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Abstract

The clonal selection algorithm is used by the
natural immune system to define the basic
features of an immune response to an antigenic
stimulus. It establishes the idea that only those
cells that recognize the antigens are selected to
proliferate. The selected cells are subject to an
affinity maturation process, which improves their
affinity to the selective antigens. In this paper,
we propose a powerful computational
implementation of the clonal selection principle
that explicitly takes into account the affinity
maturation of the immune response. The
algorithm is shown to be an evolutionary
strategy capable of solving complex machine-
learning tasks, like pattern recognition and multi-
modal optimization.

1 INTRODUCTION

Over the last few years, there has been an ever increasing
interest in the area of artificial immune systems (AIS) and
their applications. Among the many works in this new
field of research, we can detach those of Ishida (1996);
Hunt & Cook (1996); Dasgupta (1999) and Hofmeyr &
Forrest (1999). The AIS aim at using ideas gleaned from
immunology in order to develop systems capable of
performing different tasks in various areas of research.

In this work, we will review the clonal selection concept,
together with the affinity maturation process, and
demonstrate that these biological principles can lead to
the development of powerful computational tools. The
algorithm to be presented focus on a systemic view of the
immune system and does not take into account cell-cell
interactions. It is not our goal to model exactly any
phenomenon, but to show that some basic immune
principles can help us not only to better understand the
immune system itself, but also to solve complex
engineering tasks.

First, we are going to apply the clonal selection algorithm
to binary character recognition to verify its ability to
perform tasks such as learning and memory acquisition.
Then it will be shown that the same algorithm is suitable
for solving multi-modal and combinatorial optimization.
This work is concluded with a brief discussion relating
the proposed clonal selection algorithm with the well-
known genetic algorithms introduced by Holland (1995).

2 THE CLONAL SELECTION THEORY

When an animal is exposed to an antigen, some
subpopulation of its bone marrow derived cells (B
lymphocytes) respond by producing antibodies (Ab).
Each cell secretes only one kind of antibody, which is
relatively specific for the antigen. By binding to these
antibodies (receptors), and with a second signal from
accessory cells, such as the T-helper cell, the antigen
stimulates the B cell to proliferate (divide) and mature
into terminal (non-dividing) antibody secreting cells,
called plasma cells. The various cell divisions (mitosis)
generate a clone, i.e., a set of cells that are the progeny of
a single cell. While plasma cells are the most active
antibody secretors, large B lymphocytes, which divide
rapidly, also secrete Ab, albeit at a lower rate. While B
cells secrete Ab, T cells play a central role in the
regulation of the B cell response and are preeminent in
cell mediated immune responses.

Lymphocytes, in addition to proliferating and/or
differentiating into plasma cells, can differentiate into
long-lived B memory cells. Memory cells circulate
through the blood, lymph and tissues, and when exposed
to a second antigenic stimulus commence to differentiate
into large lymphocytes capable of producing high affinity
antibodies, pre-selected for the specific antigen that had
stimulated the primary response. Figure 1 depicts the
clonal selection principle.

The main features of the clonal selection theory, that will
be explored in this paper, are (Burnet, 1978):
• generation of new random genetic changes,

subsequently expressed as diverse antibody patterns
by a form of accelerated somatic mutation;



Proliferation

(Cloning)

Differentiation

Plasma cells

Memory cells

SelectionAntigens

M M

Figure 1: The clonal selection principle.

• phenotypic restriction and retention of one pattern to
one differentiated cell (clone);

• proliferation and differentiation on contact of cells
with antigens.

2.1 REINFORCEMENT LEARNING AND
MEMORY

Learning in the immune system involves raising the
population size and affinity of those lymphocytes that
have proven themselves to be valuable by having
recognized any antigen. While doing technology, it’s
one’s desire to solve any kind of problem using a minimal
amount of resources. Hence, we need the engineering
tools to seek high quality and parsimonious solutions. In
our model, we do not intend to maintain a large clone for
each candidate solution, but to keep the single best
individual. A clone will be temporarily created, according
to the clonal selection theory, and those progeny with low
affinity will be discarded.

In the normal course of the immune system evolution, an
organism would be expected to encounter a given antigen
repeatedly during its life time. The initial exposure to an
antigen that stimulates an adaptive immune response is
handled by a spectrum of small clones of B cells each
producing antibody of different affinity. The effectiveness
of the immune response to secondary encounters is
considerably enhanced by storing some high affinity
antibody producing cells from the first infection (memory
cells), so as to form a large initial improved clone for
subsequent encounters. Rather than ‘starting from scratch’
every time, such a strategy ensures that both the speed
and accuracy of the immune response becomes
successively greater after each infection. This scheme is
intrinsic of a reinforcement learning strategy (Sutton &

Barto, 1998), where the system is continuously improving
its capability to perform its task.

One important characteristic of the immune memory is
that it is associative: B cells adapted to a certain type of
antigen A1 presents a faster and more efficient secondary
response not only to A1, but also to any structurally
related antigen A2. This phenomenon is called
immunological cross-reaction, or cross-reactive response
(Smith et al., 1997). This kind of associative memory is
part of the process of vaccination and is called
generalization capability, or simply generalization, in
other artificial intelligence fields, like neural networks.

Some authors (Allen et al., 1987; Coutinho, 1989)
suggested that long-lived B memory cells are
disconnected, at least functionally, from the other cells.

2.2 SOMATIC HYPERMUTATION, RECEPTOR
EDITING AND REPERTOIRE DIVERSITY

In a T cell dependent immune response, the repertoire of
antigen-activated B cells is diversified basically by two
mechanisms: hypermutation and receptor editing
(Tonegawa, 1983; Berek & Ziegner, 1993; Nussenzweig,
1998; George & Gray, 1999).

Antibodies present in a memory response have, on
average, a higher affinity than those of the early primary
response. This phenomenon, which is restricted to T-cell
dependent responses, is referred to as the maturation of
the immune response. This maturation requires the
antigen-binding sites of the antibody molecules, in the
matured response, to be structurally different from those
present in the primary response.

Random changes are introduced into the genes
responsible for the Ag-Ab interactions and occasionally
one such change will lead to an increase in the affinity of
the antibody. It is these high-affinity variants which are
then selected to enter the pool of memory cells. Not only
the repertoire is diversified through a hypermutation
mechanism, but also mechanisms must exist such that rare
B cells with high affinity mutant receptors can be selected
to dominate the response. Those cells with low affinity
receptors must be efficiently eliminated, become anergic
or be edited, so that they do not significantly contribute to
the pool of memory cells (Berek & Ziegner, 1993;
Nussensweig, 1998; George & Gray, 1999).

Recent results suggest that the immune system practices
molecular selection of receptors in addition to clonal
selection of lymphocytes. Instead of the expected clonal
deletion of all self-reactive cells, occasionally B
lymphocytes were found that had undergone receptor
editing: these B cells had deleted their low affinity
receptors and developed entirely new ones through V(D)J
recombination (Nussenzweig, 1998).
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Figure 2: Schematic representation of shape-space for
antigen-binding sites. Somatic mutations guide to local
optima, while receptor editing introduce diversity, leading
to possibly better candidate receptors.

Receptor editing offers the ability to escape from local
optima on an affinity landscape. Figure 2 illustrates this
idea by considering all possible antigen-binding sites
depicted in the x-axis, with the most similar ones adjacent
to each other. The Ag-Ab affinity is shown on the y-axis.
If it is taken a particular antibody (A) selected during a
primary response, then point mutations allow the immune
system to explore local areas around A by making small
steps towards an antibody with higher affinity, leading to
a local optima (A1). Because mutations with lower
affinity are lost, the Ab can not go down the hill.
Receptor editing allows an antibody to take large steps
through the landscape, landing in a locale where the
affinity might be lower (B). However, occasionally the
leap will lead to an antibody on the side of a hill where
the climbing region is more promising (C), reaching the
global optimum. From this locale, point mutations can
drive the Ab to the top of the hill (C1). In conclusion,
point mutations are good for exploring local regions,
while editing may rescue immune responses stuck on
unsatisfactory local optima.

In addition to somatic hypermutation and receptor editing,
a fraction of newcomer cells from the bone marrow is
added to the lymphocyte pool in order to maintain the
diversity of the population. According to Jerne (1984),
from 5-8% of the least stimulated lymphocytes is replaced
per cell generation, joining the pool of available antigen
recognizing cells. This may yield the same result as the
process of receptor editing, i.e., a broader search for the
global optimum of the antigen-binding site.

2.3 THE REGULATION OF THE
HYPERMUTATION MECHANISM

A rapid accumulation of mutations is necessary for a fast
maturation of the immune response, but the majority of
the changes will lead to poorer or non-functional
antibodies. If a cell that has just picked up a useful
mutation continues to be mutated at the same rate during
the next immune responses, then the accumulation of
deleterious changes may cause the loss of the

advantageous mutation. The selection mechanism may
provide a means by which the regulation of the
hypermutation process is made dependent on receptor
affinity. Cells with low affinity receptors may be further
mutated and, as a rule, die if they do not become higher
affinity cells. In cells with high-affinity antibody
receptors however, hypermutation may be inactivated
(Berek & Ziegner, 1993).

3 AN EVOLUTIONARY SYSTEM

The clonal selection functioning of the immune system
can be interpreted as a remarkable microcosm of Charles
Darwin’s law of evolution, with the three major principles
of diversity, variation and natural selection (Cziko, 1995).

The two central processes involved in the production of
antibodies, genetic recombination and mutation, are the
same ones responsible for the biological evolution of
sexually reproducing species. In these species, the same
two processes are involved in providing the variations on
which natural selection can work to fit the organism to the
environment (Holland, 1995). As a consequence,
cumulative blind variation and natural selection, which
over many millions of years resulted in the emergence of
mammalian species, remain crucial in the day-by-day
ceaseless battle to survival of these species.

Whereas adaptive biological evolution proceeds by
cumulative natural selection among organisms, research
on the immune system has now provided the first clear
evidence that ontogenetic adaptive changes can be
achieved by cumulative blind variation and selection
within organisms. The clonal selection algorithm, to be
described further in the text, aims at demonstrating that
this cumulative blind variation can generate high quality
solutions to complex problems.

4 THE SHAPE-SPACE MODEL

The shape-space model (S) aims at quantitatively
describing the interactions among antigens and antibodies
(Ag-Ab). The set of features that characterize a molecule
is called its generalized shape. The Ag-Ab representation
(binary or real-valued) determines a distance measure to
be used to calculate the degree of interaction between
these molecules. Mathematically, the generalized shape of
a molecule (m), either an antibody or an antigen, can be
represented by a set of coordinates m = <m1, m2,..., mL>,
which can be regarded as a point in an L-dimensional
real-valued shape-space (m ∈ SL). Here, the precise
physical meaning of each parameter is not relevant. In this
work, we used binary (or integer) strings to represent the
molecules. Antigens and antibodies were considered of
the same length L. The length and cell representation
depends upon the problem.



5 THE PROPOSED ALGORITHM

After discussing the clonal selection principle and the
affinity maturation process, the development of the clonal
selection algorithm (CSA) is straightforward. The main
immune aspects taken into account were: maintenance of
the memory cells functionally disconnected from the
repertoire, selection and cloning of the most stimulated
cells, death of non-stimulated cells, affinity maturation
and re-selection of the clones with higher affinity,
generation and maintenance of diversity, hypermutation
proportional to the cell affinity.
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Figure 3: Block diagram of the clonal selection algorithm.

The algorithm works as in Figure 3 (after each six steps
we have one cell generation):

(1) Generate a set (P) of candidate solutions, composed
of the subset of memory cells (M) added to the
remaining (Pr) population (P = Pr + M);

(2) Determine (Select) the n best individuals of the
population (Pn), based on an affinity measure;

(3) Reproduce (Clone) these n best individuals of the
population, giving rise to a temporary population of
clones (C). The clone size is an increasing function
of the affinity with the antigen;

(4) Submit the population of clones to a hypermutation
scheme, where the hypermutation is proportional to
the affinity of the antibody with the antigen. A
maturated antibody population is generated (C*);

(5) Re-select the improved individuals from C* to
compose the memory set M. Some members of P can
be replaced by other improved members of C*;

(6) Replace d antibodies by novel ones (diversity
introduction). The lower affinity cells have higher
probabilities of being replaced.

6 ENGINEERING APPLICATIONS

To evaluate the clonal selection algorithm (CSA), we
considered three different problems:

1. a binary character recognition task will be used to test
its learning and memory acquisition capabilities;

2. a multi-modal optimization task; and
3. a 30 cities instance of the Travelling Salesman

Problem (TSP).

6.1 BINARY CHARACTER RECOGNITION

The learning and memory acquisition of the CSA is
verified through its application to a binary character
recognition problem. Our goal is to demonstrate that a
cumulative blind variation together with selection can
produce individuals with increasing affinities (maturation
of the immune response). In this case, we assume that the
antigen population is represented by a set of eight binary
characters to be learned. These characters are the same
ones originally proposed by Lippman (1987), in a
different context. Each character is represented by a
bitstring (Hamming shape-space, briefly discussed in
Section 4) of length L = 120. The antibody repertoire is
composed of 10 individuals, 8 of them in the memory set
M.

(a) Input patterns

(b) 0 generations

(c) 50 generations

(d) 100 generations



(e) 200 generations

Figure 4: (a) Patterns to be learned, or input patterns (antigens). (b) Initial memory set. (c) Memory set after 50 cell
generations. (d) Memory set after 100 cell generations. (e) Memory set after 200 cell generations.

The original characters (antigens) are depicted in Figure
4(a). Figure 4(b) illustrates the initial memory set, and
Figures 4(b) to 4(e) represent the maturation of the
memory set (immune response) through cell generations.
The affinity measure takes into account the Hamming
distance (D) between antigens and antibodies, according
to Equation (1):
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Notice that an exact matching is not necessary to obtain a
successful character recognition. A partial matching is
enough in most applications. The algorithm converged
after 250 cell generations.

6.2 MULTI-MODAL OPTIMIZATION

The CSA reproduces those individuals with higher
affinities and selects their improved maturated progenies.
This strategy suggests that the algorithm performs a
greedy search, where single members will be locally
optimized (exploitation of the surrounding space), and the
newcomers yield a broader exploration of the search-
space. This characteristic makes the CSA very suitable for
solving multi-modal optimization tasks and, as an
illustration, consider the case of maximizing the function
f(x,y) = x.sin(4πx)−y.sin(4πy+π)+1, depicted in Figure 5.
Notice that this function is composed of many local
optima and a single global optimum.

We employed the Hamming shape-space, with binary
strings representing real values for x and y. The chosen
bitstring length was L = 22, corresponding to a precision
of six decimal places. The variables x and y are defined
over the range [−1, 2], and the mapping from a binary
string m = <mL,..., m2, m1> into a real number z is
completed in two steps:

• convert the binary string m = <mL,..., m2, m1> from
base 2 to base 10:
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Figure 5: Function to be maximized by the CSA.

Figure 6: Optimized population after 100 cell generations.

• find the corresponding real value for z:
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zz
zzz , where zmax = 2 and

 zmin = −1.

The affinity measure corresponds to the evaluation of the
function f(x,y) after decoding x and y, as described above.
Figure 6 presents the optimized population after 100
generations. Notice that the solutions (stars) covers most
of the peaks, including the global optimum. The solution
can be directly extracted by means of a sorting procedure.



6.3 TRAVELLING SALESMAN PROBLEM (TSP)

Simply stated, the travelling salesman must visit every
city in his territory, exactly once, and then return to the
starting city. The question is: given the cost of travel
between all pairs of cities, which is the tour with the
smallest cost? In this work, the cost of the tour is basically
the length of the itinerary traveled by the salesman.

The TSP is a kind of combinatorial optimization problem
and arises in numerous applications, from VLSI circuit
design, to fast food delivery. In this case, the use of an
Integer shape-space might be appropriate, where integer-
valued vectors of length L, composed of permutations of
elements in the set C = {1,2,...,L}, represent the possible
tours. Each component of the integer vector indexes a
city. The total length of each tour gives the affinity
measure of the corresponding vector.

Figure 7 presents the best solution determined by the
CSA, which corresponds to the global optimum (Moscato
& Fontanari, 1990). The population size is 300
individuals, with a rate of 20% of newcomers. In this
case, low affinity individuals are allowed to be replaced
after each 20 generations. This scheduling is supposed to
leave a breathing time to allow the achievement of local
optima, followed by the replacement of the poorer
individuals.
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Figure 7: Best tour determined by the CSA after 300
generations.

7 CONCLUSIONS

In this paper, we proposed a general-purpose algorithm
inspired in the clonal selection principle and affinity
maturation of the immune response. The algorithm was
verified to be capable of performing learning and
maintenance of high quality memory and, it was also
capable of solving complex problems, like multi-modal
and combinatorial optimization.

The algorithm introduced constitutes a crude version of
the clonal selection principle. Many heuristics could be

inserted in order to improve its performance in solving
particular tasks, like the travelling salesman problem.

By comparing the proposed algorithm, called CSA, with
the standard genetic algorithm (GA), we can notice that
the CSA can reach a diverse set of local optima solutions,
while the GA tends to polarize the whole population of
individuals towards the best candidate solution.
Essentially, their coding schemes and evaluation
functions are not different, but their evolutionary search
processes differ from the viewpoint of inspiration,
vocabulary and sequence of steps. We do not advocate
that the CSA performs better than the GA, on average, in
all applications. Instead, we demonstrate that the
proposed algorithm is also derived from a biologically
inspired approach, which performs learning and multi-
modal search. Like the GA, the clonal selection algorithm
is highly parallel and presents a fine tractability in terms
of computational cost.
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