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The structure and function of complex networks

M. E. J. Newman
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Inspired by empirical studies of networked systems such as the Internet, social networks, and bio-
logical networks, researchers have in recent years developed a variety of techniques and models to
help us understand or predict the behavior of these systems. Here we review developments in this
field, including such concepts as the small-world effect, degree distributions, clustering, network
correlations, random graph models, models of network growth and preferential attachment, and
dynamical processes taking place on networks.
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2 The structure and function of complex networks

I. INTRODUCTION

A network is a set of items, which we will call vertices

or sometimes nodes, with connections between them,
called edges (Fig. 1). Systems taking the form of net-
works (also called “graphs” in much of the mathematical
literature) abound in the world. Examples include the In-
ternet, the World Wide Web, social networks of acquain-
tance or other connections between individuals, organi-
zational networks and networks of business relations be-
tween companies, neural networks, metabolic networks,
food webs, distribution networks such as blood vessels
or postal delivery routes, networks of citations between
papers, and many others (Fig. 2). This paper reviews re-
cent (and some not-so-recent) work on the structure and
function of networked systems such as these.

The study of networks, in the form of mathematical
graph theory, is one of the fundamental pillars of dis-
crete mathematics. Euler’s celebrated 1735 solution of
the Königsberg bridge problem is often cited as the first
true proof in the theory of networks, and during the twen-
tieth century graph theory has developed into a substan-
tial body of knowledge.

Networks have also been studied extensively in the so-
cial sciences. Typical network studies in sociology involve
the circulation of questionnaires, asking respondents to
detail their interactions with others. One can then use
the responses to reconstruct a network in which vertices
represent individuals and edges the interactions between
them. Typical social network studies address issues of
centrality (which individuals are best connected to others
or have most influence) and connectivity (whether and
how individuals are connected to one another through
the network).

Recent years however have witnessed a substantial new
movement in network research, with the focus shifting
away from the analysis of single small graphs and the
properties of individual vertices or edges within such
graphs to consideration of large-scale statistical proper-
ties of graphs. This new approach has been driven largely
by the availability of computers and communication net-
works that allow us to gather and analyze data on a
scale far larger than previously possible. Where stud-
ies used to look at networks of maybe tens or in extreme
cases hundreds of vertices, it is not uncommon now to see
networks with millions or even billions of vertices. This
change of scale forces upon us a corresponding change in

edge

vertex

FIG. 1 A small example network with eight vertices and ten
edges.

our analytic approach. Many of the questions that might
previously have been asked in studies of small networks
are simply not useful in much larger networks. A social
network analyst might have asked, “Which vertex in this
network would prove most crucial to the network’s con-
nectivity if it were removed?” But such a question has
little meaning in most networks of a million vertices—no
single vertex in such a network will have much effect at all
when removed. On the other hand, one could reasonably
ask a question like, “What percentage of vertices need to
be removed to substantially affect network connectivity
in some given way?” and this type of statistical question
has real meaning even in a very large network.

However, there is another reason why our approach
to the study of networks has changed in recent years, a
reason whose importance should not be underestimated,
although it often is. For networks of tens or hundreds
of vertices, it is a relatively straightforward matter to
draw a picture of the network with actual points and lines
(Fig. 2) and to answer specific questions about network
structure by examining this picture. This has been one of
the primary methods of network analysts since the field
began. The human eye is an analytic tool of remarkable
power, and eyeballing pictures of networks is an excellent
way to gain an understanding of their structure. With
a network of a million or a billion vertices however, this
approach is useless. One simply cannot draw a mean-
ingful picture of a million vertices, even with modern 3D
computer rendering tools, and therefore direct analysis
by eye is hopeless. The recent development of statistical
methods for quantifying large networks is to a large ex-
tent an attempt to find something to play the part played
by the eye in the network analysis of the twentieth cen-
tury. Statistical methods answer the question, “How can
I tell what this network looks like, when I can’t actually
look at it?”

The body of theory that is the primary focus of this
review aims to do three things. First, it aims to find sta-
tistical properties, such as path lengths and degree distri-
butions, that characterize the structure and behavior of
networked systems, and to suggest appropriate ways to
measure these properties. Second, it aims to create mod-
els of networks that can help us to understand the mean-
ing of these properties—how they came to be as they are,
and how they interact with one another. Third, it aims
to predict what the behavior of networked systems will
be on the basis of measured structural properties and the
local rules governing individual vertices. How for exam-
ple will network structure affect traffic on the Internet, or
the performance of a Web search engine, or the dynamics
of social or biological systems? As we will see, the scien-
tific community has, by drawing on ideas from a broad
variety of disciplines, made an excellent start on the first
two of these aims, the characterization and modeling of
network structure. Studies of the effects of structure on
system behavior on the other hand are still in their in-
fancy. It remains to be seen what the crucial theoretical
developments will be in this area.
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FIG. 2 Three examples of the kinds of networks that are the topic of this review. (a) A food web of predator-prey interactions
between species in a freshwater lake [272]. Picture courtesy of Neo Martinez and Richard Williams. (b) The network of
collaborations between scientists at a private research institution [171]. (c) A network of sexual contacts between individuals
in the study by Potterat et al. [342].

A. Types of networks

A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks
may be more complex than this (Fig. 3). For instance,
there may be more than one different type of vertex in a
network, or more than one different type of edge. And
vertices or edges may have a variety of properties, nu-
merical or otherwise, associated with them. Taking the
example of a social network of people, the vertices may
represent men or women, people of different nationalities,
locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent
animosity, or professional acquaintance, or geographical
proximity. They can carry weights, representing, say,
how well two people know each other. They can also be
directed, pointing in only one direction. Graphs com-
posed of directed edges are themselves called directed

graphs or sometimes digraphs, for short. A graph rep-
resenting telephone calls or email messages between in-
dividuals would be directed, since each message goes in
only one direction. Directed graphs can be either cyclic,
meaning they contain closed loops of edges, or acyclic
meaning they do not. Some networks, such as food webs,
are approximately but not perfectly acyclic.

One can also have hyperedges—edges that join more
than two vertices together. Graphs containing such edges
are called hypergraphs. Hyperedges could be used to in-
dicate family ties in a social network for example—n in-
dividuals connected to each other by virtue of belonging
to the same immediate family could be represented by
an n-edge joining them. Graphs may also be naturally
partitioned in various ways. We will see a number of
examples in this review of bipartite graphs : graphs that
contain vertices of two distinct types, with edges running
only between unlike types. So-called affiliation networks
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(b)

(d)

(a)

(c)

FIG. 3 Examples of various types of networks: (a) an undi-
rected network with only a single type of vertex and a single
type of edge; (b) a network with a number of discrete ver-
tex and edge types; (c) a network with varying vertex and
edge weights; (d) a directed network in which each edge has
a direction.

in which people are joined together by common member-
ship of groups take this form, the two types of vertices
representing the people and the groups. Graphs may also
evolve over time, with vertices or edges appearing or dis-
appearing, or values defined on those vertices and edges
changing. And there are many other levels of sophistica-
tion one can add. The study of networks is by no means
a complete science yet, and many of the possibilities have
yet to be explored in depth, but we will see examples of
at least some of the variations described here in the work
reviewed in this paper.

The jargon of the study of networks is unfortunately
confused by differing usages among investigators from
different fields. To avoid (or at least reduce) confusion,
we give in Table I a short glossary of terms as they are
used in this paper.

B. Other resources

A number of other reviews of this area have appeared
recently, which the reader may wish to consult. Albert
and Barabási [13] and Dorogovtsev and Mendes [120]
have given extensive pedagogical reviews focusing on the
physics literature. Both devote the larger part of their at-
tention to the models of growing graphs that we describe
in Sec. VII. Shorter reviews taking other viewpoints have
been given by Newman [309] and Hayes [189, 190], who
both concentrate on the so-called “small-world” models
(see Sec. VI), and by Strogatz [387], who includes an in-
teresting discussion of the behavior of dynamical systems
on networks.

A number of books also make worthwhile reading.
Dorogovtsev and Mendes [122] have expanded their
above-mentioned review into a book, which again fo-
cuses on models of growing graphs. The edited volumes
by Bornholdt and Schuster [70] and by Pastor-Satorras

and Rubi [330] both contain contributed essays on var-
ious topics by leading researchers. Detailed treatments
of many of the topics covered in the present work can be
found there. The book by Newman et al. [320] is a col-
lection of previously published papers, and also contains
some review material by the editors.

Three popular books on the subject of networks merit
a mention. Albert-László Barabási’s Linked [31] gives
a personal account of recent developments in the study
of networks, focusing particularly on Barabási’s work on
scale-free networks. Duncan Watts’s Six Degrees [414]
gives a sociologist’s view, partly historical, of discoveries
old and new. Mark Buchanan’s Nexus [76] gives an en-
tertaining portrait of the field from the point of view of
a science journalist.

Farther afield, there are a variety of books on the study
of networks in particular fields. Within graph theory the
books by Harary [188] and by Bollobás [62] are widely
cited and among social network theorists the books by
Wasserman and Faust [409] and by Scott [363]. The book
by Ahuja et al. [7] is a useful source for information on
network algorithms.

C. Outline of the review

The outline of this paper is as follows. In Sec. II we de-
scribe empirical studies of the structure of networks, in-
cluding social networks, information networks, technolog-
ical networks and biological networks. In Sec. III we de-
scribe some of the common properties that are observed
in many of these networks, how they are measured, and
why they are believed to be important for the functioning
of networked systems. Sections IV to VII form the heart
of the review. They describe work on the mathematical
modeling of networks, including random graph models
and their generalizations, exponential random graphs,
p∗ models and Markov graphs, the small-world model
and its variations, and models of growing graphs includ-
ing preferential attachment models and their many vari-
ations. In Sec. VIII we discuss the progress, such as it
is, that has been made on the study of processes taking
place on networks, including epidemic processes, network
failure, models displaying phase transitions, and dynam-
ical systems like random Boolean networks and cellular
automata. In Sec. IX we give our conclusions and point
to directions for future research.

II. NETWORKS IN THE REAL WORLD

In this section we look at what is known about the
structure of networks of different types. Recent work
on the mathematics of networks has been driven largely
by observations of the properties of actual networks and
attempts to model them, so network data are the ob-
vious starting point for a review such as this. It also
makes sense to examine simultaneously data from dif-
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Vertex (pl. vertices): The fundamental unit of a network, also called a site
(physics), a node (computer science), or an actor (sociology).

Edge: The line connecting two vertices. Also called a bond (physics), a link
(computer science), or a tie (sociology).

Directed/undirected: An edge is directed if it runs in only one direction (such
as a one-way road between two points), and undirected if it runs in both directions.
Directed edges, which are sometimes called arcs, can be thought of as sporting arrows
indicating their orientation. A graph is directed if all of its edges are directed. An
undirected graph can be represented by a directed one having two edges between each
pair of connected vertices, one in each direction.

Degree: The number of edges connected to a vertex. Note that the degree is not
necessarily equal to the number of vertices adjacent to a vertex, since there may be
more than one edge between any two vertices. In a few recent articles, the degree
is referred to as the “connectivity” of a vertex, but we avoid this usage because the
word connectivity already has another meaning in graph theory. A directed graph
has both an in-degree and an out-degree for each vertex, which are the numbers of
in-coming and out-going edges respectively.

Component: The component to which a vertex belongs is that set of vertices
that can be reached from it by paths running along edges of the graph. In a directed
graph a vertex has both an in-component and an out-component, which are the sets
of vertices from which the vertex can be reached and which can be reached from it.

Geodesic path: A geodesic path is the shortest path through the network from
one vertex to another. Note that there may be and often is more than one geodesic
path between two vertices.

Diameter: The diameter of a network is the length (in number of edges) of the
longest geodesic path between any two vertices. A few authors have also used this
term to mean the average geodesic distance in a graph, although strictly the two
quantities are quite distinct.

TABLE I A short glossary of terms.

ferent kinds of networks. One of the principal thrusts
of recent work in this area, inspired particularly by a
groundbreaking 1998 paper by Watts and Strogatz [416],
has been the comparative study of networks from dif-
ferent branches of science, with emphasis on properties
that are common to many of them and the mathematical
developments that mirror those properties. We here di-
vide our summary into four loose categories of networks:
social networks, information networks, technological net-
works and biological networks.

A. Social networks

A social network is a set of people or groups of peo-
ple with some pattern of contacts or interactions be-
tween them [363, 409]. The patterns of friendships be-
tween individuals [296, 348], business relationships be-
tween companies [269, 286], and intermarriages between
families [327] are all examples of networks that have been
studied in the past.1 Of the academic disciplines the so-

1 Occasionally social networks of animals have been investigated
also, such as dolphins [96], not to mention networks of fictional

cial sciences have the longest history of the substantial
quantitative study of real-world networks [162, 363]. Of
particular note among the early works on the subject are:
Jacob Moreno’s work in the 1920s and 30s on friend-
ship patterns within small groups [296]; the so-called
“southern women study” of Davis et al. [103], which
focused on the social circles of women in an unnamed
city in the American south in 1936; the study by El-
ton Mayo and colleagues of social networks of factory
workers in the late 1930s in Chicago [357]; the mathe-
matical models of Anatol Rapoport [346], who was one
of the first theorists, perhaps the first, to stress the im-
portance of the degree distribution in networks of all
kinds, not just social networks; and the studies of friend-
ship networks of school children by Rapoport and oth-
ers [149, 348]. In more recent years, studies of business
communities [167, 168, 269] and of patterns of sexual
contacts [45, 218, 243, 266, 303, 342] have attracted par-
ticular attention.

Another important set of experiments are the famous

characters, such as the protagonists of Tolstoy’s Anna Karen-

ina [244] or Marvel Comics superheroes [10].
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“small-world” experiments of Milgram [283, 393]. No ac-
tual networks were reconstructed in these experiments,
but nonetheless they tell us about network structure.
The experiments probed the distribution of path lengths
in an acquaintance network by asking participants to pass
a letter2 to one of their first-name acquaintances in an at-
tempt to get it to an assigned target individual. Most of
the letters in the experiment were lost, but about a quar-
ter reached the target and passed on average through the
hands of only about six people in doing so. This exper-
iment was the origin of the popular concept of the “six
degrees of separation,” although that phrase did not ap-
pear in Milgram’s writing, being coined some decades
later by Guare [183]. A brief but useful early review of
Milgram’s work and work stemming from it was given by
Garfield [169].

Traditional social network studies often suffer from
problems of inaccuracy, subjectivity, and small sample
size. With the exception of a few ingenious indirect
studies such as Milgram’s, data collection is usually car-
ried out by querying participants directly using question-
naires or interviews. Such methods are labor-intensive
and therefore limit the size of the network that can be
observed. Survey data are, moreover, influenced by sub-
jective biases on the part of respondents; how one re-
spondent defines a friend for example could be quite dif-
ferent from how another does. Although much effort is
put into eliminating possible sources of inconsistency, it
is generally accepted that there are large and essentially
uncontrolled errors in most of these studies. A review of
the issues has been given by Marsden [271].

Because of these problems many researchers have
turned to other methods for probing social networks.
One source of copious and relatively reliable data is col-
laboration networks. These are typically affiliation net-
works in which participants collaborate in groups of one
kind or another, and links between pairs of individuals
are established by common group membership. A classic,
though rather frivolous, example of such a network is the
collaboration network of film actors, which is thoroughly
documented in the online Internet Movie Database.3 In
this network actors collaborate in films and two actors
are considered connected if they have appeared in a film
together. Statistical properties of this network have been
analyzed by a number of authors [4, 20, 323, 416]. Other
examples of networks of this type are networks of com-
pany directors, in which two directors are linked if they
belong to the same board of directors [104, 105, 269],
networks of coauthorship among academics, in which in-
dividuals are linked if they have coauthored one or more
papers [36, 43, 68, 107, 182, 279, 292, 311, 312, 313], and
coappearance networks in which individuals are linked
by mention in the same context, particularly on Web

2 Actually a folder containing several documents.
3 http://www.imdb.com/

pages [3, 227] or in newspaper articles [99] (see Fig. 2b).
Another source of reliable data about personal connec-

tions between people is communication records of cer-
tain kinds. For example, one could construct a network
in which each (directed) edge between two people rep-
resented a letter or package sent by mail from one to
the other. No study of such a network has been pub-
lished as far as we are aware, but some similar things
have. Aiello et al. [8, 9] have analyzed a network of
telephone calls made over the AT&T long-distance net-
work on a single day. The vertices of this network repre-
sent telephone numbers and the directed edges calls from
one number to another. Even for just a single day this
graph is enormous, having about 50 million vertices, one
of the largest graphs yet studied after the graph of the
World Wide Web. Ebel et al. [136] have reconstructed
the pattern of email communications between five thou-
sand students at Kiel University from logs maintained
by email servers. In this network the vertices repre-
sent email addresses and directed edges represent a mes-
sage passing from one address to another. Email net-
works have also been studied by Newman et al. [321]
and by Guimerà et al. [185], and similar networks have
been constructed for an “instant messaging” system by
Smith [371], and for an Internet community Web site by
Holme et al. [196]. Dodds et al. [110] have carried out
an email version of Milgram’s small-world experiment in
which participants were asked to forward an email mes-
sage to one of their friends in an effort to get the message
ultimately to some chosen target individual. Response
rates for the experiment were quite low, but a few hun-
dred completed chains of messages were recorded, enough
to allow various statistical analyses.

B. Information networks

Our second network category is what we will call in-

formation networks (also sometimes called “knowledge
networks”). The classic example of an information net-
work is the network of citations between academic pa-
pers [138]. Most learned articles cite previous work by
others on related topics. These citations form a network
in which the vertices are articles and a directed edge from
article A to article B indicates that A cites B. The struc-
ture of the citation network then reflects the structure of
the information stored at its vertices, hence the term “in-
formation network,” although certainly there are social
aspects to the citation patterns of papers too [420].

Citation networks are acyclic (see Sec. I.A) because
papers can only cite other papers that have already been
written, not those that have yet to be written. Thus all
edges in the network point backwards in time, making
closed loops impossible, or at least extremely rare (see
Fig. 4).

As an object of scientific study, citation networks have
a great advantage in the copious and accurate data avail-
able for them. Quantitative study of publication patterns
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World−Wide Webcitation network

FIG. 4 The two best studied information networks. Left: the
citation network of academic papers in which the vertices are
papers and the directed edges are citations of one paper by
another. Since papers can only cite those that came before
them (lower down in the figure) the graph is acyclic—it has
no closed loops. Right: the World Wide Web, a network of
text pages accessible over the Internet, in which the vertices
are pages and the directed edges are hyperlinks. There are
no constraints on the Web that forbid cycles and hence it is
in general cyclic.

stretches back at least as far as Alfred Lotka’s ground-
breaking 1926 discovery of the so-called Law of Scien-
tific Productivity, which states that the distribution of
the numbers of papers written by individual scientists
follows a power law. That is, the number of scientists
who have written k papers falls off as k−α for some con-
stant α. (In fact, this result extends to the arts and
humanities as well.) The first serious work on citation
patterns was conducted in the 1960s as large citation
databases became available through the work of Eugene
Garfield and other pioneers in the field of bibliometrics.
The network formed by citations was discussed in an
early paper by Price [343], in which among other things,
the author points out for the first time that both the in-
and out-degree distributions of the network follow power
laws, a far-reaching discovery which we discuss further
in Sec. III.C. Many other studies of citation networks
have been performed since then, using the ever better
resources available in citation databases. Of particular
note are the studies by Seglen [364] and Redner [351].4

Another very important example of an information
network is the World Wide Web, which is a network of
Web pages containing information, linked together by hy-
perlinks from one page to another [203]. The Web should
not be confused with the Internet, which is a physical net-
work of computers linked together by optical fibre and

4 An interesting development in the study of citation pat-
terns has been the arrival of automatic citation “crawlers”
that construct citation networks from online papers. Exam-
ples include Citeseer (http://citeseer.nj.nec.com/), SPIRES
(http://www.slac.stanford.edu/spires/hep/) and Citebase
(http://citebase.eprints.org/).

other data connections.5 Unlike a citation network, the
World Wide Web is cyclic; there is no natural ordering
of sites and no constraints that prevent the appearance
of closed loops (Fig. 4). The Web has been very heavily
studied since its first appearance in the early 1990s, with
the studies by Albert et al. [14, 34], Kleinberg et al. [241],
and Broder et al. [74] being particularly influential. The
Web also appears to have power-law in- and out-degree
distributions (Sec. III.C), as well as a variety of other
interesting properties [2, 14, 74, 158, 241, 254].

One important point to notice about the Web is that
our data about it come from “crawls” of the network, in
which Web pages are found by following hyperlinks from
other pages [74]. Our picture of the network structure
of the World Wide Web is therefore necessarily biased.
A page will only be found if another page points to it,6

and in a crawl that covers only a part of the Web (as all
crawls do at present) pages are more likely to be found
the more other pages point to them [263]. This sug-
gests for instance that our measurements of the fraction
of pages with low in-degree might be an underestimate.7

This behavior contrasts with that of a citation network.
A paper can appear in the citation indices even if it has
never been cited (and in fact a plurality of papers in the
indices are never cited).

A few other examples of information networks have
been studied to a lesser extent. Jaffe and Trajten-
berg [207], for instance, have studied the network of ci-
tations between US patents, which is similar in some re-
spects to citations between academic papers. A number
of authors have looked at peer-to-peer networks [5, 6,
205], which are virtual networks of computers that al-
low sharing of files between computer users over local-
or wide-area networks. The network of relations be-
tween word classes in a thesaurus has been studied by
Knuth [244] and more recently by various other au-
thors [234, 304, 384]. This network can be looked upon as
an information network—users of a thesaurus “surf” the
network from one word to another looking for the par-
ticular word that perfectly captures the idea they have
in mind. However, it can also be looked at as a concep-
tual network representing the structure of the language,
or possibly even the mental constructs used to represent
the language. A number of other semantic word networks
have also been investigated [119, 157, 369, 384].

Preference networks provide an example of a bipartite

5 While the Web is primarily an information network, it, like cita-
tion networks, has social aspects to its structure also [3].

6 This is not always strictly true. Some Web search engines allow
the submission of pages by members of the public for inclusion in
databases, and such pages need not be the target of links from
any other pages. However, such pages also form a very small
fraction of all Web pages, and certainly the biases discussed here
remain very much present.

7 The degree distribution for the Web shown in Fig. 6 falls off
slightly at low values of the in-degree, which may perhaps reflect
this bias.
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information network. A preference network is a network
with two kinds of vertices representing individuals and
the objects of their preference, such as books or films,
with an edge connecting each individual to the books or
films they like. (Preference networks can also be weighted
to indicate strength of likes or dislikes.) A widely stud-
ied example of a preference network is the EachMovie

database of film preferences.8 Networks of this kind form
the basis for collaborative filtering algorithms and recom-

mender systems, which are techniques for predicting new
likes or dislikes based on comparison of individuals’ pref-
erences with those of others [176, 352, 367]. Collaborative
filtering has found considerable commercial success for
product recommendation and targeted advertising, par-
ticularly with online retailers. Preference networks can
also be thought of as social networks, linking not only
people to objects, but also people to other people with
similar preferences. This approach has been adopted oc-
casionally in the literature [227].

C. Technological networks

Our third class of networks is technological networks,
man-made networks designed typically for distribution
of some commodity or resource, such as electricity or in-
formation. The electric power grid is a good example.
This is a network of high-voltage three-phase transmis-
sion lines that spans a country or a portion of a coun-
try (as opposed to the local low-voltage a.c. power deliv-
ery lines that span individual neighborhoods). Statistical
studies of power grids have been made by, for example,
Watts and Strogatz [412, 416] and Amaral et al. [20].
Other distribution networks that have been studied in-
clude the network of airline routes [20], and networks
of roads [221], railways [262, 366] and pedestrian traf-
fic [87]. River networks could be regarded as a naturally
occurring form of distribution network (actually a collec-
tion network) [111, 270, 353, 356], as could the vascu-
lar networks discussed in Sec. II.D. The telephone net-
work and delivery networks such as those used by the
post-office or parcel delivery companies also fall into this
general category and are presumably studied within the
relevant corporations, if not yet by academic researchers.
(We distinguish here between the physical telephone net-
work of wires and cables and the network of who calls
whom, discussed in Sec. II.A.) Electronic circuits [155]
fall somewhere between distribution and communication
networks.

Another very widely studied technological network is
the Internet, i.e., the network of physical connections
between computers. Since there is a large and ever-
changing number of computers on the Internet, the struc-
ture of the network is usually examined at a coarse-

8 http://research.compaq.com/SRC/eachmovie/

grained level, either the level of routers, special-purpose
computers on the network that control the movement
of data, or “autonomous systems,” which are groups of
computers within which networking is handled locally,
but between which data flows over the public Internet.
The computers at a single company or university would
probably form a single autonomous system—autonomous
systems often correspond roughly with domain names.

In fact, the network of physical connections on the In-
ternet is not easy to discover since the infrastructure is
maintained by many separate organizations. Typically
therefore, researchers reconstruct the network by reason-
ing from large samples of point-to-point data routes. So-
called “traceroute” programs can report the sequence of
network nodes that a data packet passes through when
traveling between two points and if we assume an edge
in the network between any two consecutive nodes along
such a path then a sufficiently large sample of paths will
give us a fairly complete picture of the entire network.
There may however be some edges that never get sam-
pled, so the reconstruction is typically a good, but not
perfect, representation of the true physical structure of
the Internet. Studies of Internet structure have been car-
ried out by, among others, Faloutsos et al. [148], Broida
and Claffy [75] and Chen et al. [86].

D. Biological networks

A number of biological systems can be usefully rep-
resented as networks. Perhaps the classic example of
a biological network is the network of metabolic path-
ways, which is a representation of metabolic substrates
and products with directed edges joining them if a
known metabolic reaction exists that acts on a given
substrate and produces a given product. Most of us
will probably have seen at some point the giant maps of
metabolic pathways that many molecular biologists pin
to their walls.9 Studies of the statistical properties of
metabolic networks have been performed by, for example,
Jeong et al. [214, 340], Fell and Wagner [153, 405], and
Stelling et al. [383]. A separate network is the network
of mechanistic physical interactions between proteins (as
opposed to chemical reactions among metabolites), which
is usually referred to as a protein interaction network.
Interaction networks have been studied by a number of
authors [206, 212, 274, 376, 394].

Another important class of biological network is the
genetic regulatory network. The expression of a gene,
i.e., the production by transcription and translation of
the protein for which the gene codes, can be controlled
by the presence of other proteins, both activators and

9 The standard chart of the metabolic network is somewhat mis-
leading. For reasons of clarity and aesthetics, many metabolites
appear in more than one place on the chart, so that some pairs
of vertices are actually the same vertex.
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inhibitors, so that the genome itself forms a switching
network with vertices representing the proteins and di-
rected edges representing dependence of protein produc-
tion on the proteins at other vertices. The statistical
structure of regulatory networks has been studied re-
cently by various authors [152, 184, 368]. Genetic regula-
tory networks were in fact one of the first networked dy-
namical systems for which large-scale modeling attempts
were made. The early work on random Boolean nets by
Kauffman [224, 225, 226] is a classic in this field, and
anticipated recent developments by several decades.

Another much studied example of a biological network
is the food web, in which the vertices represent species
in an ecosystem and a directed edge from species A to
species B indicates that A preys on B [91, 339]—see
Fig. 2a. (Sometimes the relationship is drawn the other
way around, because ecologists tend to think in terms of
energy or carbon flows through food webs; a predator-
prey interaction is thus drawn as an arrow pointing from
prey to predator, indicating energy flow from prey to
predator when the prey is eaten.) Construction of com-
plete food webs is a laborious business, but a number
of quite extensive data sets have become available in
recent years [27, 177, 204, 272]. Statistical studies of
the topologies of food webs have been carried out by
Solé and Montoya [290, 375], Camacho et al. [82] and
Dunne et al. [132, 133, 423], among others. A particu-
larly thorough study of webs of plants and herbivores has
been conducted by Jordano et al. [219], which includes
statistics for no less than 53 different networks.

Neural networks are another class of biological net-
works of considerable importance. Measuring the topol-
ogy of real neural networks is extremely difficult, but has
been done successfully in a few cases. The best known
example is the reconstruction of the 282-neuron neural
network of the nematode C. Elegans by White et al. [421].
The network structure of the brain at larger scales than
individual neurons—functional areas and pathways—has
been investigated by Sporns et al. [379, 380].

Blood vessels and the equivalent vascular networks in
plants form the foundation for one of the most successful
theoretical models of the effects of network structure on
the behavior of a networked system, the theory of biolog-
ical allometry [29, 417, 418], although we are not aware
of any quantitative studies of their statistical structure.

Finally we mention two examples of networks from
the physical sciences, the network of free energy min-
ima and saddle points in glasses [130] and the network of
conformations of polymers and the transitions between
them [361], both of which appear to have some interest-
ing structural properties.

III. PROPERTIES OF NETWORKS

Perhaps the simplest useful model of a network is the
random graph, first studied by Rapoport [346, 347, 378]
and by Erdős and Rényi [141, 142, 143], which we de-

scribe in Sec. IV.A. In this model, undirected edges are
placed at random between a fixed number n of vertices to
create a network in which each of the 1

2n(n− 1) possible
edges is independently present with some probability p,
and the number of edges connected to each vertex—the
degree of the vertex—is distributed according to a bino-
mial distribution, or a Poisson distribution in the limit
of large n. The random graph has been well studied by
mathematicians [63, 211, 223] and many results, both ap-
proximate and exact, have been proved rigorously. Most
of the interesting features of real-world networks that
have attracted the attention of researchers in the last few
years however concern the ways in which networks are
not like random graphs. Real networks are non-random
in some revealing ways that suggest both possible mecha-
nisms that could be guiding network formation, and pos-
sible ways in which we could exploit network structure
to achieve certain aims. In this section we describe some
features that appear to be common to networks of many
different types.

A. The small-world effect

In Sec. II.A we described the famous experiments car-
ried out by Stanley Milgram in the 1960s, in which let-
ters passed from person to person were able to reach a
designated target individual in only a small number of
steps—around six in the published cases. This result is
one of the first direct demonstrations of the small-world

effect, the fact that most pairs of vertices in most net-
works seem to be connected by a short path through the
network.

The existence of the small-world effect had been specu-
lated upon before Milgram’s work, notably in a remark-
able 1929 short story by the Hungarian writer Frigyes
Karinthy [222], and more rigorously in the mathematical
work of Pool and Kochen [341] which, although published
after Milgram’s studies, was in circulation in preprint
form for a decade before Milgram took up the problem.
Nowadays, the small-world effect has been studied and
verified directly in a large number of different networks.

Consider an undirected network, and let us define ℓ
to be the mean geodesic (i.e., shortest) distance between
vertex pairs in a network:

ℓ =
1

1
2n(n + 1)

∑

i≥j

dij , (1)

where dij is the geodesic distance from vertex i to ver-
tex j. Notice that we have included the distance from
each vertex to itself (which is zero) in this average. This
is mathematically convenient for a number of reasons,
but not all authors do it. In any case, its inclusion simply
multiplies ℓ by (n − 1)/(n + 1) and hence gives a correc-
tion of order n−1, which is often negligible for practical
purposes.

The quantity ℓ can be measured for a network of n ver-
tices and m edges in time O(mn) using simple breadth-



1
0

network type n m z ℓ α C(1) C(2) r Ref(s).

so
ci

a
l

film actors undirected 449 913 25 516 482 113.43 3.48 2.3 0.20 0.78 0.208 20, 416

company directors undirected 7 673 55 392 14.44 4.60 – 0.59 0.88 0.276 105, 323

math coauthorship undirected 253 339 496 489 3.92 7.57 – 0.15 0.34 0.120 107, 182

physics coauthorship undirected 52 909 245 300 9.27 6.19 – 0.45 0.56 0.363 311, 313

biology coauthorship undirected 1 520 251 11 803 064 15.53 4.92 – 0.088 0.60 0.127 311, 313

telephone call graph undirected 47 000 000 80 000 000 3.16 2.1 8, 9

email messages directed 59 912 86 300 1.44 4.95 1.5/2.0 0.16 136

email address books directed 16 881 57 029 3.38 5.22 – 0.17 0.13 0.092 321

student relationships undirected 573 477 1.66 16.01 – 0.005 0.001 −0.029 45

sexual contacts undirected 2 810 3.2 265, 266

in
fo

rm
a
ti

o
n WWW nd.edu directed 269 504 1 497 135 5.55 11.27 2.1/2.4 0.11 0.29 −0.067 14, 34

WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18 2.1/2.7 74

citation network directed 783 339 6 716 198 8.57 3.0/– 351

Roget’s Thesaurus directed 1 022 5 103 4.99 4.87 – 0.13 0.15 0.157 244

word co-occurrence undirected 460 902 17 000 000 70.13 2.7 0.44 119, 157

te
ch

n
o
lo

g
ic

a
l

Internet undirected 10 697 31 992 5.98 3.31 2.5 0.035 0.39 −0.189 86, 148

power grid undirected 4 941 6 594 2.67 18.99 – 0.10 0.080 −0.003 416

train routes undirected 587 19 603 66.79 2.16 – 0.69 −0.033 366

software packages directed 1 439 1 723 1.20 2.42 1.6/1.4 0.070 0.082 −0.016 318

software classes directed 1 377 2 213 1.61 1.51 – 0.033 0.012 −0.119 395

electronic circuits undirected 24 097 53 248 4.34 11.05 3.0 0.010 0.030 −0.154 155

peer-to-peer network undirected 880 1 296 1.47 4.28 2.1 0.012 0.011 −0.366 6, 354

b
io

lo
g
ic

a
l

metabolic network undirected 765 3 686 9.64 2.56 2.2 0.090 0.67 −0.240 214

protein interactions undirected 2 115 2 240 2.12 6.80 2.4 0.072 0.071 −0.156 212

marine food web directed 135 598 4.43 2.05 – 0.16 0.23 −0.263 204

freshwater food web directed 92 997 10.84 1.90 – 0.20 0.087 −0.326 272

neural network directed 307 2 359 7.68 3.97 – 0.18 0.28 −0.226 416, 421

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total
number of edges m; mean degree z; mean vertex–vertex distance ℓ; exponent α of degree distribution if the distribution follows a power law (or “–” if not; in/out-degree

exponents are given for directed graphs); clustering coefficient C(1) from Eq. (3); clustering coefficient C(2) from Eq. (6); and degree correlation coefficient r, Sec. III.F.
The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.
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first search [7], also called a “burning algorithm” in the
physics literature. In Table II, we show values of ℓ taken
from the literature for a variety of different networks. As
the table shows, the values are in all cases quite small—
much smaller than the number n of vertices, for instance.

The definition (1) of ℓ is problematic in networks that
have more than one component. In such cases, there
exist vertex pairs that have no connecting path. Con-
ventionally one assigns infinite geodesic distance to such
pairs, but then the value of ℓ also becomes infinite. To
avoid this problem one usually defines ℓ on such networks
to be the mean geodesic distance between all pairs that
have a connecting path. Pairs that fall in two different
components are excluded from the average. The figures
in Table II were all calculated in this way. An alterna-
tive and perhaps more satisfactory approach is to define ℓ
to be the “harmonic mean” geodesic distance between all
pairs, i.e., the reciprocal of the average of the reciprocals:

ℓ−1 =
1

1
2n(n + 1)

∑

i≥j

d−1
ij . (2)

Infinite values of dij then contribute nothing to the sum.
This approach has been adopted only occasionally in net-
work calculations [260], but perhaps should be used more
often.

The small-world effect has obvious implications for the
dynamics of processes taking place on networks. For
example, if one considers the spread of information, or
indeed anything else, across a network, the small-world
effect implies that that spread will be fast on most real-
world networks. If it takes only six steps for a rumor
to spread from any person to any other, for instance,
then the rumor will spread much faster than if it takes
a hundred steps, or a million. This affects the number
of “hops” a packet must make to get from one computer
to another on the Internet, the number of legs of a jour-
ney for an air or train traveler, the time it takes for a
disease to spread throughout a population, and so forth.
The small-world effect also underlies some well-known
parlor games, particularly the calculation of Erdős num-
bers [107] and Bacon numbers.10

On the other hand, the small-world effect is also math-
ematically obvious. If the number of vertices within a
distance r of a typical central vertex grows exponentially
with r—and this is true of many networks, including the
random graph (Sec. IV.A)—then the value of ℓ will in-
crease as log n. In recent years the term “small-world
effect” has thus taken on a more precise meaning: net-
works are said to show the small-world effect if the value
of ℓ scales logarithmically or slower with network size for
fixed mean degree. Logarithmic scaling can be proved
for a variety of network models [61, 63, 88, 127, 164]

10 http://www.cs.virginia.edu/oracle/

FIG. 5 Illustration of the definition of the clustering coeffi-
cient C, Eq. (3). This network has one triangle and eight
connected triples, and therefore has a clustering coefficient of
3 × 1/8 = 3

8
. The individual vertices have local clustering

coefficients, Eq. (5), of 1, 1, 1
6
, 0 and 0, for a mean value,

Eq. (6), of C = 13
30

.

and has also been observed in various real-world net-
works [13, 312, 313]. Some networks have mean vertex–
vertex distances that increase slower than log n. Bollobás
and Riordan [64] have shown that networks with power-
law degree distributions (Sec. III.C) have values of ℓ that
increase no faster than log n/ log log n (see also Ref. 164),
and Cohen and Havlin [95] have given arguments that
suggest that the actual variation may be slower even than
this.

B. Transitivity or clustering

A clear deviation from the behavior of the random
graph can be seen in the property of network transitivity,
sometimes also called clustering, although the latter term
also has another meaning in the study of networks (see
Sec. III.G) and so can be confusing. In many networks
it is found that if vertex A is connected to vertex B and
vertex B to vertex C, then there is a heightened proba-
bility that vertex A will also be connected to vertex C.
In the language of social networks, the friend of your
friend is likely also to be your friend. In terms of network
topology, transitivity means the presence of a heightened
number of triangles in the network—sets of three vertices
each of which is connected to each of the others. It can
be quantified by defining a clustering coefficient C thus:

C =
3× number of triangles in the network

number of connected triples of vertices
, (3)

where a “connected triple” means a single vertex with
edges running to an unordered pair of others (see Fig. 5).

In effect, C measures the fraction of triples that have
their third edge filled in to complete the triangle. The
factor of three in the numerator accounts for the fact that
each triangle contributes to three triples and ensures that
C lies in the range 0 ≤ C ≤ 1. In simple terms, C is
the mean probability that two vertices that are network
neighbors of the same other vertex will themselves be
neighbors. It can also be written in the form

C =
6× number of triangles in the network

number of paths of length two
, (4)
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where a path of length two refers to a directed path start-
ing from a specified vertex. This definition shows that C
is also the mean probability that the friend of your friend
is also your friend.

The definition of C given here has been widely used
in the sociology literature, where it is referred to as the
“fraction of transitive triples.”11 In the mathematical
and physical literature it seems to have been first dis-
cussed by Barrat and Weigt [40].

An alternative definition of the clustering coefficient,
also widely used, has been given by Watts and Stro-
gatz [416], who proposed defining a local value

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
. (5)

For vertices with degree 0 or 1, for which both numerator
and denominator are zero, we put Ci = 0. Then the
clustering coefficient for the whole network is the average

C =
1

n

∑

i

Ci. (6)

This definition effectively reverses the order of the oper-
ations of taking the ratio of triangles to triples and of
averaging over vertices—one here calculates the mean of
the ratio, rather than the ratio of the means. It tends
to weight the contributions of low-degree vertices more
heavily, because such vertices have a small denominator
in Eq. (5) and hence can give quite different results from
Eq. (3). In Table II we give both measures for a number
of networks (denoted C(1) and C(2) in the table). Nor-
mally our first definition (3) is easier to calculate analyt-
ically, but (6) is easily calculated on a computer and has
found wide use in numerical studies and data analysis. It
is important when reading (or writing) literature in this
area to be clear about which definition of the clustering
coefficient is in use. The difference between the two is
illustrated in Fig. 5.

The local clustering Ci above has been used quite
widely in its own right in the sociological literature,
where it is referred to as the “network density” [363].
Its dependence on the degree ki of the central ver-
tex i has been studied by Dorogovtsev et al. [113] and
Szabó et al. [389]; both groups found that Ci falls
off with ki approximately as k−1

i for certain models
of scale-free networks (Sec. III.C.1). Similar behavior
has also been observed empirically in real-world net-
works [349, 350, 397].

In general, regardless of which definition of the clus-
tering coefficient is used, the values tend to be consid-
erably higher than for a random graph with a similar
number of vertices and edges. Indeed, it is suspected

11 For example, the standard network analysis program UCInet in-
cludes a function to calculate this quantity for any network.

that for many types of networks the probability that the
friend of your friend is also your friend should tend to
a non-zero limit as the network becomes large, so that
C = O(1) as n → ∞.12 On the random graph, by con-
trast, C = O(n−1) for large n (either definition of C)
and hence the real-world and random graph values can
be expected to differ by a factor of order n. This point
is discussed further in Sec. IV.A.

The clustering coefficient measures the density of tri-
angles in a network. An obvious generalization is to ask
about the density of longer loops also: loops of length
four and above. A number of authors have looked at such
higher order clustering coefficients [54, 79, 165, 172, 317],
although there is so far no clean theory, similar to a cu-
mulant expansion, that separates the independent contri-
butions of the various orders from one another. If more
than one edge is permitted between a pair of vertices,
then there is also a lower order clustering coefficient that
describes the density of loops of length two. This coeffi-
cient is particularly important in directed graphs where
the two edges in question can point in opposite directions.
The probability that two vertices in a directed network
point to each other is called the reciprocity and is often
measured in directed social networks [363, 409]. It has
been examined occasionally in other contexts too, such as
the World Wide Web [3, 137] and email networks [321].

C. Degree distributions

Recall that the degree of a vertex in a network is the
number of edges incident on (i.e., connected to) that ver-
tex. We define pk to be the fraction of vertices in the
network that have degree k. Equivalently, pk is the prob-
ability that a vertex chosen uniformly at random has
degree k. A plot of pk for any given network can be
formed by making a histogram of the degrees of vertices.
This histogram is the degree distribution for the network.
In a random graph of the type studied by Erdős and
Rényi [141, 142, 143], each edge is present or absent with
equal probability, and hence the degree distribution is,
as mentioned earlier, binomial, or Poisson in the limit of
large graph size. Real-world networks are mostly found
to be very unlike the random graph in their degree dis-
tributions. Far from having a Poisson distribution, the
degrees of the vertices in most networks are highly right-
skewed, meaning that their distribution has a long right
tail of values that are far above the mean.

Measuring this tail is somewhat tricky. Although in
theory one just has to construct a histogram of the de-
grees, in practice one rarely has enough measurements to
get good statistics in the tail, and direct histograms are

12 An exception is scale-free networks with Ci ∼ k−1
i , as described

above. For such networks Eq. (3) tends to zero as n → ∞,
although Eq. (6) is still finite.
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thus usually rather noisy (see the histograms in Refs. 74,
148 and 343 for example). There are two accepted ways
to get around this problem. One is to constructed a his-
togram in which the bin sizes increase exponentially with
degree. For example the first few bins might cover de-
gree ranges 1, 2–3, 4–7, 8–15, and so on. The number of
samples in each bin is then divided by the width of the
bin to normalize the measurement. This method of con-
structing a histogram is often used when the histogram
is to be plotted with a logarithmic degree scale, so that
the widths of the bins will appear even. Because the bins
get wider as we get out into the tail, the problems with
statistics are reduced, although they are still present to
some extent as long as pk falls off faster than k−1, which
it must if the distribution is to be integrable.

An alternative way of presenting degree data is to make
a plot of the cumulative distribution function

Pk =

∞
∑

k′=k

pk′ , (7)

which is the probability that the degree is greater than
or equal to k. Such a plot has the advantage that all the
original data are represented. When we make a conven-
tional histogram by binning, any differences between the
values of data points that fall in the same bin are lost.
The cumulative distribution function does not suffer from
this problem. The cumulative distribution also reduces
the noise in the tail. On the downside, the plot doesn’t
give a direct visualization of the degree distribution it-
self, and adjacent points on the plot are not statistically
independent, making correct fits to the data tricky.

In Fig. 6 we show cumulative distributions of degree
for a number of the networks described in Sec. II. As
the figure shows, the distributions are indeed all right-
skewed. Many of them follow power laws in their tails:
pk ∼ k−α for some constant exponent α. Note that such
power-law distributions show up as power laws in the
cumulative distributions also, but with exponent α − 1
rather than α:

Pk ∼
∞
∑

k′=k

k′−α ∼ k−(α−1). (8)

Some of the other distributions have exponential tails:
pk ∼ e−k/κ. These also give exponentials in the cumula-
tive distribution, but with the same exponent:

Pk =

∞
∑

k′=k

pk ∼
∞
∑

k′=k

e−k′/κ ∼ e−k/κ. (9)

This makes power-law and exponential distributions par-
ticularly easy to spot experimentally, by plotting the cor-
responding cumulative distributions on logarithmic scales
(for power laws) or semi-logarithmic scales (for exponen-
tials).

For other types of networks degree distributions can
be more complicated. For bipartite graphs, for instance

(Sec. I.A), there are two degree distributions, one for each
type of vertex. For directed graphs each vertex has both
an in-degree and an out-degree, and the degree distribu-
tion therefore becomes a function pjk of two variables,
representing the fraction of vertices that simultaneously
have in-degree j and out-degree k. In empirical studies
of directed graphs like the Web, researchers have usually
given only the individual distributions of in- and out-
degree [14, 34, 74], i.e., the distributions derived by sum-
ming pjk over one or other of its indices. This however
discards much of the information present in the joint dis-
tribution. It has been found that in- and out-degrees are
quite strongly correlated in some networks [321], which
suggests that there is more to be gleaned from the joint
distribution than is normally appreciated.

1. Scale-free networks

Networks with power-law degree distributions have
been the focus of a great deal of attention in the lit-
erature [13, 120, 387]. They are sometimes referred to
as scale-free networks [32], although it is only their de-
gree distributions that are scale-free;13 one can and usu-
ally does have scales present in other network properties.
The earliest published example of a scale-free network is
probably Price’s network of citations between scientific
papers [343] (see Sec. II.B). He quoted a value of α = 2.5
to 3 for the exponent of his network. In a later paper he
quoted a more accurate figure of α = 3.04 [344]. He also
found a power-law distribution for the out-degree of the
network (number of bibliography entries in each paper),
although later work has called this into question [396].
More recently, power-law degree distributions have been
observed in a host of other networks, including no-
tably other citation networks [351, 364], the World Wide
Web [14, 34, 74], the Internet [86, 148, 401], metabolic
networks [212, 214], telephone call graphs [8, 9], and the
network of human sexual contacts [218, 266]. The de-
gree distributions of some of these networks are shown in
Fig. 6.

Other common functional forms for the degree distri-
bution are exponentials, such as those seen in the power
grid [20] and railway networks [366], and power laws with
exponential cutoffs, such as those seen in the network of
movie actors [20] and some collaboration networks [313].
Note also that while a particular form may be seen in the
degree distribution for the network as a whole, specific
subnetworks within the network can have other forms.
The World Wide Web, for instance, shows a power-law

13 The term “scale-free” refers to any functional form f(x) that re-
mains unchanged to within a multiplicative factor under a rescal-
ing of the independent variable x. In effect this means power-law
forms, since these are the only solutions to f(ax) = bf(x), and
hence “power-law” and “scale-free” are, for our purposes, syn-
onymous.
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FIG. 6 Cumulative degree distributions for six different networks. The horizontal axis for each panel is vertex degree k (or in-
degree for the citation and Web networks, which are directed) and the vertical axis is the cumulative probability distribution of
degrees, i.e., the fraction of vertices that have degree greater than or equal to k. The networks shown are: (a) the collaboration
network of mathematicians [182]; (b) citations between 1981 and 1997 to all papers cataloged by the Institute for Scientific
Information [351]; (c) a 300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the level of
autonomous systems, April 1999 [86]; (e) the power grid of the western United States [416]; (f) the interaction network of
proteins in the metabolism of the yeast S. Cerevisiae [212]. Of these networks, three of them, (c), (d) and (f), appear to have
power-law degree distributions, as indicated by their approximately straight-line forms on the doubly logarithmic scales, and
one (b) has a power-law tail but deviates markedly from power-law behavior for small degree. Network (e) has an exponential
degree distribution (note the log-linear scales used in this panel) and network (a) appears to have a truncated power-law degree
distribution of some type, or possibly two separate power-law regimes with different exponents.

degree distribution overall but unimodal distributions
within domains [338].

2. Maximum degree

The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For
some calculations on networks the value of this maxi-
mum degree matters (see, for example, Sec. VIII.C.2).
In work on scale-free networks, Aiello et al. [8] assumed
that the maximum degree was approximately the value
above which there is less than one vertex of that degree in
the graph on average, i.e., the point where npk = 1. This
means, for instance, that kmax ∼ n1/α for the power-law
degree distribution pk ∼ k−α. This assumption however
can give misleading results; in many cases there will be
vertices in the network with significantly higher degree
than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming
all degrees to be sampled independently from it, which
may not be true for networks in the real world), the prob-
ability of there being exactly m vertices of degree k and

no vertices of higher degree is
(

n
m

)

pm
k (1−Pk)n−m, where

Pk is the cumulative probability distribution, Eq. (7).
Hence the probability hk that the highest degree on the
graph is k is

hk =

n
∑

m=1

(

n

m

)

pm
k (1 − Pk)n−m

= (pk + 1 − Pk)n − (1 − Pk)n, (10)

and the expected value of the highest degree is kmax =
∑

k khk.
For both small and large values of k, hk tends to zero,

and the sum over k is dominated by the terms close to the
maximum. Thus, in most cases, a good approximation
to the expected value of the maximum degree is given
by the modal value. Differentiating and observing that
dPk/dk = pk, we find that the maximum of hk occurs
when
(

dpk

dk
− pk

)

(pk +1−Pk)n−1 + pk(1−Pk)n−1 = 0, (11)

or kmax is a solution of

dpk

dk
≃ −np2

k, (12)
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where we have made the (fairly safe) assumption that
pk is sufficiently small for k & kmax that npk ≪ 1 and
Pk ≪ 1.

For example, if pk ∼ k−α in its tail, then we find that

kmax ∼ n1/(α−1). (13)

As shown by Cohen et al. [93], a simple rule of thumb that
leads to the same result is that the maximum degree is
roughly the value of k that solves nPk = 1. Note however
that, as shown by Dorogovtsev and Samukhin [129], the
fluctuations in the tail of the degree distribution are very
large for the power-law case.

Dorogovtsev et al. [126] have also shown that Eq. (13)
holds for networks generated using the “preferential at-
tachment” procedure of Barabási and Albert [32] de-
scribed in Sec. VII.B, and a detailed numerical study
of this case has been carried out by Moreira et al. [295].

D. Network resilience

Related to degree distributions is the property of re-
silience of networks to the removal of their vertices, which
has been the subject of a good deal of attention in the
literature. Most of the networks we have been consider-
ing rely for their function on their connectivity, i.e., the
existence of paths leading between pairs of vertices. If
vertices are removed from a network, the typical length of
these paths will increase, and ultimately vertex pairs will
become disconnected and communication between them
through the network will become impossible. Networks
vary in their level of resilience to such vertex removal.

There are also a variety of different ways in which ver-
tices can be removed and different networks show vary-
ing degrees of resilience to these also. For example, one
could remove vertices at random from a network, or one
could target some specific class of vertices, such as those
with the highest degrees. Network resilience is of partic-
ular importance in epidemiology, where “removal” of ver-
tices in a contact network might correspond for example
to vaccination of individuals against a disease. Because
vaccination not only prevents the vaccinated individuals
from catching the disease but may also destroy paths be-
tween other individuals by which the disease might have
spread, it can have a wider reaching effect than one might
at first think, and careful consideration of the efficacy of
different vaccination strategies could lead to substantial
advantages for public health.

Recent interest in network resilience has been sparked
by the work of Albert et al. [15], who studied the ef-
fect of vertex deletion in two example networks, a 6000-
vertex network representing the topology of the Internet
at the level of autonomous systems (see Sec. II.C), and
a 326 000-page subset of the World Wide Web. Both of
the Internet and the Web have been observed to have de-
gree distributions that are approximately power-law in
form [14, 74, 86, 148, 401] (Sec. III.C.1). The authors
measured average vertex–vertex distances as a function
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FIG. 7 Mean vertex–vertex distance on a graph represen-
tation of the Internet at the autonomous system level, as
vertices are removed one by one. If vertices are removed in
random order (squares), distance increases only very slightly,
but if they are removed in order of their degrees, starting with
the highest degree vertices (circles), then distance increases
sharply. After Albert et al. [15].

of number of vertices removed, both for random removal
and for progressive removal of the vertices with the high-
est degrees.14 In Fig. 7 we show their results for the
Internet. They found for both networks that distance
was almost entirely unaffected by random vertex removal,
i.e., the networks studied were highly resilient to this type
of removal. This is intuitively reasonable, since most
of the vertices in these networks have low degree and
therefore lie on few paths between others; thus their re-
moval rarely affects communications substantially. On
the other hand, when removal is targeted at the high-
est degree vertices, it is found to have devastating effect.
Mean vertex–vertex distance increases very sharply with
the fraction of vertices removed, and typically only a few
percent of vertices need be removed before essentially all
communication through the network is destroyed. Al-
bert et al. expressed their results in terms of failure or
sabotage of network nodes. The Internet (and the Web)
they suggest, is highly resilient against the random fail-
ure of vertices in the network, but highly vulnerable to
deliberate attack on its highest-degree vertices.

Similar results to those of Albert et al. were found in-
dependently by Broder et al. [74] for a much larger subset
of the Web graph. Interestingly, however, Broder et al.

14 In removing the vertices with the highest degrees, Albert et al.

recalculated degrees following the removal of each vertex. Most
other authors who have studied this issue have adopted a slightly
different strategy of removing vertices in order of their initial

degree in the network before any removal.
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gave an entirely opposite interpretation of their results.
They found that in order to destroy connectivity in the
Web one has to remove all vertices with degree greater
than five, which seems like a drastic attack on the net-
work, given that some vertices have degrees in the thou-
sands. They thus concluded that the network was very
resilient against targeted attack. In fact however there
is not such a conflict between these results as at first ap-
pears. Because of the highly skewed degree distribution
of the Web, the fraction of vertices with degree greater
than five is only a small fraction of all vertices.

Following these studies, many authors have looked into
the question of resilience for other networks. In gen-
eral the picture seems to be consistent with that seen
in the Internet and Web. Most networks are robust
against random vertex removal but considerably less ro-
bust to targeted removal of the highest-degree vertices.
Jeong et al. [212] have looked at metabolic networks,
Dunne et al. [132, 133] at food webs, Newman et al. [321]
at email networks, and a variety of authors at resilience of
model networks [15, 81, 93, 94, 200], which we discuss in
more detail in later sections of the review. A particularly
thorough study of the resilience of both real-world and
model networks has been conducted by Holme et al. [200],
who looked not only at vertex removal but also at removal
of edges, and considered some additional strategies for
selecting vertices based on so-called “betweenness” (see
Secs. III.G and III.I).

E. Mixing patterns

Delving a little deeper into the statistics of network
structure, one can ask about which vertices pair up with
which others. In most kinds of networks there are at
least a few different types of vertices, and the proba-
bilities of connection between vertices often depends on
types. For example, in a food web representing which
species eat which in an ecosystem (Sec. II.D) one sees
vertices representing plants, herbivores, and carnivores.
Many edges link the plants and herbivores, and many
more the herbivores and carnivores. But there are few
edges linking herbivores to other herbivores, or carni-
vores to plants. For the Internet, Maslov et al. [275]
have proposed that the structure of the network reflects
the existence of three broad categories of nodes: high-
level connectivity providers who run the Internet back-
bone and trunk lines, consumers who are end users of
Internet service, and ISPs who join the two. Again there
are many links between end users and ISPs, and many
between ISPs and backbone operators, but few between
ISPs and other ISPs, or between backbone operators and
end users.

In social networks this kind of selective linking is called
assortative mixing or homophily and has been widely
studied, as it has also in epidemiology. (The term “as-
sortative matching” is also seen in the ecology literature,
particularly in reference to mate choice among animals.)

women

black hispanic white other

m
en

black 506 32 69 26

hispanic 23 308 114 38

white 26 46 599 68

other 10 14 47 32

TABLE III Couples in the study of Catania et al. [85] tabu-
lated by race of either partner. After Morris [302].

A classic example of assortative mixing in social networks
is mixing by race. Table III for example reproduces re-
sults from a study of 1 958 couples in the city of San
Francisco, California. Among other things, the study
recorded the race (self-identified) of study participants in
each couple. As the table shows, participants appear to
draw their partners preferentially from those of their own
race, and this is believed to be a common phenomenon in
many social networks: we tend to associate preferentially
with people who are similar to ourselves in some way.

Assortative mixing can be quantified by an “assorta-
tivity coefficient,” which can be defined in a couple of dif-
ferent ways. Let Eij be the number of edges in a network
that connect vertices of types i and j, with i, j = 1 . . .N ,
and let E be the matrix with elements Eij , as depicted
in Table III. We define a normalized mixing matrix by

e =
E

‖E ‖ , (14)

where ‖x ‖ means the sum of all the elements of the ma-
trix x. The elements eij measure the fraction of edges
that fall between vertices of types i and j. One can also
ask about the conditional probability P (j|i) that my net-
work neighbor is of type j given that I am of type i, which
is given by P (j|i) = eij/

∑

j eij . These quantities satisfy
the normalization conditions

∑

ij

eij = 1,
∑

j

P (j|i) = 1. (15)

Gupta et al. [186] have suggested that assortative mix-
ing be quantified by the coefficient

Q =

∑

i P (i|i) − 1

N − 1
. (16)

This quantity has the desirable properties that it is 1 for
a perfectly assortative network (every edge falls between
vertices of the same type), and 0 for randomly mixed
networks, and it has been quite widely used in the litera-
ture. But it suffers from two shortcomings [318]: (1) for
an asymmetric matrix like the one in Table III, Q has two
different values, depending on whether we put the men
or the women along the horizontal axis, and it is unclear
which of these two values is the “correct” one for the net-
work; (2) the measure weights each vertex type equally,
regardless of how many vertices there are of each type,
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which can give rise to misleading figures for Q in cases
where community size is heterogeneous, as it often is.

An alternative assortativity coefficient that remedies
these problems is defined by [318]

r =
Tr e− ‖ e2 ‖
1 − ‖ e2 ‖ . (17)

This quantity is also 0 in a randomly mixed network
and 1 in a perfectly assortative one. But its value is
not altered by transposition of the matrix and it weights
vertices equally rather than communities, so that small
communities make an appropriately small contribution
to r. For the data of Table III we find r = 0.621.

Another type of assortative mixing is mixing by scalar
characteristics such as age or income. Again it is usually
found that people prefer to associate with others of simi-
lar age and income to themselves, although of course age
and income, like race, may be proxies for other driving
forces, such as cultural differences. Garfinkel et al. [170]
and Newman [318], for example, have analyzed data for
unmarried and married couples respectively to show that
there is strong correlation between the ages of partners.
Mixing by scalar characteristics can be quantified by cal-
culating a correlation coefficient for the characteristic in
question.

In theory assortative mixing according to vector char-
acteristics should also be possible. For example, geo-
graphic location probably affects individuals’ propensity
to become acquainted. Location could be viewed as a
two-vector, with the probability of connection between
pairs of individuals being assortative on the values of
these vectors.

F. Degree correlations

A special case of assortative mixing according to a
scalar vertex property is mixing according to vertex de-
gree, also commonly referred to simply as degree corre-
lation. Do the high-degree vertices in a network asso-
ciate preferentially with other high-degree vertices? Or
do they prefer to attach to low-degree ones? Both situ-
ations are seen in some networks, as it turns out. The
case of assortative mixing by degree is of particular in-
terest because, since degree is itself a property of the
graph topology, degree correlations can give rise to some
interesting network structure effects.

Several different ways of quantifying degree correla-
tions have been proposed. Maslov et al. [274, 275] have
simply plotted the two-dimensional histogram of the de-
grees of vertices at either ends of an edge. They have
shown results for protein interaction networks and the
Internet. A more compact representation of the situa-
tion is that proposed by Pastor-Satorras et al. [331, 401],
who in studies of the Internet calculated the mean de-
gree of the network neighbors of a vertex as a function of
the degree k of that vertex. This gives a one-parameter

curve which increases with k if the network is assorta-
tively mixed. For the Internet in fact it is found to de-
crease with k, a situation we call disassortativity. New-
man [314, 318] reduced the measurement still further to
a single number by calculating the Pearson correlation
coefficient of the degrees at either ends of an edge. This
gives a single number that should be positive for assor-
tatively mixed networks and negative for disassortative
ones. In Table II we show results for a number of different
networks. An interesting observation is that essentially
all social networks measured appear to be assortative,
but other types of networks (information networks, tech-
nological networks, biological networks) appear to be dis-
assortative. It is not clear what the explanation for this
result is, or even if there is any one single explanation.
(Probably there is not.)

G. Community structure

It is widely assumed [363, 409] that most social net-
works show “community structure,” i.e., groups of ver-
tices that have a high density of edges within them, with
a lower density of edges between groups. It is a matter
of common experience that people do divide into groups
along lines of interest, occupation, age, and so forth, and
the phenomenon of assortativity discussed in Sec. III.E
certainly suggests that this might be the case. (It is pos-
sible for a network to have assortative mixing but no
community structure. This can occur, for example, when
there is assortative mixing by age or other scalar quanti-
ties. Networks with this type of structure are sometimes
said to be “stratified.”)

In Fig. 8 we show a visualization of the friendship net-
work of children in a US school taken from a study by
Moody [291].15 The figure was created using a “spring
embedding” algorithm, in which linear springs are placed
between vertices and the system is relaxed using a first-
order energy minimization. We have no special reason
to suppose that this very simple algorithm would reveal
anything particularly useful about the network, but the
network appears to have strong enough community struc-
ture that in fact the communities appear clearly in the
figure. Moreover, when Moody colors the vertices ac-
cording to the race of the individuals they represent, as
shown in the figure, it becomes immediately clear that
one of the principal divisions in the network is by indi-
viduals’ race, and this is presumably what is driving the
formation of communities in this case. (The other princi-
pal division visible in the figure is between middle school
and high school, which are age divisions in the American
education system.)

15 This image does not appear in the paper cited, but it and a
number of other images from the same study can be found on
the Web at http://www.sociology.ohio-state.edu/jwm/.
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FIG. 8 Friendship network of children in a US school. Friendships are determined by asking the participants, and hence are
directed, since A may say that B is their friend but not vice versa. Vertices are color coded according to race, as marked, and
the split from left to right in the figure is clearly primarily along lines of race. The split from top to bottom is between middle
school and high school, i.e., between younger and older children. Picture courtesy of James Moody.

It would be of some interest, and indeed practical im-
portance, were we to find that other types of networks,
such as those those listed in Table II, show similar group
structure also. One might well imagine for example
that citation networks would divide into groups repre-
senting particular areas of research interest, and a good
deal of energy has been invested in studies of this phe-
nomenon [101, 138]. Similarly communities in the World
Wide Web might reflect the subject matter of pages, com-
munities in metabolic, neural, or software networks might
reflect functional units, communities in food webs might
reflect subsystems within ecosystems, and so on.

The traditional method for extracting community
structure from a network is cluster analysis [147], some-
times also called hierarchical clustering.16 In this
method, one assigns a “connection strength” to vertex
pairs in the network of interest. In general each of the
1
2n(n − 1) possible pairs in a network of n vertices is
assigned such a strength, not just those that are con-
nected by an edge, although there are versions of the

16 Not to be confused with the entirely different use of the word
clustering introduced in Sec. III.B.

method where not all pairs are assigned a strength; in
that case one can assume the remaining pairs to have a
connection strength of zero. Then, starting with n ver-
tices with no edges between any of them, one adds edges
in order of decreasing vertex–vertex connection strength.
One can pause at any point in this process and examine
the component structure formed by the edges added so
far; these components are taken to be the communities
(or “clusters”) at that stage in the process. When all
edges have been added, all vertices are connected to all
others, and there is only one community. The entire pro-
cess can be represented by a tree or dendrogram of union
operations between vertex sets in which the communities
at any level correspond to a horizontal cut through the
tree—see Fig. 9.17

Clustering is possible according to many different defi-
nitions of the connection strength. Reasonable choices in-
clude various weighted vertex–vertex distance measures,
the sizes of minimum cut-sets (i.e., maximum flow) [7],

17 For some reason such trees are conventionally depicted with their
“root” at the top and their “leaves” at the bottom, which is not
the natural order of things for most trees.
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FIG. 9 An example of a dendrogram showing the hierarchical
clustering of ten vertices. A horizontal cut through the den-
drogram, such as that denoted by the dotted line, splits the
vertices into a set of communities, five in this case.

and weighted path counts between vertices. Recently a
number of authors have had success with methods based
on “edge betweenness,” which is the count of how many
geodesic paths between vertices run along each edge in
the network [171, 185, 197, 422]. Results appear to show
that, for social and biological networks at least, commu-
nity structure is a common network property, although
some food webs are found not to break up into commu-
nities in any simple way. (Food webs may be different
from other networks in that they appear to be dense:
mean vertex degree increases roughly linearly with net-
work size, rather than remaining constant as it does in
most networks [132, 273]. The same may be true of
metabolic networks also [P. Holme, personal communi-
cation].)

Network clustering should not be confused with the
technique of data clustering, which is a way of detect-
ing groupings of data-points in high-dimensional data
spaces [208]. The two problems do have some com-
mon features however, and algorithms for one can be
adapted for the other, and vice versa. For example, high-
dimensional data can be converted into a network by
placing edges between closely spaced data points, and
then network clustering algorithms can be applied to the
result. On balance, however, one normally finds that al-
gorithms specially devised for data clustering work better
than such borrowed methods, and the same is true in re-
verse.

In the social networks literature, network clustering
has been discussed to a great extent in the context of
so-called block models, [71, 419] which are essentially just
divisions of networks into communities or blocks accord-
ing to one criterion or another. Sociologists have concen-
trated particularly on structural equivalence. Two ver-
tices in a network are said to be structurally equivalent
if they have all of the same neighbors. Exact structural
equivalence is rare, but approximate equivalence can be
used as the basis for a hierarchical clustering method such
as that described above.

Another slightly different question about community
structure, but related to the one discussed here, has been
studied by Flake et al. [158]: if one is given an example
vertex drawn from a known network, can one identify the
community to which it belongs? Algorithmic methods for
answering this question would clearly be of some practical

value for searching networks such as the World Wide Web
and citation networks. Flake et al. give what appears to
be a very successful algorithm, at least in the context of
the Web, based on a maximum flow method.

H. Network navigation

Stanley Milgram’s famous small-world experiment
(Sec. II.A), in which letters were passed from person to
person in an attempt to get them to a desired target
individual, showed that there exist short paths through
social networks between apparently distant individuals.
However, there is another conclusion that can be drawn
from this experiment which Milgram apparently failed to
notice; it was pointed out in 2000 by Kleinberg [238, 239].
Milgram’s results demonstrate that there exist short
paths in the network, but they also demonstrate that
ordinary people are good at finding them. This is, upon
reflection, perhaps an even more surprising result than
the existence of the paths in the first place. The partic-
ipants in Milgram’s study had no special knowledge of
the network connecting them to the target person. Most
people know only who their friends are and perhaps a few
of their friends’ friends. Nonetheless it proved possible
to get a message to a distant target in only a small num-
ber of steps. This indicates that there is something quite
special about the structure of the network. On a random
graph for instance, as Kleinberg pointed out, short paths
between vertices exist but no one would be able to find
them given only the kind of information that people have
in realistic situations. If it were possible to construct arti-
ficial networks that were easy to navigate in the same way
that social networks appear to be, it has been suggested
they could be used to build efficient database structures
or better peer-to-peer computer networks [5, 6, 415] (see
Sec. VIII.C.3).

I. Other network properties

In addition to the heavily studied network properties
of the preceding sections, a number of others have re-
ceived some attention. In some networks the size of the
largest component is an important quantity. For exam-
ple, in a communication network like the Internet the size
of the largest component represents the largest fraction
of the network within which communication is possible
and hence is a measure of the effectiveness of the network
at doing its job [74, 81, 93, 94, 125, 323]. The size of the
largest component is often equated with the graph theo-
retical concept of the “giant component” (see Sec. IV.A),
although technically the two are only the same in the
limit of large graph size. The size of the second-largest
component in a network is also measured sometimes. In
networks well above the density at which a giant compo-
nent first forms, the largest component is expected to be
much larger than the second largest (Sec. IV.A).
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Goh et al. [175] have made a statistical study of the
distribution of the “betweenness centrality” of vertices in
networks. The betweenness centrality of a vertex i is the
number of geodesic paths between other vertices that run
through i [161, 363, 409]. Goh et al. show that between-
ness appears to follow a power law for many networks
and propose a classification of networks into two kinds
based on the exponent of this power law. Betweenness
centrality can also be viewed as a measure of network
resilience [200, 312]—it tells us how many geodesic paths
will get longer when a vertex is removed from the net-
work. Latora and Marchiori [260, 261] have considered
the harmonic mean distance between a vertex and all oth-
ers, which they call the “efficiency” of the vertex. This,
like betweenness centrality, can be viewed as a measure
of network resilience, indicating how much effect on path
length the removal of a vertex will have. A number of
authors have looked at the eigenvalue spectra and eigen-
vectors of the graph Laplacian (or equivalently the adja-
cency matrix) of a network [55, 146, 151], which tells us
about diffusion or vibration modes of the network, and
about vertex centrality [66, 67] (see also the discussion
of network search strategies in Sec. VIII.C.1).

Milo et al. [284, 368] have presented a novel analysis
that picks out recurrent motifs—small subgraphs—from
complete networks. They apply their method to genetic
regulatory networks, food webs, neural networks and the
World Wide Web, finding different motifs in each case.
They have also made suggestions about the possible func-
tion of these motifs within the networks. In regulatory
networks, for instance, they identify common subgraphs
with particular switching functions in the system, such
as gates and other feed-forward logical operations.

IV. RANDOM GRAPHS

The remainder of this review is devoted to our pri-
mary topic of study, the mathematics of model networks
of various kinds. Recent work has focused on models
of four general types, which we treat in four following
sections. In this section we look at random graph mod-
els, starting with the classic Poisson random graph of
Rapoport [346, 378] and Erdős and Rényi [141, 142],
and concentrating particularly on the generalized ran-
dom graphs studied by Molloy and Reed [287, 288] and
others. In Sec. V we look at the somewhat neglected but
potentially very useful Markov graphs and their more
general forms, exponential random graphs and p∗ mod-
els. In Section VI we look at the “small-world model” of
Watts and Strogatz [416] and its generalizations. Then
in Section VII we look at models of growing networks,
particularly the models of Price [344] and Barabási and
Albert [32], and generalizations. Finally, in Section VIII
we look at a number of models of processes occurring on
networks, such as search and navigation processes, and
network transmission and epidemiology.

The first serious attempt at constructing a model for

large and (apparently) random networks was the “ran-
dom net” of Rapoport and collaborators [346, 378], which
was independently rediscovered a decade later by Erdős
and Rényi [141], who studied it exhaustively and rig-
orously, and who gave it the name “random graph” by
which it is most often known today. Where necessary, we
will here refer to it as the “Poisson random graph,” to
avoid confusion with other random graph models. It is
also sometimes called the “Bernoulli graph.” As we will
see in this section, the random graph, while illuminating,
is inadequate to describe some important properties of
real-world networks, and so has been extended in a va-
riety of ways. In particular, the random graph’s Poisson
degree distribution is quite unlike the highly skewed dis-
tributions of Section III.C and Fig. 6. Extensions of the
model to allow for other degree distributions lead to the
class of models known as “generalized random graphs,”
“random graphs with arbitrary degree distributions” and
the “configuration model.”

We here look first at the Poisson random graph, and
then at its generalizations. Our treatment of the Poisson
case is brief. A much more thorough treatment can be
found in the books by Bollobás [63] and Janson et al. [211]
and the review by Karoński [223].

A. Poisson random graphs

Solomonoff and Rapoport [378] and independently
Erdős and Rényi [141] proposed the following extremely
simple model of a network. Take some number n of ver-
tices and connect each pair (or not) with probability p
(or 1−p).18 This defines the model that Erdős and Rényi
called Gn,p. In fact, technically, Gn,p is the ensemble of
all such graphs in which a graph having m edges appears
with probability pm(1 − p)M−m, where M = 1

2n(n − 1)
is the maximum possible number of edges. Erdős and
Rényi also defined another, related model, which they
called Gn,m, which is the ensemble of all graphs hav-
ing n vertices and exactly m edges, each possible graph
appearing with equal probability.19 Here we will dis-
cuss Gn,p, but most of the results carry over to Gn,m in
a straightforward fashion.

Many properties of the random graph are exactly solv-
able in the limit of large graph size, as was shown by

18 Slight variations on the model are possible depending one
whether one allows self-edges or not (i.e., edges that connect a
vertex to itself), but this distinction makes a negligible difference
to the average behavior of the model in the limit of large n.

19 Those familiar with statistical mechanics will notice a similar-
ity between these two models and the so-called canonical and
grand canonical ensembles. In fact, the analogy is exact, and one
can define equivalents of the Helmholtz and Gibbs free energies,
which are generating functions for moments of graph properties
over the distribution of graphs and which are related by a La-
grange transform with respect to the “field” p and the “order
parameter” m.
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Erdős and Rényi in a series of papers in the 1960s [141,
142, 143]. Typically the limit of large n is taken holding
the mean degree z = p(n−1) constant, in which case the
model clearly has a Poisson degree distribution, since the
presence or absence of edges is independent, and hence
the probability of a vertex having degree k is

pk =

(

n

k

)

pk(1 − p)n−k ≃ zke−z

k!
, (18)

with the last approximate equality becoming exact in the
limit of large n and fixed k. This is the reason for the
name “Poisson random graph.”

The expected structure of the random graph varies
with the value of p. The edges join vertices together
to form components, i.e., (maximal) subsets of vertices
that are connected by paths through the network. Both
Solomonoff and Rapoport and also Erdős and Rényi
demonstrated what is for our purposes the most impor-
tant property of the random graph, that it possesses what
we would now call a phase transition, from a low-density,
low-p state in which there are few edges and all compo-
nents are small, having an exponential size distribution
and finite mean size, to a high-density, high-p state in
which an extensive (i.e., O(n)) fraction of all vertices are
joined together in a single giant component, the remain-
der of the vertices occupying smaller components with
again an exponential size distribution and finite mean
size.

We can calculate the expected size of the giant compo-
nent from the following simple heuristic argument. Let
u be the fraction of vertices on the graph that do not
belong to the giant component, which is also the proba-
bility that a vertex chosen uniformly at random from the
graph is not in the giant component. The probability
of a vertex not belonging to the giant component is also
equal to the probability that none of the vertex’s network
neighbors belong to the giant component, which is just
uk if the vertex has degree k. Averaging this expression
over the probability distribution of k, Eq. (18), we then
find the following self-consistency relation for u in the
limit of large graph size:

u =
∞
∑

k=0

pkuk = e−z
∞
∑

k=0

(zu)k

k!
= ez(u−1). (19)

The fraction S of the graph occupied by the giant com-
ponent is S = 1 − u and hence

S = 1 − e−zS . (20)

By an argument only slightly more complex, which we
give in the following section, we can show that the mean
size 〈s〉 of the component to which a randomly chosen
vertex belongs (for non-giant components) is

〈s〉 =
1

1 − z + zS
. (21)

The form of these two quantities is shown in Fig. 10.
Equation (20) is transcendental and has no closed-form
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FIG. 10 The mean component size (solid line), excluding the
giant component if there is one, and the giant component
size (dotted line), for the Poisson random graph, Eqs. (20)
and (21).

solution, but it is easy to see that for z < 1 its only non-
negative solution is S = 0, while for z > 1 there is also
a non-zero solution, which is the size of the giant com-
ponent. The phase transition occurs at z = 1. This is
also the point at which 〈s〉 diverges, a behavior that will
be recognized by those familiar with the theory of phase
transitions: S plays the role of the order parameter in
this transition and 〈s〉 the role of the order-parameter
fluctuations. The corresponding critical exponents, de-
fined by S ∼ (z−1)β and 〈s〉 ∼ |z−1|−γ , take the values
β = 1 and γ = 1. Precisely at the transition, z = 1, there
is a “double jump”—the mean size of the largest compo-
nent in the graph goes as O(n2/3) for z = 1, rather than
O(n) as it does above the transition. The components
at the transition have a power-law size distribution with
exponent τ = 5

2 (or 3
2 if one asks about the component

to which a randomly chosen vertex belongs). We look at
these results in more detail in the next section for the
more general “configuration model.”

The random graph reproduces well one of the prin-
cipal features of real-world networks discussed in Sec-
tion III, namely the small-world effect. The mean num-
ber of neighbors a distance ℓ away from a vertex in a
random graph is zd, and hence the value of d needed to
encompass the entire network is zℓ ≃ n. Thus a typical
distance through the network is ℓ = log n/ log z, which
satisfies the definition of the small-world effect given in
Sec. III.A. Rigorous results to this effect can be found
in, for instance, Refs. 61 and 63. However in almost all
other respects, the properties of the random graph do not
match those of networks in the real world. It has a low
clustering coefficient: the probability of connection of two
vertices is p regardless of whether they have a common
neighbor, and hence C = p, which tends to zero as n−1 in
the limit of large system size [416]. The model also has a
Poisson degree distribution, quite unlike the distributions
in Fig. 6. It has entirely random mixing patterns, no cor-
relation between degrees of adjacent vertices, no commu-
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nity structure, and navigation is impossible on a random
graph using local algorithms [238, 239, 314, 318, 401].
In short it makes a good straw man but is rarely taken
seriously in the modeling of real systems.

Nonetheless, much of our basic intuition about the way
networks behave comes from the study of the random
graph. In particular, the presence of the phase transi-
tion and the existence of a giant component are ideas
that underlie much of the work described in this review.
One often talks about the giant component of a network,
meaning in fact the largest component; one looks at the
sizes of smaller components, often finding them to be
much smaller than the largest component; one sees a gi-
ant component transition in many of the more sophisti-
cated models that we will look at in the coming sections.
All of these are ideas that started with the Poisson ran-
dom graph.

B. Generalized random graphs

Random graphs can be extended in a variety of ways to
make them more realistic. The property of real graphs
that is simplest to incorporate is the property of non-
Poisson degree distributions, which leads us to the so-
called “configuration model.” Here we examine this
model in detail; in Sec. IV.B.3–IV.B.5 we describe fur-
ther generalizations of the random graph to add other
features.

1. The configuration model

Consider the model defined in the following way. We
specify a degree distribution pk, such that pk is the frac-
tion of vertices in the network having degree k. We
choose a degree sequence, which is a set of n values of
the degrees ki of vertices i = 1 . . . n, from this distribu-
tion. We can think of this as giving each vertex i in our
graph ki “stubs” or “spokes” sticking out of it, which are
the ends of edges-to-be. Then we choose pairs of stubs
at random from the network and connect them together.
It is straightforward to demonstrate [287] that this pro-
cess generates every possible topology of a graph with
the given degree sequence with equal probability.20 The
configuration model is defined as the ensemble of graphs
so produced, with each having equal weight.21

20 Each possible graph can be generated
∏

i ki! different ways, since
the stubs around each vertex are indistinguishable. This factor
is a constant for a given degree sequence and hence each graph
appears with equal probability.

21 An alternative model has recently been proposed by Chung and
Lu [88, 89]. In their model, each vertex i is assigned a de-

sired degree ki chosen from the distribution of interest, and then
m = 1

2

∑

i ki edges are placed between vertex pairs (i, j) with
probability proportional to kikj . This model has the disadvan-
tage that the final degree sequence is not in general precisely

Since the 1970s the configuration model has been stud-
ied by a number of authors [46, 47, 60, 88, 89, 268, 287,
288, 323, 425]. An exact condition is known in terms
of pk for the model to possess a giant component [287],
the expected size of that component is known [288], and
the average size of non-giant components both above and
below the transition is known [323], along with a variety
of other properties, such as mean numbers of vertices a
given distance away from a central vertex and typical
vertex–vertex distances [88]. Here we give a brief deriva-
tion of the main results using the generating function for-
malism of Newman et al. [323]. More rigorous treatments
of the same results can be found in Refs. 88, 89, 287, 288.

There are two important points to grasp about the
configuration model. First, pk is, in the limit of large
graph size, the distribution of degrees of vertices in our
graph, but the degree of the vertex we reach by following
a randomly chosen edge on the graph is not given by pk.
Since there are k edges that arrive at a vertex of degree k,
we are k times as likely to arrive at that vertex as we
are at some other vertex that has degree 1. Thus the
degree distribution of the vertex at the end of a randomly
chosen edge is proportional to kpk. In most case, we are
interested in how many edges there are leaving such a
vertex other than the one we arrived along, i.e., in the
so-called excess degree, which is one less than the total
degree of the vertex. In the configuration model, the
excess degree has a distribution qk given by

qk =
(k + 1)pk+1

∑

k kpk
=

(k + 1)pk+1

z
, (22)

where z =
∑

k kpk is, as before, the mean degree in the
network.

The second important point about the model is that
the chance of finding a loop in a small component of the
graph goes as n−1. The number of vertices in a non-giant
component is O(n−1), and hence the probability of there
being more than one path between any pair of vertices
is also O(n−1) for suitably well-behaved degree distribu-
tions.22 This property is crucial to the solution of the
configuration model, but is definitely not true of most
real-world networks (see Sec. III.B). It is an open ques-
tion how much the predictions of the model would change
if we were able to incorporate the true loop structure of
real networks into it.

We now proceed by defining two generating functions

equal to the desired degree sequence, but it has some significant
calculational advantages that make the derivation of rigorous re-
sults easier. It is also a logical generalization of the Poisson
random graph, in a way that the configuration model is not.
Similar approaches have also been taken by a number of other
authors [78, 128, 174].

22 Using arguments similar to those leading to Eq. (31), we can
show that the density of loops in small components will tend to
zero as graph size becomes large provided that z is finite and
〈k2〉 grows slower than n1/2. See also footnote 25.
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for the distributions pk and qk:23

G0(x) =

∞
∑

k=0

pkxk, G1(x) =

∞
∑

k=0

qkxk. (23)

Note that, using Eq. (22), we also find that G1(x) =
G′

0(x)/z, which is occasionally convenient. Then the
generating function H1(x) for the total number of ver-
tices reachable by following an edge satisfies the self-
consistency condition

H1(x) = xG1(H1(x)). (24)

This equation says that when we follow an edge, we find
at least one vertex at the other end (the factor of x on
the right-hand side), plus some other clusters of vertices
(each represented by H1) which are reachable by follow-
ing other edges attached to that one vertex. The num-
ber of these other clusters is distributed according to qk,
hence the appearance of G1. A detailed derivation of
Eq. (24) is given in Ref. 323.

The total number of vertices reachable from a ran-
domly chosen vertex, i.e., the size of the component to
which such a vertex belongs, is generated by H0(x) where

H0(x) = xG0(H1(x)). (25)

The solution of Eqs. (24) and (25) gives us the entire
distribution of component sizes. Mean component size
below the phase transition in the region where there is
no giant component is given by

〈s〉 = H ′
0(1) = 1 +

G′
0(1)

1 − G′
1(1)

= 1 +
z2
1

z1 − z2
, (26)

where z1 = z = 〈k〉 = G′
0(1) is the average number of

neighbors of a vertex and z2 = 〈k2〉 − 〈k〉 = G′
0(1)G′

1(1)
is the average number of second neighbors. We see that
this diverges when z1 = z2, or equivalently when

G′
1(1) = 1. (27)

This point marks the phase transition at which a gi-
ant component first appears. Substituting Eq. (23) into
Eq. (27), we can also write the condition for the phase
transition as

∑

k

k(k − 2)pk = 0. (28)

Indeed, since this sum increases monotonically as edges
are added to the graph, it follows that the giant compo-
nent exists if and only if this sum is positive. A more

23 Traditionally, the independent variable in a generating function
is denoted z, but here we use x to avoid confusion with the mean
degree z.

rigorous derivation of this result has been given by Mol-
loy and Reed [287].

Above the transition there is a giant component which
occupies a fraction S of the graph. If we define u to be
the probability that a randomly chosen edge leads to a
vertex that is not a part of this giant component, then,
by an argument precisely analogous to the one preceding
Eq. (20), this probability must satisfy the self-consistency
condition u = G1(u) and S is given by the solution of

S = 1 − G0(u), u = G1(u). (29)

An equivalent result is derived in Ref. 288. Normally
the equation for u cannot be solved in closed form, but
once the generating functions are known a solution can
be found to any desired level of accuracy by numerical it-
eration. And once the value of S is known, the mean size
of small components above the transition can be found
by subtracting off the giant component and applying the
arguments that led to Eq. (26) again, giving

〈s〉 = 1 +
zu2

[1 − S][1 − G′
1(u)]

. (30)

The result is a behavior qualitatively similar to that of
the Poisson random graph, with a continuous phase tran-
sition at a point defined by Eq. (28), characterized by the
appearance of a giant component and the divergence of
the mean size of non-giant components. The ratio z2/z1

of the mean number of vertices two steps away to the
number one step away plays the role of the independent
parameter governing the transition, as the mean degree z
does in the Poisson case, and one can again define critical
exponents for the transition, which take the same values
as for the Poisson case, β = γ = 1, τ = 5

2 .
We can also find an expression for the clustering co-

efficient, Eq. (3), of the configuration model. A simple
calculation shows that [136, 319]

C =
1

nz1

[

z2

z1

]2

=
z

n

[ 〈k2〉 − 〈k〉
〈k〉2

]2

, (31)

which is the value C = z/n for the Poisson random graph
times an extra factor that depends on z and on the ratio
〈k2〉/〈k〉2. Thus C will normally go to zero as n−1 for
large graphs, but for highly skewed degree distributions,
like some of those in Fig. 6, the factor of 〈k2〉/〈k〉2 can
be quite large, so that C is not necessarily negligible for
the graph sizes seen in empirical studies of networks (see
below).

2. Example: power-law degree distribution

As an example of the application of these results, con-
sider the much studied case of a network with a power-law
degree distribution:

pk =

{

0 for k = 0

k−α/ζ(α) for k ≥ 1,
(32)
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for given constant α. Here ζ(α) is the Riemann ζ-
function, which functions as a normalizing constant.
Substituting into Eq. (23) we find that

G0(x) =
Liα(x)

ζ(α)
, G1(x) =

Liα−1(x)

xζ(α − 1)
, (33)

where Lin(x) is the nth polylogarithm of x. Then
Eq. (27) tells us that the phase transition occurs at the
point

ζ(α − 2) = 2ζ(α − 1), (34)

which gives a critical value for α of αc = 3.4788 . . . Below
this value a giant component exists; above it there is no
giant component. For α < αc, the value of the variable u
of Eq. (29) is

u =
Liα−1(u)

uζ(α − 1)
, (35)

which gives u = 0 below α = 2 and hence S = 1. Thus
the giant component occupies the entire graph below this
point, or more strictly, a randomly chosen vertex belongs
to the giant component with probability 1 in the limit
of large graph size (but see the following discussion of
the clustering coefficient and footnote 25). In the range
2 < α < αc we have a non-zero giant component whose
size is given by Eq. (29). All of these results were first
shown by Aiello et al. [8].

We can also calculate the clustering coefficient for the
power-law case using Eq. (31). For α < 3 we have 〈k2〉 ∼
k3−α
max , where kmax is the maximum degree in the network.

Using Eq. (13) for kmax, Eq. (31) then gives

C ∼ n−β, β =
3α − 7

α − 1
. (36)

This gives interesting behavior for the typical values
2 ≤ α ≤ 3 of the exponent α seen in most networks
(see Table II). If α > 7

3 , then C tends to zero as the
graph becomes large, although it does so slower than the
C ∼ n−1 of the Poisson random graph provided α < 3.
At α = 7

3 , C becomes constant (or logarithmic) in the

graph size, and for α < 7
3 it actually increases with in-

creasing system size.24 Thus for scale-free networks with
smaller exponents α, we would not be surprised to see
quite substantial values of the clustering coefficient, even
if the pattern of connections were completely random.25

24 For sufficiently large networks this implies that the clustering
coefficient will be greater than 1. Physically this means that
there will be more than one edge on average between two vertices
that share a common neighbor.

25 This means in fact that the generating function formalism breaks
down for α < 7

3
, invalidating some of the preceding results for the

power-law graph, since a fundamental assumption of the method
is that there are no short loops in the network. Aiello et al. [8]
get around this problem by assuming that the degree distribution
is cut off at kmax ∼ n1/α (see Sec. III.C.2), which gives C → 0
as n → ∞ for all α > 2. This however is somewhat artificial; in
real power-law networks there is normally no such cutoff.

This mechanism can, for instance, account for much of
the clustering seen in the World Wide Web [319].

3. Directed graphs

Substantially more sophisticated extensions of random
graph models are possible than the simple first exam-
ple given above. In this and the next few sections we
list some of the many possibilities, starting with directed
graphs.

Each vertex in a directed graph has both an in-degree j
and an out-degree k, and the degree distribution there-
fore becomes, in general, a double distribution pjk over
both degrees, as discussed in Sec. III.C. The generat-
ing function for such a distribution is a function of two
variables

G(x, y) =
∑

jk

pjkxjyk. (37)

Each vertex A also belongs to an in-component and an
out-component, which are, respectively, the set of vertices
from which A can be reached, and the set that can be
reached from A, by following directed edges only in their
forward direction. There is also the strongly connected

component, which is the set of vertices which can both
reach and be reached from A. In a random directed graph
with a given degree distribution, the giant in, out, and
strongly connected components can all be shown [323] to
form at a single transition that takes place when

∑

jk

(2jk − j − k)pjk = 0. (38)

Defining generating functions for in- and out-degree sep-
arately and their excess-degree counterparts,

F0(x) = G(x, 1), F1(x) =
1

z

∂G
∂y

∣

∣

∣

∣

y=1

, (39a)

G0(y) = G(1, y), G1(y) =
1

z

∂G
∂x

∣

∣

∣

∣

x=1

, (39b)

the sizes of the giant out-, in-, and strongly connected
components are given by [125, 323]

Sout = 1 − F0(u), (40a)

Sin = 1 − G0(v), (40b)

Sstr = 1 − G(u, 1) − G(1, v) + G(u, v), (40c)

where

u = F1(u), v = G1(v). (41)

4. Bipartite graphs

Another class of generalizations of random graph mod-
els is to networks with more than one type of vertex. One



IV Random graphs 25

of the simplest and most important examples of such a
network is the bipartite graph, which has two types of
vertices and edges running only between vertices of un-
like types. As discussed in Sec. I.A, many social networks
are bipartite, forming what the sociologists call affiliation

networks, i.e., networks of individuals joined by common
membership of groups. In such networks the individ-
uals and the groups are represented by the two vertex
types with edges between them representing group mem-
bership. Networks of CEOs [167, 168], boards of direc-
tors [104, 105, 269], and collaborations of scientists [313]
and film actors [416] are all examples of affiliation net-
works. Some other networks, such as the railway network
studied by Sen et al. [366], are also bipartite, and bipar-
tite graphs have been used as the basis for models of
sexual contact networks [144, 315].

Bipartite graphs have two degree distributions, one
each for the two types of vertices. Since the total num-
ber of edges attached to each type of vertex is the same,
the means µ and ν of the two distributions are related
to the numbers M and N of the types of vertices by
µ/M = ν/N . One can define generating functions as
before for the two types of vertices, generating both the
degree distribution and the excess degree distribution,
and denoted f0(x), f1(x), g0(x), and g1(x). Then for
example we can show that there is a phase transition at
which a giant component appears when f ′

1(1)g′1(1) = 1.
Expressions for the expected size of giant and non-giant
components can easily be derived [323].

In many cases, graphs that are fundamentally bipar-
tite are actually studied by projecting them down onto
one set of vertices or the other—so called “one-mode”
projections. For example, in the study of boards of di-
rectors of companies, it has become standard to look at
board “interlocks.” Two boards are said to be inter-
locked if they share one or more common members, and
the graph of board interlocks is the one-mode projection
of the full board graph onto the vertices representing just
the boards. Many results for these one-mode projections
can also be extracted from the generating function for-
malism. To give one example, the projected networks
do not have a vanishing clustering coefficient C in the
limit of large system size, but instead can be shown to
obey [323]

1

C
− 1 =

(µ2 − µ1)(ν2 − ν1)
2

µ1ν1(2ν1 − 3ν2 + ν3)
, (42)

where µn and νn are the nth moments of the degree dis-
tributions of the two vertex types.

More complicated types of network structure can be
introduced by increasing the number of different types
of vertices beyond two, and by relaxing the patterns of
connection between vertex types. For example, one can
define a model with the type of mixing matrix shown
in Table III, and solve exactly for many of the standard
properties [318, 374].

5. Degree correlations

The type of degree correlations discussed in Sec. III.F
can also be introduced into a random graph model [314].
Extending the formalism of Sec. III.E, we can define the
probability distribution ejk to be the probability that a
randomly chosen edge on a graph connects vertices of
excess degrees j and k. On an undirected graph, this
quantity is symmetric and satisfies

∑

jk

ejk = 1,
∑

j

ejk = qk. (43)

Then the equivalent of Eq. (29) is

S = 1 − p0 −
∞
∑

k=1

pkuk
k−1, uj =

∑

k ejkuk
k

∑

k ejk
, (44)

which must be solved self-consistently for the entire set
{uk} of quantities, one for each possible value of the
excess degree. The phase transition at which a giant
component appears takes place when det(I − m) = 0,
where m is the matrix with elements mjk = kejk/qj .
Matrix conditions of this form appear to be the typical
generalization of the criterion for the appearance of a
giant component to graphs with non-trivial mixing pat-
terns [58, 318, 400].

Two other random graph models for degree correla-
tions are also worth mentioning. One is the exponential
random graph, which we study in more detail in the fol-
lowing section. This is a general model, which has been
applied to the particular problem of degree correlations
by Berg and Lässig [48].

A more specialized model that aims to explain the de-
gree anticorrelations seen in the Internet has been put
forward by Maslov et al. [275]. They suggest that these
anticorrelations are a simple result of the fact that the
Internet graph has at most one edge between any ver-
tex pair. Thus they are led to consider the ensemble of
all networks with a given degree sequence and no dou-
ble edges. (The configuration model, by contrast, allows
double edges, and typical graphs usually have at least a
few such edges, which would disqualify them from mem-
bership in the ensemble of Maslov et al.) The ensemble
with no duplicate edges, it turns out, is hard to treat
analytically [47, 407], so Maslov et al. instead investigate
it numerically, sampling the ensemble at random using a
Monte Carlo algorithm. Their results appear to indicate
that anticorrelations of the type seen in the Internet do
indeed arise as a finite-size effect within this model. (An
alternative explanation of the same observations has been
put forward by Capocci et al. [83], who use a modified
version of the model of Barabási and Albert discussed in
Sec. VII.B to show that correlations can arise through
network growth processes.)
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V. EXPONENTIAL RANDOM GRAPHS AND MARKOV

GRAPHS

The generalized random graph models of the previous
sections effectively address one of the principal shortcom-
ings of early network models such as the Poisson random
graph, their unrealistic degree distribution. However,
they have a serious shortcoming in that they fail to cap-
ture the common phenomenon of transitivity described
in Sec. III.B. The only solvable random graph models
that currently incorporate transitivity are the bipartite
and community-structured models of Sec. IV.B.4 and cer-
tain dual-graph models [345], and these cover rather spe-
cial cases. For general networks we currently have no
idea how to incorporate transitivity into random graph
models; the crucial property of independence between the
neighbors of a vertex is destroyed by the presence of short
loops in a network, invalidating all the techniques used
to derive solutions. Some approximate methods may be
useful in limited ways [317] or perhaps some sort of per-
turbative analysis will prove possible, but no progress has
yet been made in this direction.

The main hope for progress in understanding the
effects of transitivity, which are certainly substantial,
seems to lie in formulating a completely different model
or models, based around some alternative ensemble of
graph structures. In this and the following section we
describe two candidate models, the Markov graphs of
Holland and Leinhardt [194] and Strauss [160, 385] and
the small-world model of Watts and Strogatz [416].

Strauss [385] considers exponential random graphs, also
(in a slightly generalized form) called p∗ models [22, 410],
which are a class of graph ensembles of fixed vertex num-
ber n defined by analogy with the Boltzmann ensemble of
statistical mechanics.26 Let {ǫi} be a set of measurable
properties of a single graph, such as the number of edges,
the number of vertices of given degree, or the number of
triangles of edges in the graph. These quantities play a
role similar to energy in statistical mechanics. And let
{βi} be a set of inverse-temperature or field parameters,
whose values we are free to choose. We then define the
exponential random graph model to be the set of all pos-
sible graphs (undirected in the simplest case) of n vertices
in which each graph G appears with probability

P (G) =
1

Z
exp

(

−
∑

i

βiǫi

)

, (45)

where the partition function Z is

Z =
∑

G

exp

(

−
∑

i

βiǫi

)

. (46)

26 Indeed, in a development typical of this highly interdisciplinary
field, exponential random graphs have recently been rediscov-
ered, apparently quite independently, by physicists [48, 77].

For a sufficiently large set of temperature parameters
{βi}, this definition can encompass any probability distri-
bution over graphs that we desire, although its practical
application requires that the size of the set be limited to
a reasonably small number.

The calculation of the ensemble average of a graph
observable ǫi is then found by taking a suitable derivative
of the (reduced) free energy f = − log Z:

〈ǫi〉 =
∑

G

ǫi(G)P (G) =
1

Z

∑

G

ǫi exp

(

−
∑

i

βiǫi

)

=
∂f

∂βi
. (47)

Thus, the free energy is a generating function for the ex-
pectation values of the observables, in a manner familiar
from statistical field theory. If a particular observable
of interest does not appear in the exponent of (45) (the
“graph Hamiltonian”), then one can simply introduce it,
with a corresponding temperature βi which is set to zero.

While these preliminary developments appear elegant
in principle, little real progress has been made. One
would like to find the appropriate Gaussian field the-
ory for which f can be expressed in closed form, and
then perturb around it to derive a diagrammatic expan-
sion for the effects of higher-order graph operators. In
fact, one can show that the Feynman diagrams for the
expansion are the networks themselves. Unfortunately,
carrying through the entire field-theoretic program has
not proved easy. The general approach one should take
is clear [48, 77], but the mechanics appear intractable
for most cases of interest. Some progress can be made by
restricting ourselves to Markov graphs, which are the sub-
set of graphs in which the presence or absence of an edge
between two vertices in the graph is correlated only with
those edges that share one of the same two vertices—
edge pairs that are disjoint (have no vertices in common)
are uncorrelated. Overall however, the question of how
to carry out calculations in exponential random graph
ensembles is an open one.

In the absence of analytic progress on the model, there-
fore, researchers have turned to Monte Carlo simulation,
a technique to which the exponential random graph lends
itself admirably. Once the values of the parameters {βi}
are specified, the form (45) of P (G) makes generation
of graphs correctly sampled from the ensemble straight-
forward using a Metropolis–Hastings type Markov chain
method. One defines an ergodic move-set in the space
of graphs with given n, and then repeatedly generates
moves from this set, accepting them with probability

p =

{

1 if P (G′) > P (G)

P (G′)/P (G) otherwise,
(48)

and rejecting them with probability 1 − p, where G′ is
the graph after performance of the move. Because of
the particular form, Eq. (45), assumed for P (G), this
acceptance probability is particularly simple to calculate:
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P (G′)

P (G)
= exp

(

−
∑

i

βi[ǫ
′
i − ǫi]

)

. (49)

This expression is independent of the value of the parti-
tion function and its evaluation involves calculating only
the differences ǫ′i − ǫi of the energy-like graph proper-
ties ǫi, which for local move-sets and local properties
can often be accomplished in time independent of graph
size. Suitable move-sets are: (a) addition and removal of
edges between randomly chosen vertex pairs for the case
of variable edge numbers; (b) movement of edges ran-
domly from one place to another for the case of fixed edge
numbers but variable degree sequence; (c) edge swaps
of the form {(v1, w1), (v2, w2)} → {(v1, v2), (w1, w2)} for
the case of fixed degree sequence, where (v1, w1) denotes
an edge from vertex v1 to vertex w1. Monte Carlo al-
gorithms of this type are straightforward to implement
and appear to converge quickly allowing us to study quite
large graphs.

There is however, one unfortunate pathology of the
exponential random graph that plagues numerical work,
and particularly affects Markov graphs as they are used
to model transitivity. If, for example, we include a term
in the graph Hamiltonian that is linear in the number
of triangles in the graph, with an accompanying positive
temperature favoring these triangles, then the model has
a tendency to “condense,” forming regions of the graph
that are essentially complete cliques—subsets of vertices
within which every possible edge exists. It is easy to
see why the model shows this behavior: cliques have the
largest number of triangles for the number of edges they
contain, and are therefore highly energetically favored,
while costing the system a minimum in entropy by virtue
of leaving the largest possible number of other edges free
to contribute to the (presumably extensive) entropy of
the rest of the graph. Networks in the real world however
do not seem to have this sort of “clumpy” transitivity—
regions of cliquishness contributing heavily to the clus-
tering coefficient, separated by other regions with few
triangles. It is not clear how this problem is to be cir-
cumvented, although for higher temperatures (lower val-
ues of the parameters {βi}) it is less problematic, since
higher temperatures favor entropy over energy.

Another area in which some progress has been made is
in techniques for extracting appropriate values for the
temperature parameters in the model from real-world
network data. Procedures for doing this have been partic-
ularly important for social network applications. Param-
eters so extracted can be fed back into the Monte Carlo
graph generation methods described above to generate
model graphs which have similar statistical properties to
their real-world counterparts and which can be used for
hypothesis testing or as a substrate for further network
simulations. Reviews of parameter extraction techniques
can be found in Refs. 22 and 372.

VI. THE SMALL-WORLD MODEL

A less sophisticated but more tractable model of a
network with high transitivity is the small-world model

proposed by Watts and Strogatz [411, 412, 416].27 As
touched upon in Sec. III.E, networks may have a geo-
graphical component to them; the vertices of the network
have positions in space and in many cases it is reasonable
to assume that geographical proximity will play a role in
deciding which vertices are connected to which others.
The small-world model starts from this idea by positing
a network built on a low-dimensional regular lattice and
then adding or moving edges to create a low density of
“shortcuts” that join remote parts of the lattice to one
another.

Small-world models can be built on lattices of any di-
mension or topology, but the best studied case by far is
one-dimensional one. If we take a one-dimensional lattice
of L vertices with periodic boundary conditions, i.e., a
ring, and join each vertex to its neighbors k or fewer lat-
tice spacings away, we get a system like Fig. 11a, with Lk
edges. The small-world model is then created by taking
a small fraction of the edges in this graph and “rewiring”
them. The rewiring procedure involves going through
each edge in turn and, with probability p, moving one
end of that edge to a new location chosen uniformly at
random from the lattice, except that no double edges or
self-edges are ever created. This process is illustrated in
Fig. 11b.

The rewiring process allows the small-world model
to interpolate between a regular lattice and something
which is similar, though not identical (see below), to a
random graph. When p = 0, we have a regular lattice.
It is not hard to show that the clustering coefficient of
this regular lattice is C = (3k− 3)/(4k− 2), which tends
to 3

4 for large k. The regular lattice, however, does not
show the small-world effect. Mean geodesic distances be-
tween vertices tend to L/4k for large L. When p = 1,
every edge is rewired to a new random location and the
graph is almost a random graph, with typical geodesic
distances on the order of log L/ log k, but very low clus-
tering C ≃ 2k/L (see Sec. IV.A). As Watts and Stro-
gatz showed by numerical simulation, however, there ex-
ists a sizable region in between these two extremes for
which the model has both low path lengths and high
transitivity—see Fig. 12.

The original model proposed by Watts and Strogatz is
somewhat baroque. The fact that only one end of each
chosen edge is rewired, not both, that no vertex is ever
connected to itself, and that an edge is never added be-
tween vertex pairs where there is already one, makes it
quite difficult to enumerate or average over the ensemble

27 An equivalent model was proposed by Ball et al. [28] some years
earlier, as a model of the spread of disease between households,
but appears not to have been widely adopted.
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(c)(b)(a)

FIG. 11 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or fewer lattice spacing, with
k = 3 in this case. (b) The small-world model [412, 416] is created by choosing at random a fraction p of the edges in the graph
and moving one end of each to a new location, also chosen uniformly at random. (c) A slight variation on the model [289, 324]
in which shortcuts are added randomly between vertices, but no edges are removed from the underlying one-dimensional lattice.

of graphs. For the purposes of mathematical treatment,
the model can be simplified considerably by rewiring both
ends of each chosen edge, and by allowing both double
and self edges. This results in a system that genuinely in-
terpolates between a regular lattice and a random graph.
Another variant of the model that has become popular
was proposed independently by Monasson [289] and by
Newman and Watts [324]. In this variant, no edges are
rewired. Instead “shortcuts” joining randomly chosen
vertex pairs are added to the low-dimensional lattice—
see Fig. 11c. The parameter p governing the density of
these shortcuts is defined so as to make it as similar as
possible to the parameter p in the first version of the
model: p is defined as the probability per edge on the
underlying lattice, of there being a shortcut anywhere in
the graph. Thus the mean total number of shortcuts is
Lkp and the mean degree is 2Lk(1 + p). This version
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FIG. 12 The clustering coefficient C and mean vertex–vertex
distance ℓ in the small-world model of Watts and Stro-
gatz [416] as a function of the rewiring probability p. For
convenience, both C and ℓ are divided by their maximum val-
ues, which they assume when p = 0. Between the extremes
p = 0 and p = 1, there is a region in which clustering is high
and mean vertex–vertex distance is simultaneously low.

of the model has the desirable property that no vertices
ever become disconnected from the rest of the network,
and hence the mean vertex–vertex distance is always for-
mally finite. Both this version and the original have been
studied at some length in the mathematical and physical
literature [309].

A. Clustering coefficient

The clustering coefficient for both versions of the small-
world model can be calculated relatively easily. For the
original version, Barrat and Weigt [40] showed that

C =
3(k − 1)

2(2k − 1)
(1 − p)3, (50)

while for the version without rewiring, Newman [316]
showed that

C =
3(k − 1)

2(2k − 1) + 4kp(p + 2)
. (51)

B. Degree distribution

The degree distribution of the small-world model does
not match most real-world networks very well, although
this is not surprising, since this was not a goal of the
model in the first place. For the version without rewiring,
each vertex has degree at least 2k, for the edges of the
underlying regular lattice, plus a binomially distributed
number of shortcuts. Hence the probability pj of having
degree j is

pj =

(

L

j − 2k

)[

2kp

L

]j−2k[

1 − 2kp

L

]L−j+2k

(52)

for k ≥ 2k, and pj = 0 for j < 2k. For the rewired
version of the model, the distribution has a lower cutoff
at k rather than 2k, and is rather more complicated. The
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full expression is [40]

pj =

min(j−k,k)
∑

n=0

(

k

n

)

(1 − p)npk−n (pk)j−k−n

(j − k − n)!
e−pk (53)

for j ≥ k, and pj = 0 for j < k.

C. Average path length

By far the most attention has been focused on the av-
erage geodesic path length of the small-world model. We
denote this quantity ℓ. We do not have any exact solution
for the value of ℓ yet, but a number of partial exact re-
sults are known, including scaling forms, as well as some
approximate solutions for its behavior as a function of
the model’s parameters.

In the limit p → 0, the model is a “large world”—
the typical path length tends to ℓ = L/4k, as dis-
cussed above. Small-world behavior, by contrast, is typ-
ically characterized by logarithmic scaling ℓ ∼ log L (see
Sec. III.A), which we see for large p, where the model
becomes like a random graph. In between these two lim-
its there is presumably some sort of crossover from large-
to small-world behavior. Barthélémy and Amaral [42]
conjectured that ℓ satisfies a scaling relation of the form

ℓ = ξg(L/ξ), (54)

where ξ is a correlation length that depends on p, and
g(x) an unknown but universal scaling function that de-
pends only on system dimension and lattice geometry,
but not on L, ξ or p. The variation of ξ defines the
crossover from large- to small-world behavior; the known
behavior of ℓ for small and large L, can be reproduced
by having ξ diverge as p → 0 and

g(x) ∼
{

x for x ≫ 1

log x for x ≪ 1.
(55)

Barthélémy and Amaral conjectured that ξ diverges as
ξ ∼ p−τ for small p, where τ is a constant exponent.
These conjectures have all turned out to be correct.
Barthélémy and Amaral also conjectured on the basis
of numerical results that τ = 2

3 , which turned out not to
be correct [39, 41, 324].

Equation (54) has been shown to be correct by a renor-
malization group treatment of the model [324]. From this
treatment one can derive a scaling form for ℓ of

ℓ =
L

k
f(Lkp), (56)

which is equivalent to (54), except for a factor of k, if ξ =
1/kp and g(x) = xf(x). Thus we immediately conclude
that the exponent τ defined by Barthélémy and Amaral
is 1, as was also argued by Barrat [39] using a mixture of
scaling ideas and numerical simulation.

The scaling form (56) shows that we can go from the
large-world regime to the small-world one either by in-
creasing p or by increasing the system size L. Indeed, the
crucial scaling variable Lkp that appears as the argument
of the scaling function is simply equal to the mean num-
ber of shortcuts in the model, and hence ℓ as a fraction
of system size depends only on how many shortcuts there
are, for given k.

Making any further progress has proved difficult. We
would like to be able to calculate the scaling func-
tion f(x), but this turns out not to be easy. The cal-
culation is possible, though complicated, for a variant
model in which there are no short cuts but random sites
are connected to a single central “hub” vertex [115]. But
for the normal small-world model no exact solution is
known, although some additional exact scaling forms
have been found [19, 253]. Accurate numerical mea-
surements have been carried out for system sizes up to
about L = 107 [39, 42, 109, 306, 324, 325] and quite
good results can be derived using series expansions [325].
A mean-field treatment of the model has been given by
Newman et al. [322], which shows that f(x) is approxi-
mately

f(x) =
1

2
√

x2 + 2x
tanh−1

√

x

x + 2
, (57)

and Barbour and Reinert [38] have further shown that
this result is the leading order term in an expansion for ℓ
that can be used to derive more accurate results for f(x).

The primary use of the small-world model has been
as a substrate for the investigation of various processes
taking place on graphs, such as percolation [294, 325,
326, 360], coloring [388, 406], coupled oscillators [37,
201, 416], iterated games [1, 135, 231, 416], diffusion
processes [150, 173, 216, 258, 259, 289, 329], epidemic
processes [28, 235, 255, 293, 427, 428], and spin mod-
els [40, 191, 202, 256, 337, 429]. Some of this work is
discussed further in Section VIII.

A few of variations of the small-world model have been
proposed. Several authors have studied the model in di-
mension higher than one [109, 306, 324, 325, 326]—the
results are qualitatively similar to the one-dimensional
case and follow the expected scaling laws. Various au-
thors have also studied models in which shortcuts prefer-
entially join vertices that are close together on the under-
lying lattice [215, 238, 239, 307, 365]. Of particular note
is the work by Kleinberg [238, 239], which is discussed in
Sec. VIII.C.3. Rozenfeld et al. [359] and independently
Warren et al. [408] have studied models in which there
are only shortcuts and no underlying lattice, but the sig-
nature of the lattice still remains, guiding shortcuts to
fall with higher probability between more closely spaced
vertices (see Sec. VIII.A).
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VII. MODELS OF NETWORK GROWTH

All of the models discussed so far take observed prop-
erties of real-world networks, such as degree sequences
or transitivity, and attempt to create networks that in-
corporate those properties. The models do not however
help us to understand how networks come to have those
properties in the first place. In this section we exam-
ine a class of models whose primary goal is to explain
network properties. In these models, the networks typi-
cally grow by the gradual addition of vertices and edges
in some manner intended to reflect growth processes that
might be taking place on the real networks, and it is these
growth processes that lead to the characteristic structural
features of the network.28 For example, a number of au-
thors [30, 102, 198, 217, 220, 242, 397, 398, 411, 412] have
studied models of network transitivity that make use of
“triadic closure” processes. In these models, edges are
added to the network preferentially between pairs of ver-
tices that have another third vertex as a common neigh-
bor. In other words, edges are added so as to complete
triangles, thereby increasing the denominator in Eq. (3)
and so increasing the amount of transitivity in the net-
work. (There is some empirical evidence from collabora-
tion networks in support of this mechanism [310].)

But the best studied class of network growth models
by far, and the class on which we concentrate primarily in
this section, is the class of models aimed at explaining the
origin of the highly skewed degree distributions discussed
in Sec. III.C. Indeed these models are some of the best
studied in the whole of the networks literature, having
been the subject of an extraordinary number of papers
in the last few years. In this section we describe first
the archetypal model of Price [344], which was based in
turn on previous work by Simon [370]. Then we describe
the highly influential model of Barabási and Albert [32],
which has been the driving force behind much of the re-
cent work in this area. We also describe a number of
variations and generalizations of these models due to a
variety of authors.

A. Price’s model

As discussed in Sec. III.C, the physicist-turned-
historian-of-science Derek de Solla Price described in
1965 probably the first example of what would now be
called a scale-free network; he studied the network of ci-
tations between scientific papers and found that both in-
and out-degrees (number of times a paper has been cited
and number of other papers a paper cites) have power-law

28 An alternative and intriguing idea, which has so far not been in-
vestigated in much depth, is that features such as power-law de-
gree distributions may arise through network optimization. See,
for instance, Refs. 29, 156, 166, 395, 417, 418.

distributions [343]. Apparently intrigued by the appear-
ance of these power laws, Price published another paper
some years later [344] in which he offered what is now the
accepted explanation for power-law degree distributions.
Like many after him, his work built on ideas developed in
the 1950s by Herbert Simon [69, 370], who showed that
power laws arise when “the rich get richer,” when the
amount you get goes up with the amount you already
have. In sociology this is referred to as the Matthew ef-

fect [282], after the biblical edict, “For to every one that
hath shall be given. . . ” (Matthew 25:29).29 Price called
it cumulative advantage. Today it is usually known un-
der the name preferential attachment, coined by Barabási
and Albert [32].

The important contribution of Price’s work was to take
the ideas of Simon and apply them to the growth of a net-
work. Simon was thinking of wealth distributions in his
early work, and although he later gave other applications
of his ideas, none of them were to networked systems.
Price appears to have been the first to discuss cumulative
advantage specifically in the context of networks, and in
particular in the context of the network of citations be-
tween papers and its in-degree distribution. His idea was
that the rate at which a paper gets new citations should
be proportional to the number that it already has. This
is easy to justify in a qualitative way. The probability
that one comes across a particular paper whilst reading
the literature will presumably increase with the number
of other papers that cite it, and hence the probability
that you cite it yourself in a paper that you write will
increase similarly. The same argument can be applied
to other networks also, such as the Web. It is not clear
that the dependence of citation probability on previous
citations need be strictly linear, but certainly this is the
simplest assumption one could make and it is the one
that Price, following Simon, adopts. We now describe in
detail Price’s model and his exact solution of it, which
uses what we would now call a master-equation or rate-

equation method.

Consider a directed graph of n vertices, such as a ci-
tation network. Let pk be the fraction of vertices in the
network with in-degree k, so that

∑

k pk = 1. New ver-
tices are continually added to the network, though not
necessarily at a constant rate. Each added vertex has a
certain out-degree—the number of papers that it cites—
and this out-degree is fixed permanently at the creation
of the vertex. The out-degree may vary from one vertex
to another, but the mean out-degree, which is denoted m,

29 In fact, this is really only a half of the Matthew effect, since the
same verse continues, “. . . but from him that hath not, that also
which he seemeth to have shall be taken away.” In the processes
studied by Simon and Price nothing is taken away from anyone.
The full Matthew effect, with both the giving and the taking
away, corresponds more closely to the Polya urn process than to
Price’s cumulative advantage. Price points out this distinction
in his paper [344].
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is a constant over time.30 (Certain conditions on the dis-
tribution of m about the mean must hold; see for instance
Ref. 134.) The value m is also the mean in-degree of the
network:

∑

k kpk = m. Since the out-degree can vary be-
tween vertices, m can take non-integer values, including
values less than 1.

In the simplest form of cumulative advantage process
the probability of attachment of one of our new edges to
an old vertex—i.e., the probability that a newly appear-
ing paper cites a previous paper—is simply proportional
to the in-degree k of the old vertex. This however imme-
diately gives us a problem, since each vertex starts with
in-degree zero, and hence would forever have zero proba-
bility of gaining new edges. To circumvent this problem,
Price suggests that the probability of attachment to a
vertex should be proportional to k + k0, where k0 is a
constant. Although he discusses the case of general k0,
all his mathematical developments are for k0 = 1, which
he justifies for the citation network by saying that one
can consider the initial publication of a paper to be its
first citation (of itself by itself). Thus the probability of
a new citation is proportional to k + 1.

The probability that a new edge attaches to any of the
vertices with degree k is thus

(k + 1)pk
∑

k(k + 1)pk
=

(k + 1)pk

m + 1
. (58)

The mean number of new citations per vertex added is
simply m, and hence the mean number of new citations to
vertices with current in-degree k is (k + 1)pkm/(m + 1).
The number npk of vertices with in-degree k decreases
by this amount, since the vertices that get new citations
become vertices of degree k + 1. However, the number
of vertices of in-degree k increases because of influx from
the vertices previously of degree k−1 that have also just
acquired a new citation, except for vertices of degree zero,
which have an influx of exactly 1. If we denote by pk,n

the value of pk when the graph has n vertices, then the
net change in npk per vertex added is

(n + 1)pk,n+1 − npk,n =
[

kpk−1,n − (k + 1)pk,n

] m

m + 1
,

(59)
for k ≥ 1, or

(n + 1)p0,n+1 − np0,n = 1 − p0,n
m

m + 1
, (60)

for k = 0. Looking for stationary solutions pk,n+1 =

30 Elsewhere in this review we have used the letter z to denote mean
degree. While it would make sense in many ways to use the same
notation here, we have opted instead to change notation and
use m because this is the notation used in most of the recent
papers on growing networks. The reader should bear in mind
therefore that m is not, as previously, the total number of edges
in the graph.

pk,n = pk, we then find

pk =

{ [

kpk−1 − (k + 1)pk

]

m/(m + 1) for k ≥ 1,

1 − p0m/(m + 1) for k = 0.
(61)

Rearranging, we find p0 = (m + 1)/(2m + 1) and pk =
pk−1k/(k + 2 + 1/m) or

pk =
k(k − 1) . . . 1

(k + 2 + 1/m) . . . (3 + 1/m)
p0

= (1 + 1/m)B(k + 1, 2 + 1/m), (62)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is Legendre’s beta-
function, which goes asymptotically as a−b for large a
and fixed b, and hence

pk ∼ k−(2+1/m). (63)

In other words, in the limit of large n, the degree distri-
bution has a power-law tail with exponent α = 2 + 1/m.
This will typically give exponents in the interval between
2 and 3, which is in agreement with the values seen in
real-world networks—see Table II. (Bear in mind that
the mean degree m need not take an integer value, and
can be less than 1.) Price gives a comparison between his
model and citation network data from the Science Cita-
tion Index, making a plausible case that the parameter m
has about the right value to give the observed power-law
citation distribution.

Note that Price’s assumption that the offset parameter
k0 = 1 can be justified a posteriori because the value of
the exponent does not depend on k0. (This contrasts with
the behavior of the model of Barabási and Albert [32],
which is discussed in Sec. VII.C.) The argument above
is easily generalized to the case k0 6= 1, and we find that

pk =
m + 1

m(k0 + 1) + 1

B(k + k0, 2 + 1/m)

B(k0, 2 + 1/m)
, (64)

and hence α = 2 + 1/m again for large k and fixed k0.
See Sec. VII.C and Refs. 123 and 245 for further dis-
cussion of the effects of offset parameters. Thorough re-
views of master-equation methods for grown graph mod-
els have been given by Dorogovtsev and Mendes [120]
and Krapivsky and Redner [248].

The analytic solution above was the extent of the
progress Price was able to make in understanding his
model network. Unlike present-day authors, for instance,
he did not have computational resources available to sim-
ulate the model, and so could give no numerical results.
In recent years, a great deal more progress has been made
in understanding cumulative advantage processes and the
growth of networks. Most of this work has been carried
out using a slightly different model, however, the model
of Barabási and Albert, which we now describe.

B. The model of Barabási and Albert

The mechanism of cumulative advantage proposed by
Price [344] is now widely accepted as the probable ex-
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planation for the power-law degree distribution observed
not only in citation networks but in a wide variety of
other networks also, including the World Wide Web, col-
laboration networks, and possibly the Internet and other
technological networks also. The work of Price himself,
however, is largely unknown in the scientific community,
and cumulative advantage did not achieve currency as
a model of network growth until its rediscovery some
decades later by Barabási and Albert [32], who gave it
the new name of preferential attachment. In a highly
influential paper published—like Price’s first paper on
citation networks—in the journal Science, they proposed
a network growth model of the Web that is very similar
to Price’s, but with one important difference.

The model of Barabási and Albert [32, 33] is the same
as Price’s in having vertices that are added to the net-
work with degree m, which is never changed thereafter,
the other end of each edge being attached to (“citing”)
another vertex with probability proportional to the de-
gree of that vertex. The difference between the two mod-
els is that in the model of Barabási and Albert edges are
undirected, so there is no distinction between in- and out-
degree. This has pros and cons. On the one hand, both
citation networks and the Web are in reality directed
graphs, so any undirected graph model is missing a cru-
cial feature of these networks. On the other hand, by
ignoring the directed nature of the network, the model of
Barabási and Albert gets around Price’s problem of how a
paper gets its first citation or a Web site gets its first link.
Each vertex in the graph appears with initial degree m,
and hence automatically has a non-zero probability of re-
ceiving new links. (Note that for the model to be solvable
using the master-equation approach as demonstrated be-
low, the number of edges added with each vertex must
be exactly m—it cannot vary around the mean value as
in the model of Price. Hence it must also be an integer
and must always have a value m ≥ 1.)

Another way of looking at the model of Barabási and
Albert is to say the network is directed, with edges go-
ing from the vertex just added to the vertex that it is
citing or linking to, but that the probability of attach-
ment of a new edge is proportional to the sum of the in-
and out-degrees of the vertex. This however is perhaps
a less satisfactory viewpoint, since it is difficult to con-
jure up a mechanism, either for citation networks or the
Web, which would give rise to such an attachment pro-
cess. Overall, perhaps the best way to look at the model
of Barabási and Albert is as a model that sacrifices some
of the realism of Price’s model in favor of simplicity. As
we will see, the main result of this sacrifice is that the
model produces only a single value α = 3 for the ex-
ponent governing the degree distribution, although this
has been remedied in later generalizations of the model,
which we discuss in Sec. VII.C.

The model of Barabási and Albert can be solved ex-

actly in the limit of large graph size31 using the master-
equation method and such a solution has been given by
Krapivsky et al. [249] and independently by Dorogovt-
sev et al. [123]. (Barabási and Albert themselves gave an
approximate solution based on the assumption that all
vertices of the same age have the same degree [32, 33].
The method of Krapivsky et al. and Dorogovtsev et al.

does not make this assumption.)
The probability that a new edge attaches to a vertex

of degree k—the equivalent of Eq. (58)—is

kpk
∑

k kpk
=

kpk

2m
. (65)

The sum in the denominator is equal to the mean degree
of the network, which is 2m, since there are m edges for
each vertex added, and each edge, being now undirected,
contributes two ends to the degrees of network vertices.
Now the mean number of vertices of degree k that gain
an edge when a single new vertex with m edges is added
is m × kpk/2m = 1

2kpk, independent of m. The num-
ber npk of vertices with degree k thus decreases by this
same amount, since the vertices that get new edges be-
come vertices of degree k + 1. The number of vertices
of degree k also increases because of influx from vertices
previously of degree k − 1 that have also just acquired
a new edge, except for vertices of degree m, which have
an influx of exactly 1. If we denote by pk,n the value of
pk when the graph has n vertices, then the net change in
npk per vertex added is

(n + 1)pk,n+1 − npk,n = 1
2 (k − 1)pk−1,n − 1

2kpk,n, (66)

for k > m, or

(n + 1)pm,n+1 − npm,n = 1 − 1
2mpm,n, (67)

for k = m, and there are no vertices with k < m.
Looking for stationary solutions pk,n+1 = pk,n = pk as

before, the equations equivalent to Eq. (61) for the model
are

pk =

{

1
2 (k − 1)pk−1 − 1

2kpk for k > m,

1 − 1
2mpm for k = m.

(68)

Rearranging for pk once again, we find pm = 2/(m + 2)
and pk = pk−1(k − 1)/(k + 2), or [123, 249]

pk =
(k − 1)(k − 2) . . .m

(k + 2)(k + 1) . . . (m + 3)
pm =

2m(m + 1)

(k + 2)(k + 1)k
.

(69)
In the limit of large k this gives a power law degree
distribution pk ∼ k−3, with only the single fixed expo-
nent α = 3. A more rigorous derivation of this result has
been given by Bollobás et al. [65].

31 The behavior of the model at finite system sizes has been inves-
tigated by Krapivsky and Redner [246].
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In addition to the basic solution of the model for its
degree distribution, many other results are now known
about the model of Barabási and Albert. Krapivsky and
Redner [245] have conducted a thorough analytic study
of the model, showing among other things that the model
has two important types of correlations. First, there is a
correlation between the age of vertices and their degrees,
with older vertices having higher mean degree. For the
case m = 1, for instance, they find that the probability
distribution of the degree of a vertex i with age a, mea-
sured as the number of vertices added after vertex i, is

pk(a) =

√

1 − a

n

(

1 −
√

1 − a

n

)k

. (70)

Thus for specified age a the distribution is exponen-
tial, with a characteristic degree scale that diverges as
(1 − a/n)−1/2 as a → n; the earliest vertices added have
substantially higher expected degree than those added
later, and the overall power-law degree distribution of
the whole graph is a result primarily of the influence of
these earliest vertices.

This correlation between degree and age has been used
by Adamic and Huberman [4] to argue against the model
as a model of the World Wide Web—they show using ac-
tual Web data that there is no such correlation in the real
Web. This does not mean that preferential attachment
is not the explanation for power-law degree distributions
in the Web, only that the dynamics of the Web must be
more complicated than this simple model to account also
for the observed age distribution [35]. An extension of the
model that may explain why age and degree are not cor-
related has been given by Bianconi and Barabási [52, 53]
and is discussed in Sec. VII.C.

Second, Krapivsky and Redner [245] show that there
are correlations between the degrees of adjacent vertices
in the model, of the type discussed in Sec. III.F. Looking
again at the special case m = 1, they show that the
quantity ejk defined in Sec. IV.B.5, which is the number
of edges that connect vertex pairs with (excess) degrees
j and k, is

ejk =
4j

(k + 1)(k + 2)(j + k + 2)(j + k + 3)(j + k + 4)

+
12j

(k + 1)(j + k + 1)(j + k + 2)(j + k + 3)(j + k + 4)
.

(71)

Note that this quantity is asymmetric. This is because
Krapivsky and Redner regard the network as being di-
rected, with edges leading from the vertex just added
to the pre-existing vertex to which they attach. In the
expression above, however, j and k are total degrees of
vertices, not in- and out-degree.

Although (71) shows that the vertices of the model
have non-trivial correlations, the correlation coefficient of
the degrees of adjacent vertices in the network is asymp-
totically zero as n → ∞ [314]. This is because the corre-

lation coefficient measures correlations relative to a linear
model, and no such correlations are present in this case.

One of the main advantages that we have today over
early workers such as Price is the widespread availabil-
ity of powerful computer resources. Quite a number of
numerical studies have been performed of the model of
Barabási and Albert, which would have been entirely im-
possible thirty years earlier. It is worth mentioning here
how simulations of these types of models are conducted.
We consider the Barabási–Albert model. The exact same
ideas can be applied to Price’s model also.

A naive simulation of the preferential attachment pro-
cess is quite inefficient. In order to attach to a vertex in
proportion to its degree we normally need to examine the
degrees of all vertices in turn, a process that takes O(n)
time for each step of the algorithm. Thus the generation
of a graph of size n would take O(n2) steps overall. A
much better procedure, which works in O(1) time per
step and O(n) time overall, is the following. We main-
tain a list, in an integer array for instance, that includes
ki entries of value i for each vertex i. Thus, for exam-
ple, a network of four vertices labeled 1, 2, 3, and 4 with
degrees 2, 1, 1, and 3, respectively could be represented
by the array (1, 1, 2, 3, 4, 4, 4). Then in order to choose
a target vertex for a new edge with the correct preferen-
tial attachment, one simply chooses a number at random
from this list. Of course, the list must be updated as
new vertices and edges are added, but this is simple. No-
tice that there is no requirement that the items in the
list be in any particular order. If we add a new vertex 5
to our network above, for example, with degree 1 and
one edge that connects it to vertex 2, the list can be up-
dated by adding new items to the end, so that it reads
(1, 1, 1, 2, 3, 4, 4, 4, 5, 2). And so forth. Models such as
Price’s, in which there is an offset k0 in the probability
of selecting a vertex (so that the total probability goes as
k + k0), can be treated with the same method—the off-
set merely means that with some probability one chooses
a vertex with preferential attachment and otherwise one
chooses it uniformly from the set of all vertices.

An alternative method for simulating the model of
Barabási and Albert has been described by Krapivsky
and Redner [245]. Their method uses the network struc-
ture itself in place of the list of vertices above and works
as follows. The model is regarded as a directed network
in which there are exactly m edges running out of each
vertex, pointing to others. We first pick a vertex at
random from the graph and then with some probabil-
ity we either keep that vertex or we “redirect” to one
of its neighbors, meaning that we pick at random one of
the vertices it points to. Since each vertex has exactly
m outgoing edges, the latter operation is equivalent to
choosing an edge at random from the graph and following
it, and hence alights on a target vertex with probability
proportional to the in-degree j of that target (because
there are j ways to arrive at a vertex of in-degree j—see
Sec. IV.B.1). Thus the total probability of selecting any
given vertex is proportional to j + c, where c is some
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constant. However, since the out-degree of all vertices is
simply m, the total degree is k = j +m and the selection
probability is therefore also proportional to k + c − m.
By choosing the probability of redirection appropriately,
we can arrange for the constant c to be equal to m, and
hence for the probability of selecting a vertex to be sim-
ply proportional to k. Since it does not require an extra
array for the vertex list, this method of simulation is more
memory efficient than the previous method, although it
is slightly more complicated to implement.

In their original paper on their model, Barabási and
Albert [32] gave simulations showing the power-law dis-
tribution of degrees. A number of authors have sub-
sequently published more extensive simulation results.
Of particular note is the work by Dorogovtsev and
Mendes [114, 116] and by Krapivsky and Redner [246].

A crucial element of both the models of Price and of
Barabási and Albert is the assumption of linear preferen-
tial attachment. It is worth asking whether there is any
empirical evidence in support of this assumption. (We
discuss in the next section some work on models that
relax the linearity assumption.) Two studies indicate
that it may be a reasonable approximation to the truth.
Jeong et al. [213] looked at the time evolution of citation
networks, the Internet, and actor and scientist collabo-
ration networks, and measured the number of new edges
a vertex acquires in a single year as a function of the
number of previously existing edges. They found that
the one quantity was roughly proportional to the other,
and hence concluded that linear preferential attachment
was at work in these networks. Newman [310] performed
a similar study for scientific collaboration networks, but
with finer time resolution, measured by the publication
of individual papers, and came to similar conclusions.

C. Generalizations of the Barabási–Albert model

The model of Barabási and Albert [32] has attracted
an exceptional amount of attention in the literature. In
addition to analytic and numerical studies of the model
itself, many authors have suggested extensions or modi-
fications of the model that alter its behavior or make it a
more realistic representation of processes taking place in
real-world networks. We discuss a few of these here. A
more extensive review of developments in this area has
been given by Albert and Barabási [13] (see particularly
Table III in that paper).

Dorogovtsev et al. [123] and Krapivsky and Red-
ner [245] have examined the model in which the prob-
ability of attachment to a vertex of degree k is propor-
tional to k + k0, where the offset k0 is a constant. Note
that k0 is allowed to be negative—it can fall anywhere in
the range −m < k0 < ∞ and the probability of attach-
ment will be positive. The equations for the stationary
state of the degree distribution of this model, analogous

to Eq. (68), are

pk =

{ [

(k − 1)pk−1 − kpk

]

m/(2m + k0) for k > m,

1 − pmm2/(2m + k0) for k = m,
(72)

which gives pm = (2m + k0)/(m2 + 2m + k0) and

pk =
(k − 1) . . .m

(k + 2 + k0/m) . . . (m + 3 + k0/m)
pm

=
B(k, 3 + k0/m)

B(m, 2 + k0/m)
, (73)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is again the Legendre
beta-function. This gives a power law for large k once
more, with exponent α = 3 + k0/m. It is proposed that
negative values of k0 could be the explanation for the
values α < 3 seen in real-world networks.32 A longer
discussion of the effects of offset parameters is given in
Ref. 245.

Krapivsky et al. [245, 249] also consider another im-
portant generalization of the model, to the case where
the probability of attachment to a vertex is not linear
in the degree k of the vertex, but goes instead as some
general power of degree kγ . Again this model is solvable
using methods similar to those above, and the authors
find three general classes of behavior. For γ = 1 exactly,
we recover the normal linear preferential attachment and
power-law degree sequences. For γ < 1, the degree distri-
bution is a power law multiplied by a stretched exponen-
tial, whose exponent is a complicated function of γ. (In
fact, in most cases there is no known analytic solution
for the equations governing the exponent; they must be
solved numerically.) For γ > 1 there is a “condensation”
phenomenon, in which a single vertex gets a finite frac-
tion of all the connections in the network, and for γ > 2
there is a non-zero probability that this “gel node” will
be connected to every other vertex on the graph. The
remainder of the vertices have an exponentially decaying
degree distribution.

Another variation on the basic growing network theme
is to make the mean degree change over time. There is
evidence to suggest that in the World Wide Web the aver-
age degree of a vertex is increasing with time, i.e., the pa-
rameter m appearing in the models is increasing. Doro-
govtsev and Mendes [118, 121] have studied a variation
of the Barabási–Albert model that incorporates this pro-
cess. They assume that the number m of new edges
added per new vertex increases with network size n as
na for some constant a, and that the probability of at-
taching to a given vertex goes as k+Bna for constant B.
They show that the resulting degree distribution follows
a power law with exponent α = 2 + B(1 + a)/(1 − Ba).

32 Price’s result α = 2 + 1/m [344] corresponds to k0 = −(m − 1)
so that the “attractiveness” of a new vertex is 1. The model of
Barabási and Albert corresponds to k0 = 0, so that α = 3.
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(Note that when a = 0, this model reduces to the model
studied previously by Dorogovtsev et al. [123], but the ex-
pression for α given here is not valid in this limit.) Thus
this process offers another possible mechanism by which
the exponent of the degree distribution can be tuned to
match that observed in real-world networks.

In Price’s model of citation networks, no new out-going
edges are added to a vertex after its first appearance, and
edges once added to the graph remain where they are
forever. This makes sense for citation networks. But the
model of Barabási and Albert is intended to be a model of
the World Wide Web, in which new links are often added
to pre-existing Web sites, and old links are frequently
moved or removed. A number of authors have proposed
models that incorporate processes like these. In par-
ticular, Dorogovtsev and Mendes [116] have proposed a
model that adds to the standard Barabási–Albert model
an extra mechanism whereby edges appear and disappear
between pre-existing vertices with stochastically constant
but possibly different rates. They find that over a wide
range of values of the rates the power-law degree distri-
bution is maintained, although again the exponent varies
from the value −3 seen in the original model. Krapivsky
and Redner [247] have also proposed a model that allows
edges to be added after vertices are created, which we
discuss in the next section. Albert and Barabási [12] and
Tadić [391, 392] have studied models in which edges can
move around the network after they are added. These
models can show both power-law and exponential degree
distributions depending on the model parameters.

As discussed in Sec. VII.B, Adamic and Huberman [4]
have shown that the real World Wide Web does not have
the correlations between age and degree of vertices that
are found in the model of Barabási and Albert. Adamic
and Huberman suggest that this is because the degree of
vertices is also a function of their intrinsic worth; some
Web sites are useful to more people than others and so
gain links at a higher rate. Bianconi and Barabási [52, 53]
have proposed an extension of the Barabási–Albert model
that mimics this process. In their model each newly ap-
pearing vertex i is given a “fitness” ηi that represents
its attractiveness and hence its propensity to accrue new
links. Fitnesses are chosen from some distribution ρ(η)
and links attach to vertices with probability proportional
now not just to the degree ki of vertex i but to the prod-
uct ηiki.

Depending on the form of the distribution ρ(η) this
model shows two regimes of behavior [52, 247]. If
the distribution has finite support, then the network
shows a power-law degree distribution, as in the origi-
nal Barabási–Albert model. However, if the distribution
has infinite support, then the one vertex with the high-
est fitness accrues a finite fraction of all the edges in the
network—a sort of “winner takes all” phenomenon, which
Bianconi and Barabási liken to monopoly dominance of
a market.

A number of variations on the fitness theme have been
studied by Ergün and Rodgers [145], who looked at a

directed version of the Bianconi–Barabási model and
at models where instead of multiplying the attachment
probability, the fitness ηi contributes additively to the
probability of attaching a new edge to vertex i. Treat-
ing the models analytically, they found in each case that
for suitable parameter values the power-law degree dis-
tribution is preserved, although again the exponent may
be affected by the distribution of fitnesses, and in some
cases there are also logarithmic corrections to the degree
distribution. A model with vertex fitness but no preferen-
tial attachment has been studied by Caldarelli et al. [78],
and also gives power-law degree distributions under some
circumstances.

D. Other growth models

The model of Barabási and Albert [32] is elegant and
simple, but lacks a number of features that are present
in the real World Wide Web:

• The model is a model of an undirected network,
where the real Web is directed.

• As mentioned previously one can regard the model
as a model of a directed network, but in that
case attachment is in proportion to the sum of in-
and out-degrees of a vertex, which is unrealistic—
presumably attachment should be in proportion to
in-degree only, as in the model of Price.

• If we regard the model as producing a directed
network, then it generates acyclic graphs (see
Sec. I.A), which are a poor representation of the
Web.

• All vertices in the model belong to a single con-
nected component (a weakly connected component
if the graph is regarded as directed—the graph has
no strongly connected components because it is
acyclic). In the real Web there are many separate
components (and strongly connected components).

• The out-degree distribution of the Web follows a
power law, whereas out-degree is a constant in the
model.33

33 What’s more, although it is rarely pointed out, it is clearly the
case that a different mechanism must be responsible for the out-
degree distribution from the one responsible for the in-degree
distribution. We can justify preferential attachment for in-degree
by saying that Web sites are easier to find if they have more links
to them, and hence they get more new links because people find
them. No such argument applies for out-degree. It is usually
assumed that out-degree is subject to preferential attachment
nonetheless. One can certainly argue that sites with many out-
going links are more likely to add new ones in the future than
sites with few, but it’s far from clear that this must be the case.
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Many of these criticisms are also true of Price’s model,
but Price’s model is intended to be a model of a citation
network and citation networks really are directed, acyclic,
and to a good approximation all vertices belong to a sin-
gle component, unless they cite and are cited by no one
else at all. Thus Price’s model is, within its own lim-
ited sphere, a reasonable one. For the World Wide Web
a number of authors have suggested new growth models
that address one or more of the concerns above. Here we
describe a number of these models, starting with some
very simple ones and working up to the more complex.

Consider first the issue of the component structure of
the network. In the models of Price and of Barabási
and Albert each vertex joins to at least one other when
it first appears. It follows trivially then that, so long
as no edges are ever removed, all vertices belong to a
single (weakly-connected) component. This is not true
in the real Web. How can we get around it? To address
this question Callaway et al. [80] proposed the following
extremely simple model of a growing network. Vertices
are added to the network one by one as before, and a
mean number m of undirected edges are added with each
vertex. As with Price’s model, the value of m is only an
average—the actual number of edges added per step can
vary—and so m is not restricted to integer values, and
indeed we will see that the interesting behavior of the
model takes place at values m < 1.

The important difference between this model and the
previous models is that edges are not, in general, at-
tached to the vertex that has just been added. Instead,
both ends of each edge are attached to vertices chosen
uniformly at random from the whole graph, without pref-
erential attachment. Vertices therefore normally have
degree zero when they are first added to the graph. Be-
cause of the lack of preferential attachment this model
does not show power-law degree distributions—in fact
the degree distribution can be show to be exponential—
but it does have an interesting component structure. A
related model has been studied, albeit to somewhat dif-
ferent purpose, by Aldous and Pittel [17]. Their model
is equivalent to the model of Callaway et al. in the case
m = 1. Also Bauer and collaborators [44, 100] have in-
vestigated a directed-graph version of the model.

Initially, one might imagine that the model of Calla-
way et al. generated an ordinary Poisson random graph
of the Erdös–Rényi type. Further reflection reveals how-
ever that this is not the case; older vertices in the network
will tend to be connected to one another, so the network
has a cliquish core of old-timers surrounded by a sea of
younger vertices. Nonetheless, like the Poisson random
graph, the model does have many separate components,
with a phase transition at a finite value of m at which a
giant component appears that occupies a fixed fraction
of the volume of the network as n → ∞. To demonstrate
this, Callaway et al. used a master-equation approach
similar to that used for degree distributions in the pre-
ceding sections. One defines ps to be the probability
that a randomly chosen vertex belongs to a component

of s vertices, and writes difference equations that give the
change in ps when a single vertex and m edges are added
to the graph. Looking for stationary solutions, one then
finds in the limit of large graph size that

ps =

{

ms
∑s−1

j=1 pjps−j − 2msps for s > 1

1 − 2mp1 for s = 1.
(74)

Being nonlinear in ps, these equations are harder to
solve than those for the degree distributions in previ-
ous sections, and indeed no exact solution has been
found. Nonetheless, we can see that a giant compo-
nent must form by defining a generating function for the
component size distribution similar to that of Eq. (25):
H(x) =

∑∞

s=0 psx
s. Then (74) implies that

dH

dx
=

1

2m

[

1 − H(x)/x

1 − H(x)

]

. (75)

If there is no giant component, then H(1) = 1 and the
average component size is 〈s〉 = H ′(1). Taking the limit
x → 1 in Eq. (75), we find that 〈s〉 is a solution of the
quadratic equation 2m〈s〉2 − 〈s〉 + 1 = 0, or

〈s〉 =
1 −

√
1 − 8m

4m
. (76)

(The other solution to the quadratic gives a non-physical
value.) This solution exists only up to m = 1

8 however,
and hence above this point there must be a giant compo-
nent. This doesn’t tell us where in the interval 0 ≤ m ≤ 1

8
the giant component appears, but a proof that the tran-
sition in fact falls precisely at m = 1

8 was later given by
Durrett [134].

The model of Callaway et al. has been general-
ized to include preferential attachment by Dorogovt-
sev et al. [124]. In their version of the model both ends
of each edge are attached in proportion to the degrees of
vertices plus a constant offset to ensure that vertices of
degree zero have a chance of receiving an edge. Again
they find many components and a phase transition at
nonzero m, and in addition the power-law degree distri-
bution is now restored.

Taking the process a step further, Krapivsky and Red-
ner [247] studied a full directed-graph model in which
both vertices and directed edges are added at stochasti-
cally constant rates and the out-going end of each edge
is attached to vertices in proportion to their out-degree
and the in-going end in proportion to in-degree, plus ap-
propriate constant offsets. This appears to be quite a
reasonable model for the growth of the Web. It produces
a directed graph, it allows edges to be added after the
creation of a vertex, it allows for separate components
in the graph, and, as Krapivsky and Redner showed, it
gives power laws in both the in- and out-degree distri-
butions, just as observed in the real Web. By varying
the offset parameters for the in- and out-degree attach-
ment mechanisms, one can even tune the exponents of
the two distributions to agree with those observed in the
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wild. (Krapivsky and Redner’s model is a development
of an earlier model that they proposed [250] that had all
the same features, but gave rise to only a single weakly
connected component because each added vertex came
with one edge that attached it to the rest of the network
from the outset. In their later paper, they abandoned
this feature. A similar model has also been studied by
Rodgers and Darby-Dowman [355].) A slight variation
on the model of Krapivsky and Redner has been pro-
posed independently by Aiello et al. [9], who give rigorous
proofs of some of its properties.

E. Vertex copying models

There are some networks that appear to have power-
law degree distributions, but for which preferential at-
tachment is clearly not an appropriate model. Good ex-
amples are biochemical interaction networks of various
kinds [153, 212, 214, 376, 383, 405]. A number of stud-
ies have been performed, for instance, of the interaction
networks of proteins (see Sec. II.D) in which the vertices
are proteins and the edges represent reactions. These
networks do change on very long time-scales because of
biological evolution, but there is no reason to suppose
that protein networks grow according to a simple cu-
mulative advantage or preferential attachment process.
Nonetheless, it appears that the degree distribution of
these networks obeys a power law, at least roughly.

A possible explanation for this observation has been
suggested by Kleinberg et al. [241, 254], who proposed
that these networks grow, at least in part, by the copying
of vertices. Kleinberg et al. were interested in the growth
of the Web, for which their model is as follows. The graph
grows by stochastically constant addition of vertices and
addition of directed edges either randomly or by copying
them from another vertex. Specifically, one chooses an
existing vertex and a number m of edges to add to it, and
one then decides the targets of those edges, by choosing
at random another vertex and copying targets from m
of its edges, randomly chosen. If the chosen vertex has
less than m outgoing edges, then its m edges are copied
and one moves on to another vertex and copies its edges,
and so forth until m edges in total have been copied. In
its most general form, the model of Kleinberg et al. also
incorporates mechanisms for the removal of edges and
vertices, which we do not describe here.

It is straightforward to see that the copying mecha-
nism will give rise to power-law distributions. The mean
probability that an edge from a randomly chosen vertex
will lead to a particular other vertex with in-degree k is
proportional to k (see Sec. IV.B.1), and hence the rate
of increase of a vertex’s degree is proportional to its cur-
rent degree. As with the model of Price, this mecha-
nism will never add new edges to vertices that currently
have degree zero, so Kleinberg et al. also include a finite
probability that the target of a newly added edge will be
chosen at random, so that vertices with degree zero have

a chance to gain edges. In their original paper, Klein-
berg et al. present only numerical evidence that their
model results in a power law degree distribution, but in
a later paper a subset of the same authors [254] proved
that the degree distribution is a power law with exponent
α = (2 − a)/(1 − a), where a is the ratio of the number
of edges added whose targets are chosen at random to
the number whose targets are copied from other vertices.
For small values of a, between 0 and 1

2 , i.e., for models
in which most target selection is by copying, this pro-
duces exponents 2 ≤ α ≤ 3, which is the range observed
in most real-world networks—see Table II. Some further
analytic results for copying models have been given by
Chung et al. [90].

It is not clear whether the copying mechanism really
is at work in the growth of the World Wide Web, but
there has been considerable interest in its application as
a model of the evolution of protein interaction networks
of one sort or another. The argument here is that the
genes that code for proteins can and do, in the course of
their evolutionary development, duplicate. That is, upon
reproduction of an organism, two copies of a gene are er-
roneously made where only one existed before. Since the
proteins coded for by each copy are the same, their in-
teractions are also the same, i.e., the new gene copies its
edges in the interaction network from the old. Subse-
quently, the two genes may develop differences because
of evolutionary drift or selection [404]. Models of protein
networks that make use of copying mechanisms have been
proposed by a number of authors [49, 233, 377, 399].

A variation on the idea of vertex copying appears
in the autocatalytic network models of Jain and Kr-
ishna [209, 210], in which a network of interacting chemi-
cal species evolves by reproduction and mutation, giving
rise ultimately to self-sustaining autocatalytic loops rem-
iniscent of the “hypercycles” of Eigen and Schuster [140],
which have been proposed as a possible explanation of the
origin of life.

VIII. PROCESSES TAKING PLACE ON NETWORKS

As discussed in the introduction, the ultimate goal of
the study of the structure of networks is to understand
and explain the workings of systems built upon those net-
works. We would like, for instance, to understand how
the topology of the World Wide Web affects Web surfing
and search engines, how the structure of social networks
affects the spread of information, how the structure of
a food web affects population dynamics, and so forth.
Thus, the next logical step after developing models of net-
work structure, such as those described in the previous
sections of this review, is to look at the behavior of mod-
els of physical (or biological or social) processes going on
on those networks. Progress on this front has been slower
than progress on understanding network structure, per-
haps because without a thorough understanding of struc-
ture an understanding of the effects of that structure is
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bond percolationsite percolation

FIG. 13 Site and bond percolation on a network. In site per-
colation, vertices (“sites” in the physics parlance) are either
occupied (solid circles) or unoccupied (open circles) and stud-
ies focus on the shape and size of the contiguous clusters of
occupied sites, of which there are three in this small exam-
ple. In bond percolation, it is the edges (“bonds” in physics)
that are occupied or not (black or gray lines) and the vertices
that are connected together by occupied edges that form the
clusters of interest.

hard to come by. However, there have been some impor-
tant advances made, particularly in the study of network
failure, epidemic processes on networks, and constraint
satisfaction problems. In this section we review what
has been learned so far.

A. Percolation theory and network resilience

One of the first examples to be studied thoroughly of
a process taking place on a network has been percolation
processes, mostly simple site and bond percolation—see
Fig. 13—although a number of variants have been stud-
ied also. A percolation process is one in which vertices or
edges on a graph are randomly designated either “occu-
pied” or “unoccupied” and one asks about various prop-
erties of the resulting patterns of vertices. One of the
main motivations for the percolation model when it was
first proposed in the 1950s was the modeling of the spread
of disease [73, 187], and it is in this context also that it
was first studied in the current wave of interest in real-
world networks [325]. We consider epidemiological appli-
cations of percolation theory in Sec. VIII.B. Here how-
ever, we depart from the order of historical developments
to discuss first a simpler application to the question of
network resilience.

As discussed in Sec. III.D, real-world networks are
found often to be highly resilient to the random deletion
of their vertices. Resilience can be measured in differ-
ent ways, but perhaps the simplest indicator of resilience
in a network is the variation (or lack of variation) in
the fraction of vertices in the largest component of the
network, which we equate with the giant component in
our models (see Sec. IV.A). If one is thinking of a com-
munication network, for example, in which the existence
of a connecting path between two vertices means that
those two can communicate with one another, then the
vertices in the giant component can communicate with
an extensive fraction of the entire network, while those
in the small components can communicate with only a

few others at most. Following the numerical studies of
Broder et al. [74] and Albert et al. [15] on subsets of the
Web graph, it was quickly realized [81, 93] that the prob-
lem of resilience to random failure of vertices in a network
is equivalent to a site percolation process on the network.
Vertices are randomly occupied (working) or unoccupied
(failed), and the number of vertices remaining that can
successfully communicate is precisely the giant compo-
nent of the corresponding percolation model.

A number of analytic results have been derived for per-
colation on networks with the structure of the configu-
ration model of Sec. IV.B.1, i.e., a random graph with a
given degree sequence. Cohen et al. [93] made the follow-
ing simple argument. Suppose we have a configuration
model with degree distribution pk. That is, a randomly
chosen vertex has degree k with probability pk in the limit
of large number n of vertices. Now suppose that only a
fraction q of the vertices are “occupied,” or functional,
that fraction chosen uniformly at random from the en-
tire graph. For a vertex with degree k, the number k′ of
occupied vertices to which it is connected is distributed
binomially so that the probability of having a particular
value of k′ is

(

k
k′

)

qk′

(1−q)k−k′

, and hence the total prob-
ability that a randomly chosen vertex is connected to k′

other occupied vertices is

pk′ =

∞
∑

k=k′

pk

(

k

k′

)

qk′

(1 − q)k−k′

. (77)

Since vertex failure is random and uncorrelated, the sub-
set of all vertices that are occupied forms another another
configuration model with this degree distribution. Co-
hen et al. then applied the criterion of Molloy and Reed,
Eq. (28), to determine whether this network has a giant
component. (One could also apply Eqs. (29) and (30)
to determine the size of the giant and non-giant compo-
nents, although this is not done in Ref. 93.)

One of the most interesting conclusions of the work of
Cohen et al. is for the case of networks with power-law de-
gree distributions pk ∼ k−α for some constant α. When
α ≤ 3, they find that the critical value qc of q where the
transition takes place at which a giant component forms
is zero or negative, indicating that the network always
has a giant component, or in the language of physics,
the network always percolates. This echos the numerical
results of Albert et al. [15], who found that the connec-
tivity of power-law networks was highly robust to the
random removal of vertices. In general, the method of
Cohen et al. indicates that qc ≤ 0 for any degree distri-
bution with a diverging second moment.

An alternative and more general approach to the per-
colation problem on the configuration model has been
put forward by Callaway et al. [81], using a generaliza-
tion of the generating function formalism discussed in
Sec. IV.B.1. In their method, the probability of occu-
pation of a vertex can be any function of the degree k
of that vertex. Thus the constant q of the approach of
Cohen et al. is generalized to qk, the probability that a
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vertex having degree k is occupied. One defines generat-
ing functions

F0(x) =
∞
∑

k=0

pkqkxk, F1(x) =

∑

k kpkqkxk−1

∑

k kpk
, (78)

and it can then be shown that the probability distribution
of the size of the component of occupied vertices to which
a randomly chosen vertex belongs is generated by H0(x)
where

H0(x) = 1 − F0(1) + xF0(H1(x)), (79a)

H1(x) = 1 − F1(1) + xF1(H1(x)). (79b)

(Note that F0 is not a properly normalized generating
function in the sense that F0(1) 6= 1.) From this one can
derive an expression for the mean component size:

〈s〉 = F0(1) +
F ′

0(1)F1(1)

1 − F ′
1(1)

, (80)

which immediately tells us that the phase transition at
which a giant component forms takes place at F ′

1(1) = 1.
The size of the giant component is given by

S = F0(1) − F0(u), u = 1 − F1(1) + F1(u). (81)

For instance, in the case studied by Cohen et al. [93]
of uniform occupation probability qk = q, this gives a
critical occupation probability of qc = 1/G′

1(1), where
G1(x) is the generating function for the degree distribu-
tion itself, as defined in Eq. (23). Taking the example of
a power-law degree distribution pk = k−α/ζ(α), Eq. (32),
we find

qc =
ζ(α − 1)

ζ(α − 2) − ζ(α − 1)
. (82)

This is negative (and hence unphysical) for α < 3, con-
firming the finding that the system always percolates in
this regime. Note that qc > 1 for sufficiently large α,
which is also unphysical. One finds that the system
never percolates for α > αc, where αc is the solution
of ζ(α−2) = 2ζ(α−1), which gives αc = 3.4788 . . . This
corresponds to the point at which the underlying net-
work itself ceases to have a giant component, as shown
by Aiello et al. [8] and discussed in Sec. IV.B.1.

The main advantage of the approach of Callaway et al.

is that it allows us to remove vertices from the network
in an order that depends on their degree. If, for instance,
we set qk = θ(k−kmax), where θ(x) is the Heaviside step
function, then we remove all vertices with degrees greater
than kmax. This corresponds precisely to the experiment
of Broder et al. [74] who looked at the behavior of the
World Wide Web graph as vertices were removed in order
of decreasing degree. (Similar but not identical calcula-
tions were also performed by Albert et al. [15].) In agree-
ment with the numerical calculations (see Sec. III.D),
Callaway et al. find that networks with power-law de-
gree distributions are highly susceptible to this type of
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FIG. 14 The fraction of vertices that must be removed from
a network to destroy the giant component, if the network has
the form of a configuration model with a power-law degree
distribution of exponent α, and vertices are removed in de-
creasing order of their degrees.

targeted attack; one need only remove a small percent-
age of vertices to destroy the giant component entirely.
Similar results were also found independently by Co-
hen et al. [94], using a closely similar method, and in
a later paper [362] some of the same authors extended
their calculations to directed networks also, which show
a considerably richer component structure, as described
in Sec. IV.B.3.

As an example, consider Fig. 14, which shows the frac-
tion of the highest degree vertices that must be removed
from a network with a power-law degree distribution to
destroy the giant component, as a function of the expo-
nent α of the power law [117, 319]. As the figure shows,
the maximum fraction is less than three percent, and for
most values of α the fraction is significantly less than this.
This appears to imply that networks like the Internet
and the Web that have power-law degree distributions
are highly susceptible to such attacks [15, 74, 94].

These results are for the configuration model. Other
models offer some further insights. The finding by Co-
hen et al. [93] that the threshold value qc at which per-
colation sets in for the configuration model is zero for
degree distributions with a divergent second moment has
attracted particular interest. Vazquez and Moreno [400],
for example, have shown that the threshold may be zero
even for finite second moment if the degrees of adja-
cent vertices in the network are positively correlated
(see Secs. III.F and IV.B.5). Conversely, if the sec-
ond moment does diverge there may still be a non-zero
threshold if there are negative degree correlations. War-
ren et al. [408] have shown that there can also be a non-
zero threshold for a network incorporating geographical
effects, in which each vertex occupies a position in a low-
dimensional space (typically two-dimensional) and prob-
ability of connection is higher for vertex pairs that are
close together in that space. A similar spatial model has
been studied by Rozenfeld et al. [359], and both models
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are closely related to continuum percolation [278].

An issue related to resilience to vertex deletion, is the
issue of cascading failures. In some networks, such as
electrical power networks, that carry load or distribute
a resource, the operation of the network is such that the
failure of one vertex or edge results in the redistribution
of the load on that vertex or edge to other nearby ver-
tices or edges. If vertices or edges fail when the load on
them exceeds some maximum capacity, then this mech-
anism can result in a cascading failure or avalanche in
which the redistribution of load pushes a vertex or edge
over its threshold and causes it to fail, leading to fur-
ther redistribution. Such a cascading failure in the west-
ern United States in August 1996 resulted in the spread
of what was initially a small power outage in El Paso,
Texas through six states as far as Oregon and Califor-
nia, leaving several million electricity customers without
power. Watts [413] has given a simple model of this pro-
cess that can be mapped onto a type of percolation model
and hence can be solved using generating function meth-
ods similar to those for simple vertex removal processes
above.

In Watts’s model, a vertex i fails if a given fraction
φi of its neighbors have failed, where the quantities {φi}
are iid variables drawn from a distribution f(φ). The
model is seeded by the initial failure of some non-zero
density Φ0 of vertices, chosen uniformly at random. It is
assumed that Φ0 ≪ 1, so that the initial seed consists,
to leading order, of single isolated vertices. Watts con-
siders networks with the topology of the configuration
model (Sec. IV.B.1), for which, because of the vanishing
density of short loops making the networks tree-like at
small length-scales, each vertex will have at most only
a single failed neighboring vertex in the initial stages of
the cascade, and hence will fail itself if and only if its
threshold for failure satisfies φ < 1/k, where k is its de-
gree. Watts calls vertices satisfying this criterion vul-

nerable. The probability of a vertex being vulnerable is

qk =
∫ 1/k

0
f(φ) dφ, and the cascade will spread only if

such vertices connect to form a percolating (i.e., exten-
sive) cluster on the network. Thus the problem maps
directly onto the generalized percolation process studied
by Callaway et al. [81] above, allowing us to find a condi-
tion for the spread of the initial seed to give a large-scale
cascade. The percolation model applies only to the vul-
nerable vertices however, so to calculate the final sizes of
cascades Watts performs numerical simulations.

Models of cascading failure have also been studied by
Holme and Kim [195, 199], by Moreno et al. [297, 298]
and by Motter and Lai [305]. In the model of Holme
and Kim, for instance, load on a vertex is quantified by
the betweenness centrality of the vertex (see Sec. III.I),
and vertices fail when the betweenness exceeds a given
threshold. Holme and Kim give simulation results for the
avalanche size distribution in their model.

B. Epidemiological processes

One of the original, and still primary, reasons for
studying networks is to understand the mechanisms by
which diseases and other things (information, computer
viruses, rumors) spread over them. For instance, the
main reason for the study of networks of sexual con-
tact [45, 154, 186, 218, 243, 265, 266, 303, 358] (Sec. II.A)
is to help us understand and perhaps control the spread
of sexually transmitted diseases. Similarly one studies
networks of email contact [136, 321] to learn how com-
puter viruses spread.34

1. The SIR model

The simplest model of the spread of a disease over a
network is the SIR model of epidemic disease [23, 26,
192].35 This model, first formulated, though never pub-
lished, by Lowell Reed and Wade Hampton Frost in the
1920s, divides the population into three classes: suscep-
tible (S), meaning they don’t have the disease of interest
but can catch it if exposed to someone who does, infec-
tive36 (I) meaning they have the disease and can pass
it on, and recovered (R), meaning they have recovered
from the disease and have permanent immunity, so that
they can never get it again or pass it on. (Some authors
consider the R to stand for “removed,” a general term
that encompasses also the possibility that people may die
of the disease and remove themselves from the infective
pool in that fashion. Others consider the R to mean “re-
fractory,” which is the common term among those who
study the closely related area of reaction diffusion pro-
cesses [386, 424].)

In traditional mathematical epidemiology [23, 26, 192],
one then assumes that any susceptible individual has a
uniform probability β per unit time of catching the dis-
ease from any infective one and that infective individuals
recover and become immune at some stochastically con-
stant rate γ. The fractions s, i and r of individuals in
the states S, I and R are then governed by the differential
equations

ds

dt
= −βis,

di

dt
= βis − γi,

dr

dt
= γi. (83)

34 Computer viruses are an interesting case in that the networks
over which they spread are normally directed, unlike the contact
networks for most human diseases [229].

35 One distinguishes between an epidemic disease such as influenza,
which sweeps through the population rapidly and infects a signif-
icant fraction of individuals in a short outbreak, and an endemic

disease such as measles, which persists within the population at
a level roughly constant over time. The SIR model is a model of
the former. The SIS model discussed in Sec. VIII.B.2 is a model
of the latter.

36 In everyday parlance the more common word is “infectious,” but
infective is the standard term among epidemiologists.
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Models of this type are called fully mixed, and although
they have taught us much about the basic dynamics of
diseases, they are obviously unrealistic in their assump-
tions. In reality diseases can only spread between those
individuals who have actual physical contact of one sort
or another, and the structure of the contact network is
important to the pattern of development of the disease.

The SIR model can be generalized in a straightfor-
ward manner to an epidemic taking place on a network,
although the resulting dynamical system is substantially
more complicated than its fully mixed counterpart. The
important observation that allows us to make progress,
first made by Grassberger [179], is that the model can
be mapped exactly onto bond percolation on the same
network. Indeed, as pointed out by Sander et al. [360],
significantly more general models can also be mapped to
percolation, in which transmission probability between
pairs of individuals and the times for which individuals
remain infective both vary, but are chosen in iid fashion
from some appropriate distributions. Let us suppose that
the distribution of infection rates β, defined as the prob-
ability per unit time that an infective individual will pass
the disease onto a particular susceptible network neigh-
bor, is drawn from a distribution Pi(β). And suppose
that the recovery rate γ is drawn from another distribu-
tion Pr(γ). Then the resulting model can be shown [315]
to be equivalent to uniform bond percolation on the same
network with edge occupation probability

T = 1 −
∫ ∞

0

Pi(β)Pr(γ) e−β/γ dβ dγ. (84)

The extraction of predictions about epidemics from
the percolation model is simple: the distribution of per-
colation clusters (i.e., components connected by occu-
pied edges) corresponds to the distribution of the sizes
of disease outbreaks that start with a randomly chosen
initial carrier, the percolation transition corresponds to
the “epidemic threshold” of epidemiology, above which
an epidemic outbreak is possible (i.e., one that infects a
non-zero fraction of the population in the limit of large
system size), and the size of the giant component above
this transition corresponds to the size of the epidemic.
What the mapping cannot tell us, but standard epidemi-
ological models can, is the time progression of a disease
outbreak. The mapping gives us results only for the ul-
timate outcome of the disease in the limit of long times,
in which all individuals are in either the S or R states,
and no new cases of the disease are occurring. Nonethe-
less, there is much to be learned by studying even the
non-time-varying properties of the model.

The solution of bond percolation for the configuration
model was given by Callaway et al. [81], who showed
that, for uniform edge occupation probability T , the dis-
tribution of the sizes of clusters (i.e., disease outbreaks
in epidemiological language) is generated by the function
H0(x) where

H0(x) = xG0(H1(x)), (85a)

H1(x) = 1 − T + TxG1(H1(x)), (85b)

where G0(x) and G1(x) are defined in Eqs. (23). This
gives an epidemic transition that takes place at Tc =
1/G′

1(1), a mean outbreak size 〈s〉 given by

〈s〉 = H ′
0(1) = T

[

1 +
TG′

0(1)

1 − TG′
1(1)

]

, (86)

and an epidemic outbreak that affects a fraction S of the
network, where

S = 1 − G0(u), u = 1 − T + TG1(u). (87)

Similar solutions can be found for a wide variety of other
model networks, including networks with correlations of
various kinds between the rates of infection or the infec-
tivity times [315], networks with correlations between the
degrees of vertices [301], and networks with more complex
structure, such as different types of vertices [21, 315].

One of the most important conclusions of this work
is for the case of networks with power-law degree dis-
tributions, for which, as in the case of site percolation
(Sec. VIII.A), there is no non-zero epidemic threshold
so long as the exponent of the power law is less than 3.
Since most power-law networks satisfy this condition, we
expect diseases always to propagate in these networks,
regardless of transmission probability between individu-
als, a point that was first made, in the context of models
of computer virus epidemiology, by Pastor-Satorras and
Vespignani [333, 336], although, as pointed out by Lloyd
and May [267, 277], precursors of the same result can be
seen in earlier work of May and Anderson [276]. May
and Anderson studied traditional (fully mixed) differen-
tial equation models of epidemics, without network struc-
ture, but they divided the population into activity classes
with different values of the infection rate β. They showed
that the variation of the number of infective individuals
over time depends on the variance of this rate over the
classes, and in particular that the disease always multi-
plies exponentially if the variance diverges—precisely the
situation in a network with a power-law degree distribu-
tion and exponent less than 3.

The conclusion that diseases always spread on scale-
free networks has been revised somewhat in the light of
later discoveries. In particular, there may be a non-zero
percolation threshold for certain types of correlations be-
tween vertices [56, 57, 58, 59, 301, 400], if the network
is embedded in a low-dimensional (rather than infinite-
dimensional) space [359, 408], or if the network has high
transitivity [139] (see Sec. III.B).

An interesting combination of the ideas of epidemiol-
ogy with those of network resilience explored in the pre-
ceding section arises when one considers vaccination of
a population against the spread of a disease. Vaccina-
tion can be regarded as the removal from a network of
some particular set of vertices, and this in turn can be
modeled as a site percolation process. Thus one is led to
consideration of joint site/bond percolation on networks,
which has also been solved, in the simplest uniformly
random case, by Callaway et al. [81]. If the site per-
colation is correlated with vertex degree (as in Eq. (78)
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and following), for example removing the vertices with
highest degree, then one has a model for targeted vacci-
nation strategies also. A good discussion has been given
by Pastor-Satorras and Vespignani [335]. As with the
models of Sec. VIII.A, one finds that networks tend to be
particularly vulnerable to removal of their highest degree
vertices, so this kind of targeted vaccination is expected
to be particularly effective. (This of course is not news
to the public health community, who have long followed
a policy of focusing their most aggressive disease pre-
vention efforts on the “core communities” of high-degree
vertices in a network.)

Unfortunately, it is not always easy to find the highest
degree vertices in a social network. The number of sex-
ual contacts a person has had can normally only be found
by asking them, and perhaps not even then. An inter-
esting method that circumvents this problem has been
suggested by Cohen et al. [92]. They observe that since
the probability of reaching a particular vertex by follow-
ing a randomly chosen edge in a graph is proportional to
the vertex’s degree (Sec. IV.B), one is more likely to find
high-degree vertices by following edges than by choosing
vertices at random. They propose thus that a population
can be immunized by choosing a random person from
that population and vaccinating a friend of that person,
and then repeating the process. They show both by an-
alytic calculations and by computer simulation that this
strategy is substantially more effective than random vac-
cination. In a sense, in fact, this strategy is already in
use. The “contact tracing” methods [251] used to control
sexually transmitted diseases, and the “ring vaccination”
method [181, 308] used to control smallpox and foot-and-
mouth disease are both examples of roughly this type of
acquaintance vaccination.

2. The SIS model

Not all diseases confer immunity on their survivors.
Diseases that, for instance, are not self-limiting but can
be cured by medicine, can usually be caught again imme-
diately by an unlucky patient. Tuberculosis and gonor-
rhea are two much-studied examples. Computer viruses
also fall into this category; they can be “cured” by anti-
virus software, but without a permanent virus-checking
program the computer has no way to fend off subsequent
attacks by the same virus.

With diseases of this kind carriers that are cured move
from the infective pool not to a recovered pool, but back
into the susceptible one. A model with this type of dy-
namics is called an SIS model, for obvious reasons. In
the simplest, fully mixed, single-population case, its dy-
namics are described by the differential equations

ds

dt
= −βis + γi,

di

dt
= βis − γi, (88)

where β and γ are, as before, the infection and recovery
rates.

The SIS model is a model of endemic disease. Since
carriers can be infected many times, it is possible, and
does happen in some parameter regimes, that the disease
will persist indefinitely, circulating around the population
and never dying out. The equivalent of the SIR epidemic
transition is the phase boundary between the parameter
regimes in which the disease persists and those in which
it does not.

The SIS model cannot be solved exactly on a net-
work as the SIR model can, but a detailed mean-field
treatment has been given by Pastor-Satorras and Vespig-
nani [332, 333] for SIS epidemics on the configuration
model. Their approach is based on the differential equa-
tions, Eq. (88), but they allow the rate of infection β
to vary between members of the population, rather than
holding it constant. (This is similar to the approach of
May and Anderson [276] for the SIR model, discussed
in Sec. VIII.B.1, but is more general, since it does not
involve the division of the population into a binned set
of activity classes, as the May–Anderson approach does.)
The calculation proceeds as follows.

The quantity βi appearing in (88) represents the av-
erage rate at which susceptible individuals become in-
fected by their neighbors. For a vertex of degree k,
Pastor-Satorras and Vespignani make the replacement
βi → kλΘ(λ), where λ is the rate of infection via con-
tact with a single infective individual and Θ(λ) is the
probability that the neighbor at the other end of an edge
will in fact be infective. Note that Θ is a function of λ
since presumably the probability of being infective will
increase as the probability of passing on the disease in-
creases. The remaining occurrences of the variables s and
i Pastor-Satorras and Vespignani replace by sk and ik,
which are degree-dependent generalizations representing
the fraction of vertices of degree k that are susceptible or
infective. Then, noticing that ik and sk obey ik +sk = 1,
we can rewrite (88) as the single differential equation

dik
dt

= kλΘ(λ)(1 − ik) − ik, (89)

where we have, without loss of generality, set the recovery
rate γ equal to 1. There is an approximation inherent
in this formulation, since we have assumed that Θ(λ)
is the same for all vertices, when in general it too will
be dependent on vertex degree. This is in the nature
of a mean-field approximation, and can be expected to
give a reasonable guide to the qualitative behavior of the
system, although certain properties (particularly close to
the phase transition) may be quantitatively mispredicted.

Looking for stationary solutions, we find

ik =
kλΘ(λ)

1 + kλΘ(λ)
. (90)

To calculate the value of Θ(λ), one averages the proba-
bility ik of being infected over all vertices. Since Θ(λ)
is defined as the probability that the vertex at the end
of an edge is infective, ik should be averaged over the
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distribution kpk/z of the degrees of such vertices (see
Sec. IV.B.1), where z =

∑

k kpk is, as usual, the mean
degree. Thus

Θ(λ) =
1

z

∑

k

kpkik. (91)

Eliminating ik from Eqs. (89) and (91) we then obtain
an implicit expression for Θ(λ):

λ

z

∑

k

k2pk

1 + kλΘ(λ)
= 1. (92)

For particular choices of pk this equation can be solved
for Θ(λ) either exactly or approximately. For instance,
for a power-law degree distribution of the form (32),
Pastor-Satorras and Vespignani solve it by making an in-
tegral approximation, and hence show that there is no
non-zero epidemic threshold for the SIS model in the
power-law case—the disease will always persist, regard-
less of the value of the infection rate parameter λ [333].
They have also generalized the solution to a number of
other cases, including other degree distributions [332],
finite-sized networks [334], and models that include vac-
cination of some fraction of individuals [335, 336]. In
the latter case, they tackle both random vaccination and
vaccination targeted at the vertices with highest degree
using a method similar to that of Cohen et al. [93] in
which they calculate the effective degree distribution of
the network after the removal of a given set of vertices
and then apply their mean-field method to the resulting
network. As we would expect from the results of Co-
hen et al., propagation of the disease turns out to be rela-
tively robust against random vaccination, at least in net-
works with right-skewed degree distributions, but highly
susceptible to vaccination of the highest-degree individ-
uals. The mean-field method has also been applied to
networks with degree correlations of the type discussed
in Sec. III.F, by Boguñá et al. [58]. Of particular note is
their finding that for the case of power-law degree distri-
butions neither assortative nor disassortative mixing by
degree can produce a non-zero epidemic threshold in the
SIS model, at least within the mean-field approximation.
This contrasts with the case for the SIR model, where
it was found that disassortative mixing can produce a
non-zero threshold [400].

The mean-field method can also be applied to the SIR
model [24, 299]. Although we have an exact solution for
the SIR model as described in Sec. VIII.B.1, that solu-
tion can only tell us about the long-time behavior of an
outbreak—its expected final size and so forth. The mean-
field method, although approximate, can tell us about
the time evolution of an outbreak, so the two methods
are complementary. The mean-field method for the SIR
model can also be used to treat approximately the effects
of network transitivity [24, 154, 228, 235].

C. Search on networks

Another example of a process taking place on a net-
work that has important practical applications is network
search. Suppose some resource of interest is stored at the
vertices of a network, such as information on Web pages,
or computer files on a distributed database or file-sharing
network. One would like to determine rapidly where on
the network a particular item of interest can be found
(or determine that it is not on the network at all). One
way of doing this, which is used by Web search engines,
is simply to catalog exhaustively (or “crawl”) the en-
tire network, creating a distilled local map of the data
found. Such a strategy is favored in cases where there
is a heavy communication cost to searching the network
in real time, so that it makes sense to create a local in-
dex. While performing a network crawl is, in principle,
straightforward (although in practice it may be techni-
cally very challenging [72]), there are nonetheless some
interesting theoretical questions arising.

1. Exhaustive network search

One of the triumphs of recent work on networks has
been the development of effective algorithms for mining
network crawl data for information of interest, particu-
larly in the context of the World Wide Web. The im-
portant trick here turns out to be to use the information
contained in the edges of the network as well as in the
vertices. Since the edges, or hyperlinks, in the World
Wide Web are created by people in order to highlight
connections between the contents of pairs of pages, their
structure contains information about page content and
relevance which can help us to improve search perfor-
mance. The good search engines therefore make a local
catalog not only of the contents of web pages, but also
of which ones link to which others. Then when a query
is made of the database, usually in the form of a tex-
tual string of interest, the typical strategy would be to
select a subset of pages from the database by searching
for that string, and then to rank the results using the
edge information. The classic algorithm, due to Brin
and Page [72, 328], is essentially identical in its simplest
form to the eigenvector centrality long used in social net-
work analysis [66, 67, 363, 409]. Each vertex i is assigned
a weight xi > 0, which is defined to be proportional to
the sum of the weights of all vertices that point to i:
xi = λ−1

∑

j Aijxj for some λ > 0, or in matrix form

Ax = λx, (93)

where A is the (asymmetric) adjacency matrix of the
graph, whose elements are Aij , and x is the vector whose
elements are the xi. This of course means that the
weights we want are an eigenvector of the adjacency ma-
trix with eigenvalue λ and, provided the network is con-
nected (there are no separate components), the Perron–
Frobenius theorem then tells us that there is only one
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eigenvector with all weights non-negative, which is the
unique eigenvector corresponding to the largest eigen-
value. This eigenvector can be found trivially by re-
peated multiplication of the adjacency matrix into any
initial non-zero vector which is not itself an eigenvector.

This algorithm, which is implemented (along with
many additional tricks) in the widely used search engine
Google, appears to be highly effective. In essence the al-
gorithm makes the assumption that a page is important
if it is pointed to by other important pages. A more so-
phisticated version of the same idea has been put forward
by Kleinberg [236, 237], who notes that, since the Web
is a directed network, one can ask not only about which
vertices point to a vertex of interest, but also about which
vertices are pointed to by that vertex. This then leads
to two different weights xi and yi for each vertex. Klein-
berg refers to a vertex that is pointed to by highly ranked
vertices as an authority—it is likely to contain relevant
information. Such a vertex gets a weight xi that is large.
A vertex that points to highly ranked vertices is referred
to as a hub; while it may not contain directly relevant
information, it can tell you where to find such informa-
tion. It gets a weight yi that is large. (Certainly it is
possible for a vertex to have both weights large; there is
no reason why the same page cannot be both a hub and
an authority.) The appropriate generalization of Eq. (93)
for the two weights is then

Ay = λx, AT x = µy, (94)

where AT is the transpose of A. Most often we are in-
terested in the authority weights which, eliminating y,
obey AAT x = λµx, so that the primary difference be-
tween the method of Brin and Page [72] and the method
of Kleinberg is the replacement of the adjacency matrix
with the symmetric product AAT . More general forms
than (94) are also possible. One could for example allow
the authority weight of a vertex to depend on the author-
ity weights of the vertices that point to it (and not just
their hub weights, as in Eq. (94)). This leads to a model
that interpolates smoothly between the Brin–Page and
Kleinberg methods. As far as we are aware however, this
has not been tried. Neither has Kleinberg’s method been
implemented yet in a commercial web search engine, to
the best of our knowledge.

The methods described here can also be used for search
on other directed information networks. Kleinberg’s
method is be particularly suitable for ranking publica-
tions in citation networks, for example. The Citeseer lit-
erature search engine implements a form of article rank-
ing of this type.

2. Guided network search

An alternative approach to searching a network is to
perform a guided search. Guided search strategies may
be appropriate for certain kinds of Web search, particu-
larly searches for specialized content that could be missed

by generic search engines (whose coverage tends to be
quite poor), and also for searching on other types of net-
works such as distributed databases. Exhaustive search
of the type discussed in the preceding section crawls a
network once to create an index of the data found, which
is then stored and searched locally. Guided searches per-
form small special-purpose crawls for every search query,
crawling only a small fraction of the network, but doing
so in an intelligent fashion that deliberately seeks out the
network vertices most likely to contain relevant informa-
tion.

One practical example of a guided search is the special-
ized Web crawler or “spider” of Menczer et al. [280, 281].
This is a program that performs a Web crawl to find re-
sults for a particular query. The method used is a type
of genetic algorithm [285] or enrichment method [180]
that in its simplest form has a number of “agents” that
start crawling the Web at random, looking for pages that
contain, for example, particular words or sets of words
given by the user. Agents are ranked according to their
success at finding matches to the words of interest and
those that are least successful are killed off. Those that
are most successful are duplicated so that the density
of agents will be high in regions of the Web graph that
contain many pages that look promising. After some
specified amount of time has passed, the search is halted
and a list of the most promising pages found so far is
presented to the user. The method relies for its success
on the assumption that pages that contain information
on a particular topic tend to be clustered together in lo-
cal regions of the graph. Other than this however, the
algorithm makes little use of statistical properties of the
structure of the graph.

Adamic et al. [5, 6] have given a completely different
algorithm that directly exploits network structure and
is designed for use on peer-to-peer networks. Their algo-
rithm makes use of the skewed degree distribution of most
networks to find the desired results quickly. It works as
follows.

Simple breadth-first search can be thought of as a
query that starts from a single source vertex on a net-
work. The query goes out to all neighbors of the source
vertex and says, “Have you got the information I am
looking for?” Each neighbor either replies “Yes, I have
it,” in which case the search is over, or “No, I don’t, but
I have forwarded your request to all of my neighbors.”
Each of their neighbors, when they receive the request,
either recognizes it as one they have seen before, in which
case they discard it, or they repeat the process as above.
A query of this kind takes aggregate effort O(n) in the
network size. Adamic et al. propose to modify this algo-
rithm as follows. The initial source vertex again queries
each of its neighbors for the desired information. But
now the reply is either “Yes, I have it” or “No, I don’t,
and I have k neighbors,” where k is the degree of the ver-
tex in question. Upon receiving replies of the latter type
from each of its neighbors, the source vertex finds which
of its neighbors has the highest value of k and passes
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the responsibility for the query like a runner’s baton to
that neighbor, who then repeats the entire process with
their neighbors. (If the highest-degree vertex has already
handled the query in the past, then the second highest
is chosen, and so forth; complete recursive back-tracking
is used to make sure the algorithm never gets stuck in a
dead end.)

The upshot of this strategy is that the baton gets
passed rapidly up a chain of increasing vertex degree
until it reaches the highest degree vertices in the net-
work. On networks with highly skewed degree distribu-
tions, particularly scale-free (i.e., power-law) networks,
the neighbors of the high-degree vertices account for a
significant fraction of all the vertices in the network. On
average therefore, we need only go a few steps along
the chain before we find a vertex with a neighbor that
has the information we are looking for. The maximum
degree on a scale-free network scales with network size
as n1/(α−1) (see Sec. III.C.2), and hence the number
of steps required to search O(n) vertices is of order
n/n1/(α−1) = n(α−2)/(α−1), which lies between O(n1/2)
and O(log n) for 2 ≤ α ≤ 3, which is the range gener-
ally observed in power-law networks (see Table II). This
is a significant improvement over the O(n) of the sim-
ple breadth-first search, especially for the smaller values
of α.

This result differs from that given by Adamic et al. [5,
6], who adopted the more conservative assumption that
the maximum degree goes as n1/α [8], which gives signifi-
cantly poorer search times between O(n2/3) and O(n1/2).
They point out however that if each vertex to which the
baton passes is allowed to query not only its immediate
network neighbors but also its second neighbors, then the
performance improves markedly to O(n2(1−2/α)).

The algorithm of Adamic et al. has been tested numer-
ically on graphs with the structure of the configuration
model [5] (Sec. IV.B.1) and the Barabási–Albert prefer-
ential attachment model [5, 232] (Sec. VII.B), and shows
behavior in reasonable agreement with the expected scal-
ing forms.

The reader might be forgiven for feeling that these al-
gorithms are cheating a little, since the running time of
the algorithm is measured by the number of hands the
baton passes through. If one measures it in terms of the
number of queries that must be responded to by network
vertices, then the algorithm is still O(n), just as the sim-
ple breadth-first search is. Adamic et al. suggest that
each vertex therefore keep a local directory or index of
the information (such as data files) stored at neighboring
vertices, so that queries concerning those vertices can be
resolved locally. For distributed databases and file shar-
ing networks, where bandwidth, in terms of communi-
cation overhead between vertices, is the costly resource,
this strategy really does improve scaling with network
size, reducing overhead per query to O(log n) in the best
case.

3. Network navigation

The work of Adamic et al. [5, 6] discussed in the pre-
ceding section considers how one can design a network
search algorithm to exploit statistical features of network
structure to improve performance. A complementary
question has been considered by Kleinberg [238, 239]:
Can one design network structures to make a particu-
lar search algorithm perform well? Kleinberg’s work is
motivated by the observation, discussed in Sec. III.H,
that people are able to navigate social networks effi-
ciently with only local information about network struc-
ture. Furthermore, this ability does not appear to de-
pend on any particularly sophisticated behavior on the
part of the people. When performing the letter-passing
task of Milgram [283, 393], for instance, in which partic-
ipants are asked to communicate a letter or message to a
designated target person by passing it through their ac-
quaintance network (Sec. II.A), the search for the target
is performed, roughly speaking, using a simple “greedy
algorithm.” That is, at each step along the way the letter
is passed to the person that the current holder believes
to be closest to the target. (This in fact is precisely how
participants were instructed to act in Milgram’s experi-
ments.) The fact that the letter often reaches the target
in only a short time then indicates that the network it-
self must have some special properties, since the search
algorithm clearly doesn’t.

Kleinberg suggested a simple model that illustrates
this behavior. His model is a variant of the small-world
model of Watts and Strogatz [412, 416] (Sec. VI) in
which shortcuts are added between pairs of sites on a
regular lattice (a square lattice in Kleinberg’s studies).
Rather than adding these shortcuts uniformly at random
as Watts and Strogatz proposed, Kleinberg adds them
in a biased fashion, with shortcuts more likely to fall be-
tween lattice sites that are close together in the Euclidean
space defined by the lattice. The probability of a short-
cut falling between two sites goes as r−α, where r is the
distance between the sites and α is a constant. Kleinberg
proves a lower bound on the mean time t (i.e., number of
steps) taken by the greedy algorithm to find a randomly
chosen target on such a network. His bound is t ≥ cnβ

where c is independent of n and

β =

{

(2 − α)/3 for 0 ≤ α < 2

(α − 2)/(α − 1) for α > 2.
(95)

Thus the best performance of the algorithm is when α is
close to 2, and precisely at α = 2 the greedy algorithm
should be capable of finding the target in O(log n) steps.
Kleinberg also gave computer simulation results confirm-
ing this result. More generally, for networks built on an
underlying lattice in d dimensions, the optimal perfor-
mance of the greedy algorithm occurs at α = d [238, 239].
(See also Ref. 193 for some rigorous results on the per-
formance of greedy algorithms on Watts–Strogatz type
networks.)
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groups of individuals

FIG. 15 The hierarchical “social distance” tree proposed by
Watts et al. [415] and by Kleinberg [240]. Individuals are
grouped together by occupation, location, interest, etc., and
then those groups are grouped together into bigger groups
and so forth. The social distance between two individuals
is measured by how far one must go up the tree to find the
lowest “common ancestor” of the pair.

Kleinberg’s work shows that many networks do not al-
low fast search using a simple algorithm such as a greedy
algorithm, but that it is possible to design networks that
do allow such fast search. The particular model he stud-
ies however is quite specialized, and certainly not a good
representation of the real social networks that inspired his
investigations. An alternative model that shows similar
behavior to Kleinberg’s, but which may shed more light
on the true structure of social networks, has been pro-
posed by Watts et al. [415] and independently by Klein-
berg [240]. The “index” experiments of Killworth and
Bernard [50, 230] indicate that people in fact navigate
social networks by looking for common features between
their acquaintances and the target, such as geograph-
ical location or occupation. This suggests a model in
which individuals are grouped (at least in the partici-
pants minds) into categories according, for instance, to
their jobs. These categories may then themselves be
grouped in to supercategories, and so forth, creating a
tree-like hierarchy of organization that defines a “social
distance” between any two people: the social distance be-
tween two individuals is measured by the height of lowest
level in tree at which the two are connected—see Fig. 15.

The tree however is not the network, it is merely a
mental construct that affects the way the network grows.
It is assumed that the probability of their being an edge
between two vertices is greater the shorter the social dis-
tance between those vertices, and both Watts et al. [415]
and Kleinberg [240] assumed that this probability falls off
exponentially with social distance. The greedy algorithm
for communicating a message to a target person then
specifies that the message should at each step be passed
to that network neighbor of the current holder who has
the shortest social distance to the target. Watts et al.

showed by computer simulation that such an algorithm
performs well over a broad range of parameters of the
model, and Kleinberg showed that for appropriate pa-
rameter choices the search can be completed in time

again O(log n).
While this model is primarily a model of search on so-

cial networks (or possibly the Web [240]), Watts et al.

also suggested that it could be used as a model for de-
signed networks. If one could arrange for items in a dis-
tributed database to be grouped hierarchically according
to some identifiable characteristics, then a greedy algo-
rithm that is aware of those characteristics should be
able to find a desired element in the database quickly,
possibly in time only logarithmic in the size of the
database. This idea has been studied in more detail by
Iamnitchi et al. [205] and Arenas et al. [25].

One disadvantage of the hierarchical organizational
model is that in reality the categories into which network
vertices fall almost certainly overlap, whereas in the hier-
archical model they are disjoint. Kleinberg has proposed
a generalization of the model that allows for overlapping
categories and shows search behavior qualitatively simi-
lar to the hierarchical model [240].

D. Phase transitions on networks

Another group of papers has dealt with the behavior
on networks of traditional statistical mechanical models
that show phase transitions. For example, several au-
thors have studied spin models such as the Ising model
on networks of various kinds. Barrat and Weigt [40] stud-
ied the Ising model on networks with the topology of the
small-world model [416] (see Sec. VI) using replica meth-
ods. They found, unsurprisingly, that in the limit n → ∞
the model has a finite-temperature transition for all val-
ues of the shortcut density p > 0. Further results for
Ising models on small-world networks can be found in
Refs. 191, 202, 256, 337, 429, and the model has also
been studied on random graphs [112, 264] and on net-
works with the topology of the Barabási–Albert growing
network model [18, 51] (Sec VII.B).

The motivation behind studies of spin models on
networks is usually either that they can be regarded
as simple models of opinion formation in social net-
works [426] or that they provide general insight into
the effects of network topology on phase transition pro-
cesses. There are however other more direct approaches
to both of these issues. Opinion formation can be stud-
ied more directly using actual opinion formation mod-
els [84, 108, 163, 381, 390, 403]. And Goltsev et al. [178]
have examined phase transition behavior on networks
using the general framework known as Landau theory.
They find that the critical behavior of models on a net-
work depends in general on the degree distribution, and
is in particular strongly affected by power-law degree dis-
tributions.

One class of networked systems showing a phase tran-
sition that is of real interest is the class of NP-hard com-
putational problems such as satisfiability and colorability
that show solvability transitions. The simplest example
of such a system is the colorability problem, which is re-
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lated to problems in operations research such as schedul-
ing problems and also to the Potts model of statistical
mechanics. In this problem a number of items (vertices)
are divided into a number of groups (colors). Some pairs
of vertices cannot be in the same group. Such a con-
straint is represented by placing an edge between those
vertices, so that the set of all constraints forms a graph.
A solution to the problem of satisfying all constraints si-
multaneously (if a solution exists) is then equivalent to
finding a coloring of the graph such that no two adja-
cent vertices have the same color. Problems of this type
are found to show a phase transition between a region of
low graph density (low ratio of edges to vertices) in which
most graphs are colorable, to one of high density in which
most are not. A considerable amount of work has been
carried out on this and similar problems in the computer
science community [131]. However, this work has primar-
ily been restricted to Poisson random graphs; it is largely
an open question how the results will change when we
look at more realistic network topologies. Walsh [406]
has looked at colorability in the Watts–Strogatz small-
world model (Sec. VI), and found that these networks
are easily colorable for both small and large values of the
shortcut density parameter p, but harder to color in in-
termediate regimes. Vázquez and Weigt [402] examined
the related problem of vertex covers and found that on
generalized random graphs solutions are harder to find
for networks with strong degree correlations of the type
discussed in Sec. III.F.

E. Other processes on networks

Preliminary investigations, primarily numerical in na-
ture, have been carried out of the behavior of various
other processes on networks. A number of authors have
looked at diffusion processes. Random walks, for exam-
ple, have been examined by Jespersen et al. [216], Pan-
dit and Amritkar [329] and Lahtinen et al. [258, 259].
Solutions of the diffusion equation can be expressed as
linear combinations of eigenvectors of the graph Lapla-
cian, which has led a number of authors to investigate the
Laplacian and its eigenvalue spectrum [150, 173, 289].
Discrete dynamical processes have also attracted some
attention. One of the earliest examples of a statisti-
cal model of a networked system falls in this category,
the random Boolean net of Kauffman [11, 16, 97, 98,
159, 224, 225, 226, 373], which is a model of a ge-
netic regulatory network (see Sec. II.D). Cellular au-
tomata on networks have been investigated by Watts
and Strogatz [412, 416], and voter models and models
of opinion formation can also be regarded as cellular au-
tomata [84, 256, 403]. Iterated games on networks have
been investigated by several authors [1, 135, 231, 416],
and some interesting differences are seen between be-
havior on networks and on regular lattices. Other top-
ics of investigation have included weakly coupled oscil-
lators [37, 201, 416], neural networks [257, 382], and

self-organized critical models [106, 252, 300]. A useful
discussion of the behavior of dynamical systems on net-
works has been given by Strogatz [387].

IX. SUMMARY AND DIRECTIONS FOR FUTURE

RESEARCH

In this article we have reviewed some recent work on
the structure and function of networked systems. Work
in this area has been motivated to a high degree by em-
pirical studies of real-world networks such as the Inter-
net, the World Wide Web, social networks, collaboration
networks, citation networks, and a variety of biological
networks. We have reviewed these empirical studies in
Secs. II and III, focusing on a number of statistical prop-
erties of networks that have received particular attention,
including path lengths, degree distributions, clustering,
and resilience. Quantitative measurements for a vari-
ety of networks are summarized in Table II. The most
important observation to come out of studies such as
these is that networks are generally very far from ran-
dom. They have highly distinctive statistical signatures,
some of which, such as high clustering coefficients and
highly skewed degree distributions, are common to net-
works of a wide variety of types.

Inspired by these observations many researchers have
proposed models of networks that typically seek to ex-
plain either how networks come to have the observed
structure, or what the expected effects of that struc-
ture will be. The largest portion of this review has been
taken up with discussion of these models, covering ran-
dom graph models and their generalizations (Sec. IV),
Markov graphs (Sec. V), the small-world model (Sec. VI),
and models of network growth, particularly the preferen-
tial attachment models (Sec. VII).

In the last part of this review (Sec. VIII) we have dis-
cussed work on the behavior of processes that take place
on networks. The notable successes in this area so far
have been studies of the spread of infection over networks
such as social networks or computer networks, and stud-
ies of the effect of the failure of network nodes on per-
formance of communications networks. Some progress
has also be made on phase transitions on networks and
on dynamical systems on networks, particularly discrete
dynamical systems.

In looking forward to future developments in this area
it is clear that there is much to be done. The study of
complex networks is still in its infancy. Several general
areas stand out as promising for future research. First,
while we are beginning to understand some of the pat-
terns and statistical regularities in the structure of real-
world networks, our techniques for analyzing networks
are at present no more than a grab-bag of miscellaneous
and largely unrelated tools. We do not yet, as we do in
some other fields, have a systematic program for charac-
terizing network structure. We count triangles on net-
works or measure degree sequences, but we have no idea
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if these are the only important quantities to measure (al-
most certainly they are not) or even if they are the most
important. We have as yet no theoretical framework to
tell us if we are even looking in the right place. Per-
haps there are other measures, so far un-thought-of, that
are more important than those we have at present. A
true understanding of which properties of networks are
the important ones to focus on will almost certainly re-
quire us to state first what questions we are interested
in answering about a particular network. And knowing
how to tie the answers to these questions to structural
properties of the network is therefore also an important
goal.

Second, there is much to be done in developing more
sophisticated models of networks, both to help us un-
derstand network topology and to act as a substrate for
the study of processes taking place on networks. While
some network properties, such as degree distributions,

have been thoroughly modeled and their causes and ef-
fects well understood, others such as correlations, tran-
sitivity, and community structure have not. It seems
certain that these properties will affect the behavior of
networked systems substantially, so our current lack of
suitable techniques to handle them leaves a large gap in
our understanding.

Which leads us to our third and perhaps most im-
portant direction for future study, the behavior of pro-
cesses taking place on networks. The work described in
Sec. VIII represents only a few first attempts at answer-
ing questions about such processes, and yet this, in a
sense, is our ultimate goal in this field: to understand
the behavior and function of the networked systems we
see around us. If we can gain such understanding, it
will give us new insight into a vast array of complex and
previously poorly understood phenomena.
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ley, H. E., Classes of small-world networks, Proc. Natl.
Acad. Sci. USA 97, 11149–11152 (2000).

[21] Ancel Meyers, L., Newman, M. E. J., Martin, M., and
Schrag, S., Applying network theory to epidemics: Con-
trol measures for outbreaks of Mycoplasma pneumoniae,
Emerging Infectious Diseases 9, 204–210 (2001).

[22] Anderson, C., Wasserman, S., and Crouch, B., A p*
primer: Logit models for social networks, Social Net-
works 21, 37–66 (1999).

[23] Anderson, R. M. and May, R. M., Infectious Diseases
of Humans, Oxford University Press, Oxford (1991).

[24] Andersson, H., Epidemic models and social networks,
Math. Scientist 24, 128–147 (1999).

[25] Arenas, A., Cabrales, A., Dı́az-Guilera, A., Guimerà,
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[41] Barthélémy, M. and Amaral, L. A. N., Erratum: Small-
world networks: Evidence for a crossover picture, Phys.
Rev. Lett. 82, 5180 (1999).
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[142] Erdős, P. and Rényi, A., On the evolution of random
graphs, Publications of the Mathematical Institute of the
Hungarian Academy of Sciences 5, 17–61 (1960).
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G. M., and Risau-Gusman, S., Deterministic walks in
random networks: An application to thesaurus graphs,
Physica A 315, 665–676 (2002).

[235] Kleczkowski, A. and Grenfell, B. T., Mean-field-type
equations for spread of epidemics: The ‘small world’
model, Physica A 274, 355–360 (1999).

[236] Kleinberg, J. and Lawrence, S., The structure of the
Web, Science 294, 1849–1850 (2001).

[237] Kleinberg, J. M., Authoritative sources in a hyperlinked

http://arXiv.org/abs/cond-mat/0210514
http://arXiv.org/abs/cond-mat/0206292


54 The structure and function of complex networks

environment, J. ACM 46, 604–632 (1999).
[238] Kleinberg, J. M., Navigation in a small world, Nature

406, 845 (2000).
[239] Kleinberg, J. M., The small-world phenomenon: An al-

gorithmic perspective, in Proceedings of the 32nd An-
nual ACM Symposium on Theory of Computing, pp.
163–170, Association of Computing Machinery, New
York (2000).

[240] Kleinberg, J. M., Small world phenomena and the dy-
namics of information, in T. G. Dietterich, S. Becker,
and Z. Ghahramani (eds.), Proceedings of the 2001 Neu-
ral Information Processing Systems Conference, MIT
Press, Cambridge, MA (2002).

[241] Kleinberg, J. M., Kumar, S. R., Raghavan, P., Ra-
jagopalan, S., and Tomkins, A., The Web as a graph:
Measurements, models and methods, in Proceedings
of the International Conference on Combinatorics and
Computing, no. 1627 in Lecture Notes in Computer Sci-
ence, pp. 1–18, Springer, Berlin (1999).

[242] Klemm, K. and Eguiluz, V. M., Highly clustered scale-
free networks, Phys. Rev. E 65, 036123 (2002).

[243] Klovdahl, A. S., Potterat, J. J., Woodhouse, D. E.,
Muth, J. B., Muth, S. Q., and Darrow, W. W., Social
networks and infectious disease: The Colorado Springs
study, Soc. Sci. Med. 38, 79–88 (1994).

[244] Knuth, D. E., The Stanford GraphBase: A Platform
for Combinatorial Computing, Addison-Wesley, Read-
ing, MA (1993).

[245] Krapivsky, P. L. and Redner, S., Organization of grow-
ing random networks, Phys. Rev. E 63, 066123 (2001).

[246] Krapivsky, P. L. and Redner, S., Finiteness and fluctu-
ations in growing networks, J. Phys. A 35, 9517–9534
(2002).

[247] Krapivsky, P. L. and Redner, S., A statistical physics
perspective on Web growth, Computer Networks 39,
261–276 (2002).

[248] Krapivsky, P. L. and Redner, S., Rate equation ap-
proach for growing networks, in R. Pastor-Satorras and
J. Rubi (eds.), Proceedings of the XVIII Sitges Confer-
ence on Statistical Mechanics, Lecture Notes in Physics,
Springer, Berlin (2003).

[249] Krapivsky, P. L., Redner, S., and Leyvraz, F., Connec-
tivity of growing random networks, Phys. Rev. Lett. 85,
4629–4632 (2000).

[250] Krapivsky, P. L., Rodgers, G. J., and Redner, S., Degree
distributions of growing networks, Phys. Rev. Lett. 86,
5401–5404 (2001).

[251] Kretzschmar, M., van Duynhoven, Y. T. H. P., and Sev-
erijnen, A. J., Modeling prevention strategies for gon-
orrhea and chlamydia using stochastic network simula-
tions, Am. J. Epidemiol. 114, 306–317 (1996).

[252] Kulkarni, R. V., Almaas, E., and Stroud, D., Evolution-
ary dynamics in the Bak-Sneppen model on small-world
networks, Preprint cond-mat/9908216 (1999).

[253] Kulkarni, R. V., Almaas, E., and Stroud, D., Exact
results and scaling properties of small-world networks,
Phys. Rev. E 61, 4268–4271 (2000).

[254] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar,
D., Tomkins, A. S., and Upfal, E., Stochastic models
for the Web graph, in Proceedings of the 42st Annual
IEEE Symposium on the Foundations of Computer Sci-
ence, pp. 57–65, Institute of Electrical and Electronics
Engineers, New York (2000).

[255] Kuperman, M. and Abramson, G., Small world effect

in an epidemiological model, Phys. Rev. Lett. 86, 2909–
2912 (2001).

[256] Kuperman, M. and Zanette, D. H., Stochastic resonance
in a model of opinion formation on small world net-
works, Eur. Phys. J. B 26, 387–391 (2002).

[257] Lago-Fernández, L. F., Huerta, R., Corbacho, F., and
Sigüenza, J. A., Fast response and temporal coherent
oscillations in small-world networks, Phys. Rev. Lett.
84, 2758–2761 (2000).

[258] Lahtinen, J., Kertész, J., and Kaski, K., Scaling of ran-
dom spreading in small world networks, Phys. Rev. E
64, 057105 (2001).

[259] Lahtinen, J., Kertész, J., and Kaski, K., Random
spreading phenomena in annealed small world networks,
Physica A 311, 571–580 (2002).

[260] Latora, V. and Marchiori, M., Efficient behavior of
small-world networks, Phys. Rev. Lett. 87, 198701
(2001).

[261] Latora, V. and Marchiori, M., Economic small-
world behavior in weighted networks, Preprint
cond-mat/0204089 (2002).

[262] Latora, V. and Marchiori, M., Is the Boston subway a
small-world network?, Physica A 314, 109–113 (2002).

[263] Lawrence, S. and Giles, C. L., Accessibility of informa-
tion on the web, Nature 400, 107–109 (1999).

[264] Leone, M., Vázquez, A., Vespignani, A., and Zecchina,
R., Ferromagnetic ordering in graphs with arbitrary de-
gree distribution, Eur. Phys. J. B 28, 191–197 (2002).

[265] Liljeros, F., Edling, C. R., and Amaral, L. A. N., Sex-
ual networks: Implication for the transmission of sexu-
ally transmitted infection, Microbes and Infections (in
press).

[266] Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley,
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[297] Moreno, Y., Gómez, J. B., and Pacheco, A. F., In-
stability of scale-free networks under node-breaking
avalanches, Europhys. Lett. 58, 630–636 (2002).

[298] Moreno, Y., Pastor-Satorras, R., Vázquez, A., and
Vespignani, A., Critical load and congestion instabili-
ties in scale-free networks, Preprint cond-mat/0209474
(2002).

[299] Moreno, Y., Pastor-Satorras, R., and Vespignani, A.,
Epidemic outbreaks in complex heterogeneous net-
works, Eur. Phys. J. B 26, 521–529 (2002).

[300] Moreno, Y. and Vázquez, A., The Bak-Sneppen model
on scale-free networks, Europhys. Lett. 57, 765–771
(2002).

[301] Moreno, Y. and Vázquez, A., Disease spreading in struc-
tured scale-free networks, Preprint cond-mat/0210362
(2002).

[302] Morris, M., Data driven network models for the spread
of infectious disease, in D. Mollison (ed.), Epidemic
Models: Their Structure and Relation to Data, pp. 302–
322, Cambridge University Press, Cambridge (1995).

[303] Morris, M., Sexual networks and HIV, AIDS 97: Year
in Review 11, 209–216 (1997).

[304] Motter, A. E., de Moura, A. P., Lai, Y.-C., and Das-
gupta, P., Topology of the conceptual network of lan-
guage, Phys. Rev. E 65, 065102 (2002).

[305] Motter, A. E. and Lai, Y.-C., Cascade-based attacks on
complex networks, Phys. Rev. E 66, 065102 (2002).

[306] Moukarzel, C. F., Spreading and shortest paths in sys-
tems with sparse long-range connections, Phys. Rev. E
60, 6263–6266 (1999).

[307] Moukarzel, C. F. and de Menezes, M. A., Shortest paths
on systems with power-law distributed long-range con-
nections, Phys. Rev. E 65, 056709 (2002).

[308] Müller, J., Schönfisch, B., and Kirkilionis, M., Ring vac-
cination, J. Math. Biol. 41, 143–171 (2000).

[309] Newman, M. E. J., Models of the small world, J. Stat.
Phys. 101, 819–841 (2000).

[310] Newman, M. E. J., Clustering and preferential attach-
ment in growing networks, Phys. Rev. E 64, 025102
(2001).

[311] Newman, M. E. J., Scientific collaboration networks: I.
Network construction and fundamental results, Phys.
Rev. E 64, 016131 (2001).

[312] Newman, M. E. J., Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality, Phys.
Rev. E 64, 016132 (2001).

[313] Newman, M. E. J., The structure of scientific collabora-
tion networks, Proc. Natl. Acad. Sci. USA 98, 404–409
(2001).

[314] Newman, M. E. J., Assortative mixing in networks,
Phys. Rev. Lett. 89, 208701 (2002).

[315] Newman, M. E. J., Spread of epidemic disease on net-
works, Phys. Rev. E 66, 016128 (2002).

[316] Newman, M. E. J., The structure and function of net-
works, Computer Physics Communications 147, 40–45
(2002).

[317] Newman, M. E. J., Ego-centered networks and the rip-
ple effect, Social Networks 25, 83–95 (2003).

[318] Newman, M. E. J., Mixing patterns in networks, Phys.
Rev. E 67, 026126 (2003).

[319] Newman, M. E. J., Random graphs as models of net-
works, in S. Bornholdt and H. G. Schuster (eds.), Hand-
book of Graphs and Networks, pp. 35–68, Wiley-VCH,
Berlin (2003).

[320] Newman, M. E. J., Barabási, A.-L., and Watts, D. J.,
The Structure and Dynamics of Networks, Princeton
University Press, Princeton (2003).

[321] Newman, M. E. J., Forrest, S., and Balthrop, J., Email
networks and the spread of computer viruses, Phys. Rev.
E 66, 035101 (2002).

[322] Newman, M. E. J., Moore, C., and Watts, D. J., Mean-

http://arXiv.org/abs/cond-mat/0205411
http://arXiv.org/abs/cond-mat/0209474
http://arXiv.org/abs/cond-mat/0210362


56 The structure and function of complex networks

field solution of the small-world network model, Phys.
Rev. Lett. 84, 3201–3204 (2000).

[323] Newman, M. E. J., Strogatz, S. H., and Watts, D. J.,
Random graphs with arbitrary degree distributions and
their applications, Phys. Rev. E 64, 026118 (2001).

[324] Newman, M. E. J. and Watts, D. J., Renormalization
group analysis of the small-world network model, Phys.
Lett. A 263, 341–346 (1999).

[325] Newman, M. E. J. and Watts, D. J., Scaling and perco-
lation in the small-world network model, Phys. Rev. E
60, 7332–7342 (1999).

[326] Ozana, M., Incipient spanning cluster on small-world
networks, Europhys. Lett. 55, 762–766 (2001).

[327] Padgett, J. F. and Ansell, C. K., Robust action and
the rise of the Medici, 1400–1434, Am. J. Sociol. 98,
1259–1319 (1993).

[328] Page, L., Brin, S., Motwani, R., and Winograd, T., The
Pagerank citation ranking: Bringing order to the web,
Technical report, Stanford University (1998).

[329] Pandit, S. A. and Amritkar, R. E., Random spread on
the family of small-world networks, Phys. Rev. E 63,
041104 (2001).

[330] Pastor-Satorras, R. and Rubi, J. (eds.), Proceedings of
the XVIII Sitges Conference on Statistical Mechanics,
Lecture Notes in Physics, Springer, Berlin (2003).

[331] Pastor-Satorras, R., Vázquez, A., and Vespignani, A.,
Dynamical and correlation properties of the Internet,
Phys. Rev. Lett. 87, 258701 (2001).

[332] Pastor-Satorras, R. and Vespignani, A., Epidemic dy-
namics and endemic states in complex networks, Phys.
Rev. E 63, 066117 (2001).

[333] Pastor-Satorras, R. and Vespignani, A., Epidemic
spreading in scale-free networks, Phys. Rev. Lett. 86,
3200–3203 (2001).

[334] Pastor-Satorras, R. and Vespignani, A., Epidemic dy-
namics in finite size scale-free networks, Phys. Rev. E
65, 035108 (2002).

[335] Pastor-Satorras, R. and Vespignani, A., Immunization
of complex networks, Phys. Rev. E 65, 036104 (2002).

[336] Pastor-Satorras, R. and Vespignani, A., Epidemics and
immunization in scale-free networks, in S. Bornholdt
and H. G. Schuster (eds.), Handbook of Graphs and Net-
works, Wiley-VCH, Berlin (2003).
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