preferences cannot be reliably elicited and are thus left open: the

flexible DM (maximal Hypv, mHDM). For the mHDM, the strategy becomes postponing pref-

erences specification by implementing flexible choices. Therefore, four variants are investigated

for assessing the anticipation and DM effects on future diversity of choice: (F1.a) + (F2.a) =

ASMS/mHDM; (F1.a) + (F2.b) = ASMS/RDM; (F1.b) + (F2.a) = SMS/mHDM; and (F1.b)

+ (F2.b) = SMS/RDM:

ASMS/mHDM Bayesian tracking and prediction are performed in both decision and objective

space (K > 0, Factor 1.a). Predicted flexible maximal choices foreseen to yield to maximal

expected hypervolume trade-off sets are implemented (Factor 2.a);

ASMS/RDM Bayesian tracking and prediction are performed in both decision and objective

space (K > 0, Factor 1.a). Randomly selected portfolios from the evolved approximation

to the Pareto-flexible set are implemented (Factor 2.b);

SMS/mHDM The stationary assumption is adopted and constant predictors are integrated

into a myopic algorithm (K = 0, Factor 1.b). Predicted flexible maximal choices foreseen

to yield to maximal expected hypervolume trade-off sets are implemented (Factor 2.a);

SMS/RDM The stationary assumption is adopted and constant predictors are integrated into

a myopic algorithm (K = 0, Factor 1.b). Randomly selected portfolios from the evolved

approximation to the Pareto-flexible set are implemented (Factor 2.b).

7.2 Solving Portfolio Selection with AS-MOO

We validate the AS-MOO methodology on three real-world stock indices: London’s Financial

Times Stock Exchange (FTSE–100), Dow Jones Index (DJI), and Hong Kong’s Hang Seng

Index (HSI). Also, we design an artificial instances generator, controlling for periodicity and for

severity of change (see Sec. 7.2.1), thus providing different regime switching patterns.

Let r ∈ RN be the return vector of N risky assets, in which µr and Σr are its mean

and covariance, and let u ∈ SN−1 denote the proportions of wealth to be invested. Then, a

classical myopic formulation for risk minimization [151] is: u? = arg minu {uᵀΣru : µᵀ
ru ≥ r0},

in which r0 is the minimum acceptable return. The application of AS-MOO for approximating

portfolios lying in the stochastic Pareto frontier can reveal the trade-offs between expected

return maximization and expected risk minimization within a nonstationary and probabilistic

investment environment. In AS-MOO, the investment decision leading to future Pareto-flexible

Sets with maximal expected Hypv is chosen as a basis for rebalancing the current implemented

portfolio. The state parameters Xt =
{
µ̂r,t, Σ̂r,t

}
must be estimated from the available data.
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We then propose the sequential formulation

min
ut

uᵀ
t Σ̂r,tut (7.1)

max
ut

µ̂ᵀ
r,tut − h(ut,u

?
t−1) (7.2)

s.t. cl ≤ c(ut) ≤ cu, (7.3)

where c(ut) computes the number of assets in ut with non-zero weight (ut > 0). Following the

AS-MOO notation, zt|u?t−1 = g(ut,Xt) + h(ut,u
?
t−1), where:

g(ut,Xt) =
(
uᵀ
t Σ̂r,tut µ̂ᵀ

r,tut

)ᵀ
, and (7.4)

h(ut,u
?
t−1) =

(
0 h(ut,u

?
t−1)
)ᵀ
, (7.5)

in which h is a cost function representing all incurring transaction fees and commissions. We

consider the risk of ut to not be affected by the previous portfolio.

7.2.1 Simulated Benchmark Data Generator

Notwithstanding the hard quest of simultaneously handling various sources of uncertainty, many

problems could be more realistic tackled if modeled as dynamic stochastic multi-objective ones,

what could dramatically expand EMOO applications. Still, most works end up only handling

isolated aspects, partly due to the complexity of assessing the performance of EMOO algorithms

in properly designed benchmark scenarios (see chapter 3). For a survey of benchmark problems

in the case of deterministic dynamic MOO, we refer to [114].

Therefore, for comparing the behavior of myopic and anticipatory optimizers under con-

trolled conditions, we devised a random sequential portfolios selection instance generator, with

two factors: (1) the periodicity; and (2) the severity with which disruptive changes affect the

parameters of the joint assets return distribution. The modeled disruption is an additive noise

process, in which the parameters are perturbed as Xnew = (1− η)Xold + ηPrandom, where Prandom

is a set of random parameters – i.e., a random mean vector and a random covariance matrix –

and η controls the severity with which the random parameters are absorbed into the update of

Xnew.

Let X1 = {µ1,Σ1} be the initial set of parameters, where µ1 is the mean vector and Σ1 is

the covariance matrix. Let t0 be the period when the first disruptive change occurs. The set

of parameters at period t0 is described as a convex combination between the parameters at the

starting period in t = 1, X1, and the set of random parameters generated at t = t0,Pt0 :

Xt0 = (1− η)X1 + ηPt0 , (7.6)

in which the sequence of parameters in h ∈ (1, t0), i.e., (X1,X2, · · · ,Xt0) are update by progres-

sively following a sequence of convex combinations, whose strength is indexed by time:

Xt =

(
1− t

t0

)
X1 +

t

t0
Xt0 . (7.7)
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Figure 7.2: Estimating objective distributions by sampling from the joint assets return distribu-
tion given for each investment environment, from which E daily returns scenarios are sampled.
The return sample mean vectors and covariance matrices are estimated for each scenario. Fi-
nally, a Maximum-Likelihood Estimation (MLE) is performed to fit a Gaussian distribution
over the sampled risk (variance) and return (mean) of a given portfolio.

In the general case, the k-th disruptive event will yield the following update:

Xtk−1
= (1− η)Xtk−1

+ ηPtk , (7.8)

Xt =

(
1− t

tk−1

)
Xtk−1

+
t

tk
Ptk . (7.9)

Any distribution over µtk
can be used for generating Ptk . In this thesis, we use a uniform

distribution over the hyperbox [µlb, µub]N , where µlb and µub are the lower and upper bounds

of return for all assets1. For generating random covariance matrices, we use a Gram Matrix-

based method [117], which consists of uniformly sampling unit vectors in the unit hypersphere

(GN−1), i.e., x
||x|| ∼ U(GN−1), with x ∼ N (0, I), and taking ρP = xxᵀ. The matrix is then built

as ΣP(i, j) = {ρP(i, j)σiσj}, where σi is the standard deviation of the i-th asset, uniformly

sampled from [σlb, σub].

7.2.2 Experimental Methodology

Let Wt be the initial wealth to be invested in a probabilistic market and set t ← K. Given a

stream of T known Gaussian returns parameters {µt,Σt}Tt=1 (T is the number of periods), the

following procedures are repeated in all ASMS variants at each period (see Fig. 7.2):

Step 1 Sample a total of S×K return vectors from each availableN
(
µt−K ,Σt−K

)
, · · · ,N (µt,Σt),

where E is the sample size;

Step 2 Estimate
{
X̂t−k

}K
k=1

=
{
µ̂t−k, Σ̂t−k

}K
k=1

from the set of simulated returns;

Step 3 Use the parameter stream
{
X̂t−k

}K
k=1

for solving AS-MOO at the t-th period to obtain

ÛN?t and û?t ;

1The source code for the benchmark generator is publicly available at ...
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Table 7.1: Brokerage fees utilized in the Brazilian stock market.
Traded value Proportional Fee Fixed Fee
< 135.07 0.0% 2.70
≥ 135.08 and < 498.62 2.0% 0.00
≥ 498.63 and < 1, 514.69 1.5% 2.49
≥ 1, 514.70 and < 3, 029.38 1.0% 10.06
≥ 3, 029.39 0.5% 25.21

Step 4 Use the out-of-sample future test state parameters2 Xt+1 to estimate the Stochastic

Pareto Frontier (SPF) approximation

Ẑt+1 = f
(
ÛN?t ,Xt+1, m̂u?t

)
, (7.10)

and collect the estimated sample average future Hypv:

Ŝt+1 =
1

E

E∑
e=1

S
(
Ẑe,t+1, zref

)
; (7.11)

Step 5 Implement the selected mean portfolio m̂u?t
from the evolved SPF, advance to t← t+1,

and update the current investor wealth as:

Wt ←Wt−1 + mean observed return for û?t

− transaction costs of transforming

m̂u?t−1
into m̂u?t

. (7.12)

We set the initial wealth toW0 = 10, 000.00 monetary units, and construct the cost function

h following a suggestion by the Securities Commission of Brazil which is widespread, practiced

by the major brokers operating in the São Paulo BOVESPA stock market. The brokerage costs

depend on the value of trade, combining fixed and proportional fees (Tab. 7.1).

In order to assess the statistical significance of the anticipation and DM factors, we use a two-

way Analysis of Variance (ANOVA). Pairwise significance is assessed with the non-parametric

Mann–Whitney U test, which does not require a normality assumption.

Percentage Of Change In Direction, POCID

The POCID is a commonly used measure in time series forecasting applications [155] that cap-

tures the proportion of correct predictions w.r.t. the directions toward which the j-th objective

function change between subsequent periods:

POCID(j) = 100× 1

N × (T − 1)

N∑
i=1

T−1∑
t=1

D(j, i, t), (7.13)

D(j, i, t) =

{
1, if (z

(i)?
j,t+1 − z

(i)?
j,t )(m̂

ẑ
(i)?
j,t+1
− m̂

ẑ
(i)?
j,t

) ≥ 0,

0, otherwise,

2Those sets of parameters are only used for a post-hoc assessment of the obtained results and do not interfere
in the optimization problem.
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where T is the number of decision periods and N is the number of portfolio objective distri-

butions in the population. In this thesis, we consider an overall POCID measure over risk

and expected return of a fixed portfolio: POCID = 1
2
× (POCID(return) + POCID(risk)). In

Eq. (7.13), z
(i)?
j,t+1 and z

(i)?
j,t are two objective values observed for the i-th ranked portfolio in

subsequent periods w.r.t. the j-th objective function (j = 1 for risk and j = 2 for mean return),

whereas m̂
ẑ
(i)?
j,t+1

and m̂
ẑ
(i)?
j,t

are the corresponding predicted mean values obtained via KF track-

ing. Note that a 100% POCID means that the predictor can perfectly capture the changing

patterns of direction on the quantity of interest.

Similarity in the Decision Space

In order to assess the dynamics over time of the portfolios compositions in the (d− 1)–Simplex,

we propose a coherence measure over the Pareto-flexible sets inspired in [106]. It consists of

summing over the cosine similarities of each portfolio to the population centroid, uCt :

Coherence
(
ÛN?t

)
=

N∑
i=1

m̂
u
(i)?
t
· uCt

||m̂
u
(i)?
t
||2||uCt ||2

, (7.14)

where the operator · denotes the dot product, and

uCt =
1

N

N∑
i=1

m̂
u
(i)?
t
. (7.15)

In this way, the overall similarity of a set of N candidate mean DD portfolios can be assessed.

Note that normalization is needed because the centroid will not necessarily have unit norm.

7.2.3 Parameters Settings and Datasets

We now describe the data collection and experimental setup.

Artificial and Real-World Datasets

A total of 10 investment scenarios are assessed: (a) seven artificial; and (b) three real-world

stock markets: London FTSE 100, Dow Jones Index (DJI), and Hong Kong’s Hang Seng Index

(HSI). Each scenario encode different combinations of severity and periodicity of disruptive

change. All benchmarks provide d = 30 simulated assets for composing the portfolios, whereas

for the real-world instances we have d = 87 for FTSE; d = 30 for DJI; and d = 49 for HSI3,

which are represented in a (d− 1)–Simplex space.

The total number of periods4 for all instances is T = 25. The real-world scenarios are

composed of daily adjusted close prices collected between 20/11/2006−31/12/2012, from which

50 days lagged returns were computed: rn,k =
Vn,k+50−Vn,k
Vn,k+50

, where Vn,k+50 is the value of the n-th

asset at day k+50. Each investment period comprises one and a half year worth of daily returns

data. Between each period, the 50 oldest lagged returns are discarded and the 50 latest ones are

3The data used in our experiments is publicly available at ...
4Except for FTSE with T = 24 due to data availability issues at the time the experiments were executed.
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included in the sample from which the parameters
{
µ̂t, Σ̂t

}T
t=1

are estimated, where 50 business

days roughly corresponds to two and a half months. Thus, the period t = 1 in FTSE comprises

data from 20/11/2006− 20/05/2008, t = 2 to 01/02/2007− 30/07/2008, and so forth.

As for the artificial benchmarks, we investigate severities of η ∈ {0.5, 1.0} and periodicities

of disruptive change of τ ∈ {2, 4, 8}. We refer to the six instances as PO(η,τ). The seventh

instance was generated to simulate an environment in which the covariance Σt varies at every

four periods, but that is static only w.r.t. the mean returns µt. We refer to this instance as the

“static mean PO”, despite the dynamic volatility of each asset.

Bayesian Tracking Parameters

Tracking with KF and the DD MAP requires setting (a) the covariance matrices representing the

initial uncertainty and the measurement noise, for the KF; and (b) the scale factor s representing

the initial dispersion, for the DD tracking. In the former case, the initial covariance was set

directly from the data, using the sample covariance of a given objective distribution evaluated

at t = 0, whereas the noise covariance was set to 1
E
× Σt, which corresponds to the covariances

of the sample means. For each simulation scenario involving the stochastic evaluation of the

objective-functions (i.e., average return and average risk), E = 1000, i.e., the risk and return of

each candidate portfolio is evaluated from 1000 simulated daily return values. The scale factor

in DD tracking is set to s = 1, after finding that its influence is negligible in preliminary tests.

Online Anticipatory Learning (OAL) was used to self-adjust the anticipation rates using

Eqs. (6.6) and (6.9) at chapter 6. Hence, we have set

λt+h =
1

2

(
λ

(H)
t+h + λ

(K)
t+h

)
, (7.16)

for which the anticipation horizon is H = 2 (one-step-ahead prediction). The anticipation

rate of each portfolio is thus determined not only by the estimated temporal incomparability

probability between the current and the predictive objective distribution (λ
(H)
t+h), but also by the

observed normalized sum of KF squared residuals (λ
(K)
t+h).

The motivation for taking the average (the 1
2

factor) of the two aforementioned self-adjustment

strategies for setting λt+h can be explained by the intuition of providing a balanced tension in

the OAL rule between:

• The desire of trusting in decision paths that were shown to lead to higher predictable

consequences in the past (λ
(K)
t+h in Eq (6.9)); and

• The desire of trusting in decision paths that are estimated to lead to higher predictable

consequences in the future (λ
(H)
t+h in Eq (6.6)).

Constraint Handling

We considered minimum and maximum cardinality of cl = 5 and cu = 15 assets. Moreover,

the feasible objective space includes all portfolios attaining mean return of at least 0% and at

most 20% risk. The feasibility probability was set to 99% (ε = 0.99, see Def. 5.5). For two

anticipatory distributions ẑ
(a)
t and ẑ

(b)
t , constraint handling in ASMS is done similarly as in [69]:
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• If both ẑ
(a)
t and ẑ

(b)
t are ε-feasible, then PD is applied over the mean vectors as in Def. 5.3;

• Else if p(z
(a)
t )ε = Pr

{
ẑ

(a)
t ∈ Zt

}
≥ ε but p(z

(b)
t )ε = Pr

{
ẑ

(b)
t ∈ Zt

}
< ε, then ẑ

(a)
t � ẑ

(b)
t

(and vice-versa);

• Else, if both are not ε-feasible, then PD is applied to compare the vectors
(
p(ẑ

(a)
t )1,ε, p(ẑ

(a)
t )2,ε

)ᵀ
and

(
p(ẑ

(b)
t )1,ε, p(ẑ

(b)
t )2,ε

)ᵀ
, where p(ẑ)j,ε is the marginal ε-feasibility probability w.r.t. the

j-th objective function.

ASMS Parameters

Population size in all variants was set to N = 20 and 30 generations were executed for each

investment period. Seeding was utilized so that the previous portfolios served as the new

starting points in subsequent periods. Mutation rate was set to 0.3; crossover probability to

0.2; and binary tournament selection was utilized using the Pareto Dominance over the sample

mean vectors, with expected Hypv contribution (Eq. (6.35)) serving as a tiebreaker. Finally,

the reference point for computing Hypv was set to zref = (0.2, 0.0)ᵀ in terms of risk and return,

coinciding with the objective space feasibility boundaries (maximum risk of 20% and minimum

mean return of 0%).

Search Operators

We utilized uniform crossover over the mean DD vectors. For mutation, we randomly choose

between (1) modifying the non-zero weights; or (2) adding/removing assets. If operator (1)

is selected, then, with probability 1/2, we either increase or decrease the investment on a

randomly chosen asset by a uniformly drawn factor from 10 to 50%. If (2) is selected, then,

with probability 1/2, we either add or remove a randomly chosen asset. If it is removed, we

simply set its weight to zero. If it is added, we randomly set its weight within a ±10% range

from an equally-balanced allocation. All modifyied DD vectors are renormalized.
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7.3 Results and Discussion

All experiments consider AS-MOO instances for which Pareto-efficient solutions are evolved

according to a stream of historical 50-lagged daily return data. The implemented solution

affects the objective function evaluations at subsequent periods, thus modifying the admissible

future Pareto-flexible sets.

The differences in the estimated anticipatory distributions within the evolved sets of Pareto-

flexible portfolios are illustrated in Fig. 7.3 (a)–(d), for four evolved SPFs in one run of

ASMS/mHDM at four arbitrarily chosen periods of the PO(8,1.0) instance. Note that high

return portfolios were associated with high risk, and that there may exist discontinuities in the

theoretical SPFs, what is expected when cardinality constraints are considered (see [83]).

Moreover, the spreads of the anticipatory distributions are larger for portfolios attaining

higher risk/return when compared to the lower risk/return ones. This result is consistent with

the intuition that risky portfolios tend to be less stable over time [15] (see chapter 4). The KF

tracking seems to have correctly captured this uncertainty. Finally, the rotation of the bivariate

Gaussian objective distributions varied with the position along the evolved SPFs. This result

suggests that there might be different correlation patterns between risk minimization and return

maximization, depending on the composition of each evolved portfolio.

7.3.1 Estimated Confidence Over the Stochastic Pareto Frontiers
(SPFs)

We recall that, according to the OAL rules proposed in chapter 6, the available KF predic-

tive objective distributions of portfolios associated with higher predictive confidence are more

intensely incorporated into the resulting anticipatory distributions, which are effectively con-

sidered for guiding the search towards the anticipatory SPF. Moreover, recall that rank 1 port-

folios correspond to the highest risk/return, whereas a rank 20 one corresponds to the lowest

risk/return in the population.

The barplots shown in Fig. 7.4 (a)–(f) for FTSE-100 depict the predictability degrees (or

confidence, which is the complement of the binary entropy of the TIP) for the evolved portfolios,

expressed in terms of Eq. (6.6) in chapter 6. For the smaller window sizes of K = 1 and K = 2,

the confidence distribution was slightly multimodal, with peaks around portfolio ranks of 5 and

15, whereas for the largest window size (K = 3), a decreasing pattern can be observed, where

higher ranked portfolios (higher return ones) tended to be associated with higher predictability

in terms of the Pareto dominance relation between current and predicted performance. The

same pattern for K = 3 was also observed for the HSI market (Fig. 7.6 (c)–(d)).

Different yet orderly confidence distributions were observed for the remaining instances. For

instance, the reverse tendency was observed for the DJI market with K = 3 (Fig. 7.5 (c)–

(d)), when compared to that observed for the FTSE-100 market, where lower ranked portfolios

(less risky ones) were associated with higher predictive confidence. The emergence of such
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Figure 7.3: Example of anticipatory SPFs evolved with ASMS/mHDM.

tendencies suggests that OAL effectively self-adapted the anticipation rates, according to the

market dynamics and the chosen window size.

A general observation from the predictive confidence distributions for the remaining instances

(Figs. 7.4–7.13) is that, although the patterns were very similar, the mHDM variants (parts (d)–

(f) of those figures) have lead to slightly more conservative SPF approximations, when compared

to the RDM ones (parts (a)–(b)), in terms of the extent to which predictive knowledge was

incorporated into the evolved anticipatory distributions. This result may indicate a potential
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Figure 7.4: Confidence distributions over the SPFs, averaged over all periods for FTSE-100.

trade-off between expected future Hypv maximization and predictive confidence.
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Figure 7.5: Confidence distributions over the SPFs, averaged over all periods for DJI.
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Figure 7.6: Confidence distributions over the SPFs, averaged over all periods for HSI.
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Figure 7.7: Confidence distributions over the SPFs, averaged over all periods for static mean
PO.
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Figure 7.8: Confidence distributions over the SPFs, averaged over all periods for PO(2,0.5).
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Figure 7.9: Confidence distributions over the SPFs, averaged over all periods for PO(2,1.0).
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Figure 7.10: Confidence distributions over the SPFs, averaged over all periods for PO(4,0.5).
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Figure 7.11: Confidence distributions over the SPFs, averaged over all periods for PO(4,1.0).
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Figure 7.12: Confidence distributions over the SPFs, averaged over all periods for PO(8,0.5).
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Figure 7.13: Confidence distributions over the SPFs, averaged over all periods for PO(8,1.0).

7.3.2 Bayesian Tracking Influence on Percentage On Change In Di-
rection

The effectiveness of Bayesian tracking in ASMS can be analyzed in terms of POCID (Eq. (7.13)).

The results for the PO benchmarks are shown in Fig. 7.14 (a)–(g). As expected for the static

mean returns scenario with varying volatility (see Sec. 7.2.3) the best median POCID results

(≈ 85%) were obtained with the myopic SMS (K = 0, see Fig. 7.14 (a)). It is likely that, for

K > 0, tracking may have been severely affected by the sampling noise. As for the nonstationary

mean returns instances, prediction was more effective when disruptive changes occurred at low

frequency (every τ = 8 periods), with moderate severity (η = 0.5). The highest median POCID

in this case (≈ 72%) was observed with the largest window size, K = 3 (see Fig. 7.14 (f)),

whereas, for the faster-paced environments (τ = 2, 4), the shortest window size (K = 1) allowed

for the best performance.

The performance decrease in average POCID observed for large window sizes in faster-paced

artificial PO environments was expected. In those cases, outdated historical data is kept by

the KF and the DD MAP tracking tools, even though the joint assets return distribution have

already abruptly changed. The inability to detect such disruptive changes leaves the estimation

of the portfolios objective distribution velocities subject to significant inaccuracies, what end

up degrading the ability of the Bayesian tracking tools to correctly identify the novel directions

of change. This latter result is consistent with the intuition that fast changing distributions

require responsive tracking capable of quickly discarding uncorrelated past data.
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Furthermore, the results for the real-world datasets shown in Fig. 7.14 (h)–(k) reveal that

tracking was significantly more effective with K = 2, for FTSE, and with K = 1 for DJI

and HSI, suggesting that the 50 days lagged returns distribution dynamics of those markets

may be better approximated with more responsiveness tracking. We point out that the correct

identification of a proper dynamical model can significantly affect the predictive ability of the

implemented tracking tools. Although the system identification step was left to the user in

this thesis, i.e., although no effort has been made to automatically learn a dynamical model,

the relatively high average POCID results obtained for certain window size values (K) in all

artificial and real-world PO instances indicate that the Bayesian tracking tools utilized in our

experiments are adequate for the investigated portfolio selection application.

Finally, we observe that the stationary assumption (for K = 0) was significantly outper-

formed in terms of POCID for at least one value of K > 0 in all 9 nonstationary instances,

including the real-world markets, what suggests that OAL has succeeded on learning portfolios

attaining good predictability, as captured by POCID. Another noteworthy effect in POCID

was that of the DM factor for PO(4,0.5), PO(8,0.5), and DJI, what suggests that rebalancing

the implemented portfolios according to the mHDM strategy may lead to more predictable

Pareto-flexible sets, when compared to the sets of portfolios evolved after randomly selecting

Pareto-incomparable investment decisions with the RDM strategy. Moreover, the observed

similarity of the POCID patterns obtained for the real-world DJI and HSI datasets to those

observed for the artificial PO(4,0.5) suggests that the changing dynamics of those markets may

have been roughly reproduced with our benchmark generator.
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Figure 7.15: Boxplots of Out-Of-Sample Future Average Hypervolume. In the legends, h stands
for mHDM and r for RDM within the notation (K, DM).
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7.3.3 Effects on the Out-Of-Sample Future Average Hypervolume

In this section, we draw attention to the observation in chapter 3, section 3.1.4 that maximizing

future Hypv for upcoming periods is consistent with axiomatic notions of preference for flexibility

in decision theory and is related to intuitive notions of future diversity of choice maximization.

For achieving this goal, we argued in chapter 5 that taking the Estimated Maximal Flexible

Choice is what enables the attainment of maximal future expected Hypv Pareto-flexible sets in

the AS-MOO model.

Under that interpretation, we assessed whether the proposed methodology has succeed in

attaining its main goal (see Fig. 1.2 in chapter 1): handling undefined preferences by achieving

better future sets of options. The figure of merit for this investigation is the out-of-sample future

average Hypv (Ŝt+1, see Eq. (7.11)) computed from the obtained Pareto-flexible sets at each

period. The assessed hypothesis is that both the anticipatory and the maximal Hypv DM

variants achieve higher Ŝt+1 values than those achieved by the myopic and the RDM ones.

Table 6.2 shows the two-way ANOVA results for the anticipation (WS) and DM effects

on Ŝt+1, besides their interaction described in the “WS:DM” rows. The DM factor had a

statistically significant effect on future Hypv in six out of seven artificial scenarios (85%). The

exception was the PO(2,1.0) instance, for which disruptive changes happen with the highest

frequency and severity within the test suite. Inspecting the Ŝt+1 boxplot results in Fig. 7.15,

the superiority of the mHDM over the RDM becomes clear, for the artificial scenarios. Moreover,

from the real-world ANOVA results, the DM factor was deemed statistically significant on the

DJI dataset. Besides, the boxplots results in Fig. 7.15 reveal that the mHDM also achieved

significantly higher median Ŝt+1 values than those achieved by the RDM on 4 out of 12 real-world

test cases, considering FTSE, DJI, and HSI and the four window size levels, being statistically

equivalent to RDM for the remaining 8 cases.

As for the anticipation factor, significant effects on future Hypv were detected for five out

of seven artificial scenarios (71%). The exceptions were the PO(8,0.5) and PO(4,0.5), although

the effects would have been significant at the 10% level. In addition, Fig. 7.15 reveals that in 15

out of 20 scenarios (70%) – considering all 10 instances combined with the two DM types – at

least one anticipatory variant significantly outperformed its myopic counterpart, for some values

of K > 0. For the remaining five scenarios, the differences in performed were not significant,

although we recall that those results take into consideration all the experimental data collected

over all 25 investment periods, i.e., there might be some periods in those five scenarios for which

significant differences might have been obtained, what can be visually hinted by the Ŝt+1 time

series depicted in part (a) of Figs. 7.16–7.25. For those figures, the myopic variants SMS/RDM

and SMS/mHDM are compared with the best window size value for the anticipatory variants

ASMS/RDM and ASMS/mHDM, identifyied from the Ŝt+1 boxplot results in Fig. 7.15.

Also, ANOVA revealed significant interaction between the anticipation and the DM factors

in the static mean PO, PO(2,0.5), and PO(8,1.0) instances, where the effects of window size

depended on the DM factor: for mHDM, varying K had significant effects on Ŝt+1, whereas the

same cannot be said for RDM. In the remaining 7 cases (see Fig. 7.15), varying K has lead

to significant effects on Ŝt+1 in both mHDM and RDM variants, independent of the decision-

making strategy. This latter result suggests that, in some cases, when incorporating predictive
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knowledge into the estimated anticipatory distributions, the improvements in future Hypv can

be only achieved when jointly implementing the predicted maximal flexible decisions, although

this was generally not the case for what improved performance by using prediction was also

obtained even when implementing randomly selected Pareto-incomparable portfolios.

Table 7.2: ANOVA for WS and DM factors on Ŝt+1 (**p < 0.01; *p < 0.05).
AS-MOO Instance Factor Mean Sq F value Significance

Static mean PO
WS 143.04 15.15 **
DM 2504.54 265.26 **
WS:DM 65.58 6.95 **

PO(2, 0.5)
WS 42.67 6.53 **
DM 500.83 76.67 **
WS:DM 18.28 2.80 *

PO(2, 1.0)
WS 354.94 33.50 **
DM 5.70 0.54 ≈
WS:DM 9.06 0.86 ≈

PO(4, 0.5)
WS 21.74 2.42 *
DM 1626.40 180.95 **
WS:DM 11.27 1.25 ≈

PO(4, 1.0)
WS 79.58 13.19 **
DM 92.88 15.40 **
WS:DM 7.52 1.25 ≈

PO(8, 0.5)
WS 17.26 2.26 ≈
DM 2268.88 297.36 **
WS:DM 10.91 1.43 ≈

PO(8, 1.0)
WS 82.76 23.22 **
DM 757.69 212.56 **
WS:DM 16.85 4.73 **

DJI
WS 0.00 0.19 ≈
DM 0.03 2.21 ≈
WS:DM 0.01 0.66 ≈

FTSE
WS 0.00 0.58 ≈
DM 0.03 9.80 **
WS:DM 0.00 1.46 ≈

HSI
WS 0.01 0.34 ≈
DM 0.00 0.12 ≈
WS:DM 0.00 0.02 ≈
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Figure 7.16: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each in-
vestment period for the static mean PO instance in terms of (a) average out-of-sample future
Hypv; (b) average cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.17: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(2,0.5) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.18: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(2,1.0) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.19: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(4,0.5) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.20: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(4,1.0) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.21: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(8,0.5) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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●

●

●

● ●

● ●

●

●
● ● ● ● ●

●

● ●

●

●

●

● ● ●

●

●

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 C
ar

di
na

lit
y

Factors

● K=0, h

K=0, r

K=3, h

K=3, r

(b) Cardinality

●

●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 C
oh

er
en

ce

Factors

● K=0, h

K=0, r

K=3, h

K=3, r

(c) Coherence

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10000

20000

30000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 A
cc

um
ul

at
ed

 W
ea

lth

Factors

● K=0, h

K=0, r

K=3, h

K=3, r

(d) Accumulated Wealth

Figure 7.22: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the PO(8,1.0) in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.23: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each invest-
ment period for the FTSE-100 in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 C
ar

di
na

lit
y

Factors

● K=0, h

K=0, r

K=2, h

K=2, r

(b) Cardinality

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 C
oh

er
en

ce

Factors

● K=0, h

K=0, r

K=2, h

K=2, r

(c) Coherence

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
period

A
ve

ra
ge

 A
cc

um
ul

at
ed

 W
ea

lth

Factors

● K=0, h

K=0, r

K=2, h

K=2, r

(d) Accumulated Wealth

Figure 7.24: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each in-
vestment period for the DJI in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.
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Figure 7.25: Dynamics of the evolved Pareto-flexible sets of portfolios at the end of each in-
vestment period for the HSI in terms of (a) average out-of-sample future Hypv; (b) average
cardinality; (c) coherence; and (d) accumulated wealth.

7.3.4 Dynamics of Future Average Hypv and of the Portfolio Com-
positions

The average evolution of out-of-sample future expected Hypv (Ŝt+1) over all investment periods

can be visualized in part (a) of Figs. 7.16–7.22. For instance, the disruption patterns in the
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Table 7.3: Pearson Correlation Coefficients (**p < 0.01; *p < 0.05)

Instance Coherence vs. Ŝt+1 Cardinality vs. Ŝt+1 Coherence vs. Cardinality
Static mean PO 0.70** 0.18** -0.01

PO(2,0.5) 0.42** -0.12** -0.03
PO(2,1.0) 0.19** -0.05 -0.01
PO(4,0.5) 0.27** -0.32** -0.02
PO(4,1.0) 0.38** -0.08* -0.03
PO(8,0.5) 0.16** -0.07 -0.06
PO(8,1.0) 0.30** -0.09* 0.03

DJI -0.07 -0.12** -0.30**
FTSE 0.20** -0.10** -0.34**
HSI -0.24** 0.09* -0.35**

PO(8,1.0) simulated market (Fig. 7.16 (a)) can be inferred from the maximal Ŝt+1 inflection

points at every 8 periods, after which performance degrades as prediction fails to respond to

abrupt changes until the implemented Bayesian tracking methods manage to collect enough

evidence to capture new trends in both the objective and search spaces. The same observation

holds for the other benchmarks.

From the parts (b) and (c) of those time series, we noted a tendency – particularly for

the static mean PO, PO(4,0.5), PO(8,0.5), PO(8,1.0) – wherein the ASMS/mHDM variant

achieved the highest average portfolio coherences for most investment periods, while yielding

at the same time the lowest cardinalities for most decision periods. While this tendency was

not consistent for all instances and across every investment period, such result motivated us

to perform a statistical correlation study between coherence, cardinality, and future average

out-of-sample Hypv. We point out that the experimental data utilized in this study consider

all four algorithmic variants (SMS/RDM, SMS/mHDM, ASMS/RDM, and ASMS/mHDM)

over all decision periods. That is to say, statistically significant different than zero correlation

coefficients suggest that consistent patterns of pairwise interaction between those three measures

may exist regardless of the algorithm and of the investment period being analyzed. However,

even where non-significant correlation is observed, the analysis can not rule out the possibility

that significant correlation might exist for certain algorithmic variants and investment periods.

The Pearson correlation of Ŝt+1 with (1) coherence; and with (2) cardinality – and be-

tween the latter two measures – was computed over all settings (K ∈ {0, 1, 2, 3} and DM

∈ {mHDM,RDM}) and can be read from Tab. 7.3.3. Coherence was significantly positively

correlated with Ŝt+1 for 8 out of the 10 instances. On the other hand, correlation between

cardinality and Ŝt+1 was significantly negative for 5 out of the 10 instances. Also, coherence

was negatively correlated with cardinality on the three real-world market instances.

As illustrated in e.g. Fig. 7.22 (a)–(c) for the PO(8,1.0) simulated market, those results

may indicate that portfolios with a smaller cardinality may have allowed for a more efficient

search for both the myopic SMS and the ASMS variants. Another hypothesis is that lower

cardinality may have lead to more coherent portfolio populations that, by its turn, may have

helped mitigating the effects of the transaction costs from the DM choices on the Hypv of future

investment decisions. The correlation patterns for cardinality vs. Ŝt+1 were not as significant
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when compared with the correlations between coherence vs. cardinality for the real-world

markets and with the correlations between coherence vs. Ŝt+1 in general, but we suspect that

cardinality may also be directly associated with reduced adaptation costs so to improve Ŝt+1.

7.3.5 Dynamics of the Investor Wealth

The average expected wealth of an investor implementing the choices produced by both SMS

and the ASMS variants are given in part (d) of Figs. 7.16–7.22. It can be noted that the mHDM

variant has outperformed the RDM in 7 out of the 10 (70%) PO instances. The results for the

real-world datasets are given in parts (d) of Figs. 7.23–7.25, for which similar patterns of wealth

evolution were observed. It can be noted that both modeled investors have faced negative

returns between periods 5–11, in all three instances, although the mHDM had a slight edge over

the RDM in the FTSE and DJI markets.

Interestingly, the period t = 11 corresponds to the starting date of 08/03/2009, the day after

the FTSE 100 index closed at a historical six-year 3,700 points lower mark, during the financial

crisis. That day later proved to be the turning point for a steady market uphill recovery that

still endures to this day. For FTSE, the SMS/mHDM variant achieved the highest long-run re-

turns, whereas for the DJI and HSI markets, the ASMS/mHDM investment decisions performed

better. Those results suggest that, although expected wealth was not directly optimized for,

implementing flexible decisions may not necessarily conflict with wealth maximization and can

actually help the DM on achieving higher returns. This result is consistent with the account of

Benjaafar et al. [25] discussed in chapter 1, Sec. 1.2.5.

7.3.6 Average Predicted Future Hypv Along the Evolved SPFs

Figures 7.26–7.35 show the predicted future Hypv values, averaged across all decision periods,

distributed over the evolved mutually Pareto-incomparable portfolios, from which the patterns

of choice of the mHDM variant can be inferred – i.e., higher predicted future Hypv portfolios

tended to be more frequently chosen. For some PO instances such as the DJI market, the same

tendency observed for the confidence distribution in Fig. 7.5 is present for the predicted Hypv

on DJI (Fig. 7.34): when K = 0, the portfolios predicted to yield maximal future Hypv tended

to be associated with higher return/risk, whereas the trend was reversed for K > 1. Thus, in

that case, the myopic SMS/mHDM (K = 0) tended to produce more risky portfolio sequences,

whereas ASMS/mHDM (K > 0) tended to choose flexible portfolios with less expected risk.

This behavioral shift may be associated with the improved predictability of the less risky

portfolios (comparing K > 0 to K = 0), as captured by the confidence patterns in Fig. 7.5,

but, in the general case, this can not be inferred from every other instance, as in the case of

the FTSE and the HSI markets, where the highest predicted future expected Hypv portfolios

were associated with lesser predictive confidence. We regard the association between higher

predicted future Hypv and higher estimated predictability, where it exist, as evidence that

the ASMS/mHDM variant may indeed generate anticipatory trajectories of safer and flexible

investment decisions, as intended in OAL, and as exemplified in Fig. 5.5, although there seems

to exist an inherent conflict between maximal future Hypv sets and predictive confidence for
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some PO instances, include the assessed real-world markets.

Finally, it is worth emphasizing that there has been at least one value of K > 0 for which

ASMS/mHDM has outperformed the baseline SMS-EMOA/RDM in terms of Ŝt+1, for the whole

test suite, as supported by the boxplots results of Fig. 7.15. Considering all 30 settings from the

combination of K ∈ {1, 2, 3} with the 10 PO instances, we point out that ASMS/mHDM signif-

icantly outperformed SMS-EMOA/RDM in 26 out of the 30 (87%) cases. Thus, irrespective of

the dependency of the ASMS performance on the tracking parameters (i.e., K), the significantly

greater Ŝt+1 values achieved by ASMS/mHDM are indicative that the AS-MOO methodology

has attained the research main goal.

7.3.7 Effects of Using the Wrong Predictive Models

The last noteworthy observation from our experimental study regards the effects of using the

wrong predictive models for the most challenging artificial instance, namely, PO(2,1.0). That

instance corresponds to the fastest and highest disruptive investment environment, wherein the

joint return distribution parameters change in a completely random way (i.e., with maximum

severity) after each two consecutive periods of time.

Under those conditions, we study the effects of using the “worst” and the “best” possible

predictive models, considering the underlying linear dynamics assumption of the Kalman Filter

and the Dirichlet MAP estimation, on flexibility – i.e., on the observed out-of-sample average

expected future Hypv.

The “worst” predictive models for PO(2,1.0) are those resulting from setting the window size

parameter to K = 0 in SMS, which leads to the assumption of a static environment, yielding

the following constant predictive rule in both the decision and the objective space:

The next state is exactly equal to the current state estimation.

This is an obviously wrong assumption for an environment which is changing fast towards

completely unpredictable new states.

Conversely, the “best” predictive models for PO(2,1.0) – constrained to our Gauss-Markov

(see chapter 2, section 2.3.4) and linear dynamics (see chapter 6, section 6.1.1 and Eq. (6.28))

assumptions – are those resulting from setting the window size parameter to K = 1 (ASMS),

which leads to the assumption of a dynamic environment, (roughly) yielding the following

predictive rule in both the decision and the objective space:

The next state lies in the direction estimated from the difference between the previous

and the current state estimation.

This is clearly the best possible value for K among those tested (K ∈ {0, 1, 2, 3}), since it is

expected to correctly capture the direction of change, as measured by POCID in Eq (7.13),

in roughly 50% of the investiment periods. The reason is that, with K = 1, the implemented

predictive models in the decision and objective spaces are able to correct the captured trend in-

formation faster than the environment is actually changing (disruptions at every τ = 2 periods);

whereas the learned trend information will have a chance of being correct at roughly 50% of the

periods which immediately follows disruptive random changes in the joint return distribution.
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From Fig. 7.14 (c), we observe that the average POCID values for both types of decision

makers (random and max Hypv) were roughly 44.0%, for SMS (K = 0), and 50.5%, for ASMS

(with K = 1). Note that the result for K = 1 confirmed our prior expectations, whereas the

result for K = 0 reflects the specific proportion of periods in the artificial PO(2,1.0) instance

for which the joint return distribution has gone “up” and “down”, both in terms of expected

return and risk.

Moreover, from Fig. 7.15 (c), we observe that the average expected future Hypv values (Ŝt+1)

for both types of decision makers (random and max Hypv) were roughly 15.4, for SMS (K = 0),

and 16.0, for ASMS (with K = 1). Note also from that Figure that assuming the “right”

predictive model has lead ASMS to outperform SMS on Ŝt+1 with statistical significance, which

is confirmed by the significance of the window size factor in the ANOVA results in Table 7.3.3.

Finally, from Fig. 7.18 (d), we observe that the average expected wealth in the long-run after

25 portfolio rebalancing decisions, for each combination of decision makers (random and max

Hypv) and of the “wrong” and “right” predictive models were roughly (ordered from the worst

to the best results): $18, 000, for SMS/mHDM (K = 0); $20, 100, for SMS/RDM (K = 0);

$21, 000, for ASMS/RDM (with K = 1); and $23, 000, for ASMS/mHDM (with K = 1).

Thus, in terms of the average expected long-run investor wealth, we observe that the

worst result was obtained when maximizing flexibility under the “wrong” prediction models

(SMS/mHDM, K = 0). In fact, under the “wrong” assumption of a static environment for

P(2,1.0), selecting random portfolio rebalancing decisions from the evolved stochastic Pareto

Frontier (SMS/RDM, K = 0) has lead to significantly higher wealth, when compared to

SMS/mHDM (K = 0).

Remarkably, when the “right” prediction models were assumed (by setting K = 1), maximiz-

ing flexibility (ASMS/mHDM, with K = 1) has significantly outperformed all other decision-

making methods and prediction assumptions.

Therefore, we conclude from this discussion that:

1. Maximizing flexibility does not always lead to improved performance – and can actually

lead to decreased performance – in terms of the expected realized long-run accumulated

value which results from the trajectory of the implemented decisions. That negative result

was observed only for the most challenging artificial instance, PO(2,1.0), by purposefully

forcing the mHDM variant to use completely “wrong” prediction models; and

2. Conversely, by using the “right” prediction models, maximizing flexibility can lead to the

best performance in terms of the expected realized long-run accumulated value resulting

from the trajectory of flexible choices.

7.4 Concluding Remarks

The results of the proposed AS-MOO methodology application for portfolio selection in time-

varying and stochastic investment environments, considering both simulated and real-world

markets, showed that the proposed anticipatory algorithm was competent in obtaining sets

of mutually Pareto-incomparable solutions yielding significantly higher average hypervolume,
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when evaluated for out-of-sample future data, compared to the baseline algorithms (Fig. 7.15).

In addition, the following remarks are supported:

• Varying predictability levels were estimated for portfolios representing different portions

of the stochastic Pareto frontier, what enabled effective self-adaptation of the anticipation

rates encoding time preferences (Fig. 7.7–7.6);

• The window sizes that allowed for the best Bayesian tracking performance were consistent

with the different dynamical disruption patterns simulated for each benchmark scenario

(Fig. 7.14); and

• The flexible decisions predicted to lead to higher future Hypv were sometimes associated to

higher predictable portfolios (Figs. 7.7–7.6 and of Figs. 7.26–7.35), whose implementation

has lead to coherent Pareto-flexible sets (part (b) of Figs. 7.16–7.25) that were signifi-

cantly correlated with improvements in future Hypv (Table 7.3.3), although the inverse

association has also been observed for certain instances.

Therefore, the significantly greater sample average hypervolume obtained for out-of-sample

future test data by the anticipatory decision-making approach strongly suggest the proposed

AS-MOO methodology has attained the research main goal, in the context of the assessed

portfolio selection application, which is that of improving the future quality and the diversity

of choice of an investor who is unsure about his/her attitude to risky portfolios as well as about

his/her willingness for near-term returns.

The successful widespread application of the proposed Anticipatory Stochastic MOO (AS-

MOO) models and algorithms will require competent system identification and proper modeling

assumptions that may capture the dynamics of the problem under consideration. On the other

hand, this provides several research opportunities for improving the anticipatory EMOO models

and algorithms proposed in this thesis.

The next chapter presents concluding remarks, limitations of the research scope, as well as

suggestions for future works on flexible anticipatory multi-objective machine learning models

and algorithms for sequential MCDM under uncertainty.
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Figure 7.14: Boxplots of Prediction Of Change in Direction (POCID). In the legends, h stands
for mHDM and r for RDM within the notation (K, DM).
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(d) Predicted Hypv (K=3) in static mean PO

Figure 7.26: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for static mean
PO).
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(d) Predicted Hypv (K=3) in PO(2,0.5)

Figure 7.27: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(2,0.5)).
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(d) Predicted Hypv (K=3) in PO(2,1.0)

Figure 7.28: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(2,1.0)).
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(d) Predicted Hypv (K=3) in PO(4,0.5)

Figure 7.29: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(4,0.5)).
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(d) Predicted Hypv (K=3) in PO(4,1.0)

Figure 7.30: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(4,1.0)).
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(a) Predicted Hypv (K=0) in PO(8,0.5)
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(d) Predicted Hypv (K=3) in PO(8,0.5)

Figure 7.31: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(8,0.5)).
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(d) Predicted Hypv (K=3) in PO(8,1.0)

Figure 7.32: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for PO(8,1.0)).
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(a) Predicted Hypv (K=0) in FTSE
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(d) Predicted Hypv (K=3) in FTSE

Figure 7.33: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for FTSE-100).
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Figure 7.34: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for DJI).
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(a) Predicted Hypv (K=0) in HSI
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Figure 7.35: Bar plots showing the predicted future expected Hypv in ASMS/mHDM for the
obtained ordered Pareto-flexible sets, averaged over all periods and experiments (for HSI).
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Chapter 8
Conclusion

It is good to have an end to journey towards; but it is the journey that matters,

in the end.

– Ursula Kroeber Le Guin

The opposite of love is not hate, it’s indifference. The opposite of art is not

ugliness, it’s indifference. The opposite of faith is not heresy, it’s in-

difference. And the opposite of life is not death, it’s indifference.

– Elie Wiesel

This thesis has made the case for an anticipatory methodology to alleviate the need for

disclosing preferences when selecting a solution under multiple conflicting views from a set of

alternatives designed for operating in dynamic and noisy environments. Anticipating flexible

provisional options predicted to maximize future diversity of choice was then deemed as a

reasonable strategy to robustly postpone the Decision Maker (DM) preferences specification

under uncertainty, therefore contributing to the automation of sequential Multiple Criteria

Decision-Making (MCDM) processes.

Although a mix of ad-hoc techniques could be pursued for coping with both stochasticity

and non-stationarity, this thesis has argued for principled models that could alleviate the design

effort needed to put different techniques to operate together. A fundamental premise that

motivated this research approach is that predictive knowledge could be combined, under a

Bayesian framework, with the observations about past and current trade-off system states, so

that multi-objective metaheuristics could regularly operate under the influence of the future

expectation about the value of the candidate trade-off solutions.

That is to say, no additional ad-hoc operation would be needed for triggering anticipatory

behavior in metaheuristics. The thesis then argued that one principled way to incorporate

anticipation in metaheuristics is by updating the current value of a solution, i.e., its objective

vector evaluation, in a way it can reflect the expected trade-off consequences of its actuation

when deployed in future environments. In this way, we believe that many problems of real-world

relevance can be more realistically tackled if modeled as anticipatory stochastic multi-objective

ones.

187
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To the best of our knowledge, this thesis was the first to investigate models for simultane-

ously handling the optimization of multiple conflicting, time-varying, cost-adjusted, and noisy

objective functions. The resulting anticipatory problem solving tools were thus designed for (a)

approximating flexible stochastic Pareto frontiers over time; (b) anticipating changes in multiple

noisy objective functions; and (c) adjusting for costs in time-linkage settings.

From a technical standpoint, the thesis proposed the association of the online maximization

of a theoretically sound set-based quality indicator in Multi-Objective Optimization (MOO) –

the Hypervolume (Hypv) – with the decision-theoretic notions of preference for (a) flexibility;

(b) for long-term predictability; and (c) for trajectories of minimal historical predictive error.

It was then postulated that implementing solutions predicted to maximize the expected Hypv

of future Pareto sets could be used as a strategy for postponing preference specification, thus

automating the resolution of conflicts.

The premise was that, if preferences cannot be reliably determined in such uncertain envi-

ronments, the DM would prefer implementing flexible solutions (i) predicted to keep his/her set

of future options open; (ii) whose future consequences attain higher degrees of predictability;

and (iii) whose historical observed consequences were similar to prior expectations.

This scenario motivated the design of online anticipatory learning methods to self-adjust time

preferences in terms of the perceived temporal uncertainty. Because there are no proposals in

Evolutionary MOO (EMOO) meeting the posed problem requirements, an existing Hypv-based

EMOO algorithm (SMS-EMOA [32]) was extended and adapted to our methodology. Moreover,

a portfolio selection random instance generator was designed for providing controllable scenarios

to experimentally verify our anticipatory methodology in a problem of real-world relevance.

The main experimental study reported in this thesis in chapter 7, with the proposed Antici-

patory S-Metric Selection Evolutionary Multi-Objective Algorithm (ASMS-EMOA), has shown

that, by performing Bayesian tracking in both the objective and the search spaces under lin-

ear dynamics assumptions, flexible portfolio rebalancing decisions leading to improved future

quality and diversity of trade-off investment choices could be effectively anticipated in all tested

artificial and real-world scenarios.

Given our preliminary yet successful experience with the application of our anticipatory

methodology for the portfolio selection application, we hope that our proposals in ASMS-EMOA

for handling noisy and time-varying environments will encourage other instantiations of algo-

rithms and learning methods capable of dealing with AS-MOO problems. It is clear for us

that the AS-MOO formulation is general enough to incorporate different estimation and pre-

diction models, besides other principled rules to integrate additional predictive knowledge into

EMOO metaheuristics. Provided that one can adequately fit manageable dynamical models

(e.g. Bayesian ones), even if considering non-parametric estimation procedures such as particle

filters (e.g. [75,198]), we believe AS-MOO can become a useful model for real-world multistage

stochastic multi-objective optimization problems.

In the next section, the main results and contributions of this thesis are summarized, whereas

a discussion on the limitations of the proposed models and problem solving tools, as well on

future research paths, are described in the final sections.
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8.1 Main Results and Contributions

The main original contributions of this thesis are thus enumerated as follows:

Contribution 1 An open-ended research question of how to make decisions when the DM

preferences cannot be reliably elicited has been proposed. Before this thesis, most works

in the literature have taken a different path, trying instead to address the question of how

the DM preferences could be approximated or partially represented despite inaccuracies

in the elicitation process e.g. [21]. Therefore, to the best of our knowledge, we can say

that this thesis provides the first attempt to mitigate the need for eliciting preferences

without compromising the range and quality of future decision paths. In other words,

our proposals provide the means of acting robustly under missing preferences in uncertain

environments ;

Contribution 2 Decision-theoretic accounts of preference for flexibility [140] have been inte-

grated into Multiple Criteria Decision-Making (MCDM). Although flexibility and freedom

of choice [169] are classical concepts in areas such as economics and social choice, it was

not clear before this thesis how they could be accommodated in MCDM approaches;

Contribution 3 A model for representing problems wherein multiple conflicting noisy opti-

mization criteria must be simultaneously improved over time has been proposed. This

was named the Anticipatory Stochastic MOO (AS-MOO) model;

Contribution 4 The AS-MOO model has been formulated in terms of a set-based quality indi-

cator known as Hypervolume. This indicator was not only shown to be consistent with the

notions of preference for flexibility and diversity of choice, but has also explicitly allowed

for a MOO model whose search space is the set of all finite subsets of the original feasible

search space. The AS-MOO model thus falls in the category of set-based MOO [227].

Moreover, it is a recurrence EMOO/MCDM model whose solution for the current decision

period depends on the solutions for future stages, what requires predictive approaches to

approximate AS-MOO solutions;

Contribution 5 Bayesian tracking has been integrated into both the objective and the search

spaces of the so-called ASMS-EMOA proposal. While an external predictive approach

could have been used to directly track stock prices in the portfolio selection application

(e.g. [89]), this thesis favored Rosen’s view of anticipatory systems [174] as those which

are provided with internal predictive models. More precisely, we provided ASMS-EMOA

with the ability of (a) independently tracking the cost-adjusted performance of individual

portfolios in the objective space with a Kalman Filter, and of (b) tracking the changes

in portfolio compositions for different portions of the stochastic Pareto frontier with a

dynamical Dirichlet distribution maximum a posteriori estimation procedure. By doing so,

ASMS-EMOA was able to intensify the search for more predictable portfolio compositions,

what would not be possible if tracking all assets prices over time at once;
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Contribution 6 The concept of Online Anticipatory Learning (OAL) has been devised to self-

adjust temporal preferences in response to the estimated uncertainty about the Pareto

dominance relations between current and predictive objective function distributions.

Besides the six aforementioned contributions, we can highlight other additional original

advancements that emerged from this thesis:

Advancement 1 Preliminary experiments in chapter 4 with a preemptive, non-anticipatory

approach were designed to assess whether the hypervolume indicator could accommo-

date regularization terms in order to evolve portfolios exhibiting desirable characteristics

in deterministic environments such as: improved diversification; lower cardinality; and

higher stability between investment rounds. The results were positive in this regard, and

the proposed regularized hypervolume selection algorithm (RSMS-EMOA) was able to

approximate deterministic Pareto frontiers in dynamic portfolio selection environments;

Advancement 2 A time-linkage free AS-MOO model was also conceived in chapter 5. In

Azevedo and Von Zuben [15], a version of ASMS-EMOA using only the Kalman Filter for

tracking objective vectors was designed. Preliminary experiments showed that anticipa-

tory learning can also be effective to handle the case where costs do not incur from past

choices over the changing objective functions [15];

Advancement 3 In chapter 7, a random instance generator was devised for multistage port-

folio selection. In Engle [80], artificial dynamical models representing changes in stock

prices were also investigated, although using more complicated non-linear forms. In this

thesis, we have focused on linear trends and abrupt changes in the joint asset return distri-

butions, what required the generation of random covariance matrices. To the best of our

knowledge, this is the first artificial test suite proposed in the literature that can support

the assessment of dynamic stochastic MOO algorithms;

Advancement 4 A dynamical Dirichlet distribution maximum a posteriori estimation proce-

dure was presented in chapter 6, for tracking mean vectors in a simplex search space,

adapted from Bertucelli and How [30]. We envision that this procedure can be useful for

other applications in machine learning, such as tracking changing social networks topic

models in text mining applications (e.g. [17]);

Advancement 5 One of the main innovations in the proposed ASMS-EMOA was an analytical

expression for the computation of the expected anticipatory hypervolume contributions of

each candidate solution, under the assumptions that the objective vectors can be modeled

as multivariate Gaussians. We consider this an important step for handling stochastic

multi-objective optimization in general with hypervolume-based methods by taking ad-

vantage of existing deterministic state-of-the art EMOO algorithms (SMS-EMOA [32]).

We recall that the pairwise covariance terms appearing in Theorem 6.3.1 merge trade-

off information between multiple neighboring anticipatory distributions in the objective

space. The expected anticipatory S-metric contribution thus allows for the mutual inter-

ference and exchange of trade-off information between parallel neighboring anticipatory

paths.
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For a list of all detailed minor contributions, see the summaries at the end of each chapter.

Despite the seemingly intractable quest of simultaneously coping with various sources of

uncertainty, our premise was that research on dynamic stochastic multi-objective models can

dramatically leverage the effective automation of real-world decision-making systems. Further-

more, we believe that valuable insights can be gained when coordinating different uncertainty

handling techniques to operate together, as it was the case with the experiments described in

chapter 7. Our hope is that this thesis may have contributed to those goals.

8.1.1 Final Philosophical Remarks

One thing that is noteworthy from the experimental results presented in chapter 7 is that,

while there exists a powerful theoretical framework – the Bayes theorem – to rationally update

prior probabilistic beliefs in face of new evidence in order to reason about the real world, there

is no such framework when it comes to decision-making. In other words, an autonomous agent

cannot simply regret and backtrack from decisions implemented in the past upon observing

negative rewards, unless he/she is willing to pay the resulting costs.

What is interesting when assessing the usefulness of the Bayesian approach to reason under

uncertainty, is that, when revising prior beliefs by processing contradictory evidence, there is

usually no cost involved, except perhaps that of acquiring more information. While data acqui-

sition may be very costly in certain contexts (e.g. in oil prospecting over international waters),

the use of Bayesian computational methods to approximately update the existing predictive

models upon the receival of new data is virtually cost-free1. On the other hand, when revising

previously taken decisions and plans in execution, there are usually high costs involved, as it is

the case with the portfolio selection domain.

Therefore, since decision makers cannot always completely change past decisions, and based

on the experimental findings of chapter 7, it may be reasonable to state that, under severe

uncertainty, it might not be enough to rely on Bayes rule to search for the next “optimal”

action. This thesis thus made the case that a wiser decision maker would be better off in highly

uncertain environments by taking advantage of his/her prior beliefs and of available predictive

knowledge for effectively anticipating flexible choices, hence keeping open his/her future set

of options. In this way, each evolved multiple plan and learned anticipatory trajectory in the

proposed ASMS-EMOA can be interpreted both (1) as a hedge against future failure; and (2)

as an attempt of augmenting the autonomous capabilities of metaheuristics.

8.2 Limitations of the Anticipatory Methodology

Despite the promising results obtained with the proposed anticipatory methodology in terms

of uncertainty handling in EMOO/MCDM by improving the DM future diversity of choice, the

successful widespread application of the AS-MOO models and algorithms will require competent

system identification and proper modeling assumptions that may capture the dynamics of the

problem under consideration. Thus, the problem solving tools devised in this thesis are most

1Exact Bayesian inference has nevertheless exponential computational cost.
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appropriate for problems where e.g. the linear Gauss-Markov assumption may be a good fit for

tracking dynamic random objective vectors in the performance space of an EMOO algorithm.

Besides, the current version of ASMS-EMOA is only applicable for problems whose search

space is defined over the (d− 1)–Simplex, where d is the number of search variables, although

many real-world applications require optimization over the simplex (see chapter 1).

As far as the computational cost of the proposed tools goes (bilinear complexity in terms

of the number of Pareto-efficient solutions and of the anticipation horizon), we consider it

to be manageable when compared to the exponential complexity that would be required for

obtaining near-optimal solutions to the AS-MOO model. In fact, a typical run of ASMS-EMOA

(which was compiled to native Microsoft Windows code from the C++ language) for the most

demanding dataset (FTSE with 87 available assets, executed with a population size of 20 Pareto-

efficient portfolios, a window size of K = 3, an anticipation horizon of H = 2, and using the

hypervolume-based decision-maker) – using only one processor of an Intel i7 machine running at

3.5 GHz – required about 3 hours of total non-dedicated processing time in a Microsoft Windows

8 operational system, for the whole number of 24 investment environments. On average, that

means about 7.5 minutes per period were required to evolve an anticipatory approximation to

the stochastic Pareto frontier and to identify the maximal flexible investment choice. Naturally,

we believe that more efficient implementations and more cleaver usage of algorithms and data

structures could substantially reduce this running time.

On the other hand, such narrow scope and coding limitations provides several research

opportunities for improving the anticipatory EMOO models and algorithms proposed in this

thesis and to extend them for other application scenarios cases.

8.3 Suggestions of Further Research on AS-MOO Solvers

The proposed ASMS-EMOA can be extended in a straightforward way for handling more than

two optimization criteria. The drawback of doing so is the increased computational cost to com-

pute the covariances between pairs of objective function evaluations required for approximating

the expected hypervolume contribution of each candidate solution (see chapter 6). Besides,

additional techniques would be required to handling the loss of selection pressure, as the proba-

bility of two arbitrary candidate solutions being mutually non-dominated approaches one with

the increase in the number of objectives to be optimized. Moreover, novel anticipatory learning

rules to incorporate the estimated predictive uncertainty and past performance errors into the

values of the candidate solutions are definitely worth investigating. In the following, we discuss

the main envisioned research paths that could advance even further AS-MOO applications.

8.3.1 Anticipating Future Preferences

We recall from chapter 5 that there is no way envisioned in AS-MOO to compute in advance

the future Preferred Feasible Regions (PFRs), and the assumption in AS-MOO is that the

PFRs remain constant at future stages. We consider the pursuit of a dynamical behavioral

model for the future partial preferences specification of a DM as an interesting open research

question. Would the DM be better off by narrowing down his/her preferences when the outcomes
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resulting from the decisions taken are close to what he/she had been expecting? Conversely,

should the DM instead flexibilize his/her preferences upon surprising, unforeseen outcomes? It

is our opinion that an strategy for dynamically linking preferences specification with feedback

error from the utilized Bayesian tracking tools could be worth investigating for automating the

MCDM process and for using the anticipatory multi-objective capabilities of an AS-MOO solver

in order to cope with such uncertain outcomes.

The investigation of behavioral models that could explain how a DM would adjust the

PFR over time as a function of the observed past outcomes is therefore an interesting open

problem. Despite the absence of such a model, in the approximate AS-MOO solvers proposed

in this thesis, this challenge could be handled in the same way as in how the objective vectors

and trade-off solutions are predicted: by using Bayesian predictive models for tracking the

coefficients appearing in the linear equations describing the hyperplanes encoded in the proposed

PFR representations. If any trend regarding the DMs preferences evolution is captured (e.g.

progressively narrowing preferences down towards specific directions), this information could be

in principle captured for enabling the AS-MOO solver to obtain approximate ε-feasible maximal

flexible choices w.r.t. the predicted future PFRs.

8.3.2 Regret Bounds for Online Hypervolume Maximization

The AS-MOO model can be interpreted under a more general MOO framework of online hyper-

volume maximization. Let then f1, · · · , fT be a sequence of vector-valued objective functions,

where ft = (f
(t)
1 · · · f

(t)
m )ᵀ. For any candidate set of µ mutually non-dominated solutions at time

t, Uµ
t =

{
u

(1)
t , · · · ,u(µ)

t

}
, the associated hypervolume value is S(Uµ

t ). A general online MOO

hypervolume maximization framework can be described as:

1. For each t = 1, 2, · · · , do

(a) Choose a set of µ mutually non-dominated solutions, Ûµ
t ∈ Ωµ

(b) Receive m objective-functions ft : Ω 7→ Rm

(c) Observe the hypervolume St(Ûµ
t )

Given a fixed learning rate η, by using recently derived analytical expressions for the gradient

of the hypervolume in Emmerich et al. [79], one could update the candidate trade-off set using

a stochastic gradient rule:

Ûµ
t+1 = Uµ

t−1 − η∇St(U
µ
t ). (8.1)

The regret term is then defined as the difference between the optimal hypervolume value that

would be obtained for the best fixed set of mutually non-dominated solutions for all decision

periods and the sequence output by such online stochastic gradient update rule:

RegretT

({
Ûµ

1 , · · · , Û
µ
T

})
= max

Uµ⊂Ω

T∑
t=1

St(Uµ)−
T∑
t=1

St(Ûµ
t ). (8.2)

Although the stochastic gradient online rule is a myopic approach, the theoretical study

of the attainable regret bounds could dramatically advance the incipient field of online multi-

objective optimization. While an anticipatory learning approach would be in principle even
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harder to analyze from a theoretical perspective, the experimental observed regret would still

be worth investigating. The main difficulty for a regret analysis is the fact that the hypervolume

maximization leads to a non-convex optimization problem (see chapter 3). Nevertheless, pro-

vided that all objective functions are convex, there are convex reduction procedures that could

be in principle applicable for approximating the optimal hypervolume locally, with convergence

guarantees. We are currently studying such issues in order to advance research on anticipatory

online multi-objective optimization.

8.3.3 Anticipatory Anomaly Prevention

With the proposed flexible anticipatory MCDM framework, it is possible to estimate the proba-

bility of any current available trade-off option becoming unavailable (i.e., becoming non-essential

or dominated) at future decision stages. This information could be used to trigger recommended

anticipatory actions for a human decision-maker to remove, at his/her own will, such options

in an interactive MCDM framework. Therefore, applications of multiple criteria anomaly de-

tection in data streams could benefit from the proposed AS-MOO methodology when there are

multiple conflicting views for describing what is an anomalous pattern in applications such as

communication networks quality of service monitoring and fraud detection.

8.3.4 Anticipatory Resource Allocation

Moreover, many engineering problems arising in diverse areas can be modeled as a resource

allocation problem and described in terms of an anticipatory stochastic dynamic multi-objective

optimization problem in simplex spaces. Examples include load balancing in complex network

and cloud computing environments and vendor-managed inventory routing problems.

In addition, machine learning model building applications that include training multiple

classifiers/predictors in an ensemble could also benefit from the AS-MOO methodology applied

in simplex spaces. One simple way to combine conflicting classifiers and predictors outputs is

to combine such outputs as a convex combination.

8.3.5 Anticipatory Hyper-Heuristics

The ASMS-EMOA algorithm operating over simplex spaces can also be straightforwardly turned

into a hyper-heuristic for allocating (or investing) computational resources to different heuris-

tics/algorithms operating jointly to solve any given search/decision-making problem by e.g.

simultaneously minimizing the expected variance (risk) and maximizing the expected average

trade-off heuristic quality. Thus, we foresee that the AS-MOO methodology could allow for

a general artificial intelligence cognitive framework, supported by flexible anticipatory multi-

objective hyper-heuristics for autonomously generating and investing computational resources

in evolved flexible heuristics for changing and noisy environments.
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8.3.6 Automation of Flexible and Sustainable Planning Systems

The term “Sustainable development” has been defined by the World Commission on Environ-

ment and Development as

(...) “development that meets the needs of the present without compromising the

ability of future generations to meet their own needs.”

The main topic of inquiry envisioned in this thesis for the continuty of research on the

automation of sequencial MCDM processes regards the study of the observed trade-offs which

may emerge from the simulation of multiple conflicting planning meta-preferences, namely,

preference for flexibility and preference for sustainability. This investigation is under way.

For instance, research on the automation of flexible production/distribution supply chains

has been gaining relevance as consumer market demands shift rapidly and unpredictably in re-

sponse to increasing pressures toward (a) fine-grained mass customization; and (b) accelerated

distribution of products and services. Nevertheless, the social, environmental, and economical

long-term costs of flexibilizing production/distribution plans – by means of industrial automa-

tion – have also been leading to increasing sustainability concerns. The rising real-world tension

between flexibility and sustainability can be therefore pointed out as a fundamental motivator

for the continuity of the research conveyed in this thesis.

Starting from a supply chain of Np producer and Nc consumer nodes, a feasible future

research goal promoted in this thesis is to foster open-ended studies and investigations related

to the following sequence of four interdisciplinary and partially unexplored research questions:

1. How can preference for flexibility and preference for sustainability be axiomatically de-

fined?

2. How to measure the flexibility and sustainability levels of a given sequence of produc-

tion/distribution decision outcomes as a function of the realized demand?

3. How to design novel theoretically sound AS-MOO models and algorithms leading to

improved flexibility and sustainability levels in complex production/distribution supply

chains under uncertainty?

4. To what extent sustainability maximization regulates flexibility maximization (and vice-

versa)?

Assuming from question (4) that causality between sustainability maximization and flexi-

bility maximization can be established with statistical significance, investigations related to the

following additional long-term research question can be addressed:

5. Is it possible in principle to find a control law that outputs flexibility and sustainability

levels leading to the (not necessarily monotonic) minimization of the distance to a reference

well-balanced joint wealth allocation over Np producers and Nc consumers?

Complex supply chains must cope with the underlying uncertainty about future decision

outcomes in environments subject to statistical fluctuations and time-varying conditions. The
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promotion of flexibility in such systems can be thus intuitively justified as an adaptive response,

on the production side, to unpredicability. Sustainability can be, by its turn, justified as a

planned response, on the consumer end, to the costs of the accelerated flexibilization of produc-

tion/distribution.

On the other hand, whenever the predicability levels of future consumer demands are rea-

sonable, i.e., when sound logical judgments can be performed in spite of eventual innacuracies,

reasoning over multiple conflicting choice future consequences can provide valuable guidelines

for not only (a) resolving the underlying conflicts between flexible and sustainable planning, but

also for (b) reducing the mismatch between production/distribution and consumer goals.

8.3.7 Sustainable Planning: Models, Measurements, and Concepts

Specific interpretations of sustainability accounts it as a planning approach to “(...) integrate

economic, environmental, social and increasingly institutional issues as well as to consider their

interdependencies” [94]. Moreover, the following main aspects of planning approaches that

promote sustainability were identified in Gasparatos et al. [94]:

1. The consideration of future consequences of present actions;

2. The acknowledgment of uncertainties concerning choice future consequences, acting ac-

cordingly to a precautionary strategy;

3. The engagement of the public; and

4. The integration of equity considerations, of both “intragenerational and intergenerational”

nature.

In Hutchins and Sutherland [122], social sustainability decision criteria were suggested. This

thesis envisions that such indicators can be integrated within mathematical multi-objective

optimization models supporting automated planning decisions from input historical data. We

also believe that controlling for faulty processes and machinery failures can be key to optimize

such criteria. Three such indicators are [122]: (a) reduction of the number of personal work

accidents; (b) reduction of the number of disease incidence on workers; and (c) and number of

days of workers absence do to injuries.

The trade-offs between decision criteria regarding the social sustainability and economical

performance in Supply Chain Network Design (SCND) have been experimentally by e.g. the

recent work of Devika el a. [73]. The impact of planning for maximizing the number of future

potential jobs expected to be created by candidate SCN designs on profit was then investigated

using Monte Carlo simulation of the demand and bio-inspired meta-heuristics for optimizing

such designs.

A many-objective stochastic optimization model promoting the sustainable planning of long-

term investments on a water distribution system portfolio in the region of Grande Valley, Texas,

has been experimentally assessed in Kasprzyk et al. [130]. In that work, Monte Carlo simulation

was used along with 33-years historical data on water demand for predicting the future long-term

drought risks of candidate investment allocations for a 10-years ahead planning. The trade-offs
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between drought risks reduction and other conflicting objectives such as costs reduction could

be visualized, what greatly aided the investment choice processes of human decision-makers.

Environmental sustainability has been also recently addressed within a multi-objective linear

programing study in Soysal et al. [196] in the context of food logistics (distribution) networks

using historical data and the estimated CO2 emission per distance unit traveled by several truck

fleet options. In addition, several estimated toxic residuals resulting from different types of food

processes production were set to be minimized. Profit and costs criteria were shown to be in

conflict with both CO2 emission and toxic residuals reducement.

Finally, we highlight interesting observations in Buchholz et al. [42], wherein 35 candidate

subjective sustainability criteria for planning both (a) bioenergy distribution networks; and (b)

bioenergy investments were evaluated by 137 experts:

• “Only two criteria, energy balance and greenhouse gas balance, were perceived as critical

by more than half of the respondents”;

• “Seven of the 12 criteria scored as most important focused on environmental issues, four

were social and only one was economic”;

• “The spatial scale the experts worked at and their profession explained most of the dif-

ferences in importance ranking between experts, while regional focus had minimal effect”;

and

• “Criteria that were ranked low for importance, were characterized by a lack of consensus,

suggesting the need for further debate regarding their inclusion in sustainability assess-

ments”.

From those observations, the lack of consensus is striking because, even in a relatively well-

defined niche area in which sustainable considerations are pervasive, several psychological factors

arising from the respondents positions, levels of expertise, and professions may deeply influence

their perspectives and set of preferences toward defining a very much pursued sustainable agenda

for bioenergy production and distribution systems.

The main conclusion of Buchholz et al. [42] is this: “The selection of these criteria can vary

depending on individual’s expertise, geographical region where they work, and spatial scale they

are focused on.”

It is then clear that, despite incipient efforts to define domain-specific sustainable defini-

tions and measurements, a higher-level axiomatic account of preference for sustainability can

greatly contribute to more sound optimization models and algorithms promoting the sustainable

automation of flexible multi-criteria planning systems.
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Benjamin Franklin’s Multiple Criteria Decision-Making Method

To Joseph Priestley

London, September 19, 1772

Dear Sir,

In the Affair of so much Importance to you, wherein you ask my Advice, I cannot for want

of sufficient Premises, advise you what to determine, but if you please I will tell you how.

When these difficult Cases occur, they are difficult chiefly because while we have them under

Consideration all the Reasons pro and con are not present to the Mind at the same time; but

sometimes one Set present themselves, and at other times another, the first being out of Sight.

Hence the various Purposes or Inclinations that alternately prevail, and the Uncertainty that

perplexes us.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into two Columns,

writing over the one Pro, and over the other Con. Then during three or four Days Consideration

I put down under the different Heads short Hints of the different Motives that at different Times

occur to me for or against the Measure. When I have thus got them all together in one View,

I endeavour to estimate their respective Weights; and where I find two, one on each side, that

seem equal, I strike them both out: If I find a Reason pro equal to some two Reasons con, I

strike out the three. If I judge some two Reasons con equal to some three Reasons pro, I strike

out the five; and thus proceeding I find at length where the Ballance lies; and if after a Day or

two of farther Consideration nothing new that is of Importance occurs on either side, I come to

a Determination accordingly.

And tho’ the Weight of Reasons cannot be taken with the Precision of Algebraic Quanti-

ties, yet when each is thus considered separately and comparatively, and the whole lies before

me, I think I can judge better, and am less likely to take a rash Step; and in fact I have found

great Advantage from this kind of Equation, in what may be called Moral or Prudential Algebra.

Wishing sincerely that you may determine for the best, I am ever, my dear Friend,

Yours most affectionately,

B. Franklin [143]
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