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Abstract

This paper explores basic aspects of the immune system
and proposes a novel immune network model with the
main goals of clustering and filtering unlabeled
numerical data sets. It is not our concern to reproduce
with confidence any immune phenomenon, but to show
that immune concepts can be used to develop powerful
computational tools for data processing. As important
results of our model, the network evolved will be capable
of reducing redundancy, describing data structure,
including the shape of the clusters. The network will be
implemented in association with a statistical inference
technique, and its performance will be illustrated using
two benchmark problems. The paper is concluded with a
trade-off between the proposed network and artificial
neural networks used to perform unsupervised learning.

1. Introduction

The vertebrate immune system has several useful
mechanisms from the viewpoint of information
processing. Among the many immunological models, we
can stress the immune network theory [6] and the clonal
selection and affinity maturation algorithms [1,2]. In this
work, we will briefly review these theories and show that
many of their concepts and ideas can be used to develop
an artificial network structure capable of solving similar
pattern recognition tasks as the natural immune system.
This paper formally derives the network model, discusses
its applications and how to interpret the results. The link
between our model and artificial neural networks for
unsupervised learning is also discussed.

A network will be constructed to give answers to the
following questions: (1) Is there a great amount of
redundancy in the data and, if yes, how can we reduce it?
(2) Is there any group or subgroup intrinsic to the data?
(3) How many groups are there within the data set?
(4) What is the structure of these data (groups)? (5) How
can we generate decision rules to classify novel samples?

1.1 A Brief Description of the Immune System

To begin, we shall sketch a few aspects of the human
adaptive immune system. A number of concepts and
technical terms will be introduced to make the reader
familiar with the terminology. Master details about the
immune network theory and the clonal selection principle
will be given in dedicated sections. An interested reader
shall refer to Janeway Jr. & Travers [5] for an
introductory text in immunology and de Castro & Von
Zuben [3] for immunology under the AI perspective.

The immune system is a complex of cells, molecules
and organs with the primary role of limiting damage to
the host organism by pathogens (called antigens, Ag),
which elicit an immune response. One type of response is
the secretion of antibody molecules by B cells (or B-
lymphocytes). Antibodies (Ab) are Y-shaped receptor
molecules bound on the surface of a B cell with the
primary role of recognizing and binding, through a
complementary match, with an antigen.

The Ab recognizes a portion of the Ag called its
epitope. An idiotype is defined as the set of epitopes
displayed by the variable regions of a set of Ab, and an
idiotope is each single idiotypic epitope. While each B
cell is known to have a single type of Ab, thus being
called monospecific, an Ag typically has several different
types of epitopes, and can be recognized by several
different antibodies. The antibody portion responsible for
matching (recognizing) an antigen is called paratope, also
known as V-region, for variable region. It is variable
because it can alter its shape to achieve a better match
(complementarily) with a given antigen. The strength and
specificity of the Ag-Ab interaction is measured by the
affinity of their match. Figure 1 illustrates an Ag with its
many epitopes and an Ab with its paratope and idiotope.

In order to be protective, the immune system must
learn to distinguish between our own (self) cells and
malefic external (nonself) invaders. This process is called
self/nonself discrimination: those cells recognized as self
do not promote an immune response, while the
unrecognized ones provoke a reaction.
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Figure 1: B cell, Ag, Ab, epitopes, paratopes and idiotopes. (a)
Monospecific B cell with its receptor(Ab). (b) Antibody
combining site (V-region or paratope), and its idiotope.

2. Immune Network Theory

The immune network theory, as originally proposed by
Jerne [6], hypothesized a novel viewpoint of lymphocyte
activities, natural Ab production, pre-immune repertoire
selection, tolerance, self/nonself discrimination, memory
and the evolution of the immune system. The immune
system was formally defined as an enormous and complex
network of paratopes, that recognize sets of idiotopes, and
of idiotopes, that are recognized by sets of paratopes. The
relevant events in the immune system are not only the
molecules, but also their interactions. The immune cells
can respond either positively or negatively to the
recognition signal. A positive response would result in
cell proliferation, activation and antibody secretion, while
a negative response would lead to tolerance and
suppression. Figure 2 depicts the immune network idea.

In the model proposed by Varela & Coutinho [12], we
can stress three characteristics of the immune networks:
1) its structure, that describes the types of interaction
among the network components, represented by matrices
of connectivity; 2) its dynamics, that accounts for the
variation in time of the concentrations and affinities of its
cells; and 3) its metadynamics, a property addressed to the
continuous production of novel antibodies and death of
non-stimulated or self-reactive cells. The central
characteristic of the immune network theory is the
definition of the individual’s molecular identity (internal
images), which emerges from a network organization
followed by the learning of the molecular composition of
the environment where the system develops.

The network approach is particularly interesting for the
development of computer tools because it potentially
provides a precise account of emergent properties such as
learning and memory, self-tolerance, size control and
diversity of cell populations. In general terms, the
structure of most network models can be represented as

RPV =
influx
of new
cells

−
death of

unstimulated
cells

+
reproduction
of stimulated

cells
(1)

where RPV is the rate of population variation, and the last
term includes Ab-Ab recognition and Ag-Ab stimulation.
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Figure 2: Idiotypic network representation. (a) An antigen
stimulates the Ab production of class 1, who stimulates class 2,
and so on (see [6] for description).

3. Clonal Selection and Maturation of
Immune Responses

When stimulated, a B cell proliferates and secretes its
receptor molecules as free Ab. Antibodies thus can either
be free or receptors attached to cells. Secretion requires
that B cells become activated, undergo proliferation
(cloning) and finally differentiate into plasma (large Ab
secretors) and memory cells (high affinity, long living
cells), as illustrated in Figure 3. A clone is a cell, or set of
cells, which are the progeny of a single cell. Those cells
that recognize antigens grow in concentration and affinity
(affinity maturation), while those that do not, die out, a
phenomenon usually addressed as the maturation of the
immune response (the immune learning mechanism). This
basic process of pattern recognition and selection is
known as clonal selection [2] and is similar to natural
selection, except that it occurs on a rapid time scale, on
the order of days, within our bodies (microevolution).

Repeatedly exposure to a given antigen considerably
enhances the effectiveness of the immune response
through the storage of high affinity memory cells from the
early infections. This scheme is similar to a reinforcement
learning strategy [11], where the system continuously
improves its capability to perform its task (in this case,
recognition of antigens).

The maturation of the immune response requires that
the Ab, in the matured response, be structurally different
from those present in the primary response. Random
changes (mutations) are introduced into the V-region
genes and occasionally one such change will lead to an
increase in the antibody affinity. It is these high-affinity
variants that are selected to enter the pool of memory
cells. Those cells with low affinity receptors, or the self-
reactive cells, must be efficiently eliminated (or become
anergic).

The selection mechanism provides a means by which
the regulation of the hypermutation process is made
dependent on receptor affinity. Cells with low affinity
receptors may be further mutated and eliminated if their
antigenic affinity remain small. In cells with high-affinity
receptors, hypermutation may be inactivated [8].
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Figure 3: Ag-Ab interactions. A minority of cells will recognize
the antigen, and be activated by clonal selection.

4. aiNet: An Evolutionary Artificial Immune
Network

Let a shape-space S be a multi-dimensional metric
space where each axis stands for a physico-chemical
measure characterizing a molecular shape [10]. We will
assume a set of unlabeled patterns X = {x1,x2,...,xNp},
where each pattern xi, i = 1,...Np, is described by p
variables, to characterize a molecular configuration as a
point s ∈ S. Hence, a point in Sp specifies the set of
features necessary to determine the Ab-Ab and Ag-Ab
interactions that can be  mathematically represented as a
p-dimensional vector. The possible interactions within the
system will be represented in the form of a connectivity
graph. Our network model can be formally defined as:
Definition 1: The proposed artificial immune network,

named aiNet, can be defined as an edge-weighted
graph, not necessarily fully connected, composed of a
set of nodes, called cells, and sets of node pairs called
edges. Each connected edge has a number assigned,
called weight or connection strength.
The aiNet is said to be evolutionary because evolution

strategies (based on genetic variation and selection within
a population of individuals) will be used to control the
network dynamics and plasticity. It is also connectionist,
once a matrix of connection strengths is defined to
measure affinities among the network cells.

The clusters in the network will serve as internal
images, responsible for mapping existing clusters in the
data set into network clusters. As an illustration, consider
the data set of Figure 4(a). A hypothetical network
structure, generated by the aiNet, is shown in Figure 4(b).
The cell labels and connection strengths are presented.
The dashed lines suggest connections to be pruned, in
order to detect clusters and define the final network
structure. Notice that the number of network cells is much
smaller than the number of data samples, characterizing
an architecture suitable for data compression. Note that
the network size is automatically defined.

Like the models proposed by Farmer et al. and Jerne
[4,6,7], we make no distinction between the B cell and the
Ab. The Ag-Ab affinity is measured by a distance metric
(dissimilarity) between them. Oppositely, the Ab-Ab
affinity is defined by a similarity metric between them.

As proposed in the original immune network theory
(Section 2), the existing cells will compete for antigenic
recognition and those successful will lead to network
activation and cell proliferation, clonal selection, (Section
3), while those who fail will be eliminated. In addition,
Ab-Ab recognition will result in network suppression. In
our model, suppression is performed by eliminating the
self-recognizing cells, given a suppression threshold σs.
Every pair Ag-Ab will relate to each other within the
shape-space S through the affinity dij of their interactions
(dissimilarity), which reflects the probability of starting a
clonal response. Similarly, an affinity sij will be assigned
to each pair Ab-Ab, reflecting their interactions
(similarity).

The following notation will be adopted:
X: data set composed of Np vectors (X ∈ ℜp);
C: matrix containing all the Nt network cells (C ∈ ℜNt×p);
M : matrix of the N memory cells, (M ⊆ C);
Nc: number of clones generated by each stimulated cell;
D: dissimilarity matrix with elements dij (Ag-Ab);
S: similarity matrix with elements sij (Ab-Ab);
n: n highest affinity cells selected to clone and mutate;
ζ: percentage of the matured cells to be selected; and
σd,s: natural death and suppression threshold, respectively.

The learning algorithm aims at building a memory set
that recognizes and represents the data structural
organization. The more specific the cells, the less
parsimonious the network (low compression rate), whilst
the more generalist the cells, the more parsimonious the
network with relation to the number of cells (improved
compression). The suppression threshold (σs) controls the
specificity level of the cells, the clustering accuracy and
network plasticity. As a suggestion, the user must first set
a small value for σs (e.g., σs ≤ 10−3) and continuously fine-
tune the network performance.
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Figure 4: aiNet illustration. (a) Data set with clusters of high
data density. (b) Network of labeled cells with weights assigned
to the links. Dashed lines indicate connections to be pruned to
generate disconnected sub-graphs (clusters).



The aiNet learning algorithm works as follows:
1. At each iteration step, do:

1.1 For each antigen i, do:
1.1.1 Determine its affinity, dij, to all the network

cells according to a distance metric;
1.1.2 Select the n highest affinity network cells;
1.1.3 Reproduce (clone) these n selected cells.

The higher the cell affinity, the larger Nc;
1.1.4 Apply Equation (2) to these Nc cells;
1.1.5 Determine D for these improved cells;
1.1.6 Re-select ζ% of the highest affinity cells

and create a partial M p memory cell matrix;
1.1.7 Eliminate those cells whose affinity is

inferior to threshold σd, yielding a reduction
in the size of the M p matrix;

1.1.8 Calculate the network Ab-Ab affinity, sij;
1.1.9 Eliminate sij < σs (clonal suppression);
1.1.10 Concatenate C and M p, (C ← [C;M p]);

1.2 Determine S, and eliminate those cells whose
sij < σs (network suppression);

1.3 Replace r% of the worst individuals;
2. Test the stopping criterion.

In steps 1.1.1, 1.1.5 and 1.1.8 we adopted the
Euclidean distance as a metric of similarity and
dissimilarity. Steps 1.1.1 to 1.1.7 describe the clonal
selection and affinity maturation processes. Steps 1.1.8 to
1.1.10 and 1.2 to 1.3 simulate the immune network
activity. The affinity of the cells with the given antigen i
can be improved by the following expression (directed
mutation):

)(. XCCC −−= , (2)

where, C is the matrix of network cells, X the matrix of
antigens and α is the learning rate, or mutation rate. The
α value is set according to the Ag-Ab affinity, the higher
the affinity the smaller the α. Equation (2) proposes a
biased search, where the Ag-Ab complementarity is
increased proportionally to α. By doing so, we guide our
search to locally optimize the network cells (greedy
search) in order to improve their antigenic recognition
capability along the iterations.

As can be seen from this algorithm, a clonal immune
response is elicited to each presented antigenic pattern.
Notice also the existence of two suppressive steps in this
algorithm (1.1.9 and 1.2): the clonal suppression is
responsible for eliminating intra-clonal self-recognizing
cells, while the network suppression searches for
similarities between different sets of network clones.
After the learning phase, the network cells represent
internal images of the antigens (or groups of antigens)
presented to it. As a complement to the general network
structure presented in Equation (1), our model suppresses
self-recognizing cells (steps 1.1.9 and 1.2).

The network outputs can be taken to be the matrix of
memory cells’ coordinates (M ) and the matrix of inter-
cell affinities (S). While matrix M  represents the network
internal images of groups of antigens, matrix S is
responsible for determining which cells are connected to
each other, describing the general network structure. To
achieve a problem specific network structure, we will
analyze the minimal spanning tree of the resulting net, to
be described in the next section.

To evaluate the network convergence we propose
several different criteria:
1. Stop iterating after a pre-defined number of steps (used

in all experiments performed).
2. Stop the iterative process when the network reaches a

pre-defined number of cells.
3. Evaluate the error between the antigens and M .
4. The network is supposed to have converged if its

average error rises after k consecutive iterations.

4.1 Knowledge Extraction and Structure of the
Trained aiNet

The network structure could simply be determined by
fully connecting all the network cells according to matrix
S, but it would make the network interpretation and
knowledge extraction difficult tasks, mainly for p > 3.
One way to alleviate the complexity of analysis and to
detect clusters is to suppress all those connections whose
strength extrapolates a pre-defined threshold. This idea,
though simple, will not be adopted here because it does
not account for any correlation within the network
(indirectly in the data set) and might lead to erroneous
interpretations. It is our main purpose here, to supply the
user with a formal and sophisticate network interpretation
strategy. Explicitly speaking, our goals are to determine
(1) the number of clusters, and (2) the network cells
belonging to each of the identified clusters, given insights
into the shapes of each cluster. To do so, we use the
network output, which is composed of matrix M  and the
upper triangular matrix D, along with a principle from
cluster analysis. The problem is stated as follows:

Given a network with N memory cells (M  ∈ ℜN×p) and
their interconnections (S), devise a clustering scheme to
detect inherent separations between clusters of M  in a
metric space governed by a distance measure d(x,y).

The minimal spanning tree (MST) of a graph is a
powerful mechanism to search for a locally adaptive
interconnecting strategy for the network cells [9,13], and
will serve as an aid to detect and describe the structure of
our network clusters.
Definition 2: A tree is a spanning tree of a graph if it is a

sub-graph containing all the vertices of the graph. A
minimal spanning tree of a graph is a spanning tree
with minimum weight, where the weight of a tree is
the sum of the weights of its constituent edges.



The visualization of the MST is only feasible for p ≤ 3,
but we can draw a bar graph representing the distances
between neighboring cells. Notice that the concept of
neighborhood makes sense only after the generation of the
MST. It is necessary to define a procedure for deleting
edges from an MST so that the resulting connected
subtrees correspond to the network clusters. The
following criterion is used:

An MST edge (i,j) whose weight sij is significantly
larger than the average of nearby edge weights on both
sides of the edge (i,j) should be deleted. This edge is
called inconsistent.

There are two natural ways to measure the significance
referred to. One is to see how many sample standard
deviations separate sij from the average edge weights on
each side. The other is to calculate the factor ( f ) or ratio
between sij and the respective averages [13].

5. aiNet Evaluation

In this section, we are going to apply the aiNet
algorithm to two artificial benchmark problems in order to
illustrate and discuss some characteristics of our model.

Figure 5(a) depicts the simple problem of classifying
50 samples in ℜ2 into five distinct classes, each of which
contains 10 samples. In Figure 5(b), we have the well-
known two-donut problem.

The parameters used for training each aiNet and the
results obtained are presented in Figures 6 and 7. SC is the
stopping criterion (fixed number of generations), f the
factor discussed in Section 4.1, N the final number of
cells, and the other parameters were studied in Section 4.

6. Discussion

In the first problem tested, the network produced a
66% compression rate and, in the second case, it could
reduce the data set size in 92.6%. In addition, a correct
classification was achieved in both cases, in the sense of
detecting the number and shapes of the clusters.

In our network, clonal selection controls the amount
and locations of the network cells (its dynamics and
metadynamics), and the minimal spanning tree is used to
define the final network structure. The learning algorithm
is generic, but the resultant networks are problem
dependent, i.e., the set of patterns (Ag) to be recognized
will guide the search for the net structure and shape of
cells. As its main drawbacks, we can mention its high
number of user-defined parameters, its computational cost
per iteration O(p3) with relation to the length p of the
input vectors, and the network sensitivity to the
suppression threshold (σs). Like most clustering neural
networks (e.g., the Kohonen SOM), the MST criterion
would have difficulties to determine the correct number of

network clusters in cases characterized by intersections
among the different clusters in the data set.

6.1 Artificial Neural Networks and aiNet

As final remarks, we can list the most striking similarities
and differences between neural networks and the
introduced aiNet model:
1. Differences:

Neural Networks
• Learning by altering connection strengths
• “Knowledge” stored in the connections
• Excitatory and inhibitory connections

aiNet
• Learning through the variation in concentration and

affinity of network cells
• “Recognition” performed by cell receptors
• Activation and suppressive interactions

2. Similarities:
• Great diversity and amount of highly specific cells;
• Noise tolerance, generalization capability, auto-

associative memory; and
• Sub-symbolic, parallel and distributed processing

based upon a competitive learning scheme.
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Figure 5: Test problems for the aiNet learning algorithm. (a) Five linearly separable classes. (b) Two-donut problem.
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Figure 6: Results for the five classes problem, Np = 50, ζ = 20%, σs = 0.1, SC = 10 gen. (a) Bar graph generated from the MST. (b)
Resultant network architecture (N = 17). The edges pruned by the MST are the dashed ones.
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Figure 7: Results for the two-donut problem Np = 50, ζ = 20%, σs = 0.1, SC = 10 gen. (a) Histogram generated from the MST. (b) MST
and resultant network architecture (N = 37).


