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Abstract

The initial weight vector to be used in supervised
learning for multilayer feedforward neural networks
has a strong influence in the learning speed and in
the quality of the solution obtained after
convergence. An inadequate initial choice may cause
the training process to get stuck in a poor local
minimum, or to face abnormal numerical problems.
In this paper, we propose a biologically inspired
method based on artificial immune systems. This
new strategy is applied to several benchmark and
real-world problems, and its performance is
compared to that produced by other approaches
already suggested in the literature.

1. Introduction

The importance of a proper choice for the initial set
of weights (weight vector) is stressed by Kolen and
Pollak [12]. They showed that it is not feasible to
perform a global search to obtain the optimal set of
weights. So, for practical purposes, the learning rule
should be based on optimization techniques that
employ local search to find the solution [19]. As an
important outcome of their procedure, there is the
fact that a local search process results in a solution
strongly related to the initial configuration of the
weight vector. It happens because each initial
condition belongs to the basis of attraction of a
particular local optimum in the weight space, to
which the solution will converge [8]. Consequently,
only a local optimum can be produced as the result
of a well-succeeded training process. If such a
solution happens to be the global or a good local
optimum, the result is a properly trained neural net-
work. Otherwise, an inferior result will be achieved,
so that the poorer the local optimum, the worse the
performance of the trained neural network.

This correlation between the initial set of weights
and the quality of the solution resembles the existing
correlation between the initial antibody repertoire
and the quality of the response of natural immune
systems, that can be seen as a complex pattern
recognition device with the main goal of protecting
our body from malefic external invaders, called
antigens. Antibodies are the primary immune
elements that bind to antigens for their posterior
destruction by other cells [9]. The number of
antibodies contained in our immune system is
known to be much inferior to the number of possible
antigens, making the diversity and individual
binding capability the most important properties to
be exhibited by the antibody repertoire. In this
paper, we present a simulated annealing approach,

called SAND (Simulated ANnealing for Diversity),
that aims at generating a dedicated set of weights
that best covers the weight space, to be searched in
order to minimize the error surface. The strategy
assumes no a priori knowledge about the problem,
except for the assumption that the error surface has
multiple local optima. In this case, a good sampling
exploration of the error surface is necessary to
improve the chance of finding a promising region to
search for the solution. The algorithm induces
diversity in a population by maximizing an energy
function that takes into account the inverse of the
affinity among the antibodies. The weights of the
neural network will be associated with antibodies in
a way to be further elucidated.

2. The Simulated Annealing Algorithm

The simulated annealing algorithm makes a
connection between statistical mechanics and
combinatorial optimization [7,10]. The origin of the
method is associated with aggregate properties of a
large number of atoms found in samples of liquids
or solid matters. The behavior of the system in
thermal equilibrium, at a given temperature, can be
characterized experimentally by small fluctuations
around the average behavior. Each atomic position
is weighted by a probability factor
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where E is the energy of the configuration, T the
temperature and ∆E a small deviation in the energy
measured. At each step of this algorithm, an atom is
given a small random displacement and the
resulting change, ∆E, in the energy of the system is
computed. If ∆E ≤ 0, the displacement is accepted,
and the configuration with the displaced atom is
used as the starting point of the next step. The case
∆E > 0 is treated probabilistically: the probability of
accepting the new configuration is given by
Equation (1).

The temperature is simply a control parameter in
the same unit as the cost (energy) function. The
simulated annealing process consists of first
“melting” the system being optimized at a high
effective temperature, then lowering the
temperature by slow stages until the system
“freezes” and no further change occurs (steps of
increasing temperature can also be incorporated). At
each temperature, the simulation must proceed long
enough for the system to reach a steady state.
Notice that, transitions out of a local optimum are
always possible at nonzero temperatures. The
sequence of temperatures and the size of the ∆E
variation are considered an annealing schedule.



3. An Immunological Approach

The immune system model used in this work is a
simplification of the biological one. Real-valued
vectors represent the antibodies (Ab). In our
problem, the antigen (Ag) population (training set)
will be disregarded, so the energy measure of the
population of antibodies (set of weights) will be
determined based solely on the individuals of the
population of antibodies. The binding Ag−Ab
represents a measure of complementarity between an
antigen and an antibody, an idea that can be adapted
to determine the complementarity among members
of the antibody repertoire. The goal is to maximize
the distance among antibodies (Ab−Ab), with the
purpose of reducing the amount of similarities
within the population.

An abstract model to describe Ag−Ab interactions
was introduced by Perelson & Oster [18]. In this
model, it is assumed that the features of an antibody
receptor (combining region) relevant to antigen
binding can be described by specifying a total of L
shape parameters. It is also assumed that the same L
parameters can be used to describe an antigen.
Combining these L parameters into a vector, the
antibody receptors and the antigen determinants can
be described as points Ab and Ag , respectively, in

an L-dimensional Euclidean vector space, called
shape-space S. Here we use Ag  (the complement of

Ag) because the affinity is directly proportional to
complementarity, and affinity will be associated
with the proximity of Ab to Ag . By defining a

metric on S, the proximity between Ab and Ag  is a

measure of their affinity. The antibodies and the
complement of the antigens were represented by a
set of real-valued coordinates. Thus, mathematically,
each molecule could be regarded as a point in an L-
dimensional real-valued space, and the affinity
Ag−Ab was related to the inverse of the Euclidean
distance between them.

Any given antibody is assumed to recognize some
set of antigens and therefore covers some portion of
the space.
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Figure 1: Within shape-space S, there is a volume V in
which the antibodies (•) and the complement of antigens
(x) are located. An antibody is assumed to be able to bind
any complement of antigen within a distance ε (region of
stimulation).

In the natural immune system, the binding Ag−Ab
might not be fully complementary for the
lymphocytes to become activated, since a partial
matching might suffice. It implies that, if no error
were allowed, the immune cells would become
activated only when a perfect match occurred.
Based on this argument, it is defined an acceptable
matching distance (ε), that determines the coverage
provided by the antibodies. Some authors called ε a
ball of stimulation [20], because it represents the
group of antigens that can stimulate the antibody
contained in its center. Figure 1 depicts the shape-
space model and the region of stimulation, where
the dots and crosses denote the location of
antibodies and the complement of antigens,
respectively. The circle of radius ε around one of
the antibodies shows its coverage. This is an
illustrative abstraction, once Ag-Ab recognition
happens through shape complementarity, instead of
similarity as in Ag -Ab recognition.

As we are dealing with real-valued vectors, the
inverse of the Euclidean distance can be used as the
measure of affinity between the molecules:
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where xi and xj represent independent vectors of
length L, ε is a small positive constant, and
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Assuming an Euclidean search-space, the energy
measure to be optimized can be simply defined as
the sum of the Euclidean distances among all
vectors that represent the antibody population
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A stopping criterion for the simulated annealing
algorithm, which takes into account the diversity
among the vectors, has to be defined. The approach
to be proposed here, among other possibilities,
involves the analysis of directional data.

Given the vectors xi, i = 1,..., N, it is initially
necessary to transform them into unit vectors,
resulting in a set { ix , i = 1,..., N} of unit vectors of

length L. The average directional vector is
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A metric to estimate the diversity, or equivalently
the uniformity, of the distribution of the unit vectors
in a hypersphere can be simply given by
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where || ⋅ || represents the Euclidean norm.



The stopping criterion (SC) is then based on the
index

)1(100 xI SC −×= . (7)

Equation (7) is the percentile norm of the resultant
vector x , and is equal to 100% when this norm is
zero. In practical terms, a value of ISC close to 100%
for the stopping criterion (SC) is a reasonable
choice, indicating a distribution close to uniform.

3.1. Neural Network Weights and Antibodies

Each antibody corresponds to a vector that contains
the weights of a given neuron in a layer of a
multilayer neural network. Thus, generating the
most diverse population of antibodies in ℜL

corresponds to producing a set of neurons with well-
distributed weight vectors. This way, the SAND
approach will have to be applied separately to each
layer of the network, as far as this layer contains
more than a single vector. Another important aspect
of the strategy is that, as we are generating vectors
with unitary norms, these vectors can be normalized
to force the activation of each neuron to occur near
to the linear part of the activation functions, in order
to avoid saturation.

4. Algorithms and Benchmarks

We compare the performance of SAND with four
other methods to generate the initial set of weights:
BOERS [2], WIDROW [16], KIM [11], OLS [13],
and INIT [4]. All the five methods are applied to
seven benchmark problems.

To specify the benchmark problems used, let N be
the number of samples, SSE the desired sum
squared-error (stopping criterion) and net the net
architecture represented by [ni-nh-no]. Where ni is the
number of inputs, nh is the number of hidden units
and no is the number of outputs of the network

The benchmarks used for comparison were:
• parity 2 (XOR): N = 4, net: [2-2-1], SSE = 0.01;
• parity 3: N = 8, net: [3-3-1], SSE = 0.01;
• sin(x).cos(2x): N = 25, net:[1-10-1], SSE = 0.01;
• ESP: real-world problem used by [1]; N = 75,

net: [3-10-5], SSE = 0.1;
• SOYA: another real-world problem used by [5],

N = 116, net: [36-10-1], SSE = 0.1;
• IRIS: this benchmark is part of the machine

learning database and is available in [15];
N = 150, net: [4-10-3], SSE = 0.15; and

• ENC/DEC: the family of encoder/decoder
problem is very popular and is described in [6].
N = 10, net: [10-7-10].

The training algorithm used in all cases was the
Moller scaled conjugate gradient [14], with the exact
calculation of the second order information [17].

For each method and each benchmark problem we
performed 10 runs. The results presented in Figure
2 correspond to the percentage of times each
method produced the best performance in terms of
maximum, minimum, mean and standard deviation
of the number of epochs necessary for convergence
to high quality solutions. This picture shows that
SAND, INIT and OLS are superior to the others
(BOERS, WIDROW, and KIM). If the name of a
method do not appear in the comparison, it is
because the approach does not converge given the
maximum number of epochs, or converges to a poor
local optimum. The advantage of SAND is that it
does not make use of the training data to estimate
the initial set of weights, like INIT and OLS.

5. Discussion

The proposed strategy (SAND) is inspired in the
diversity preserving characteristic of the immune
system. The SAND performance shows that
neurons with well-distributed weight vectors leads
to faster convergence rates. The necessity to re-
scale the weight vectors reinforces the theory
proposed by de Castro & Von Zuben [4]:
initializing the weights in the approximately linear
part of the neurons’ activation function reduces
numerical instabilities and results in improved
convergence rates.

The performance of the proposed algorithm leads to
two important conclusions concerning feedforward
neural network initialization:
• It is necessary to avoid an initial set of weights

that guides to the saturation of the neuron’s
response, what can be achieved by properly
setting the weights’ initial interval; and

• The generation of weight vectors mostly spread
over the search-space results in smaller training
times.

The method proposed also shows that there are still
many biological phenomena in which to search for
mechanisms and inspiration to solve computational
intelligence problems, like neural network
initialization, architecture optimization, learning,
among others.

It is also important to stress that the proposed
strategy does not take into account the training data,
preparing the initial set of weights to deal
appropriately with any input data, a process similar
to the definition of the initial antibody repertoire of
immune systems. In addition, the other approaches
that were competitive, OLS and INIT, require the
determination of inverse, or pseudo-inverse,
matrices, being subject to numerical instabilities in
cases the training samples contain linearly
dependent vectors, i.e., redundancy, what is usually
the case when training artificial neural networks.
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Figure 2: Performance comparison of the methods
(considering 10 runs of 7 benchmark problems). (a)
Percentage of times a method required the smallest
maximum number of epochs for convergence and had the
smallest standard deviation. (b) Percentage of times a
method needed the smallest number of epochs for
convergence. (c) Percentage of times a method presented
the smallest mean number of epochs for convergence.

Acknowledgements

Leandro Nunes de Castro would like to thank FAPESP
(Proc. n. 98/11333-9) and Fernando Von Zuben would like
to thank FAPESP (Proc. n. 98/09939-6) and CNPq (Proc.
n. 300910/96-7) for their financial support.

References

[1] Barreiros, J. A. L., Ribeiro, R. R. P., Affonso, C. M.
& Santos, E. P., “Estabilizador de Sistemas de
Potência Adaptativo com Pré-Programação de
Parâmetros e Rede Neural Artificial”, Third Latin-
American Congress: Eletricity generation and
transmission, pp.538-542, 1997.

[2] Boers, E. G. W. & Kuiper, H., “Biological
Metaphors and the Design of Modular Artificial
Neural Networks”, Master Thesis, Leiden
University, Leiden, Netherlands, 1992.

[3] de Castro, L. N., & Von Zuben, F. J., “Artificial
Immune Systems: Part I – Basic Theory and
Applications”, Tech. Report RT–DCA 01/99, 1999.

[4] de Castro, L. N. & Von Zuben F. J., “A Hybrid
Paradigm for Weight Initialization in Supervised
Feedforward Neural Network Learning”, Proc. of
the ICS'98, Workshop on Artificial Intelligence, pp.
30-37, Taipei/Taiwan, R.O.C., 1998.

[5] de Castro, L. N., Von Zuben, F. J. & Martins, W.,
“Hybrid and Constructive Neural Networks Applied
to a Prediction Problem in Agriculture”. Proc. of
the IJCNN’98, vol. 3, pp. 1932-1936, 1998.

[6] Fahlman, S. E., “An Empirical Study of Learning
Speed in Back-Propagation Networks”, Tech. Rep.,
CMU-CS-88-162, School of Computer Science,
Carnegie Mellon University, Pittsburg, PA, 1988.

[7] Haykin S., Neural Networks – A Comprehensive
Foundation, Prentice Hall, 2nd Ed, 1999.

[8] Hertz, J., Krogh, A. & Palmer, R.G., Introduction to
the Theory of Neural Computation. Addison-
Wesley Publishing Company, 1991.

[9] Janeway Jr., C. A. & P. Travers, Immunobiology
The Immune System in Health and Disease, Artes
Médicas (in Portuguese), 2nd Ed, 1997.

[10] Kirkpatrick, S., Gelatt Jr., C. D. & Vecchi, M. P.,
“Optimization by Simulated Annealing”, Science,
220(4598), 671-680, 1987.

[11] Kim, Y. K. & Ra, J. B., “Weight Value
Initialization for Improving Training Speed in the
Backpropagation Network”, Proc. of IJCNN’91,
vol. 3, pp. 2396-2401, 1991.

[12] Kolen, J. F. & Pollack, J. B., “Back Propagation is
Sensitive to Initial Conditions”, Technical Report
TR 90-JK-BPSIC, 1990.

[13] Lehtokangas, M., Saarinen, J., Kaski, K. &
Huuhtanen, P., “Initializing Weights of a Multilayer
Perceptron by Using the Orthogonal Least Squares
Algorithm”, Neural Computation, vol. 7, pp. 982-
999, 1995.

[14] Moller, M. F., “A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning”, Neural
Networks, vol. 6, pp. 525-533, 1993.

[15] ftp://ftp.ics.uci.edu/pub/machine-leraning-databases
[16] Nguyen, D. & Widrow, B., “Improving the

Learning Speed of two-layer Neural Networks by
Choosing Initial Values of the Adaptive Weights”,
Proc. IJCNN’90, vol. 3, pp. 21-26, 1990.

[17] Pearlmutter, B. A., “Fast Exact Calculation by the
Hessian”, Neurocom, vol. 6, pp. 147-160, 1994.

[18] Perelson, A. S. & Oster, G. F., “Theoretical Studies
of Clonal Selection: Minimal Antibody Repertoire
Size and Reliability of Self-Nonself
Discrimination”, J. theor. Biol., 81, 645-670, 1979.

[19] Shepherd, A. J., Second-Order Methods for Neural
Networks – Fast and Reliable Methods for Multi-
Layer Perceptrons, Springer, 1997.

[20] Smith, D. J., Forrest, S., Hightower, R. R. &
Perelson, S. A., “Deriving Shape Space Parameters
from Immunological Data”, J. theor. Biol., 189, pp.
141-150, 1997.


