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Abstract

We review the recent rapid progress in the statistical physics of evolving
networks. Interest has focused mainly on the structural properties of complex
networks in communications, biology, social sciences and economics. A number of
giant artificial networks of this kind have recently been created, which opens a
wide field for the study of their topology, evolution, and the complex processes
which occur in them. Such networks possess a rich set of scaling properties. A
number of them are scale-free and show striking resilience against random
breakdowns. In spite of the large sizes of these networks, the distances between
most of their vertices are short—a feature known as the ‘small-world’ effect. We
discuss how growing networks self-organize into scale-free structures, and
investigate the role of the mechanism of preferential linking. We consider the
topological and structural properties of evolving networks, and percolation and
disease spread on these networks. We present a number of models demonstrating
the main features of evolving networks and discuss current approaches for their
simulation and analytical study. Applications of the general results to particular
networks in nature are discussed. We demonstrate the generic connections of the
network growth processes with the general problems of non-equilibrium physics,
econophysics, evolutionary biology, and so on.
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1. Introduction
The Internet and World Wide Web (WWW) are perhaps the most impressive
creations of our civilization [1]. Their influence on us is all-pervasive: they are part of
our life, of our world. Our present and our future are impossible to imagine without
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them. Nevertheless, we know much less about them than one may expect. We know
surprisingly little of their structure and complex organization, their global topology,
their local properties, and various processes occurring within them. Such knowledge
is needed for the most effective functioning of the Internet and WWW, for ensuring
their safety, and for utilizing all their possibilities. Here, we argue that, the
understanding of the Internet, WWW, and their inherent problems is a topic not
of computer science and applied mathematics, but rather of non-equilibrium
statistical physics.

In fact, these wonderful communications nets [2, 3, 4, 5, 6, 7, 8, 9, 10] are only
particular examples of a great class of evolving networks. Numerous networks, e.g.,
collaboration networks [11, 12, 13, 14, 15], public relations nets [16, 17, 18, 19, 20],
citations of scientific papers [21, 22, 23, 24, 25, 26, 27], some industrial networks [11,
12, 28], transportation networks [29, 30], nets of relations between enterprises and
agents in financial markets [31], telephone call graphs [32], many biological networks
[33, 34, 35, 36, 37, 38, 39,40, 41, 42, 43, 44, 45], food and ecological webs [46, 47, 48,
49, 50, 51, 52], etc., belong to it. The finiteness of these networks sets serious
restrictions on extracting useful experimental data because of strong size effects and,
often, insufficient statistics. However, the large size of the Internet and WWW and
their extensive and easily accessible documentation allow reliable and informative
experimental investigation of their structure and properties. Unfortunately, the
statistical theory of neural networks [53, 54] seems to be useless for the under-
standing of problems of the evolution of networks, since this advanced theory does
not seriously touch on the main question arising for real networks: how networks
become specifically structured during their growth.

Quite recently, general features of structural organization of such networks were
discovered [2, 3, 5, 6,27, 41, 55, 56, 58]. It has become clear that their complex scale-
free structure is a natural consequence of the principles of their growth. Some
simple basic ideas have been proposed. Physicists have investigated the self-
organization of growing networks and processes occurring within them, and have
related them [59, 60, 61, 62, 63] to corresponding phenomena (growth phenomena
[64], self-organization [65, 66, 67] and self-organized criticality [68, 69, 70],
percolation [71, 72, 73], localization, etc.).

The goal of our paper is to review the recent rapid progress in understanding the
evolution of networks using the ideas and methods of statistical physics. The
problems that we discuss relate to computer science, mathematics, physics, engin-
eering, biology, economy, and social sciences. Here, we present the point of view of
physicists. We do not dwell on Boolean and neural networks.

2. Historical background

The structure of networks has been studied by mathematical graph theory
[74, 75, 76]. Some basic ideas, used later by physicists, were proposed long ago by
the incredibly prolific and outstanding Hungarian mathematician Paul Erdés and his
collaborator Rényi [77, 78]. Nevertheless, the most intriguing type of growing
networks, which evolve into scale-free structures, has not been studied by graph
theory. Most of the results of graph theory [79, 80] are related to the simplest
random graphs with Poisson distribution of connections [77, 78] (classical random
graph). Moreover, in graph theory, by definition, random graphs are graphs with
Poisson distribution of connections (we use this term in a far wider sense).
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Nevertheless, one should note the significant results obtained recently by mathema-
ticians for random graphs with arbitrary distribution of connections [81,82].

The mostly empirical study of specific large random networks such as nets of
citations in scientific literature has a long history [21, 22, 23, 24]. Unfortunately, their
limited sizes have prevented researchers from obtaining reliable data and describing
their structure until recently.

Fundamental concepts such as functioning and practical organization of large
communications networks were elaborated by the ‘father’ of the Internet, Paul Baran
[1]; in truth, many present studies are based on his original ideas and use his
terminology. What is the optimal design of communications networks? How may
one ensure their stability and safety? These, and many other fundamental problems,
were studied first by Baran in a practical context.

By the middle of 1990s, the Internet and the WWW had achieved such a very
large size, and continued to experience such rapid growth, that intensively developed
search engines failed to cover a great part of the WWW [7, 8,9, 83, 84,85, 86,87, 88, 89].
A clear knowledge of the structure of the WWW has become vitally important for its
effective operation.

The first experimental data, mostly for the simplest structural characteristics of
the communications networks, were obtained in 1997-1999 [2, 3, 4, 5, 90, 91].
Distributions of the number of connections in the networks and their surprisingly
small average shortest-path lengths were measured. A special role of long-tailed,
power-law distributions was revealed. After these findings, physicists started an
intensive study of evolving random networks in various areas, from communications
to biology and public relations.

3. Structural characteristics of evolving networks

Let us begin by introducing the objects under discussion. The networks that we
consider are graphs consisting of vertices (nodes) connected by edges (links). Edges
may be directed or undirected (leading to directed and undirected networks,
relatively). For definition of distances in a network, one sets lengths of all edges
to be one.

Here we do not consider networks with unit loops (edges started and terminated
at the same vertex) and multiple edges, i.e., we assume that only one edge may
connect two vertices. (One should note that multiple edges are encountered in some
collaboration networks [14].) Pairs of opposing edges connect some vertices in the
WWW, in networks of protein-protein interactions, and in food webs. Also, protein-
protein interaction nets and food webs contain unit loops (see below). Nets with
‘weighted’ edges are discussed in reference [92].)

The structure of a network is described by its adjacency matrix, B, whose
elements consist of zeros and ones. An element of the adjacency matrix of a network
with undirected edges, b,,, is 1 if vertices ;1 and v are connected, and is 0 otherwise.
Therefore, the adjacency matrix of a network with undirected edges is symmetrical.
For a network with directed edges, an element of the adjacency matrix, b, equals 1
if there is an edge from the vertex p to the vertex v, and equals 0 otherwise.

In the case of a random network, an adjacency matrix describes only a particular
member of the entire statistical ensemble of random graphs. Hence, what one observes
is only a particular realization of this statistical ensemble and the adjacency matrix of
this graph is only a particular member of the corresponding ensemble of matrices.
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The statistics of the adjacency matrix of a random network contains complete
information about the structure of the net, and, in principle, one has to study just the
adjacency matrix. Generally, this is not an easy task, so that, conversely, only a very
restricted set of structural characteristics is usually considered.

3.1. Degree

The simplest and the most intensively studied one-vertex characteristic is degree.
Degree, k, of a vertex is the total number of its connections. (In physical literature,
this quantity is often called ‘connectivity’ that has a quite different meaning in graph
theory. Here, we use the mathematically correct definition.) In-degree, k;, is the
number of incoming edges of a vertex. Out-degree, k, is the number of its outgoing
edges. Hence, k = k; + k,. Degree is actually the number of nearest neighbours of a
vertex, z;. Total distributions of vertex degrees of an entire network, P(k;, k,)—the
joint in- and out-degree distribution, P(k)—the degree distribution, P;(k;)—the in-
degree distribution, and P,(k,)—the out-degree distribution—are its basic statistical
characteristics. Here,

P(k) = Plkjk—ki) =Y Pk — ko k,),
ki ko

Pilki) =D Plki, ko). (3.1)

ko

Po(ko) =Y Plki k).

i

For brevity, instead of P;(k;) and P,(k,) we usually use the notations P(k;) and
P(k,). If a network has no connections with the exterior, then the average in- and
out-degree are equal:

K= kiPlkik,) =% = koPlki,k,): (3:2)

ki ko ki ko

Although the degree of a vertex is a local quantity, we shall see that a degree
distribution often determines some important global characteristics of random
networks. Moreover, if statistical correlations between vertices are absent,
P(k;, k,) totally determines the structure of the network.

3.2. Shortest path

One may define a geodesic distance between two vertices, p and v, of a graph with
unit length edges. It is the shortest-path length, £,,,, from the vertex y to the vertex v.
If vertices are directed, £, is not necessary equal to ¢,,,. It is possible to introduce the
distribution of the shortest-path lengths between pairs of vertices of a network and
the average shortest-path length ¢ of a network. The average here is over all pairs of
vertices between which a path exists and over all realizations of a network.

?is often called the ‘diameter’ of a network. It determines the effective ‘linear size’
of a network, the average separation of pairs of vertices. For a lattice of dimension d
containing N vertices, obviously, ¢ ~ N4 In a fully connected network, 7 = 1. One
may roughly estimate ¢ of a network in which random vertices are connected. If the
average number of nearest neighbours of a vertex is z;, then about z{ vertices of the
network are at a distance ¢ from the vertex or closer. Hence, N ~ z{ and then
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7 ~InN/Inzy, ie., the average shortest-path length value is small even for very large
networks. This smallness is usually referred to as a small-world effect [11, 12, 93].

One can also introduce the maximal shortest-path length over all the pairs of
vertices between which a path exists. This characteristic determines the maximal
extent of a network. (In some papers the maximal shortest path is also referred to as
the diameter of the network, so that we avoid to use this term.)

3.3. Clustering coefficient

For the description of connections in the environment closest to a vertex, one
introduces the so-called clustering coefficient. For a network with undirected edges,
the number of all possible connectlons of the nearest nelghbours of a vertex p (z(l
nearest neighbours) equals zl (zl )/2 Let only y“ of them be present. The
clustering coefficient of this vertex, Ct") = y /[Z| (h )( —1)/2], is the fraction of
existing connections between nearest neighbours of the vertex. Averaging C") over
all vertices of a network yields the clustering coefficient of the network, C. The
clustering coefficient is the probability that two nearest neighbours of a vertex are
nearest neighbours also of one another. The clustering coefficient of the network
reflects the ‘cliquishness’ of the mean closest neighbourhood of a network vertex,
that is, the extent to which the nearest neighbours of a vertex are the nearest
neighbours of each other [11]. One should note that the notion of clustering was
introduced in sociology [18].

From another point of view, C is the probability that if a triple of vertices of a
network is connected together by at least two edges then the third edge is also
present. One can check that C/3 is equal to the number of triples of vertices
connected together by three edges divided by the number of all connected triples of
vertices.

Instead of C, it is equally possible to use another related characteristic of
clustering, DWW = (z(l“’> —|—y(l“’))/[(zl“’) + l)z(l“’)/Z], that is, the fraction of existing
connections inside of a set of vertices consisting of the vertex p and all its nearest
neighbours. DWW plays the role of local density of linkage. C*¥) and DW are
connected by the following relations:

DU = € 4 — )2 (1= oy,
21“’ +1 13
, (3
cw — pWw - (1- D(u)).
z(l“’) -1

In a network in which all pairs of vertices are connected (the complete graph)
C=D=1. For treelike graphs, C=0. In a classical random graph
C=M/INN-1)/2]=z/(N=1), D=M/IN(N+1)/2] =z /(N +1). Here, N
is the total number of vertices of the graph, M is the total number of its edges,
and z; is an average number of the nearest neighbours of a vertex in the graph,
M =z N/2. In an ordered lattice, 0 < C < 1 depending on its structure. Note that
0<C<1lbut0<2/(z1+1)<D<1.

3.4. Size of the giant component
Generally, a network may contain disconnected parts. In networks with
undirected edges, it is easy to introduce the notion corresponding to the percolating
cluster in the case of disordered lattices. If the relative size of the largest connected
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cluster of vertices of a network (the largest connected component) approaches a non-
zero value when the network is grown to infinite size, the system is above the
percolating threshold, and this cluster is called the giant connected component of the
network. In this case, the size of the next largest cluster, etc., are small compared to
the giant connected component for a large enough network. Nevertheless, size effects
are usually strong (see section 11.3), and for accurate measurement of the size of the
giant connected component, large networks must be used.

One may generalize this notion for networks with directed edges. In this case, we
have to consider a cluster of vertices from each of that one can approach any vertex
of this cluster. Such a cluster may be called the strongly connected component. If the
largest strongly connected component contains a finite fraction of all vertices in the
large network limit, it is called the giant strongly connected component. Connected
clusters obtained from a directed network by ignoring directions of its edges are
called weakly connected components, and one can define the giant weakly connected
component of a network.

3.5. Other many-vertex characteristics

One can get a general picture of the distribution of edges between vertices in a
network considering the average elements of the adjacency matrix, EW (here, the
averaging is over realizations of the evolution process, if the network is evolving, or
over all configurations, if it is static) although this characteristic is not very
informative.

A local characteristic, degree, k = k| = z| can be easily generalized. It is possible
to introduce the number of vertices at a distance equal 2 or less from a vertex, k,, the
number of second neighbours, z; = k; — ky, etc. Generalization of the clustering
coefficient is also straightforward: one has to count all edges between n-th nearest
neighbours.

One may consider distributions of these quantities and their average values.
Often, it is possible to fix a vertex not by its label, p but only by its in- and out-
degrees, therefore, it is reasonable to introduce the probability P(k;, k,;k/, k) that a
pair of vertices—the first vertex with the in- and out-degrees k; and k, and the second
one with the in- and out-degrees k! and k/—are connected by a directed edge going
out from the first vertex and coming to the second one [94, 95].

It is easy to introduce a similar quantity for networks with undirected edges,
namely the distribution P(k, k;) of the degrees of nearest neighbour vertices. This
distribution indicates correlations between the degrees of nearest neighbours in a
network: if P(ky,k;), does not factorize, these correlations are present [94, 95].
Unfortunately, it is hard to measure such distributions because of the poor statistics.
However, one may easily observe these correlations studying a related character-
istic—the dependence E,m(k) of the average degree of the nearest neighbours Tepn oD
the degree k of a vertex [96].

Similarly, it is difficult to measure a standard joint in- and out-degree distribution
P(k;,k,). However, one may measure the dependences k;(k,) of the average in-
degrees k; for vertices of the out-degree k, and k,(k;) of the average out-degrees k,
for vertices of the in-degree k;.

One may also consider the probability, P,(k, k,), that the number of vertices at a
distance n or less from a vertex equals k,, if the degree of the vertex is k;, etc. Some
other many-node characteristics will be introduced hereafter.
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4. Notions of equilibrium and non-equilibrium networks
From a physical point of view, random networks may be ‘equilibrium’ or ‘non-
equilibrium’. Let us introduce these important notions using simple examples.

(a) An example of an equilibrium random network: a classical undirected
random graph [77, 78] (see section 6), which is defined by:
(1) the total number of vertices is fixed;
(i1) randomly chosen pairs of vertices are connected via undirected edges.

Vertices of the classical random graph are statistically independent and equiva-
lent. The construction procedure of such a graph may be thought of as the
subsequent addition of new edges between vertices chosen at random. When the
total number of vertices is fixed, this procedure obviously produces equilibrium
configurations.

(b) The example of a non-equilibrium random network: a simple random graph
growing through the simultaneous addition of vertices and edges (see, e.g.,
[203, 204] and section 11.7), which is defined by:

(i) at each time step, a new vertex is added to the graph;
(ii) simultaneously, a pair (or several pairs) of randomly chosen vertices is
connected.

One sees that the system is not in equilibrium. Edges are inhomogeneously
distributed over the graph. The oldest vertices are the most connected (in statistical
sense), and degrees of new vertices are the smallest. If, at some moment, we stop to
increase the number of vertices but continue the random addition of edges, then the
network will tend to an ‘equilibrium state’ but never achieve it. Indeed, edges of the
network do not disappear, so the inhomogeneity survives. An ‘equilibrium state’ can
be achieved only if, in addition, we allow old edges to disappear from time to time.

The specific case of equilibrium networks with a Poisson degree distribution was
actually the main object of graph theory over more than forty years. Physicists have
started the study of non-equilibrium (growing) networks. The construction pro-
cedure for an equilibrium graph with an arbitrary degree distribution P(k) was
proposed in graph theory (e.g., see references [81, 82]):

(a) to the vertices {p} of the graph ascribe degrees {k,} taken from the
distribution P(k): Now the graph looks like a family of hedgehogs: each
vertex has k; sticking out quills (see figure 1(a));

(b) connect at random ends of pairs of distinct quills belonging to distinct
vertices (see figure 1(b)).

The generalization of this construction procedure to directed equilibrium graphs
with arbitrary joint in- and out-degree distributions P(k;, k,) is straightforward.

While speaking about random networks we should keep in mind that a particular
network we observe is only one member of a statistical ensemble of all possible
realizations. Hence when we speak about random networks, we actually mean
statistical ensembles. The microcanonical and canonical ensembles for an undirected
network with N vertices have 2Y(W=1/2 members, i.e., realizations (recall that unit
loops and multiple edges are forbidden). Each member of the ensemble is a distinct
configuration of edges taken with some statistical weight. A rigorous definition of a
random network must contain a set of statistical weights for all configurations of
edges. A grand canonical ensemble of random graphs may be obtained using
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v -~ a)

b)

Figure 1. The construction procedure for an equilibrium random graph with preset
arbitrary degree distribution P(k). (a) Degrees {k,} taken from the distribution are
ascribed to the vertices {u:}. (b) Pairs of random ends sticking out of different vertices
are connected.

standard approaches of statistical mechanics. The result, namely the statistical
ensemble of equilibrium random networks, is completely determined by the degree
distribution.

The above procedure provides only a particular realization of the equilibrium
graph. Surprisingly, the rigorous construction of the complete set of the statistical
ensembles of equilibrium random graphs was made only for classical random graphs
(see section 6), and the problem of strict formal construction of the statistical
ensemble of equilibrium random graphs with a given degree distribution is still open.
(However, see reference [97] for the construction procedure for the statistical
ensemble of trees.)

It is possible to construct an equilibrium graph in a different way from the above
configuration procedure. Suppose one wants to obtain a large enough equilibrium
undirected graph with a given set of vertex degrees k,, where y1 =1,..., N. Let us
start from an arbitrary configuration of edges connecting these vertices of degree k,,.
We must ‘equilibrate’ the graph. For this:

(a) connect a pair of arbitrary vertices (e.g. | and 2) by an additional edge; Then
the degrees of these vertices increase by one (k{ = k; + 1 and kj = k, + 1);

(b) choose at random one of edge ends attached to vertex 1 and rewire it to a
randomly chosen vertex 3; choose at random one of edge ends attached to
vertex 2 and rewire it to a randomly chosen vertex 4. Then k' = ky, k) =k
and k3// = k3 + l,k‘/( = k4 + 1;

(c) repeat (b) until equilibrium is reached.

Only two vertices of resulting network have degrees greater (by one) than the
given degrees k,. For a large network, this is non-essential. If, during our procedure,
both the edges under rewiring are turned to be rewired to the same vertex, then, at
the next step, one may rewire a pair of randomly chosen edges from this vertex.
Another procedure for the same purpose is described in reference [98].
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The notion of the statistical ensemble of growing networks may also be
introduced in a natural way. This ensemble includes all possible paths of the
evolution of a network.

5. Evolving networks in nature
In this section we discuss some of the most prominent large networks in nature,
beginning with the most simply organized one.

5.1. Networks of citations of scientific papers

The vertices of these networks are scientific papers, the directed edges are
citations. The growth process of the citation networks is very simple (see figure 2).
Almost each new article contains a nonzero number of references to old ones. This is
the only way to create new edges. The appearance of new connections between old
vertices is impossible (one may think that old papers are not updated). The number
of references to some paper is the in-degree of the corresponding vertex of the
network.

The average number of references in a paper is of the order of 10!, so such
networks are sparse. In reference [27], the data from an ISI database for the period
1981—-June 1997 and citations from Phys. Rev. D, 11-50 (1975-1994) were used to
find the distributions of the number of citations, i.e., the in-degree distributions. The
first network consists of 783339 nodes and 6 716 198 links, the maximum number of
citations is %Emax) = 8904. The second network contains 24296 nodes connected by
351872 links, and its maximum in-degree equals 2026. The out-degree is rather
small, so the degree distribution coincides with the in-degree one in the range of large
degree.

Unfortunately, the sizes of these networks are not sufficiently large to find a
conclusive functional form of the distributions. In reference [27], both distributions
were fitted by the k;* dependence. The fitting by the dependence (k; + const) " was
proposed in reference [99]. The exponents were estimated as v = 2.9 for the ISI net
and vy = 2.6 for the Phys. Rev. D citations. Furthermore, in reference [100], the large
in-degree part of the in-degree distribution obtained for the Phys. Rev. D citation
graph was fitted by a power law with the exponent v = 1.9 + 0.2. It was found in the
same paper that the average number of references per paper increases as the citation
graphs grow. The out-degree distributions (the distribution of number of references
in papers) show exponential tails. The factor in the exponential depends on whether
or not journals restrict the maximum number of pages in their papers.

"
-

Figure 2. Scheme of the growth of citation networks. Each new paper contains references to
previously published articles or books. It is assumed that old papers are not updated,
so new connections between old vertices are impossible.
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It is possible to estimate roughly the values of the exponent knowing the size N of
the network and the cut-off k., of the distribution, v~ 1+ In N/ In k. (see section
9.4). Using the maximal number of citations as the cut-offs, the authors of the papers
[94, 95] got the estimations = 2.5 for the ISI net and v = 2.3 for Phys. Rev. D.
Moreover, they indicated from similar estimation that these data are also consistent
with the k;” exp[—const k| ] form of the distribution if one sets y = 0.9 for the ISI
net and y = 0.7 for Phys. Rev. D.

In reference [26], the very tail of a different distribution was studied. The ranking
dependence of the number of citations to the 1120 most cited physicists was
described by a stretched exponential function. Of course, the statistics of citations
collected by authors necessarily differ from the statistics of the citations to papers.
Also, the form of the tail of the distribution should be quite different from its main
part.

In reference [101], the process of receiving of citations by papers in a growing
citation network was empirically studied. 1736 papers published in Physical Review
Letters in 1988 were considered, and the dynamics of receiving 83 252 citations was
analysed. It was demonstrated that new citations (incoming edges) are distributed
among papers (vertices) with probability proportional to degree of vertices. This
indicates that linear preferential attachment mechanism operates in this citation
graph.

5.2. Networks of collaborations

The set of collaborations can be represented by the bipartite graph containing two
distinct types of vertices—collaborators and acts of collaborations (see figure 3(a))
[61]. Collaborators connect together through collaboration acts, so in this type of a
bipartite graph, direct connections between vertices of the same kind are absent.
Edges are undirected. For instance, in the scientific collaboration bipartite graphs,
one kind of vertices corresponds to authors and the other one is scientific papers
[13, 14]. In movie actor graphs, these two kinds of vertices are actors and films,
respectively [11, 28, 102].

Usually, instead of such bipartite graphs, their far less informative one-mode
projections are used (for the projection procedure, see figure 3(b)). In particular, one
can directly connect vertices-collaborators without indicating acts of collaboration.
Note that the clustering coefficients of such one-mode projections are large because

a)

Figure 3. A bipartite collaboration graph (a) and one of its one-mode projections (b) [61].
Collaborators are denoted by empty circles, the filled circles depict acts of
collaboration.
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each act of collaboration simultaneously creates a number of highly connected
nearest neighbours.

Note that, in principle, it is possible to introduce multiple edges if there were
several acts of collaboration between the same collaborators. Also, one can consider
weighted edges accounting for reduction of the ‘effect’ of collaboration between a
pair of collaborators when several participants are simultaneously involved [14]. We
do not consider these possibilities here.

Collaboration networks are well documented. For example, in references [11, 12]
the movie actor one-mode graph consisting of 225226 actors is considered. The
average degree is k = 61, the average shortest path equals 3.65 that is close to the
corresponding value 3.00 for the classical random graph with the same k. The
clustering coefficient is large, C = 0.79 (for the corresponding classical random
graph it should be 0.00027). Note that in reference [61], another value, C = 0.199,
for the clustering coefficient of a movie actor graph is given.

The distribution of the degree of vertices (number of collaborators) in the movie
actor network (N = 212250 and k = 28.78) was observed to be of a power-law form
with the exponent v = 2.3 [55]. In reference [102], the degree distribution was fitted
by the (k+ const) ” dependence with the exponent v = 3.1. Notice that, in
references [55] and [102], TV series were excluded from the dataset. The reason for
this is that each series is considered in the database as a single movie with,
sometimes, thousands of actors. In reference [28] the full dataset, including series,
was used, which has yielded exponential form of the degree distribution (for
statistical analysis, a cumulative degree distribution was used).

Similar graphs for members of the boards of directors of the Fortune 1000
companies, for authors of several huge electronic archives, etc. were also studied
[13, 14, 61]. Distributions of numbers of co-directors, of collaborators that a scientist
has, etc. were considered in reference [61]. Distributions display a rather wide
variance of forms, and it is usually hardly possible to observe a pure power-law
dependence.

One can find data on structure of large scientific collaboration networks in
references [13, 14]. The largest one of them, Medline, contains 1 520254 authors with
18.1 collaborations per author. The clustering coefficient equals 0.066. The giant
connected component covers 93% of the network. The size of the second largest
component equals 49, i.e., is of the order of In N. The average shortest path is equal
to 4.6 that is close to the corresponding classical random graph with the same
average degree. The maximal shortest path is several times higher than the average
shortest one and equals 24. These data are rather typical for such networks.

Mathematical (M) (70975 different authors and 70901 published paper) and
neuro-science (NS) (209293 authors with 3534 724 connections and 210 750 papers)
journals issued in the period 1991-1998 were scanned in references [15, 101]. Degree
distributions of these collaborating networks were fitted by power laws with exponents
2.4 (M) and 2.1 (NS). What is important, it was found that the mean degrees of these
networks were not constant, but grew linearly as the numbers of their vertices
increased. Hence, the networks became more dense. The average shortest-path lengths
in these graphs and their clustering coefficients decrease with time.

New edges were found to be preferentially attached to vertices with the high
number of connections. The probability that a new vertex is attached to a vertex with
a degree k was proportional to k” with the y exponent equal to 0.8 + 0.1, so that
some deviations from a linear dependence were noticeable. However, new edges
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emerged between the pairs of already existing vertices with the rate proportional to
the product of the degrees of vertices in a pair.

Very similar results were also obtained for the actor collaboration graph
consisting of 392340 vertices and 33 646 882 edges [101].

In reference [103], the preferential attachment process within collaboration nets
of the Medline database (1994-1999: 1648 660 distinct names) and the Los Alamos
e-print archive (1995-2000: 58 342 distinct names) was studied. In fact, a relative
probability that an edge added at time ¢ connects to a vertex of degree k was
measured. This probability was observed to be a linear function of k until large
enough degrees, so that a linear preferential attachment mechanism operates in such
networks (compare with reference [15]). However, the empirical dependence
saturated for £ = 150 in the Los Alamos e-print archive collaboration net or even
fell off for k = 600 in the Medline network.

5.3. Communications networks, the WWW, and the Internet

Roughly speaking, the Internet is a net of interconnected vertices: hosts (com-
puters of users), servers (computers or programs providing a network service that
also may be hosts), and routers that arrange traffic across the Internet, see figure 4.
Connections are undirected, and traffic (including its direction) changes all the time.
Routers are united in domains. In January 2001, the Internet contained about
100 million hosts. However, it is not the hosts that determine the structure of
the Internet, but, rather, routers and domains. In July 2000, there were about
150000 routers in the Internet [104]. Latter, the number rose to 228265 (data
from reference [105]). Thus, one can consider the topology of the Internet on a
router level or inter-domain topology [5]. In the latter case, it is actually a small
network.

The World Wide Web is the array of its documents plus hyper-links—mutual
references in these documents. Although hyper-links are directed, pairs of counter-
links, in principle, may produce undirected connections. Web documents are
accessible through the Internet (wires and hardware), and this determines the relation
between the Internet and the WWW.

domain domain

hosts

domain

Figure 4. Naive scheme of the structure of the Internet [5].



1092 S. N. Dorogovtsev and J. F. F. Mendes

5.3.1. Structure of the Internet

On the inter-domain level, the Internet is a really small sparse network with the
following basic characteristics [5]. In November 1997, it consisted of 3015 vertices
and 5156 edges, so the average degree was 3.42, the maximal degree of a vertex
equalled 590. In April 1998, there were 3 530 vertices and 6432 edges, the average
degree was 3.65, the highest degree was 745. In December 1998 there were 4 389
vertices and 8256 edges, so the average degree was 3.76 and the maximal degree
equalled 979. The average shortest path is found to be about 4 as it should be for the
corresponding classical random graph, the maximal shortest path is about 10.

The degree distribution of this network was reported to be of a power-law form,
P(k) o< k=7 where v ~ 2.2 (November 1997—2.15, April 1998—2.16, and December
1998—2.20) [5]. In fact, it is hard to achieve this precision for a network of such a
size. One may estimate the value of the exponent using the highest degrees (see
equation (9.33) in section 9.4). Such estimations confirm the reported values. For
November 1977, one gets v ~ 1 4+ In3015/1n 590 = 2.22, for April 1998—y =~ 2.24,
and for December 1998—y =~ 2.26. One should note that, in paper [5], the
dependence of a node degree on its rank, k(r), was also studied. A power law (Zipf
law) was observed, k(r) oc r~¢, but, as one can check, the reported values of the ¢
exponent are inconsistent with the corresponding ones of ~.

On the router level, according to relatively poor data from 1995 [5, 106], the
Internet consisted of 3888 vertices and 5012 edges, with the average degree equal to
2.57 and the maximal degree equal to 39. The degree distribution of this network was
fitted by a power-law dependence with the exponent, 7~ 2.5. Note that the
estimation from the maximal degree value gives a quite different value,
v~ 1+1n3888/1n39 = 3.3, so that the empirical value of the v exponent is not
very reliable.

In 2000, the Internet consisted of about 150000 routers connected by 200000
links [104]. The degree distribution was found to ‘lend some support to the
conjecture that a power law governs the degree distribution of real networks’
[104]. If this is true, one can estimate from this degree distribution that its ~
exponent is about 2.3.

In reference [5], the distribution of the eigenvalues of the adjacency matrix of the
Internet graph was studied. The ranking plots for large eigenvalues A(r) was
obtained (enumeration is started from the largest eigenvalue). For all three studied
inter-domain graphs, approximately, A(r) o< r=%3. From this we get the form of the
tail of the eigenvalue spectra, G()\) oc A\~UF1/09) = X730 (we used the relation
between the exponent of the distribution and the ranking one that is discussed in
section 9.4). For the inter-router-95 graph, \(r) oc r~2. Note that these dependences
were observed for only the 20 largest eigenvalues.

More recent data on the structure of the Internet are collected by the
National Laboratory for Applied Network research (NLANR). On its Web site
http://moat.nlanr.net/, one can find extensive Internet routing related information
being collected since November 1997. For nearly each day of this period, NLANR
has a map of connections of operating ‘autonomous systems’ (AS), which approxi-
mately map to Internet Service Providers (ISP). These maps (undirected networks)
are closely related to the Internet graph on the inter-domain level.

For example, on 14 November 1997, there were observed 3042 AS numbers with
5595 interconnections, the average degree was k = 3.68; on 9 November 1998, these
values were 4301, 8589, and 3.99, respectively; on 6 December 1999, were 6301,
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13485, and 4.28, but on 8 December 1999, there were only 768 AS numbers and
1857 interconnections (!), so k = 4.84. Hence, fluctuations in time are very strong.

The statistical analysis of these data was made in reference [96]. The data were
averaged, and for 1997 year the following average values were obtained. The mean
degree of the network was equal to 3.47, the clustering coefficient was 0.18, and the
average shortest-path length was 3.77. For 1998, the corresponding values were 3.62,
0.21, and 3.76 respectively. For 1999, they were 3.82, 0.24, and 3.72 respectively. The
average shortest-path lengths are close to the lengths for corresponding classical
random graphs but the clustering coefficients are very large. Notice that the density
of connections increases as the Internet grows; one may say, the Internet shows
accelerated growth. In reference [107], the dependence of the total number of
interconnections (and the average degree) on the number of AS was fitted by a
power law. Unfortunately the variation ranges of these quantities are too small to
reach any reliable conclusion.

In reference [96], the following problem was considered. New edges can connect
together pairs of new and old, or old and old vertices. Were do they emerge, between
what particular vertices? The mean ratio of the number of new links emerging
between new and old vertices and the number of new connections between already
existing vertices was 0.34, 0.48, and 0.53 in 1997, 1998, and 1999, respectively. Thus
the Internet structure is very distinct from citation graphs.

The degree distributions for each of these three years were found to follow a
power law form with the exponent v ~ 2.2, which is in agreement with reference [5].
Furthermore, in reference [96], from the 1998 data, the dependence of the average
degree of the nearest neighbours of a vertex on its degree, k,,(k) was obtained. This
slowly decreasing function was approximately fitted by a power law with the
exponent 0.5. Such a dependence indicates strong correlations in the distribution
of connections over the network. Vertices of large degree usually have weakly
connected nearest neighbours, and vice versa.

Notice that the measurement of the average degree of the nearest neighbours of a
vertex versus its degree is an effective way to measure correlations between degrees of
separate vertices. As explained above, direct measurement of the joint distribution
P(ky, ky) is difficult because of inevitably poor statistics.

In principle, the behavior observed in reference [96] is typical for citation graphs
growing under mechanism of preferential linking (see section 9.9). However, as
indicated above, most of connections in the Internet emerge between already existing
sites. If the process of attachment of these edges is preferential, strongly connected
sites usually have strongly connected nearest neighbours, unlike what was observed
in [96] (see section 9.9). A difficulty is that vertices in the Internet are at least of two
distinct kinds. In [96], the difference between ‘stub’ and ‘transit domains’ of the
Internet is noted. Stub domains have no connections between them and connect to
transit domains, which are, contrastingly, well interconnected. Therefore, new
connections or rewirings are possible not between all vertices. This may be reason
of the observed correlations. A different classification of the Internet sites was used
in reference [108]. The vertices of the Internet were separated into two groups,
namely ‘users’ and ‘providers’. Interaction between these two kinds of sites leads to
the self-organization of the growing network into a scale-free structure.

The process of the attachment of new edges in these maps of Internet was
empirically studied in reference [101]. It was found that the probability that a new
edge is attached to a vertex is a linear function of the vertex degree.
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A very important feature of the Internet, both on the AS (or the inter-domain)
level and on the level of routers, is that its vertices are physically attached to specific
places in the world and have their fixed geographic co-ordinates. The geographic
places of vertices and the distribution of Euclidean distances are essential for the
resulting structure of the Internet. This factor was studied and modelled in a recent
paper [105]. It was observed that routers and AS correlate with the population
density. All three sets—population, router, and AS space densities—form fractal
structures in space. The fractal dimensions of these fractals were found to be
approximately 1.5 (the data for North America). Maps of AS and the map of
228265 routers were analysed. In particular, the average shortest distance between
two routers was found to be approximately 9 [105].

In reference [109], the structure of the Internet was considered using an analogy
with river networks. In such an approach, a particular terminal is treated as the
outlet of a river basin. The paths from this terminal to all other addresses form the
structure of this basin. As for usual river networks, the probability, P(n), that a
(randomly chosen) point connects n other points uphill, can be introduced. In fact, n
is the size of the basin connected to some point, and P(n) is the distribution of basin
sizes. For river networks forming a fractal structure [110], this distribution is of a
power-law form, P(n) oc n~7, where values of the 7 exponent are slightly lower 3/2
[111]. For the Internet, it was found that 7 = 1.9 + 0.1 [109].

5.3.2. Structure of the WWW

Let us first discuss, how the Web grows, that is, how new pages appear in it (see
figure 5). Here we describe only two simple ways to add a new document.

First, suppose, you want to create your own personal home page. First you
prepare it, put references to some pages of the Web (usually several references but, in
principle, the references may be absent), etc. But this is only the first step. You have
to make it accessible in the Web, to launch it. You come to your system
administrator, he puts a reference to it (usually one reference) in the home page of
your institution, and that is more or less it—your page is in the World Wide Web.

There is another way of having new documents appear in the Web. Imagine that
you already have your personal home page and want to launch a new document.
The process is even simpler than the one described above. You simply insert at least
one reference to the document into your page, and that is enough for the document
to be included in the World Wide Web. We should note also that old documents can

new node

Figure 5. Scheme of the growth of the WWW (compare with figure 2). A new document
(page) must have at least one incoming hyper-link to be accessible. Usually it has
several references to existing documents of the Web but, in principle, these references

may be absent. Old pages can be updated, so new hyper-links can appear between
them.
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be updated, so new hyper-links between them can appear. Thus, the WWW growth is
much more complex process than the growth of citation networks.

The structure of the WWW was studied empirically in references [2, 3,4,90,91]
and the power-law form of various distributions was reported. These studies cover
different sub-graphs of the Web and even relate to its different levels. The global
structure of the entire Web was described in the recent paper [6]. In this study, the
crawl from Altavista is used. The most important results are now described.

In May 1999, from the point of view of Altavista, the Web consisted of 203 x 10°
vertices (URLs, i.e., pages) and 1466 x 10 hyper-links. The average in- and out-
degree were k; = k, = 7.22. In October 1999 there were already 271 x 10° vertices
and 2130 x 106 hyper-links. The average in- and out-degree were k; = k, = 7.85.
This means that during this period, 68 x 10° pages and 664 x 10° hyper-links were
added, that is, 9.8 extra hyper-links appeared per one additional page. Therefore, the
number of hyper-links grows faster than the number of vertices.

The in- and out-degree distributions are found to be of a power-law form with
the exponents +; = 2.1 and v, = 2.7 that confirms earlier data of Albert et al. [2] on
the nd.edu subset of the WWW (325000 pages). These distributions were also fitted
by the dependences (k + ¢;,)” "™ with some constants ¢;, [61]. For the in-degree
distribution, the fitting provides ¢; = 1.25 and ~; = 2.10, and for the out-degree
distribution, ¢, = 6.94 and v, = 2.82. Note that the fit is only for non-zero in-, out-
degrees k;, k,. The probabilities P(k; = 0) and P(k, = 0) were not measured experi-
mentally. The relation between them can be found by employing (3.2).

The relative sizes of giant components yield a basic information about the global
topology of a directed network, and, in particular, about the WWW. Let us assume that
alargedirected graph has both the giant weakly connected component (GWCC) and the
giant strongly connected component (GSCC) (see section 3.4). Then its general global
structure can be represented in the following form (see figure 6) [6, 112].

At first, it is possible to extract the GWCC. The rest of the network consists of
disconnected clusters—-‘disconnected components’ (DC). The GWCC consists of:

(a) the GSCC—from each vertex of the GSCC, there exists a directed path to
any other its vertex;

(b) the giant out-component (GOUT }—the vertices which are reachable from the
GSCC by a directed path, so that GOUT includes GSCC;

(c) the giant in-component (GIN)—the vertices from which one can reach the
GSCC by a directed path, so that GIN includes GSCC;

(d) the tendrils (TE)—the rest of the GWCC. This part consists of the vertices
which have no access to the GSCC and are not reachable from it. In
particular, it includes indeed something like ‘tendrils’ but also there are
‘tubes’ and numerous clusters which are only weakly connected.

Notice that, in contrast with references [6, 61], the above defined GIN and
GOUT include GSCC. In section 11.2 we shall show that this definition is natural.
One can write

Network = GWCC + DC
and

GWCC = GIN + GOUT - GSCC + TE.
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Figure 6. Structure of a directed graph when the giant strongly connected component is

present [112] (see text). Also, the structure of the WWW (compare with figure 9 of
reference [6]). If one ignores the directedness of edges, the network consists of the
giant weakly connected component (GWCC)—actually, the usual percolating cluster—
and disconnected components (DC). Accounting for the directedness of edges, the
GWCC contains the following components:

(a) the giant strongly connected component (GSCC), that is, the set of vertices
reachable from its every vertex by a directed path;

(b) the giant out-component (GOUT), the set of vertices approachable from the
GSCC by a directed path (includes the GSCC);

(c) the giant in-component (GIN), contains all vertices from which the GSCC is
approachable (includes the GSCC);

(d) the tendrils, the rest of the GSCC, i.e. the vertices which have no access to the
GSCC and are not reachable from it. In particular, this part includes something
like ‘tendrils’ [6] but also there are ‘tubes’ and numerous clusters which are only
‘weakly’ connected.

Note that our definitions of the GIN and GOUT differ from the definitions of
references [6, 61]: the GSCC is included into both GIN and GOUT, so the GSCC is
the interception of the GIN and GOUT. We shall show in section 11.2 that this
definition is natural.

According to reference [6], in May 1999, the entire Web, containing 203 x 10°
pages, consisted of

the GWCC, 186 x 10° pages (91% of the total number of pages); and
the DC, 17 x 10° pages.

In turn, the GWCC included:

the GSCC, 56 x 10° pages;

the GIN, 99 x 10° pages;

the GOUT, 99 x 10° pages; and
the TE, 44 x 10° pages.
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Both distributions of the sizes of strongly connected components and of the sizes
of weakly connected ones were fitted by power-law dependences with exponents
approximately 2.5.

The probability that a directed path is present between two random vertices was
estimated as 24%. For pairs of pages of the WWW between which directed paths
exist, the average shortest-directed-path length equals 16. For pairs between which at
least one undirected path exists, the average shortest-undirected-path length equals 7.

The value of the average shortest-directed-path length estimated from data
extracted from the nd.edu subset of the WWW was 19 [2]. This first published value
for the ‘diameter’ of the Web was obtained in a non-trivial way (it is not so easy to
find the shortest path in large networks). First, the in-degree and out-degree
distributions were measured in the nd.edu domain. Second, a set of small model
networks of different sizes N with these in-degree distribution and out-degree
distribution was constructed. Third, for each of these networks, the average
shortest-path length ¢ was found. Its size dependence was estimated as
?(N) =~ 0.35+ 2.06lg N. Fourth, /(N) was extrapolated to N = 800000000, that
is, the estimation of the size of the WWW in 1999. The result, i.e.
7(800000000) ~ 19, is very close to the above cited value ¢(200000000) = 16 of
[6], if one accounts for size differences.

The maximal shortest path between nodes belonging to the GSCC equals 28. The
maximal shortest directed path for nodes of the WWW between which a directed
path exists is greater than 500 (some estimates indicate that it may be even 1000).

Although the GSCC of the WWW is rather small, most pages of the WWW
belong to the GWCC. Furthermore, even if all links fo pages with in-degree larger
than 2 are removed, the GWCC does not disappear. This is clearly demonstrated by
the data of [6], where the size of the GWCC of the Web (visible by Altavista in May
1999) is 186 x 10° pages. If all in-links to pages with k; > ™ = 1000, 100, 10, 5, 4,
and 3 are removed, the size of the retaining GWCC is 177 x 10%, 167 x 10°,
105 x 10°, 59 x 10, 41 x 10°, and 15 x 10° pages, respectively.

The Web grows much faster than the hardware capabilities. Even the best search
engines index less than one half of all Web pages [7, 8, 83, 86]; an update of files
cached by them for ‘quick search’ usually takes many months. The only way to
improve the situation is indexing of special areas of the WWW, ‘cyber-communities’,
to provide the potential for an efficient specialized search [10, 84, 87, 88, 90,91, 113,
114, 115, 116].

Natural objects for such indexing are specific bipartite sub-graphs (see figure 7)
[90, 91]. One should note that the directed graphs of this kind have a different
structure than the bipartite graphs described in section 5.2. After separation from the
other part of a network, they consist of only two kinds of nodes—‘hubs’ (fans) and
‘authorities’ (idols). Each hub connects to a/l the authorities of this graph. Let it be /
hubs and « authorities in the bipartite graph. Each hub, by definition, must have a
links directed to each of a authorities. Hence, the number of links between subsets of
hubs and authorities equals sa. Some extra number of connections may be inside of
these two subsets.

The distribution of the number of such bipartite sub-graphs in the Web, N (h, a)
was studied in references [90, 91]. For a fixed number of hubs, N,(h =fixed,a)
resembles a power-law dependence, and for a fixed number authorities,
Np(h,a =fixed) resembles an exponential one when / is small. We should note that
these data are really poor.
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authorities

hubs

Figure 7. A bipartite directed sub-graph in the Web being used for indexing cyber-
communities [90, 91].

One can also consider the structure of the Web on another level. In particular, in
reference [117], the in-degree distribution for the domain level of Web in the spring
of 1997 was studied, where each vertex (web site) is a separate domain name, and the
value 1.94 for the corresponding exponent was reported. The network consisted of
259794 vertices.

Measurements of the clustering coefficient of the Web on this level [118] have
shown that it is much larger than it should be for the corresponding classical random
graph. The data were extracted from the same crawl containing 259 794 sites.

Several other empirical distributions were obtained, which do not relate directly
to the global structure of the Web but indicate some of its properties. Huberman and
Adamic [3] found that the distribution of the number of pages in a web site also
demonstrates a power-law dependence (where a web site is a set of linked pages on a
web server). From their analysis of sets of 259794 and 525882 web sites covered by
Alexa and Infoseek it follows that the exponent in this power law is about 1.8. Note
that the power-law dependence seems not very pronounced in this case. A power-law
dependence was indicated at the distribution of the number of visits (connections) to
the web sites [119]. The value of the corresponding exponent was estimated as 2.0.
The fit is rather poor.

One should stress that usually what experimentalists indicate as a power-law
dependence is actually a linear fit for a rather narrow range on a log—log plot. It is
nearly impossible to obtain some functional form for the degree distribution directly
because of strong fluctuations. To avoid them, the cumulative distribution
Poum(k) = [ dk P(k) is usually used [28]. Nevertheless, the restricted sizes of the
studied networks often lead to implausible interpretation (see the discussion of the
finite size effects in sections 9.3 and 9.4). One has to keep this in mind while working
with such empirical data.

5.4. Biological networks
5.4.1. Structure of neural networks
Let us consider the rich structure of a neural network of a tiny organism, classical
C. elegans. 282 neurons form the network of directed links with average degree
%k =14 [11, 12]. The in- and out-degree distributions are exponential. The average
shortest-path length measured without account of directness of edges is 2.65, and the
clustering coefficient equals 0.26. Therefore, the network displays the small-world
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effect, and the clustering coefficient is much larger than the characteristic value for
the corresponding classical random graph, C = 0.26 > 14/282 ~ 0.05.

5.4.2. Networks of metabolic reactions

The valuable example of a biological network with the extremely rich topological
structure is provided by the network of metabolic reactions [33, 34, 67]. This is a
particular case of chemical reactions graphs [67, 120, 121]. At present, such networks
are documented for several organisms. Their vertices are substrates—molecular
compounds, and the edges are metabolic reactions connecting substrates. According
to reference [41] (see also reference [122]), incoming links for a particular substrate
are reactions in which it participates as a product. Outgoing links are reactions in
which it is an educt.

Sizes of such networks in 43 organisms investigated in reference [41] are between
200 and 800. The average shortest-path length is about 3, k; ~ k, ~ 2.5 — 4.0.
Although the networks are very small, the in- and out-degree distributions were
interpreted [41] as scale-free, i.e. of a power-law form with the exponents,
Vi R Yo = 2.2.

In reference [123], one may find another study of the global structure of
metabolic reaction networks. The networks were treated as undirected. For a
network of the Escherichia coli, consisting of 282 nodes, the average degree k ~ 7.
The average shortest-path length was found to be equal to 2.9. The clustering
coefficient is C ~ 0.3, that is, much larger than for the corresponding classical
random network, 7/282 ~ 0.025.

The distribution of short cycles in large metabolic networks is considered in
reference [124].

5.4.3. Protein networks

A genomic regulatory system can be thought of as an extremely large random
directed network [67]. Vertices in this network are distinct components of the
genomic regulatory system, and each directed edge points from the regulating to
the regulated component.

A very important aspect of gene function is protein—protein interactions— ‘the
number and identity of proteins with which the products of duplicate genes in an
organism interact’ (see [45] for a brief introduction in the topic). The vertices of the
protein—protein interaction network are proteins and the directed edges are, usually,
pairwise protein—protein interactions. In a pair of proteins connected by a directed
edge one protein regulates the production of the other. Two vertices may be
connected by a pair of opposing edges, and the network also contains unit loops,
so that its general structure resembles the structure of a food web (see figure §). In
addition to such ‘regulatory’ protein networks, one can construct networks of direct
physical pairwise interactions between proteins. Recently large maps of protein—
protein interaction networks were obtained [40, 42, 43] which may be used for
structural analysis.

In reference [44] (for details see reference [122]), the distribution of connections in
the protein—protein interaction network of the yeast, S. cerevisiae was studied using
the map from reference [40] (see also reference [45]). The network contains 1870
vertices and 2240 edges. The degree distribution was interpreted as a power-law
(scale-free) dependence with an exponential cut-off at the point k. ~ 20. This value is
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so small that it is difficult to find the exponent of the degree distribution. The
approximate value v ~ 2.5 was obtained in reference [45].

In addition, in reference [44], the tolerance of this network against random errors
(random deletion of proteins) and its fragility against the removal of the most
connected vertices were studied. The random errors were found to be rather non-
dangerous, but single deletion of one of the most connected proteins (having more
than 15 links) was lethal with high probability.

5.4.4. Ecological and food webs

Food webs of species-rich ecosystems are directed networks, where vertices are
distinct species, and directed edges connect pairs—a specie-eater and its food [46, 47,
48, 49, 50, 51, 125]. In references [48, 49], structures of three food webs were studied
ignoring the directedness of their edges.

The networks considered in references [48, 49] are very small:

(i) The food web of the Ythan Estuary consists of N = 93 vertices. The average
degree is k = 8.70, the average clustering coefficient is equal to C = 0.22, the
average shortest-path length is ¢ = 2.43.

(it) The Silwood Park web (more precisely speaking, this is a sub-web): N = 154,
k=4.75,C=0.157=3.40.

(iii) The food web of Little Rock Lake: N = 182, k = 26.05, C = 0.35,7 = 2.22.

The clustering coefficients obtained for these networks essentially exceed the
corresponding values for the classical random graphs with the same total number of
vertices and edges. However, the measured average shortest-path lengths of these
webs do not deviate noticeably from the corresponding values for the classical
random graphs.

Furthermore, the degree distributions of the first two webs were fitted by power
laws with the exponents v ~ 1.0 and v = 1.1 for the Ythan Estuary web and for the
Silwood Park web, correspondingly. This allowed authors of references [48, 49] to
consider them as scale-free networks (however, see references [50, 51] where the
degree distributions in such food webs were interpreted as of an exponential-like
form). These are the smallest networks for which a power-law distribution was ever
reported. For the third food web, any functional fitting turned out to be impossible.

Additionally, in references [49], the stability of food webs against random or
intentional removal of vertices was considered. The results were typical for scale-free
networks (see section 11.3).

Food webs have a rather specific structure. They are directed, include unit loops,
that is, cannibalism, and two opposing edges may connect a pair of vertices (mutual
eating) [47, 52] (see figure §, compare with the structure of a protein—protein
interaction network). Therefore, the maximal possible number of edges (trophic
links) in a food web containing N vertices (trophic species) is equal to
2N(N —1)/2+ N = N?. Food webs are actually dense: the total number L of edges
is high. The values of the ration L/N? for seven typical food webs with N = 25 — 92
were found to be in the range between 0.061 and 0.32 [47]. Authors of reference [52]
observed that this leads generally to extremely small food webs. Edges were treated
as undirected and the average shortest-path lengths were then measured to be in the
range between 1.44 and 2.55.

We should emphasize that it is hard to find well defined and large food webs,
which seriously hinders their statistical analysis.
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Figure 8. Typical food web; cannibalism and mutual eating are widespread.

5.4.5. Word Web of human language

Ferrer and Solé (2001) [126] constructed a net of fundamental importance,
namely the network of distinct words of human language. Here we call it Word
Web. The Word Web is constructed in the following way. The vertices of the web are
the distinct words of language, and the undirected edges are connections between
interacting words. It is not so easy to define the notion of word interaction in a
unique way. Nevertheless, different reasonable definitions provide very similar
structures of the Word Web. For instance, one can connect the nearest neighbours
in sentences. Without going into detail, this means that the edge between two distinct
words of language exists if these words are the nearest neighbours in at least one
sentence in the bank of language. In such a definition, multiple links are absent. One
also may connect the second nearest neighbours and account for other types of
correlations between words [126]. In fact, the Word Web displays the cooccurrence
of the words in sentences of a language.

Two slightly different methods were used in reference [126] to construct the Word
Web. The two resulting webs obtained after processing 3/4 million words of the
British National Corpus (a collection of text samples of both spoken and written
modern British English) have nearly the same degree distributions (see figure 9) and
each contains about 470000 vertices. The average number of connections of a word
(the average degree) is k ~ 72. As one sees from figure 9, the degree distribution
comprises two distinct regions with quite different power-law dependences. The
range of the degree variation is really large, so the result looks convincing.
The exponent of the power law in the low-degree region is approximately 1.5, and
in the high-degree region is close to 3 (the value 2.7 was reported in reference [126]).

The complex empirical degree distribution of the Word Web was described
without fitting using a simple model of the evolution of human language [127] (see
figure 9 and section 9.10).

5.5. Electronic circuits

In [128], the structure of large electronic circuits was analysed. Electronic circuits
were viewed as undirected random graphs. Their vertices are electronic components
(resistors, diodes, capacitors, etc., in analog circuits and logic gates in digital circuits)
and the undirected edges are wires. The networks considered in reference [128] have
sizes N in the range between 20 and 2 x 10* and the average degree between 3 and 5.

For these circuits, the clustering coefficients, the average shortest-path lengths,
and the degree distributions were obtained. In all the networks, the values of the
average shortest-path length were close to those for the corresponding classical
random graphs with the same numbers of vertices and links. There was a wide
diversity of values of the clustering coefficients. However, all the large circuits
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Distribution of numbers of connections, P(k)
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Figure 9. The distribution of the numbers of connections (degrees) of words in the word
web in a log-log scale [126]. Empty and filled circles show the distributions of the
number of connections obtained in reference [126] for two different methods of the
construction of the Word Web. The solid line is the result of theory of [127] (see
section 9.10 where the parameters of the Word Web, namely, the size 1 ~ 470000 and

the average number of connections of a node, k(f) ~ 72, were used. The arrows
indicate the theoretically obtained point of crossover, k.5 between the regions with
different power laws, and the cutoff k., due to the size effect. For a better
comparison, the theoretical curve is displaced upward to exclude two experimental
points with the smallest k& (note that the comparison is impossible in the region of the
smallest k£ where the empirical distribution essentially depends on the definition of the
Word Web).

considered in reference [128] (N > 10%) have clustering coefficients that exceed those
for the corresponding classical random graphs by more than one order of magnitude.

The most interesting results were obtained for the degree distributions which
were found to have power-law tails. The degree distributions of the two largest
digital circuits were fitted by power laws with the exponent v = 3.0. Note that the
maximal value of the number of connections of a component in these large circuits
approaches 107.

5.6. Other networks

We have listed above only the most representative and well documented net-
works. Many kinds of friendship networks may be added [17, 18, 28]. Polymers also
form complex networks [129, 130, 131]. Even human sexual contacts were found to
form a complex network. It was recently discovered [132] that this marvellous web is
scale-free, unlike friendship networks [28] which are exponential.

One can introduce a call graph generated by long distance telephone calls taken
over some time interval [32]. Vertices of this network are telephone numbers, and the
directed links are completed phone calls (the direction is determined by the initiator
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of the talk). In reference [32], calls made in a typical day were collected, and the
network consisting of 47 x 10° nodes was constructed (note, however, that this
network was probably generated and not obtained from empirical data). It was
impossible to fit P(k,) by any power-law dependence but the fitting of the in-degree
distribution P(k;) gave +; ~ 2.1. The size of the giant connected component is of the
order of the network size, and all others connected components are of the order of
the logarithm of this size or smaller. The distribution of the sizes of connected
components was measured but it was hard to make any conclusion about its
functional form.

Basic data for all networks, in which power-law degree distributions were
observed, are summarized in table 1 and figure 24. For each such network, the total
numbers of vertices and edges, and the degree distribution exponent are presented
(see discussion of scale-free networks in section 9).

We finish our incomplete list with a power grid of the Western States Power Grid
[11, 12, 28] (its vertices are transformers, substations, and generators, and edges are
high-voltage transmission lines). The number of vertices in this undirected graph is
4941, and the average degree k is 2.67. The average shortest-path length equals 18.7.
The clustering coefficient of the power grid is much greater than for the correspond-
ing classical random network, C = 0.08 > 2.67/4941 ~ 0.0005 [11, 12]. The degree
distribution of the network is exponential [28].

6. Classical random graphs, the Erdos—Rényi model
The simplest and most studied network with undirected edges was introduced by
Erdés and Rényi (ER model) [77, 78]. In this network:

(1) the total number of vertices, N, is fixed;
(ii) the probability that two arbitrary vertices are connected equals p.

One sees that, on average, the network contains pN(N — 1)/2 edges. The degree
distribution is binomial,

Pt = (V)= (61)

so the average degree is k = p(N — 1). For large N, the distribution (6.1) takes the
Poisson form

Pk) = FE" (6.2)

Therefore, the distribution rapidly decreases at large degrees. Such distributions are
characteristic for classical random networks. Moreover, in the mathematical
literature, the term ‘random graph’ usually means just the network with a Poisson
degree distribution and statistically uncorrelated vertices. Here, we prefer to call it
‘classical random graph’.

We have already presented the estimate for an average shortest-path length of
this network, ¢ ~ In N/ In[pN].

At small values of p, the system consists of small clusters. At large N and large
enough p, the giant connected component appears in the network. The percolation
threshold is p. = 1/N, that is, k.= 1.

In fact, the ER model describes percolation on a lattice of infinite dimension, and
the adequate mean-field description is possible.
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7. Small-world networks

In section 3.2, we explained that random networks usually show the so-called
small-world effect, i.e., their average shortest-path length is small. Then, in principle,
it is natural to call them small-world networks. Watts and Strogatz [11] noticed the
following important feature of numerous networks in nature. Although the average
shortest-path length between their vertices is really small and is of the order of the
logarithm of their size, the clustering coefficient is much greater that it should be for
classical random graphs. They proposed a model (the WS model) that demonstrates
such a possibility, and also called it the small-world network. The model belongs to
the class of networks displaying a crossover from ordered to random structures and
may be treated analytically. By definition of Watts and Strogatz, the small-world
networks are those with ‘small’ average shortest-path lengths and ‘large’ clustering
coeflicients.

This definition seems a bit controversial. First, it posits that, numerous random
networks with a small clustering coefficient are not small-world networks although
they display the small-world effect. Second, if one starts from a 1D lattice with
interaction only between the nearest neighbours, or from simple square or cubic
lattices, the initial clustering coefficient is zero and it stays small during the procedure
proposed by Watts and Strogatz, although the network evidently belongs to the
same class of nets as the WS model. In addition, as we will show, the class of
networks proposed by Watts and Strogatz provides only a particular possibility to
get such a combination of the average shortest-path length and the clustering
coefficient (see section 7.3).

Irrespective of the consistency of the definition of the small-world networks
[11, 12] and its relation with real networks, the proposed type of networks is very
interesting. In fact, the networks introduced by Watts and Strogatz have an
important generic feature—they are constructed from ordered lattices by random
rewiring of edges or by addition of connections between random vertices. In the
present section, we consider mainly networks of such kind.

7.1. The Watts—Strogatz model and its variations

The original network of Watts and Strogatz is constructed in the following way
(see figure 10(a)). Initially, a regular one dimensional lattice with periodical
boundary conditions is present. Each of L vertices has z > 4 nearest neighbours
(z = 2 was not appropriate for Watts and Strogatz since, in this case, the clustering
coefficient of the original regular lattice is zero). Then one takes all the edges of the
lattice in turn and with probability p rewires to randomly chosen vertices. In such a
way, a number of far connections appears. Obviously, when p is small, the situation
has to be close to the original regular lattice. For large enough p, the network is
similar to the classical random graph. Note that the periodical boundary conditions
are not essential.

Watts and Strogatz studied the crossover between these two limits. The main
interest was in the average shortest path, 7, and the clustering coefficient (recall that
each edge has unit length). The simple but exciting result was the following. Even for
the small probability of rewiring, when the local properties of the network are still
nearly the same as for the original regular lattice and the clustering coefficient does
not differ essentially from its initial value, the average shortest-path length is already
of the order of the one for classical random graphs (see figure 11).
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Figure 10. Small-world networks in which the crossover from a regular lattice to a random
network is realized: (a) the original Watts—Strogatz model with the rewiring of links
[11]; and (b) the network with the addition of shortcuts [133, 134].
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Figure 11. Average shortest-path length 7 and clustering coefficient C of the Watts-Strogatz
model versus fraction of the rewired links p [11]. Both are normalized to their values
for the original regular lattice (p = 0). The network has 1000 nodes. The average

number of the nearest neighbours equals 10. C is practically constant in the range
where ¢ sharply diminishes.
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This result seems quite natural. Indeed, the average shortest-path length is very
sensitive to the introduced short-cuts. One can see, that it is enough to make a few
random rewirings to decrease ¢ by several times. On the other hand, several rewired
edges cannot crucially change the local properties of the entire network. This means
that the global properties of the network change strongly already at pzL ~ 1, when
there is one shortcut in the network, i.e., at p ~ 1/(Lz), when the local characteristics
are still close to the regular lattice.

Recall that the simplest local characteristic of nets is degree. Hence, it would be
natural to compare, at first, the behaviour of 7 and k. However, in the originally
formulated WS model, % is independent on p since the total number of edges is
conserved during the rewiring. Watts and Strogatz took another characteristic for
comparison—the characteristic of the closest environment of a vertex, i.e. the
clustering coefficient C.

Using the rewiring procedure, a network with a small average shortest-path
length and a large clustering coefficient was constructed. Instead of the rewiring of
edges, one can add shortcuts to a regular lattice (see figure 10(b)) [93, 133, 134, 135].
The main features of the model do not change. One can also start with a regular
lattice of an arbitrary dimension d where the number of vertices is N = L4 [136, 137].
In this case, the number of edges in the regular lattice is zL9/2. To keep the
correspondence to the WS model, let us define p in such a way that for p = 1, zL¢/2
random shortcuts are added. Then, the average number of shortcuts in the network
is Ny = pzL9/2. At small N, we have two natural lengths in the system, 7 and L,
since the lattice spacing is not important in this regime. Their dimensionless ratio can
be only a function of N,

£ =S ON) = f(pL?), (1)

where £(0) ~ 1 for the original regular lattice and f(x > 1) ~ In x/x"“. From (7.1),
one can immediately obtain the following relation, ?(pz)"/? = g(L(pz)"/?). Here,
&= (pz)fl/d has the meaning of a length: N9 ~ L9, it is the average distance
between the closest end points of shortcuts measured on the regular lattice. In fact,
one must study the limit Le> 0o, p=> 0, as the number of shortcuts Ny = pzL9/2 is
fixed. The last relation for 7, in the case d = 1, was proposed and studied by
simulation in reference [138] and afterwards analytically [139, 140].

The WS model and its variations seem exactly solvable. Nevertheless, the only
known exact result for the WS model is its degree distribution. It was found to be a
rapidly decreasing function of a Poisson kind [140]. The exact form of the shortest-
path length distributions has been found only for the simplest model in this class
[141], see section 7.2.

Many efforts were directed to the calculation of the scaling function f(x)
describing the crossover between two limiting regimes [133, 134, 135, 139, 140,
142, 143, 144, 145, 146]. As we have already explained, the average shortest-path
length rapidly decreases to values characteristic for classical random networks as p
grows. Therefore, it is convenient to plot f(x) in log-linear scales (see figure 12).

One may study the distribution of diseases on such networks [147]. In figure 13, a
portion of ‘infected’ nodes, n;/L, in the network is shown versus time passed after
some vertex was infected [135]. At each time step, all the nearest neighbours of each
infected vertex ‘fall ill’. At short times, n;/L o< ¢/ but then, at longer times, it
increases exponentially until the saturation at the level n;/L = 1.
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Figure 12. Scaling of the average shortest-path length of ‘small-world’ networks [134]. The
combination ¢z/L versus pzL for the network constructed by the addition of random
shortcuts to a one-dimensional lattice of the size L with the co-ordination number z.
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Figure 13. Spreading of diseases in ‘small-world” networks [135]. The average fraction of
infected nodes, n;/L, versus the elapsed time from the instant when the first vertex
“fell ill’.

It is possible to consider various problems for these networks [140, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162]. In references [147, 163],
percolation in them was studied (for infinitely large networks). Diffusion in the WS
model and other related nets was considered in reference [164].

It is easy to generalize the procedure of rewiring or addition of edges. In
references [136, 137], the following procedure was introduced. New edges between
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pairs of vertices of a regular d-dimensional lattice are added with probability p(r),
where r is the Euclidean distance between the pair of vertices. If, e.g.,
p(r) o< exp(—const r), one gets a disordered d-dimensional lattice. Much slowly
decreasing functions produce the small-world effect and related phenomena. In
references [136, 137], one may find the study of a specific diffusion on a finite size
network in the case of a power-law dependence of this probability, p(r) oc r™°.

7.2. The smallest-world network

Let us demonstrate the phenomena, which we discuss in the present section, using
a trivial exactly solvable example, ‘the smallest-world network’ (see figure 14) [141].
We start from L vertices connected in a ring by L links of unit length, that is, the
coordination number z equals 2 and the clustering coefficient is zero. This is not
essential for us since we have no intention to discuss its behaviour (in such a case,
instead of the clustering coefficient, one may consider the density of linkage or
degree). Then, we add a central vertex and make shortcuts between it and each other
vertex with probability p. One may assume that lengths of these additional edges
equal 1/2. In fact, with probability p, we select random vertices and afterwards
connect all of them together by edges of unit length. For the initial lattice,
?(p=0)=L/4, and, for the completely connected one, ¢(p = 1) = 1. One should
note that such networks may be rather reasonable in our world where substantial
number of connections occurs through common centers (see figure 15).

One may calculate the distribution P(¢) of the shortest-path lengths ¢ of the
network exactly [141]. In the scaling limit, Lz co and p= 0, while the quantities
p = pL (average number of added edges) and z = ¢/L are fixed, the distribution
takes the form,

LP(4,p) = Q(z,p) = 2[1 +2pz +2p°2(1 — 2z)]e 2", (7.2)

L1
0

Figure 14. The ‘smallest-world’ network [141]. L vertices on the circle are connected by unit
length edges. Each of these vertices is connected to the central one by a half-length
edge with probability p.
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Figure 15. The real ‘smallest-world” network. Unsociable inhabitants live in this village.
Usually, they contact only with their neighbours but some of them attend the church.

This distribution is shown in figure 16. The corresponding average shortest-path
length between pairs of vertices equals

EEZ% 2p—=3+(p+3)e 7, (7.3)

that is just the scaling function f(x) discussed in section 7.1 (see figure 17). Hence,
Z(p=0)=1/4and Z(p > 1)=1/p, i.e., f==1/p. One may also obtain the average

12 T T T T
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Q(z,p)
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Figure 16. The distribution Q(z,p) = LP({,p) of the normalized shortest-path lengths
z=/{/L of the ‘smallest-world’ network. Here, L is the size of the network, p = pL.
Curves labelled by numbers from 1 to 6 correspond to p =0,2,5,8,11,14.
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Figure 17. The normalized average shortest-path length 7/L of the ‘smallest-world’ network
versus the number p = pL of added edges.

shortest-path length (¢)(k) between two vertices of the network separated by the
‘Buclidean’ distance k, k/L = x. In the scaling limit, we have
0)(k 1
OWD) - ) =L 1= (14 prgem), (7.4
L p
(see figure 18). Obviously, (¢)(k, p= 0)=k but saturation is quickly achieved at
large pk.
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Figure 18. The normalized average shortest-path length p(f) between two vertices of the
‘smallest-world’ network separated by the ‘Euclidean’ distance k as a function of pk.
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Equations (7.2)—«(7.4) actually demonstrate the main features of the crossover
phenomenon in the models under discussion although our toy model does not
approach the classical random network at large p. ¢ of the model already diminishes
sharply in the range of p where local properties of the network are nearly the same as
of the initial regular structure. In reference [165], one can find the generalization of
this model—the probability that a vertex is connected to the centre is assumed to be
dependent on the state of its closest environment.

7.3. Other possibilities to obtain large clustering coefficient

The first aim of Watts and Strogatz [11] was to construct networks with small
average shortest paths and relatively large clustering coefficients which can mimic the
corresponding behaviour of real networks. In their network, the number of vertices
is fixed, and only edges are updated (or are added). At least most of known networks
do not grow like this. Let us demonstrate a simple network with a similar
combination of these parameters (/ and C) but evolving in a different way—the
growth of the network is due to both addition of new vertices and addition of new
edges.

In this model, initially, there are three vertices connected by three undirected
edges (see figure 19). Let at each time step, a new vertex be added. It connects to a
randomly chosen triple of nearest neighbour vertices of the network. This procedure
provides a network displaying the small-world effect. We will show below that this is
a network with preferential linking. Its power-law degree distribution can be
calculated exactly [166] (see section 9.3).

At the moment, we are interested only in the clustering coefficient. Initially,
C =1 (see figure 19(a)). Let us estimate its value for the large network. One can see
that the number of triangles of edges in the network increases by three each time a
vertex is added. Simultaneously, the number of triples of connected vertices increases
by the sum of degrees of all three vertices to which the new vertex is connected. This
sum may be estimated as 3k. Here, k = 2(3¢)/¢ = 6. Hence, using the definition of the
clustering coefficient, we get C ~ 3(3¢)/(3kt) = 3/k = 1/2. Therefore, C is much
larger than the characteristic value k/¢ for classical random graphs, and this simple
network, constructed in a quite different way than the WS model, shows both
discussed features of many real networks (see also the model with very similar
properties in section 9.3, figure 21). The reason for such a large value of the
clustering coefficient is the simultaneous connection of a new vertex to nearest
neighbouring old vertices. This can partially explain the abundance of networks with

Figure 19. A simple growing network with a large clustering coefficient. In the initial
configuration, three vertices connected by three edges are present. At each time step,
a new vertex with three edges is added. These edges are attached to randomly chosen
triples of nearest neighbour vertices.
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a large clustering coefficient in nature. Indeed, the growth process, in which some old
nearest neighbours connect together to a new vertex, that is, together ‘give birth’ to
it, seems quite natural (see reference [103]).

Another possibility of obtaining a large clustering coefficient in a growing
network is to connect a new vertex to several of its immediate predecessors with
high probability (see also the models proposed in references [167, 168]).

We should add that the one-mode projections of bipartite random graphs also
have large clustering coefficients (see sections 5.2 and 11.1).

8. Growing exponential networks

The classical random network considered in section 6 has fixed number of
vertices. Let us discuss the simplest random network in which the number of vertices
grows [55, 56]. At each increment of time, let a new vertex be added to the network.
It connects to a randomly chosen (i.e. without any preference) old vertex (see figure
2). Let connections be undirected, although it is inessential here. The growth begins
from the configuration consisting of two connected vertices at time ¢ = 1, so, at time
t, the network consists of 7 4 1 vertices and ¢ edges. The total degree equals 2¢. One
can check that the average shortest-path length in this network is ¢ ~ Inz, as in
classical random graphs.

It is simple to obtain the degree distribution for such a net. We may label vertices
by their birth times, s =0,1,2,...,z Let us introduce the probability, p(k, s, ), that
a vertex s has degree k at time 7. The master equation describing the evolution of the
degree distribution of individual vertices is

plk,s,t+1) = plk—1,s,1)+ (1 —;>p(k,s, 1), (8.1)

t+1 t+1

plk,s=0,1,t=1) =61, plk,s =t,t > 1) = 6, ;. This accounts for two possibilities

for a vertex s: first, with probability 1/(¢ + 1), it may get an extra edge from the new

vertex and increase its own degree by 1; and second, with the complimentary

probability 1 —1/(z+ 1), the vertex s may remain in the former state with the

former degree. Notice that the second condition above makes (8.1) non-trivial.
The total degree distribution of the entire network is

P(k, 1) = z+;1 > plk,s,1). (8.2)
5=0

Using this definition and applying Zé:o to both sides of (8.1), we obtain the
following master equation for the total degree distribution,

(t+ )P(k,t+1)—tP(k,t) = P(k—1,1) — P(k,t) + k1. (8.3)
The corresponding stationary equation, i.e., at /== oo, takes the form
2P(k) — P(k—1) = 6,4 (8.4)

(note that the stationary degree distribution P(k) = P(k, t== 00) exists). It has the
solution of an exponential form,

P(k) =27F, (8.5)

Therefore, networks of such a type often are called ‘exponential’. This form differs
from the Poisson degree distribution of classical random graphs, see section 6.
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Nevertheless, both distributions are rapidly decreasing functions, unlike degree
distributions of numerous large networks in nature.
The average degree of vertex s at time ¢ is

(s, 1) =Y plk,s,1). (8.6)

k=1

Applying Y7, k to both sides of (8.1), we get the equation for this quantity,

- — 1
k(s,t+1) =k(s, t) + —. .
(5,04 1) =Kls, 1) + == (87)
The resulting average degree of individual vertices equals
_ =5 1
k(s,t) =1+ —=1+9Y+1)—Y(s+1 8.8
(s,7) ; o Pr+1) —v(s+1) (8.8)

[k(0,7) = k(1,7)]. Here, v( ) is the v-function, i.e., the logarithmic derivative of the
gamma-function. For s, 7> 1, we obtain the asymptotic form,

k(s, 1) = 1 —In(s/1), (8.9)
i.e., the average degree of individual vertices of this network weakly diverges in the
region of the oldest vertex. Hence, the oldest vertex is the ‘richest’ (of course, in the
statistical sense, i.e., with high probability).
From (8.1), one can also find the degree distribution of individual vertices,
p(k,s, t), for large s and ¢ and fixed s/1,

p(k.s, 1) :% (ki N In*+! (é) (8.10)

One sees that this function decreases rapidly at large values of degree k.

Similar results may be easily obtained for a network in which each new vertex has
not one, as previously, but any fixed number of connections with randomly chosen
old vertices. In fact, all the results of the present section are typical for growing
exponential networks.

9. Scale-free networks

As we saw in section 5, at least several important large growing networks in
nature are scale-free, i.e., their degree distributions are of a power-law form
(nevertheless, note our remarks in section 5.3.2 concerning the quality of the
experimental material). The next natural question is how they self-organize into
scale-free structures while growing. What is the mechanism responsible for such self-
organization? For explanation of these phenomena, the idea of preferential linking
(preferential attachment of edges to vertices) has been proposed [55, 56].

9.1. Barabasi—Albert model and the idea of preferential linking
We demonstrated in section § that if new connections in a growing network
appear between vertices chosen without any preference, e.g., between new vertices
and randomly chosen old ones, the degree distribution is exponential. Nevertheless,
in real networks, linking is very often preferential.
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For example, when you make a new reference in your own home page, the
probability that you refer to a popular Web document is certainly higher than the
probability that this reference is to some poorly known document to which nobody
has referred before you. Therefore, popular vertices with high number of links are
more attractive for new connections than vertices with few links—popularity is
attractive.

Let us demonstrate the growth of a network with preferential linking using, as
the simplest example, the Barabasi—Albert model (the BA model) [55]. We return to
the model described in section 8 (see figure 2) and change in it only one aspect. Now
a new vertex connects not to a randomly chosen old vertex but to a vertex chosen
preferentially.

We describe here the simplest situation: the probability that the edge is attached
to an old vertex is proportional to the degree of this old vertex, i.e., to the total
number of its connections. At time ¢, the total number of edges is ¢, and the total
degree equals 2¢. Hence, this probability equals k/(2¢). One should emphasize that
this is only a particular form of a preference function. However, just the linear type of
the preference was indicated in several real networks [15, 101, 103] (see discussion in
sections 5.1, 5.2 and 5.3.1). To account for the preferential linking, we must make
obvious modifications to the master equation, (8.1). For the BA model, the master
equation takes the following form,

k—1 k
k,s,t+1)=——plk—1,s,1 1 ——|p(k,s,t 1
s+ 1) =5 = s+ (1= 5tk o.1)
with the initial condition p(k,s=0,1,1=1)=6,; and the boundary one
plk,t,t) = 61. From (8.2) and (9.1), we obtain the master equation for the total
degree distribution,

(t+ )Pk, t+ 1) —tP(k,1) :%[(k — )Pk —1,t) —kP(k, )] + k.1, (9.2)
and, in the limit t=— oo, the equation for the stationary distribution,
P(k) +1[kP(k) — (k — 1)P(k — 1)] = &k1. (9.3)

In the continuum £k limit, this equation is of the form P(k)+
(1/2)d[kP(k)]/dk = 0. The solution of the last equation is P(k) oc k3. Thus, the
preferential linking of the form that we consider provides a scale-free network, and
the v exponent of its distribution equals 3 [55, 56, 57]. This value is exact; see [94, 169]
and the discussion below.

We emphasize that the preferential linking mechanism [55, 56] is the basic idea of
the modern theory of evolving networks. Notice that preferential attachment may
also arise effectively, in an indirect way (e.g. see reference 9.3 and models from
references [167, 168, 170]). Recent empirical data [15, 101, 103] (see sections 5.1, 5.2,
and 5.3) on the dynamics of the attachment of new edges in various growing
networks provide support for this mechanism.

9.2. Master equation approach
The master equation approach [169] is very efficient for problems of the network
evolution. Indeed, the linear discrete difference equations that arise (usually of first
order) can be easily solved, e.g., using Z-transform. Let us describe the degree
distributions for networks with preferential linking of a more general type than in
section 9.1.
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new node

Figure 20. Scheme of the growth of the basic directed network under preferential linking
mechanism. At each time step a new vertex and m directed edges are added. Their
source ends may be anywhere. The target ends of these edges are attached to vertices
of the network according to the rule of preferential linking.

Let us consider the following network with directed edges (see figure 20). We will
discuss here the in-degree distribution, so that we use, for brevity, the notations
q(s,t) = k;(s, t) and ~ instead of ~;.

(i) At each time step, a new vertex is added to the network.
(i1) Simultaneously, m new directed edges going out of non-specified vertices or
even from the outside of the network appeared.
(iii) Target ends of the new edges are distributed among vertices according to the
following rule. The probability that a new edge points to some vertex s is
proportional to ¢(s) + A.

The parameter A = ma plays the role of additional attractiveness of vertices. The
additional attractiveness was also discussed in reference [95] under the nomenclature
‘shifted linear kernel’.

How does this model relate to the BA model? Note that the resulting in-degree
distribution of this network does not depend on the place from which new edges
extrude. Assume that each new vertex is the source of all the m new edges (see a
citation graph in figure 2). In this event each vertex of the network has m outgoing
edges. Then the degree of each vertex is determined by its in-degree:
k(s, 1) = q(s,t) +m (q(s,t) is the number of incoming edges, m is the number of
outgoing ones). Let, in addition, 4 = m, i.e., @ = 1. Then new edges are distributed
among vertices with probability proportional to ¢(s,7) + A = q(s,t) + m = k(s, 1),
exactly as in the BA model. Therefore the particular case A = m is equivalent to the
BA model.

Let us discuss the general case. The structure of the master equation for the in-
degree distribution of individual vertices, p(q,s,?), may be understood from the
following. The probability that a new edge comes to a vertex s equals
[q(s, 1) + am]/[(1 + a)mt]. Here, a = A/m. The probability that a vertex s receives
exactly / new edges of the m injected is

- (s e



1116 S. N. Dorogovtsev and J. F. F. Mendes

Hence, the in-degree distribution of an individual vertex of the large network under
consideration obeys the following master equation,

m

p(g,s,t+1) ZP"’I qg—1s,1)

—Z( )[ 1_+l:>m [“ifjgmml”(q_l’s’l)' o

Vertices of this simple network are ‘born’ without incoming edges, so the boundary
condition for this equation is p(q,,1) = 6,9, where §; ; is the Kronecker symbol. The
initial condition is fixed by the initial conﬁguratlon of the network. Summing up
(9.5) over s, over a long duration, one gets the difference—differential equation

(1+a)l£

o (q,0) + (1 +a)P(q,1) + (g +am)P(q,t) — (g — 1 +am)P(qg — 1,1)

=(1+a)b,0. (9.6)

Excluding from it the term with the derivative, we obtain the equation for the
stationary in-degree distribution P(¢g) = P(q,t== ), that is, for the in-degree
distribution of the infinitely large network. (In fact, we have assumed that this
stationary distribution exists. In the situation that we consider, this assumption is
quite reasonable.) One may check by direct substitution that the exact solution of the
stationary equation is of the form [169]

[l + (m+ 1)d] I'(g + ma)
I'(ma) Tlg+2+ (m+1)a]

Plg) = (1 +a) 9.7)

Here, T'( ) is the gamma-function. In particular, when a = 1, that corresponds to
the BA model [55], we get the expression
2m(m + 1)

Pla) = (g+m)(g+m+1)(g+m+2)

(9.8)

To get the degree distribution of the BA model, one has only to substitute the degree
k instead of ¢+ m into (9.8). Hence the continuum approximation introduced in
section 9.1 indeed produced the proper value 3 of the exponent of this distribution.
In [94], the exact degree distribution of the BA model was obtained in a slightly
different way, using the so called rate equation approach. The derivation of the
degree distribution (9.7) in the framework of this approach can be found in reference
[95].
For g 4+ ma > 1, the stationary distribution (9.7) takes the asymptotic form:

P(q) « (q+ ma)" . (9.9)

Therefore, the scaling exponent « of the distribution depends on the additional
attractiveness in the following way:

y=24+a=2+A/m. (9.10)

Since 4 > 0, « varies between 2 and oco. This range of the + exponent values is
natural for networks with constant average degree. In such a case, the first
moment of the degree distribution must be finite, so that v > 2 (see discussion in
section 9.10).
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For this network, one may also find the in-degree distribution of individual
vertices. At long times, the equation for it follows from (9.5),

q—+am

plg,s,t+1) = [1 —m}p(q,s, 1) +

qg—1+am

e s +O<f—2>. (9.11)

Assuming that the scale of time variation is much larger than 1, at long times (large
sizes of the network) we can replace the finite ¢-difference with a derivative:

(1+a)t %((1, 5;0)=(qg—14+am)p(qg—1,s,1) — (¢ +am)p(q,s,1). (9.12)

The solution of (9.12), i.e., the in-degree distribution of individual vertices, is

=T (Y (T

Hence, this distribution has an exponential tail. One may also get the expression for
the average in-degree of a given vertex:

(s, 1) = f: gp(g.s,) = am [(;)WM) . 1} : (9.14)

q=0

Unlike a weak logarithmic divergence of average degree for oldest vertices of the
exponential network (see (8.9)), here, at fixed time ¢, the average in-degree of an old
vertex s < ¢ diverges as s, where the exponent 3 = 1/(1 + a). One sees that for the
BA model, 8 = 1/2. The average degree of the oldest vertices is the highest, so the
rule ‘the oldest is the richest’ is certainly fulfilled here. The singularity is strong, so
the effect is pronounced. From (9.10) and (9.14), we obtain the following relation
between the exponents of the network [171]:

Bly—1)=1, (9.15)

We will show in section 9.4 that the relation, (9.15), is universal for scale-free
networks and can be obtained from the general considerations (nevertheless, see
discussion of a particular case of violation of this relation in section 9.11).

In the scaling limit, when ¢, 5, t== 00, s < ¢, and the scaling variable £ = q(s/l)‘ﬁ
is fixed, the in-degree distribution, (9.13), takes the form

sasn=(2)r[a(2)] (0.16)

where the scaling function is

f(§ = ¢ Lexp (—). (9.17)

T'(am)

Note that a particular form of the scaling function is model-dependent.

9.3. A simple model of scale-free networks
The results of sections 9.1 and 9.2 were obtained for large networks. Let us
discuss a simple scale-free growing net for which exact answers may be obtained for
an arbitrary size, without passing to the limit of large networks [166].
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Figure 21. Illustration of a simple model of a scale-free growing network [166]. In the initial
configuration, ¢ = 2, three vertices are present, s =0, 1,2 (a). At each increment of
time, a new vertex with two edges is added. These edges are attached to the ends of a
randomly chosen edge of the network.

We introduce the growing network with undirected edges (see figure 21). Initially
(t = 2), three vertices are present, s = 0, 1,2, each with degree 2.

(i) At each increment of time, a new vertex is added.
(i1) Itisconnected to both ends of a randomly chosen edge by two undirected edges.

The preferential linking arises in this simple model not because of some special rule
including a function of vertex degree as in references [55, 169], but rather quite
naturally. Indeed, in the model that we consider here, the probability that a vertex
has a randomly chosen edge attached to it is equal to the ratio of the degree k of the
vertex and the total number of edges, 2¢ — 1. Therefore, the evolution of the network is
described by the following master equation for the degree distribution of individual
vertices,

2t—1—-k
ﬁp(k,s, l), (918)

with the initial condition, p(k,s = {0,1,2},¢ =2) = &;». Also, p(k,t,t) = 6. This
master equation and all the following ones in this subsection are exact for all # > 2.
Equation (9.18) has a form similar to that of the BA model, (9.1). Therefore, the
scaling exponents of these models have to coincide.

From (9.18), there follows a number of exact relations for this model. In
particular, from (9.18), one may find the equation for the average degree of an
individual vertex, k(s, ) = Z,’;VZH kp(k,s, t):

k—1
p(k,&,l—'— 1) :ﬁp(k_ 1,.§,l)+

k(s,t+1) =ﬁE(s, 0, k(t,t)=2 (9.19)
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with the following solution:

- e (=D (25 = )N s>t t
R(s,1) = 2+ = 24 /- 2
(s,7) G- 1) (2r—3)N s (9:20)
Here, s > 2 and F(O,_l) =k(1,1) = k(2,1). Hence, the scaling exponent {3, defined
through the relation k(s, 1) o (s/1)"”, equals 1/2 as for the BA model.
The scaling form of p(k,s,t) for k,s,¢>> 1 and k+/s/t fixed is

plk,s,1) = \/5 <k\/§> exp (- k\/§> (9.21)

(compare with (9.16) and (9.17)).
The matter of interest is the total degree distribution,

Pk, 1) = zt:p(k,s, n/(t+1).
s=0

The equation for it follows from (9.18),

t k—1 k |
Plk,t)=—— |——Plk—1,1—1 1 ——— Pk, 1 —1)| +——
k0 =7 |33 Pt H( 2:—3) (&, )}+z+16k'2

(9.22)

with the initial condition P(k,2) = 6.

In the limit of the large network size, == 00, P(k,t) approaches a stationary
degree distribution P(k) which is very similar to the degree distribution of the BA
model,

12

Pk) = k(k+ 1) (k+2)’

(9.23)
that is, v = 3.

How does the degree distribution approach this stationary limit? We do not write
down the cumbersome exact solution of (9.22) [166], but simply write its scaling
form for large k and long time ¢ with k/+/7 fixed:

k2 1 (k2 1 k2
P(k’l)_P(k)[1+ZT+§<7> :|6Xp{ ZT} (924)
The factor P(k,1)/P(k) = g(k/+/t) depends only on the combination k/+/7. There-
fore, the peculiarities of the distribution induced by the size effects never disappear
but only move with increasing time in the direction of large degree. The function
g(k/+/t) is shown in figure 22. Thus, the power-law dependence of the degree
distribution of the finite size network is observable only in a rather narrow region,
1 < k < /1. The cut-off at k., ~ v/ = t"/0~1 and the hump impede observation of
scale-free behaviour.

One can check that the form of the hump in figure 22 depends on the initial
conditions. In our case, the evolution starts from the configuration shown in figure
22(a). If the growth starts from another configuration, the form of the hump will be
different. Note that this trace of the initial conditions is visible at any size of
the network. Similar humps (or peaks) at the cut-off position were also observed
recently [172] in the non-stationary distributions of the Simon model [65, 66] (see
section 12.2).
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Figure 22. Deviation of the degree distribution of the finite-size network from the stationary
one, P(k,t)/P(k, == 00), versus k/+/t. The form of the hump depends on the initial
configuration of the network.

In section 5.3.2 we described a kind of bipartite sub-graphs (bipartite cliques)
which are used for indexing of cyber-communities in a large directed graph—the
WWW. In such a bipartite sub-graph, all ha directed edges connecting / hubs to a
authorities are present (see figure 7). One may easily check that in a large equilibrium
random graph the total number of these bipartite sub-graphs is negligible [173]. This
is not the case for the growing networks. In the model under discussion, the statistics
of the bipartite sub-graphs are very simple, so that we use this model as an
illustrative example.

Let us slightly modify the model to obtain a directed network. For this, let new
edges be directed from new vertices to old ones. The possible number of authorities
in the bipartite subgraphs of our graph is fixed: @« = 2. Each pair of nearest
neighbour vertices plays the role of authorities of a bipartite sub-graph based on
them. At each time step, a new hub (a new vertex) is added to a randomly chosen
bipartite clique and two new cliques (two new edges) emerge. The total number
Ny(h,a =2,t) = Ny(h,t) of bipartite sub-graphs with 4 hubs in the network in time 7
satisfy the following simple equation

1 1
Nh(h, r+ 1) = 26p0 + Nh(h, l) +7Nh(h -1, l) - 7N},(/’l, l). (925)

The first term on the right-hand part of (9.25) is a contribution from two new edges,
the third and fourth terms are due to addition of a new hub, that is, a new vertex, to
the network.

The probability that a randomly chosen vertex belongs to the bipartite sub-
graphs with & hubs is G(h,t) = Ny(h,t)/t. From (9.25) we have

(t+ 1)G(h,t + 1) — tG(h, 1) = 26,0 — G(h, 1) + G(h — 1,1). (9.26)
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Its stationary solution G(h) = G(h, == o) is G(h) = 27". Hence, the total number
of the bipartite sub-graphs with /z hubs in the large network is large (proportional
to f) and decreases exponentially as & grows:

Ny(h,t) =27"1. (9.27)

This result agrees with an estimate made in reference [173] for citation graphs
growing under mechanism of preferential linking and correlates with the meas-
urements [90, 91] of the distribution of the bipartite subgraphs in the WWW (see
section 5.3.2).

Note that the above model is very close to the network growing under mechanism
of linking to triples of the nearest neighbour nodes (see section 7.3). The degree
distributions of these networks are very similar (y = 3). Both these scale-free
networks have large clustering coefficients.

One may slightly modify the model under consideration and obtain a determi-
nistic growing graph which has a discrete spectrum of degrees. ‘Scale-free’ networks
of this kind were recently proposed in reference [174]. At each time step, let every
edge of the graph generate a new vertex which connects to both ends of the edge (see
figure 23). The growth starts from a triangle (+ = 0). Then the total number of
vertices at time 7 is N, = 3(3' + 1)/2 and the total number of edges is L, = 3'*!, so
that the average degree k, = 4/(1 + 37") approaches 4 in the large-graph limit. The
‘perimeter’ of the graph (see figure 23)is P, = 3 x 2/, hence N, ~ L, ~ Plln /M2 hen
t is large. The clustering coefficient of the graph is large: Ce=4/5 as t== 0.

We can fold this graph into a more compact structure with a different border,
hence In3/1In2 is not a fractal dimension of the structure but only some character-
istic value. Moreover, at any step, the entire graph can be set inside of a unit triangle.
Thus this graph is not a fractal.

The spectrum of degrees of the graph is discrete: at time 7, the number n(k, ¢) of
vertices of degree k =2,22,23, ... 2071 27 211 is equal to 37,371,372 .. 323 3,
respectively. Other values of degree are absent in the spectrum. Clearly, for the large
network, n(k, t) decreases as a power law of k, so the network may be called ‘scale-
free’. It is easy to introduce the standard exponent ~ for this discrete situation where

Figure 23. A simple deterministic growing graph. At time 7 = 0, the graph is a triangle. At
each time step every edge of the graph generates a new vertex which connects to both
ends of the edge.
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degree points are inhomogeneously spread over the k axis. For this one may
calculate the corresponding cumulative distribution Py, (k;) k;l“/ 2 o k} .
Here k; are points of the discrete degree spectrum. Then we obtain
In3
=14+—>2 9.28

g 3 (9.28)
Compare this expression with exponent In3/In2 in the relation between the ‘mass’
and the ‘perimeter’ of the graph. Also, note that the maximal degree of a vertex is
Ko = 241 ~ NI2/103 — N VOTD - Other deterministic variations of the same simple
model produce various discrete distributions (exponential and others).

9.4. Scaling relations and cut-off

In sections 9.2 and 9.3 we found that a number of quantities of particular scale-
free networks may be written in a scaling form, and the scaling exponents involved
are connected by a simple relation. Can these forms and relations be applied to all
scale-free networks?

Let us proceed with general considerations. In this subsection, it is not essential,
whether we consider degree, in-degree, or out-degree. Hence we use one general
notation, k. When one speaks about scaling properties, a continuum treatment is
sufficient, so that we can use the following expressions

1 t
Pk, t) = - J dsp(k,s, 1) (9.29)

)

and

k(s 1) = f dk kp(k,s, ). (9.30)

In addition, we will need the normalization condition for p(k,s, ),

J dkp(k,s,t) = 1. (9.31)
0

If the stationary distribution exists, then from (9.29), it follows that p(k, s, ¢) has
to be of the form p(k, s, t) = p(k,s/t). From the normalization condition, (9.31), we
obtain [[*dk p(k,x) =1, so p(k,x) = g(x)f (kg(x)), where g(x) and f(x) are arbi-
trary functions.

Let us assume that the stationary distribution P(k) and the average degree k(s, 1)
exhibit scaling behaviour, that is, P(k) oc k=7 for large k and k(s,t) o< s™* for
| < s< t. Then, from (9.30), one sees that [ dkkp(k,x) o x™7. Substituting
p(k, x) into this relation, one obtains g(x) oc x?. Of course, without loss of generality,
one may set g(x) = x”, so that we obtain the following scaling form of the degree
distribution of individual vertices,

plk,s, 1) = (s/0)°f (k(s/1)"). (9.32)

Finally, assuming the scaling behaviour of P(k), i.e., [ dx p(k,x) o< k=7, and using
(9.32), we obtain v = 1+ 1/, i.e., relation (9.15) between the exponents is universal
for scale-free networks. Here we used the rapid convergence of p(k, x) at large x (see
(9.17) and (9.21)). One should note that in this derivation we did not use any
approximation.
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The relation between the v and 3 exponents looks precisely the same as that for
the v exponent of the degree distribution and the corresponding exponent of Zipf’s
Law, v. One can easily understand the reason of this coincidence. Recall that, in
Zipf’s Law, the following dependence is considered: k = f(r). Here r is the rank of a
vertex of the degree k, i.e., r o [ dk P(k) = Poym (k). If Zipf’s Law is valid, k oc r™7,
then r oc k=17 oc k=71, and we get v = 1 + 1/v. Therefore, the 3 exponent equals
the exponent of the Zipf’s Law, 8 = v.

Now we can discuss the size-effects in growing scale-free networks. Accounting
for the rapid decrease of the function f(z) in (9.16), one sees that the power-law
dependence of the total degree distribution has a cut-off at the characteristic value,

kew ~ 17 = ¢/ (9.33)

In fact, k¢, is the generic scale of all ‘scale-free’ networks. It also follows from the
condition lfk dk P(k) ~ 1,1i.e. lfk dk k™7 ~ 1. This means that only one vertex in
a network has degree above the cut-off. A more precise estimate is k/ko ~ /071,
where kq is the lower boundary of the power-law region of the degree distribution.
Equation (9.33) can be used to estimate the ~ exponent if the maximal degree in a
network is known from empirical data [94, 95]. We have already applied (9.33) in
section 5 to check the quality of reported values of some real networks.

We have shown (see section 9.3) that a trace of initial conditions at k ~ k¢, may
be visible in a degree distribution measured for any network size [166]. The cut-off
(and the trace of initial conditions) sets strong restrictions for observations of power-
law distributions since there are few really large networks in nature.

In fact, measurement of degree distributions is always hindered by strong
fluctuations at large k. The reason of such fluctuations is the poor statistics in this
region. One can easily estimate the characteristic value of degree, k;, above which the
fluctuations are strong. If P(k) ~ k™7, lk 7~ 1. Therefore, ky ~ ll/’ One may
improve the situation using the cumulatlve distributions, Peym(k jk dk P(k),
instead of P(k). Also, in simulations, one may make a lot of runs to improve the
statistics. Nevertheless, one can not exceed the cut-off, k., that we discuss. This cut-
off is the real barrier for the observation of the power-law dependence. (One should
note that accounting for the ageing of nodes, break of links, or disappearance of
nodes suppresses the effect of the initial conditions and removes the hump [171, 175,
176].)

No scale-free networks with large values of v were observed. The reason for this
is clear. Indeed, the power-law dependence of the degree distribution can be observed
only if it exists for at least 2 or 3 decades of degree. For this, the networks have to be
large: their size should be, at least, r > 10501 Then, if ~ is large, one practically
has no chances to find the scale-free behaviour.

In figure 24, in the log-linear scale, we present the values of the v exponents of all
the networks reported as having power-law degree distributions versus their sizes
(see also table 1). One sees that almost all the plotted points are inside of the region
restricted by the lines: v = 2, log;, ¢ ~ 2.5(y — 1), and by the logarithm of the size of
the largest scale-free network —the World-Wide Web—log,,f ~ 9.

In a similar way, we obtain the following general form of P(k,¢) for scale-free
networks in the scaling regime:

P(k,t) = k™ VF(kt™") = k7 F (ke V/07D), (9.34)
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Figure 24. Log-linear plot of the v exponents of all the networks reported as having power-law
(in-, out-) degree distributions (i.e. scale-free networks) versus their sizes. The line
v~ 1+logyy1/2.5is the estimate of the finite-size boundary for the observation of the
power-law degree distributions for v > 2. Here 2.5 is the range of degrees (orders) which
we believe is necessary to observe a power law. The dashed line, v = 3, is the resilience
boundary (see section 11.4). This boundary is important for networks which must be
stable to random breakdowns. The points are plotted using the data from table 1. Points
for v, and ~y; from the same set of data are connected. The precision of the right points is
about £0.1 (?) and is much worse for points in the grey region. There exists a chance
that some of these nets are actually not in the class of scale-free networks.

The points: 17 and lo are obtained from in- and out-degree distributions of the
complete map of the nd.edu domain of the WWW [2]; 1i" and 1o’ are from in- and
out-degree distributions of the pages of the WWW scanned by Altavista in October
1999 [6, 90]; 10" is the ~y, value from another fitting of the same data [61]; 1i" is
for domain level of the WWW in spring 1997 [117]; 2 is ~ for the inter-domain level
of the Internet in December 1998 [5]; 2’ is «y for the network of operating AS in one
day in December 1999 [96]; 3 is « for the router level of the Internet in 1995 [5]; 3’ is
~ for the router level of the Internet in 2000 [104]; 4i is ; for citations of the ISI
database 1981—June 1997 [27]; 4i' is the result of the different fitting of the same data
[99]; 4i” is another estimate obtained from the same data [94, 95]; 4/ is +; for citations
of the Phys. Rev. D 11-50 (1975-1994) [27]; 4/ is the different fitting of the same data
[99]; 4" is another estimate from the same data [94, 95]; 4j" is ; for citations of the
Phys. Rev. D (1982—June 1997) [100]; Sa is the v exponent for the collaboration
network of movie actors [55]; 54’ is the result of another fitting for the same data
[102]; 5b is ~ for the collaboration network of Medline [13]; 5’ is ~ for the
collaboration net collected from mathematical journals [15]; 56" is v for the
collaboration net collected from neuro-science journals [15]; 6io is i =7, for
networks of metabolic reactions [41]; 7 is 7 of the network of protein—protein
interactions (yeast proteome) if it is treated as undirected [44, 45]; 8 is y of the degree
distribution of the word web in the range below the crossover point [126]; 9 is v of
large digital electronic circuits [128]; 10 is 7; of the telephone call graph [32] (the out-
degree distribution of this graph cannot be fitted by a power-law dependence); 11 is
of vertices in the web of human sexual contacts [132].
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Table 1. Sizes and values of the v exponent of the networks or subgraphs reported as having
power-law (in-, out-) degree distributions. For each network (or class of networks) data
are presented in more or less historical order, so that the recent exciting progress is
visible. Errors are not shown (see the caption of figure 24). They depend on the size of a
network and on the value of 7. We recommend our readers to look at the remark at the
end of section 5.3.2 before using these values.

Number Number

Network or subgraph of vertices of edges v References
Complete map of the nd.edu domain of the Web 325,729 1,469,680 v =21 [2]

v, = 2.45
Pages of World Wide Web scanned by Altavista 2711 10° 2.130 10° v =21 [6, 90]
in October of 1999 Yo =27
‘—— (another fitting of the same data) v; = 2.10 [61]

v, =282
Domain level of the WWW in spring 1997 2.60 10° — v =194 [117]
Inter-domain level of the Internet in December 1998 4389 8256 2.2 [5]
Net of operating ‘autonomous systems’ in Internet’ 6374 13641 2.2 [96]
Router level of the Internet in 1995 3888 5012 2.5 [5]
Router level of the Internet in 20007 ~150,000 ~200,000 ~2.3 [104]
Citations of the ISI database 1981—June 1997 783,339 6,716,198 v =3.0 [27]
‘—— (another fitting of the same data) v =29 [99]
‘—— (another estimate from the same data) v =25 [94, 95]
Citations of the Phys. Rev. D 11-50 (1975-1994) 24,296 351,872 v = 3.0 [27]
‘—— (another fitting of the same data) v =2.6 [99]
‘—— (another estimate from the same data) v =23 [94, 95]
Citations of the Phys. Rev. D (1982—June 1997) — — v =19 [100]
Collaboration network of movie actors 212,250 61,085,555 2.3 [55]
‘—— (another fitting of the same data) 3.1 [102]
Collaboration network of Medline 1,388,989 1.028 107 2.5 [13]
Collaboration net collected from mathematical journals 70,975 0.132x10° 2.1 [15]
Collaboration net collected from neuro-science journals 209,293 1.214x10° 2.4 [15]
Networks of metabolic reactions ~500-800 ~1500—-3000 v =22 [41]

Yo =2.2
Net of protein—protein interactions (yeast proteome)® 1870 2240 ~2.5 [44, 45]
Word web* 470,000 17,000,000 1.5 [126]
Digital electronic circuits 2 x 10* 4x10* 3.0 [128]
Telephone call graph® 47 x 10° 8 x 107 v =21 [32]
Web of human sexual contacts® 2810 — 3.4 [132]
Food webs’ 93-154 405-366 ~1 [48, 49]

! The data for the network of operating AS was obtained for one day in December 1999. % The value of the
~ exponent was estimated from the degree distribution plot in reference [104]. * The network of protein—
protein interaction is treated as undirected. * The value of the vy exponent for the word web is given for the
range of degrees below the crossover point (see figure 9). ° The out-degree distribution of the telephone call
graph cannot be fitted by a power-law dependence (notice the remark in section 5.6). ¢ In fact, the data
were collected from a small set of vertices of the web of human sexual contacts. These vertices almost
surely have no connections between them. ' These food webs are truly small. In references [50, 51] degree
distributions of such food webs were interpreted as exponential-like.

Here F(x) is a scaling function. We have obtained this form for an exactly
solvable network in section 9.3.

9.5. Continuum approach
As we have already seen in section 9.1, the continuum approximation produces
the exact value of ~ for the BA model. The first results for the exponents [55] were
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obtained just using this approximation (in references [55, 56] it was called ‘mean
field’). Such an approach gives the exact values of the exponents for numerous
models of growing scale-free networks and allows us to describe easily main features
of the network growth [171, 175].

Let us briefly describe this simple technique. Passing to the continuum limits of k
and ¢ in any of written above master equations for the degree distributions of
individual vertices (e.g. in (8.1) for the exponential network or (9.1) for the BA
model) we get the linear partial differential equations of the first order which have
the following solution

plk,s, 1) = 6(k — (s, 1)). (9.35)

Of course, the form of this solution is rather far from the solutions of the
corresponding exact master equations. Nevertheless, this é-function ansatz works
effectively both for exponential and scale-free networks [171, 175].

One may even not use master equations but proceed in the following way. In the
simplest example, the BA model with one vertex and one edge added at each time
step, the ansatz (9.35) immediately leads to the equation for the average degree of
vertices:

8/{;3[, 1) S k(s,t) . (9.36)
J duk(u, 1)
0

Equation (9.36) also follows from the continuum limit of the master equation for
p(k,s,t) of this model, (9.1). It has a simple meaning—new edges are distributed
among vertices proportionally to their degrees as it is fixed by the rule of preferential
linking. The initial condition is k(0,0) = 0, and the boundary one, k(z,7) = 1. One
sees that (9.36) is consistent. Indeed, applying j(; ds to (9.36) we obtain

a i _ t a _ _
— | dsk(s, ) = s—k(s,t) +k(t,t) =1+1 .
5], @560 = | as SR+ T =141, 9.37)
from which the proper relation follows,
t
J dsk(s, 1) = 2t, (9.38)
0

that is, the total degree in this case equals double the number of edges. Therefore,
(9.37) takes the form

Ok(s, 1) 1 k(s, 1)

Y 3 (9.39)

Its general solution is
k(s 1) = C(s)1/?, (9.40)

where C(s) is arbitrary function of s. Accounting for the boundary condition,

R(s, 1) = (;)l/z. (9.41)

k(t,t) =1, one has
Hence, the scaling exponent 3 equals 1/2, as we have seen before.
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In the continuum approach, the expression for the total degree distribution is of
the form

Plk,1) = % J; ds8(k — (s, 1))

- _% (%) [s = s(k, 1)], (9.42)

where s(k,¢) is a solution of the equation, k =k(s, 7). Using (9.42), one may
immediately reproduce the scaling relation between the exponents, so v =1+ 1/4.
Therefore, in the present case, v = 3.

9.6. More complex models and estimates for the WWW
The models of growing networks described above demonstrate how power-law
degree distributions arise. For explanation of the structure of real networks one has
to introduce more complex models. We admit, however, that even these models only
illustrate the reality. At best, they can be used only for rough estimations.

9.6.1. Mixture of different kinds of linking

Let us demonstrate that scale-free nets may be obtained even without ‘pure’
preferential linking [175, 176]. It is convenient to consider incoming edges here, so we
again mostly use the following notation for in-degree, ¢ = k;.

Let us describe the model (see figure 25).

(i) At each time step, a new vertex is added.

(i1) It has n incoming edges which go out from arbitrary vertices or even from
some external source.

(iii) Simultaneously, m extra edges are distributed with preference. This means
that again they go out from non-specified vertices or from an external source
but a target end of each of them is attached to a vertex chosen
preferentially—probability to choose some particular vertex is proportional

n m n,
1 1 1
new node

Figure 25. Scheme of the growth of the network with a mixture of the preferential and
random linking (compare with the schematic figure 5 for the WWW growth). At each
time step, a new vertex with »n incoming edges is added. Simultaneously, the target
ends of m new edges are distributed among vertices according to a rule of preferential
linking, and, in addition, the target ends of n, new edges are attached to randomly
chosen vertices. The source ends of each edge may be anywhere.
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to ¢+ A. A is a constant which we call additional attractiveness (see section
9.2). We shall see that its reasonable values are 4 > —n — n,.

(iv) In addition, at each time step, the target ends of n, edges are distributed
among vertices randomly, without any preference. Again, these edges may go
out from anywhere.

In the continuum approach, one can assume that m and n are not necessarily
integer numbers but are positive. Note that here we do not include into consideration
the source ends of edges, since we are studying only in-degree distributions.

The equation for the average in-degree of vertices in this network has the form,

—a?g‘l’ D _ Lo LRUTE qls,0)+4 (9.43)
J du[q(u, 1) + A]
0
with the initial condition, g(0,0) = 0, and the boundary one, g(¢,¢) = n. The first
term on the right-hand side accounts for linking without preference, the second
one—for the preferential linking. In this case, j(; dsq(s, t) = (n, + m + n)t. It follows
from (9.43) that =m/(m+n, +n+ A),so 0 < < 1, and

n.+n+ A

)
i + m

(9.44)
Thus, the additional fraction of randomly distributed edges does not suppress the
power-law dependence of the degree distributions but only increases 4; which is in
the range between 2 and infinity.

This model allows one to obtain some estimates for the exponents of in- and out-
degree distributions of the WWW [177, 178]. Let us discuss, first, the in-degree
distribution. We have already explained how new pages appear in the Web (see
section 5.3.2). The introduced model, at least, resembles this process. The problem is
that we do not know the values of the quantities on the left-hand side of (9.44).

The constant 4 may take any values between —(n, + n) and infinity, the number
of the randomly distributed edges, #,, in principle, may be not small (there exist
many individuals making their references practically at random), and # is not fixed.
From the experimental data [6] (see section 5.3.2) we know more or less the sum
m+n+n, ~ 10> 1 (between 7 and 10, more precisely), and that is all.

The only thing we can do, is to fix the scales of the quantities. The natural
characteristic values for n,+n+ A in (9.44) are (a) 0, (b) 1, (c) m > 1, and (d)
infinity. In the first case, all new edges are attached to the oldest vertex since only this
one is attractive for linking, and ~;=2. In the last case, there is no preferential
linking, and the network is not scale-free, ;== 00. Let us consider the truly
important cases (b) and (c).

(b) Let us assume that the process of the appearance of each document in the
Web is as simple as the procedure of the creation of your personal home page
described in section 5.3.2. If only one reference to the new document (n=1)
appears, and if one forgets about the terms n, and A4 in (9.44), then, for the ~;
exponent of the in-degree distribution, we immediately obtain the estimate
7i — 2~ 1/m ~ 107!, This estimate indeed coincides with the experimental value
~vi —2=20.1 [6] (see section 5.3.2). Therefore, the estimation looks good. Never-
theless, we should repeat, that this estimate follows only from the fixation of the
scales of the involved quantities, and many real processes are not accounted for in it.



Evolution of networks 1129

(c) Above we discussed the distribution of incoming links. Equation (9.44) may
also be applied for the distribution of links which extrude from Web documents since
the model of the previous section can be reformulated easily for outgoing edges of
vertices. In this case all the quantities in (9.44) take other values which are again
unknown. However, we can estimate them. As we explained in section 5.3.2, there
are usually several citations (n) in each new WWW document. In addition, one may
think that the number of the links distributing without any preference, #,, is not
small now. Indeed, even beginners proceed by linking of their pages. Hence,
n+n, ~ m—we have no other available scale,—and ~, —2 ~m/m ~ 1. We can
compare this estimate with the empirical value, v, — 2 = 0.7 [2, 6].

9.6.2. Many channels of linking

Unfortunately, numerous channels of linking in real networks make similar
contributions to the values of the exponents of the degree-distributions, so quite
‘honest’ estimates are impossible. To demonstrate the complexity of the problem, let
us introduce the ‘general’ model of a growing directed network. In this model we
account for the main channels of linking which yield contributions of the same order
to 7; and ~,. This will demonstrate the complexity of the problem.

The number of possible channels is so large that we have to introduce new
notations. The network grows by the rules described in the caption of figure 26. We
account for all combinations of linking without preference and linear preferential
linking. Some new edges appear between new and old vertices, other connect pairs of
old vertices. For different channels of linking, parameters of preferential linking
differ from each other. Additional attractiveness takes different values for target
and source ends of preferentially distributed edges. For brevity, we use the
simplest preference functions of the form k; + A; for distribution of target ends of
links and of the form k, + A4, for distribution of source ends. In fact, this model
generalizes the known models of networks with preferential linking of directed edges
[169, 175, 179].

The above growing network is scale-free. Its exponents may be obtained in the
continuum approach framework. Fortunately, part of parameters introduced in
figure 26, disappear from the final expressions for 7; and ~,:

Po p' ! 1!
n+A; n+ A n+A']

-1
pi p' P,
1 0 .
+ [n,—|—A0+n,—|—Aa’+n,—|—Aa”

e [ (9.45)

Yo

In principle, one must account for all above contributions. One may check that
(9.44) is a particular case of (9.45). Twelve unknown parameters
(4, po,pis 0", 0!\ D) Aiy Ay, Al AL Al A") in (9.45) make the problem of improving
of the estimate of ~;, (see (b) and (c)) hardly solvable.

A simpler case of a growing undirected network was considered in reference
[176]. At each time step, apart of m new edges between a new vertex and old vertices,
mc new edges are created between the old vertices (see figure 27), so that the average
degree of the network is k = 2m(1 + ¢). The connections to a new vertex are
distributed among old vertices like in Barabasi-Albert model. The probability that
a new edge is attached to existing vertices of degree k¥ and k() is proportional to
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Figure 26. Scheme of the growth of the generalized model of a directed network.

(1) At each time step, a new vertex is added.

(i1) It has both outgoing and incoming edges.

The target ends of r, outgoing edges are distributed randomly among old
vertices.

The source ends of r; incoming edges are distributed randomly among old
vertices.

The target ends of p, outgoing edges are distributed preferentially among old
vertices with probability proportional to k; + A;.

The source ends of p; incoming edges are distributed preferentially among old
vertices with probability proportional to k, + A,.

(ii)) Simultaneously, p’ edges are distributed preferentially between old vertices.
Their target ends are distributed with the preference function, k; + 4] and
their source ends—with the preference function k, + A,.

(iv) In addition, r’ edges are distributed without preference among old vertices.

(v) In addition, p/" connections appear between old vertices with source ends
being distributed without preference and with target ends—with the
preference function k; + A4/.

(vi) Finally, p) edges emerge between old vertices with target ends being
distributed without preference and with source ones—with the preference
function k; + 4.

Here A4;, 4,, A}, A}, A]' and A are constants.
The total number of connections that emerge at each increment of time is
ne=po+pi+rotri+r +p +pl +p).

Figure 27. Scheme of growth of an undirected network with creation of connections
between already existing vertices. At each time step, (i) a new vertex is added; (ii) it
connects to m preferentially chosen old vertices; (iii) ¢m new edges connect pairs of
preferentially chosen old vertices.
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k') Here 1 and v are labels of the vertices. The resulting degree distribution is of
a power-law form with the exponent

1 m
=2+4+= . 9.46
14 2¢ k—m ( )

v=2+

Thus, 2 < v < 3. The same expression is valid if, at each time step, we delete
—mc > 0 randomly chosen edges (here ¢ < 0).

9.6.3. Rewiring of edges

A very similar effect is produced by a rewiring of edges [102]. Now, instead of the
creation of connections in the old part of an undirected growing network, at each
time step, let each of m, randomly chosen vertices loose one of its connections (see
figure 28). In m,, cases, a free end is attached to a random vertex. In the rest
my, = m, — m,, cases, a free end is attached to a preferentially chosen vertex. The
continuum equation for the mean degree has the form

Ok(s, 1)
ot

k(s, 1) My — M,

ro_ t
J duk(u, 1)
0

= (m+m,,) (9.47)

with the boundary condition k(z,¢) = m. From this, one gets the following
expression for the exponent of the degree distribution:
m—m

4 (9.48)

=2 .
7 +m—|—m,p

Notice that here we did not account for the emergence of bare vertices, so the
number of the rewirings m, has to be small enough. From (9.48), it follows that, as
the number of the preferential rewirings grows, the ~ exponent decreases. Moreover,
simulations in reference [102] demonstrated that, when the number of the rewirings is
high enough, the degree distribution changes from a power law to an exponential
one.

Figure 28. Scheme of the growth of an undirected network with the rewiring of connections
in the old part of the network. At each time step, (i) a new vertex is added; (ii) it
connects to m preferentially chosen old vertices; (iii) m, old vertices are chosen at
random, and, from each of these vertices, one of edges is rewired to another vertex.
In the m,. cases, the rewiring occurs to randomly chosen vertices. In the rest
my, = m, —m,; of cases, the rewired edge ends are attached to preferentially chosen
vertices.
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9.6.4. Correlations between in- and out-degrees of vertices

One sees that the power-law in- and out-degree distributions of directed networks
arise from the power-law singularities k;(s, ) o (s/1)"" and %, (s, 1) o (s/1)"" at the
point s = 0 (the oldest vertex). Therefore, the same vertices, as a rule, have the high
values of both in- and out-degree. This means that the in- and out-degree of vertices
correlate, and, of course, P(k; k,) # P(k;)P(k,) (see discussion in the Krapivsky,
Rodgers, and Redner article [179]). Moreover, even if we exclude the preferential
linking from such network growth process, the rule ‘the oldest is the richest’ is still
valid for both in- and -out degree, and hence the correlation between k; and k, is
again present.

In reference [179], the distribution P(k;, k,) was calculated analytically for a
directed growing network similar to the model from section 9.6.2. To get the exact
result, the authors of this paper accounted for only two channels of the preferential
attachment of new edges and made a number of simplifying assumptions. In their
model, first, a new edge may go out of a new vertex and, in this case, its target end is
attached to some old vertex chosen with the probability proportional to k; + A4;.
Second, another possibility is connection of two old vertices (u) and (v) with the
probability proportional to (kl(“) + Ai’)(k(f) + A]) (in reference [179], 4] = A4;). Here,
kf’;) and kf”a are the in- and out-degrees of these vertices. In addition, parameters of
the model [179] are chosen in such a way that the exponents of the in- and out-degree
distributions are equal, ; = ~,. The resulting distribution has the following
asymptotic form for large k; and k,,

A1 4]
kA=

Plk;, k) o —i "o
( ) (ki+ka)2A,-+l

(9.49)

which is very different from the product P(k;)P(k,).

A model of growing directed networks with preferential linking was simulated in
[180]. In- and out-degree distributions were observed to be of power-law form. The
distribution of the sizes of connected clusters may be also interpreted as a power-law
dependence in some range of the parameters of this model.

9.7. Types of preference providing scale-free networks

Many efforts were made to analyse different preference functions producing
scale-free networks. The power-law preference function, k¥, does not produce power-
law degree distributions if y # 1, see section 10. One can check that the necessary
condition is a linear asymptotic form of the preference function at large values of
degree [94, 95], so the function, in principle, may be nonlinear. Nevertheless, main
features can be understood if one consider linear preference functions. In general, the
probability for a new link to be attached to a vertex s at time ¢ is p(s, ) =
G(s,t)k(s, 1) + A(s, t). The coefficient G(s,7) may be called fitness of a vertex [184,
181] A(s, t) is additional attractiveness. As we have seen, A can change the values of
the exponents. Effect of the variation of G may be even stronger.

One can consider the following particular cases. First, consider (i), G = const,
A = A(s). In this case, the additional attractiveness A4(s) may be treated as ascribed
to individual vertices. A possible generalization is to make it a random quantity. One
can check that the answers do not change crucially—one only has to substitute the
average value, A, instead of A, into the previous expressions for the scaling
exponents.
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Note that n and m may also be made random, and this can be accounted for by
the substitution of 7 and 777 into the expressions for the exponents.

There exists a more interesting possibility—to construct a direct generalization of
the network considered in section 9.6, where a combination of preferential and
random linking was described. For this, we may ascribe the additional attractiveness
not to vertices but to new edges, and again make it a random quantity. In such an
event, new edges play the role of fans with different passion for popularity of their
idols, vertices. This is the case (ii), G = const, 4 = A(t), where A(¢) is random. If the
distribution function of 4 is P(A4), the v exponent equals

see reference [175]. The values of the exponent are again between 2 and oo.

Let us pass to situations where 4 = const; consider (iii) G = G(¢), this case
reduces to case (ii). Finally, let us consider (iv) G(s,t) = f(z — s), ageing of vertices.
This case was considered in references [171, 175]. In particular, such a form of a
preference function is quite reasonable in citation networks. Indeed, we rarely cite
old papers. One may check that to keep the network scale-free, the function has to be
of a power-law form, G(s, 1) = (¢ — s)”“. In principle, the exponent o may be of any
sign: —oo < a < 0o. Negative values of « are typical for very conservative citation
networks (which may have many references to the Bible). Variation of the ageing
exponent « produces quite distinct networks; see figure 29. If « is negative, links
tends to be attached to the oldest vertices, if « is large, the network becomes a chain
structure.

Again it is possible to use the continuum approach. For the undirected network
to which one vertex with one edge is added at each time step, after the introduction
of the scaling variables, x(s/t) = k(s, ) and & = s/t, one obtains

-1

nk ! -
—¢(1 _g)“dld—g(f)z Uo dCr(Q(=¢) | =8, (9.51)
k(1) =1.

From (9.51), one obtains the solution (&, 3). Substituting it into the right equality in
(9.51) or, equivalently, into fol d¢ x(¢) = 2, we get a transcendental equation for §.
The resulting exponents, 0 < 3 < 1 and 2 < v < oo, are shown in figures 30 and 31
[171, 175].

Now consider (v) G = G(s), a fluctuating function [181]. Let G be a random
variable having distribution P(G). Then, in the particular case of the BA model, one
gets the following equation for average degree

k(s, t $)k(s, t
Tl - SRR ()
J ds G(s)k(s, 1)
0

k(s, 1)
t

(9.52)

with the boundary condition k(t,1) = 1 (we set m = 1 without loss of generality). In
this case, k(s, ) = (s/l)f“’(G(S)). Then, it is easy to check that §(G) = ¢G, where the
constant ¢ can be obtained from the equation

JdGP(G) 1 _GcG =1/c. (9.53)
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Figure 29. Change of the structure of the network with ageing of vertices with increase of
the ageing exponent a. The ageing is proportional to 7%, where 7 is the age of a
vertex. The network grows clockwise starting from the vertex below on the left. At
each time step, a new vertex with one edge is added.

Using (9.42), one obtains the distribution
1
P(k) o JdG P(G) (1 + E) e UH1/(O, (9.54)

If P(G) = 6(G — Gy), the network is the original BA model. If P(G) is a distributed
function, the answer changes. For instance, for P(G) = 0(G)6(1 — G), i.e., when G is
homogeneously distributed in the range (0, 1), the distribution takes the following

form:

1 J—(1+1/¢)

— (9.55)

P(k) o J dG<1 +L> /()] o
cG

0
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Figure 30. 8 exponent of the average degree versus the ageing exponent a of the network
with ageing of vertices. The points are obtained from the simulations [171]. The line
is the result of the calculations. The inset shows the analytical solution in the range
—5 < a < 1. Note that f=1 when az= —cc.
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Figure 31. « exponent of the average degree versus the ageing exponent a of the network
with ageing of vertices. The points show the results of simulations [171]. The line is
the analytical result. The inset depicts the analytical solution in the range
—S<a<l.
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Here, constant ¢, which is the solution of (9.53) with homogeneous distribution
P(G), equals 0.797...,s0 v=2.255...,1i.e., it is smaller than the value v = 3 for the
homogeneous BA model.

We emphasize that v depends on a form of the distribution P(G). In particular,
results obtained with distribution P(G), which consists of two delta-functions, are
discussed in section 9.8. The fluctuations of G may also be introduced into models of
growing networks from sections 9.2, 9.5, and 9.6; results are similar to (9.55).

A combination of fluctuating additional attractiveness A(s) and fluctuating
fitness G(s) was considered in reference [182]. Calculations in this paper are very
similar to the above derivation (an explicit rate-equation approach [94, 95, 179] was
used), but the result, namely the v exponent of the power-law dependence, corrected
by a logarithmic denominator, depends on the form of the joint distribution P(4, G).
In reference [182] one may also find the results for the exponents of in- and out-
degree distributions of a directed growing network with fluctuating fitness.

One should note that most of the existing models of networks growing under
mechanism of preferential linking produce the effect ‘the oldest is the richest’. (Here
we do not dwell on situations when old vertices may die, divide into parts, or stop to
attach new edges. The last possibility was studied in references [167, 168], and this is
the case, where young vertices may have larger degrees than old vertices. Also, if
vertices divide into parts, it is hard to define the age of a vertex at large temporal
scales.) Even in the case of fluctuating fitness G, older vertices are, with high
probability, of larger degree than young vertices. Indeed, the power-law degree
distributions have to be accompanied by strong singularities of the average degree of
individual vertices k(s,¢) at s = 0. This follows from the derivations of scale-free
degree distributions in the present section. The fluctuations of G produce broadening
of the degree distribution of individual vertices p(k,s, 7). In section 9.8 we will
consider the situation in which in-homogeneity of G provides stronger effect than
considered here.

It was stated in reference [117] that degree distribution of individual vertices
(sites) of the Web practically does not depend on their age. This indicates the
inapplicability of the preferential linking concept. Authors of reference [183]
explained that these data are not sufficient to exclude the rule ‘the oldest is the
richest” and that just the inhomogeneity of fitness G hampers the observation of such
an effect.

9.8. ‘Condensation’ of edges

In the last of the situations described above, that is, in the case of inhomogeneous
fitness G, the form of resulting degree distributions crucially depends on the form of
the distribution P(G). For some special forms of P(G), a striking phenomenon
occurs [184]. One or several of the ‘strongest’ vertices with the largest G may capture
a finite fraction of all edges. A related effect was considered in reference [185]. In
reference [184] this intriguing effect was called ‘Bose—Einstein condensation’. One,
can explain this phenomenon using a simple example [175].

Let us use the model of a growing network with directed edges introduced in
section 9.5. To simplify the formulas, we set 4 = 0 (one can see that this does not
reduce the generality of the model which produces scaling exponents in the wide
ranges of values, 2 < v < 0o and 0 < 3 < 1). Let the rule of preference be the same
as in section 9.5, i.e. the probability that an edge is attached to vertex s is
proportional to the in-degree ¢, of the vertex but with one exception—one vertex,
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§, is ‘stronger’ than others. This means that the probability that this vertex attracts
an edge is higher. It has an additional factor, g > 1, and proportional to ggs. This
means that G; = 1 4 (g — 1)8,5. The equations for the average in-degree are

aanEl) =m gqg(l)[ ) q&(l = §) = qia

(= 070 + | dsq0,0)
— o 0 (9.56)
qgsla ) —m q(.S, )t , q(l, l) = n.

(= 130+ | 7.0
In the second of (9.56), s # §. Obviously, at long times, the total in-degree of the
network is [jdsg(s, 1) = (m +n)t + O(1).

At > §, two situations are possible. In the first one, the in-degree ¢s(¢) of the
strongest vertex grows slower than ¢, and, at long times, the denominators are equal
to (m+n)t, so that we get the exponents, [S=m/(m+n)=/p[, and
y=2+n/m=~=1+1/F, were 0 < By <1, 2 <~y < co. Here, we introduce
the exponents, v and [y, of the network in which all vertices have equal ‘strength’
(fitness), g = 1. The first line of (9.56), in this case, looks as

070 __em_gai(1).

ot  m+n (9.57)

Hence, at long times, ;(¢) = const (g;) 2"/ and we see that the in-degree of the
strong vertex does grow slower than ¢ only for

n -1
g<g(?El+E:70_1:ﬂo >1, (958)

so we obtain the natural threshold value.

In the other situation, g > g., at long times, we have the only possibility,
gs;(t) =d t, d is some constant, d < m + n, since a more rapid growth of ¢;(¢) is
impossible in principle. This means that, for g > g., a finite fraction of all
preferentially distributed edges is captured by the strong vertex (in reference [184],
just this situation is called Bose—Einstein condensation). We see that a single strong
vertex may produce a macroscopic effect. In this case, (9.56) takes the form,

;1) _ gm qg(l)
ot (g—ld+m+n 1t 9.59)
dq(s, 1) m q(s, 1)

)

o (g-Dd+m+n ¢

where in the second of (9.59), s # 5. Note that the coefficient in the first equation is
always larger than the coefficient in the second equation, since g. > 1. From the first
of (9.59), we get the condition

gm

(g-Dd+m+n 7 (9.60)

so, for g > g, the following fraction of all edges in the network is captured by the
strongest vertex:

d d m 1g-—g

m+n mm+n g, g—1°

(9.61)
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Figure 32. ‘Condensation’ of edges. Fraction of all edges, d/(m + n), captured by a single
strong vertex at long times and the scaling exponents 5 and « versus relative fitness g
of the strong vertex [175]. The network contains only one ‘strong’ vertex. The
condensation occurs above the threshold value g. = 1/60 = v — 1 > 1. Here 3 and
v are the corresponding exponents for the network without a strong vertex.
d/(m + n)[ge=ocl= o and S[g== cole=0.

We have to emphasize that the resulting value of d is independent on initial
conditions! (Recall that we consider the long-time limit.) This ‘condensation’ of
edges on the ‘strongest’ vertex leads to change of exponents. Using the condition
(9.60), we readily obtain the following expressions for them,

1
ﬂ:§<ﬂ03 y=14+g> . (9.62)

The fraction of all edges captured by the strongest vertex and the § and v
exponents versus g are shown in figure 32. Note that the growth of g increases the
value of the ~ exponent. If the world is captured by Bill Gates or some czar, the
distribution of wealth becomes more equitable! One should note that the strong
vertex does not take edges away from other vertices but only intercepts them. The
closer vy is to 2, the smaller g is necessary to exceed the threshold. Above the
threshold, the values of the exponents are determined only by the factor g.
Nevertheless, the expression for d/(m+ n) contains ~y, the exponent of the
homogeneous network. (Recall that the threshold value is g. = v — 1).

For g., in the edge condensation regime, the strongest vertex determines the
evolution of the network. With increasing time, a gap between the in-degree of the
strongest vertex and the maximal in-degree of all others grows (see figure 33). A
small peak at the end of the continuum part of the distribution is a trace of initial



Evolution of networks 1139

Log P(q)

1
ﬁLog10 t Log t LO%0 q

Figure 33. Schematic plot of the degree distribution of the network with one vertex, the
fitness of which exceeds the threshold value [175]. The peak is due to edges
‘condensed’ on the strong vertex. A hump at the cutoff of the continuum part of the
distribution is a trace of initial conditions (see section 9.4 and reference [166]).

conditions; see section 9.4. Note that the network remains scale-free even above the
threshold, i.e. for g > g., although ~ grows with growing g.

The above-described initial-condition-independent state is realized only in the
limit of large networks. In the ‘condensate phase’, relaxation to the final state is of a
power-law kind [175]:

g(1) —dt o ¢~ (e=8)/g (9.63)
(m+n)t
i.e. the fraction of all edges captured by the strong vertex relaxes to the final value by
a power law. Its exponent (g —g.)/g approaches zero at the condensation point
g = g.. This behaviour evokes strong associations with critical relaxation.

The threshold, that is, the ‘condensation point’, can be smeared easily in the
following way. Let vertices have, at random, two values of fitness, 1 and g > 1, the
probability that a vertex has fitness 1 is 1 — p, and, with probability p, a vertex has
fitness g. The characteristics of such a network are shown in figure 34. These are the
fraction of all vertices captured by the component of the network consisting of
‘strong vertices’ and the scaling exponents of both components as functions of g.
One sees that the threshold is smeared, and the condensation phenomenon is absent.

For the observation of the condensation of edges, special distributions P(G) are
needed. If P(G) is continuous, it must be of a specific form in the region of the largest
fitness, Gyax [184]. The structure of the network for the continuous distribution P(G)
was discussed in section 9.7. We have already described the situation when the
transcendental equation (9.53) has a real root ¢. For some distributions, including
the case considered of a single strong vertex with g > g, this is impossible. This
indicates the condensation phenomenon—a finite fraction of edges condenses on a
single vertex with the largest fitness.

At this point, we emphasize that all the growing networks that we consider in the
present section have a general feature—each of their vertices has a chance to get a
new link. Only one circumstance prevents their enrichment—seizure of this link by
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Figure 34. Fraction of all edges, d/(m + n), captured by the component of ‘strong’ vertices,
at long times and the scaling exponents 3 and  versus relative fitness, g, of ‘strong’
vertices [171]. The network contains two kinds of vertices—'weak’ vertices and
‘strong’ ones. We introduce two sets of exponents for the two components of the
network, 31 and 7—for the component consisting of vertices with the unit fitness
(contains (1 — p)¢ vertices) and (3, and y,—for the component consisting of vertices
with the fitness g (contains pz vertices). Thin lines depict the dependences at fixed
values of p. Arrows show how these curves change when p decreases from 1 to 0. At
p=0, we obtain dependences shown in figure 32 (a single strong vertex). At p=1,

d/(m+n)ye==1, Bge=fo, == 00/g, ne==1+ g/, Te==0.

another vertex. In such kinetics of distribution of edges, there is no finite radius of
‘interaction’, and there are no principal obstacles for capture of a great fraction of
edges by some vertex.

Bianconi and Barabasi [184] noted that the form of (9.53) is similar to the form of
the well-known equation for the Bose gas. Edges were interpreted as Bose-particles.
They are distributed among energy levels—vertices. The energy of each level was
related to the fitness G of the corresponding vertex. The distribution of these levels
can be obtained from P(G). One may indicate a set of the distributions P(G) for
which there is no solution of (9.53) like in the classical phenomenon of Bose
condensation. Using the analogy with this phenomenon, Bianconi and Barabasi
demonstrated that, in this ‘phase’, a finite fraction of edges (particles of the Bose gas)
condenses on the strongest vertex (the lowest energy level) and called this process
‘Bose—FEinstein condensation’ [184].

One canuse various parameterizations of P(G) butitisnatural to study its variation
mainly near Gp,c. For example, in [184], it was shown that P(G) x (Gpax — G)e
produces the condensation starting from some minimal value of the exponent 6..
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In fact, in [184], the equations describing the distribution of edges among vertices
of the large network with inhomogeneous fitting are mapped to the equations for the
Bose gas. The ‘cost’ of this mapping is the necessary introduction of thermodynamic
quantities such as temperature, etc., for the description of the network. Unfortu-
nately, it is not easy to find an interpretation, e.g., for temperature in this situation.
It is ‘something’ related to the form of P(G). Therefore, here, we prefer to consider
the ‘condensation’ effect without applying such analogies and the introduction of
thermodynamic variables, but directly using the distribution P(G).

9.9. Correlations and distribution of edges over network

Here, we have studied degree distributions in the main. We concede, however,
that they provide a rather incomplete description of a growing network. One can
better imagine the network if the average elements of the adjacency matrix are
known. Their values are calculated easily in the continuum approximation. In the
simplest case of the citation graph, the average number of edges b(s,s’, ) between
vertices s and s’ at time ¢ (s<s' <7 has a very convenient feature,
b(s,s',t > s') =b(s,s’,s’). This simplifies the calculations crucially, and the result
for scale-free citation graphs is

B(s,s', 1) :? (1 —ﬂ)<£>ﬁ<i>ﬁl, (9.64)

t t

where m is the number of connections of each new vertex (see reference [175]). Recall
that 3 = 1/(y — 1). This characteristic was obtained exactly for the model of section
9.3. One sees that, generally, the product does not factorize to k(s, t)k(s’, t). The only
exception is the 5 =1/2 (y = 3) case. From (9.64), in the scaling regime, we can
estimate the average number of connections between ancestor vertices of degree k
and descendants with degree k’. In the continuum approximation, this quantity is
proportional to the probability P(k,k’) that vertices of degree k (ancestor) and k'
(descendant) are connected:

Pk, k") oc k=V/PR'=% = |-V /=2, (9.65)

The origin of the factor k=0~ on the left-hand side of the equation is clear: new
vertices are attached to old ones with probability ~ kP(k), where P(k) is the degree
distribution. Meanwhile, degrees of nearest neighbours of a vertex in equilibrium
scale-free networks are also distributed as kP(k). Indeed, in equilibrium networks
with statistically uncorrelated vertices, this degree distribution coincides with that for
an end vertex (either of the two ones) of a randomly chosen edge, which is
proportional to kP(k) (see section 11.1). Then, in equilibrium networks, the
probability that a randomly chosen edge connects vertices of degrees k and k' is
P(k, k") = kP(k)k'P(k") ][>« kP(k))?, that differs sharply from (9.65). The factor
k'=% in (9.65) is, in particular, the degree distribution of the nearest neighbours of the
oldest (the richest) vertex (compare with the degree distribution of the nearest
neighbours of a new vertex, k~(~1).

The distribution P(k,k’) was originally obtained by Krapivsky and Redner [95]
in the framework of the rate equation approach [94, 95, 179] which is similar to the
master equation one, which was discussed in section 9.2, so we do not present their
data here. The main statement is that this probability does not factorize. This means
that degrees of neighbouring vertices in growing networks are correlated.
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If one fixes the large degree k of an ancestor vertex, then, the most probable
linking is with a descendant vertex of the smallest degree k' ~ 1. If the large degree
k' of a descendant vertex is fixed, the above probability has a maximum at some k
which is smaller than &k’ but of the order of it.

This absence of the factorization (the correlations) indicates a sharp difference of
growing networks from equilibrium graphs with statistically independent vertices.
The reason is the obvious absence of time-reversal symmetry—quite natural
asymmetry between parents and children. Therefore, these correlations are present
even for networks growing without preferential linking.

Reliable measurements of the joint degree distribution of neighbouring vertices,
P(k,k"), are difficult because of poor statistics. Nevertheless, one can easily obtain
information about the correlations in a network measuring the dependence of the
average degree of nearest neighbours of a vertex on its degree, k,,,(k) (see discussion
of the empirical data [96] in section 5.3.1). This is an important characteristic of
correlations in growing network, so let us discuss it briefly.

For a scale-free citation graph with the degree distribution exponent v < 3, from
(9.64), one obtains easily the dependence k,,,(k) oc k=G~ for small enough degrees
k. For larger k, the dependence is a slow, logarithm-like function.

If, in addition, new connections in a growing scale-free network also emerge
between old vertices, the form of k,,(k) depends on the details of the linking
procedure. For example, first, if new connections in the old part of the network
emerge without any preference, the power-law singularity in k,,(k) is retained;
second, if these edges connect randomly chosen old vertices with old vertices which
are chosen preferentially, the power-law singularity is retained; but third, if these
edges connect pairs preferentially chosen old vertices, the singularity disappears as
the number of such connections increases.

For directed networks, it is easy to introduce the notions of in- and out-
components with respect to any vertex. One can define the out-component as the
set of all ‘ancestors’ of the vertex plus itself, i.e., all the vertices that can be reached if
one starts from this vertex [95]. The in-component of the vertex contains all the
vertices from which it can be reached, i.e., all its ‘descendants’ plus itself.

The distribution of the sizes of the in- and out-components of citation graphs
(which are, in fact, directed networks) and their other characteristics were calculated
in reference [95]. These results provide information about the topology of these
networks. For the citation networks with ¢ vertices, the distribution of the in-
component sizes s was found to be proportional to #/s> for s > 1. This relation is
valid for a wide variety of preference functions, including even the absence of any
preference. For such a form of the in-component size distribution, the following
condition is necessary: the power y in the preference function k” should not exceed 1.

In reference [95], the out-components of scale-free citation graphs were studied.
For example, for the BA model, that is, for the citation graph with v = 3, the out-
component size distribution is In*"'(z+1)/[(r+ 1)(s — 1)!]. Here, s is the out-
component size. This form is valid for the network with one edge (and, as usually,
one vertex) added per unit of time. The distribution has a maximum at
s—1=1In(r+ 1) and quickly decays at larger s. Hence, the typical size of the out-
component is of the order of In¢, i.e. of the order of the typical shortest-path length
in classical random graphs (see section 3.2). Similar results were obtained for all
scale-free citation graphs [95]. The relation for typical size of the out-component is
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also valid for any citation graph with power y of the preference function &7 less or
equal 1. In this respect, these networks are similar to the classical random graphs.

9.10. Accelerated growth of networks

The linear growth, when the total number of edges in the network is a linear
function of its size (the total number of vertices), is only a particular case of the
network evolution. For instance, data on the WWW growth [175] (see section 5.3.2),
for the Internet [5, 96, 107] (see section 5.3.1), for networks of citations in scientific
literature [100] (see section 5.1), and for collaboration networks [15, 101] (see section
5.2) demonstrate that the total numbers of edges in these networks grow faster than
the total numbers of vertices, and one can say that the growth is accelerated [186],
that is, nonlinear.

One can show that a power-law dependence of the input flow of links may
produce scale-free networks [186], and non-stationary degree distributions may
emerge. In such a case, the scaling relations of section 9.4 are easily generalized.
In the limit of the large network size, in general, one can write

Pk,t) x k™7, (9.66)

and

s, 1) o £ (%) - (9.67)

General relations in the present subsection are valid for degree-, in-degree, and out-
degree distributions, so that here k denotes not only degree but also in- and out-
degree. One can show that the exponents z, §, and 3 are coupled by the relation,
z = 6/0, and the old relation (9.15) is valid. The distribution for individual vertices
now is of the form

Sl/(wfl) Sl/(wfl)
pik, s, 1) = e f<k z(l+2)/(vl)>' (9:68)
Also,
P(k,t) = k™ VF (ki 98y = i F (= 142/ 071 (9.69)

and the distribution has a cut-off at ke ~ 172/~ We emphasize that (9.68) and
(9.69) are quite general relations obtained from the assumption of a power-law
dependence of the total number of edges on the total number of vertices in the
network.

As demonstrating examples, in reference [186], two models for accelerating
growth of networks with preferential linking were studied. In particular, the in-
degree distributions of directed networks were considered. The input flow of edges is
suggested to grow as t“, where a is a new exponent, @ < 1. The restriction is
introduced to avoid multiple edges in the network at long times.

In the first model, the additional attractiveness is constant. In this case,
B=14a, vy=14+1/(1+a), §=z=0, and the degree-distribution is stationary
(if we ignore its time-dependent cutoff), see figure 35(a). Therefore, the degree
distribution of a non-linearly growing scale-free network may have the v exponent
less than 2. When the input flow of edges grows proportionally to 7, v = 3/2.
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Figure 35. Schematic log-log plots of degree distributions in the two models for accelerating
growth of networks which are discussed in section 9.10. The first model produces the
stationary degree distribution with the exponent v < 2 (a) at long times. The degree
distribution of the second model (b) is non-stationary, v > 2. The arrows indicate
changes of the distributions as the networks grow.

The second model is also based on the model of section 9.5 but, in this case, the
additional attractiveness 4 (or the number of incoming edges n of new nodes) grows
with increasing time. For instance, let the additional attractiveness be proportional
to the average in-degree of the network with a constant factor,
A(t) = Bq(t) = Bcot?/(1 +a). In this case, the ~ exponent exceeds 2 and the
distribution is non-stationary: v =2+ B(l +a)/(1 — Ba), 8= (1— Ba)/(1 + B),
6=a, and z =a(1 + B)/(1 — Ba) (see figure 35(b)). In such an event, the scaling
regime is realized only if Ba < 1.

The same results are valid for degree distributions of undirected networks which
grow nonlinearly.
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In general, assuming a power-law dependence of the input flow of edges on the
network size (a > 0), it is easy to obtain the following relations for the exponents ~,
z, and a [175, 186]. If one assumes that 1 < v < 2, then

1+z

=1
" +H—a’

(9.70)

so z should be smaller than a. This situation is realized in the first model above (see
figure 35(a)). For a long duration, the degree distribution is stationary. One may
show that the cut-off kg, ~ 1!, that is, of the order of the total degree of the
network, so that the cut-off is in fact absent.

If one assumes ~ > 2, the relation

=1 +§ (9.71)

is valid, so that one has to have z > a. The distribution is non-stationary (see figure
35(b)), and this is the case for the latter model.

In both models above, the input flow was preset, that is, we suggest its power-law
time dependence. However, such a power-law growth may arise quite naturally. Let
us consider an illustrative example. An undirected citation graph grows according
the following rules:

(i) one new vertex is added to the network in unit time;

(i1) with a probability 1 — p it connects to a randomly chosen vertex or, with
complementary probability p, not only to this vertex but also to all its nearest
neighbours.

If one is interested only in exponents, the same result is valid if a new vertex
connects to a randomly chosen vertex plus to some of its nearest neighbours, each
being chosen with the probability p. A new vertex actually copies (inherits) a fraction
of connections of its ancestor (compare with a network growth process which leads
to multifractal distributions [187, 188], see section 10). Such copying processes may
be realized, for example, in networks of protein—protein interactions (see discussion
in reference [189]).

These growth rules lead to an effective linear preferential attachment of edges to
vertices with a large number of connections. One can easily see that the average
degree (and the input flow of vertices) of this graph grows as /%’~! when p > 1/2. For
p < 1/2, the mean degree approaches the constant value 2/(1 — 2p) at long times,
and the degree distribution is stationary with exponent v =1+ 1/p > 3. When
p > 1/2, the degree distribution is non-stationary, like in the latter model, and
y=1+1/1-p) > 3.

A model of a directed growing network, whose mean degree logarithmically
grows with ¢, was proposed by Vazquez [170]. The preferential linking arises in this
model dynamically. Simulations and heuristic arguments in reference [170] have
showed that the exponent v of this network is equal or close to 2.

Above models have input flow of edges growing proportionally to #“. The
situation when it grows as ¢“ + const is also very interesting. Of course, at long
times, such growth yields the above distributions. However, for real finite networks,
this limit may not be approached. An intriguing application of these ideas can
be proposed for the word web having been constructed in reference [126] (see
section 5.4.5).
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new word

Figure 36. Scheme of the word web growth [127]. At each time step a new word appears, so
t is the total number of words. It connects to some preferentially chosen old word.
Simultaneously, ¢t new undirected edges emerge between pairs of preferentially
chosen old words. All the edges are undirected. We use the simplest kind of the
preferential attachment when a vertex is chosen with the probability proportional to
the number of its connections.

Recall that the empirical degree distribution of the word web has a complex form
(see figure 9) with two distinct regions. A high quality of the empirical degree
distribution due to the large number of vertices in the word web, ¢ = 470000, and its
high mean degree k() ~ 72 together with the specific complex form gives a real
chance to explain convincingly the structure of the word web.

Let us consider the minimal model for the evolving word web [127] (see the
discussion of practically the same model for networks of collaborations in [15]). We
use the following rules of the growth of this undirected network (see figure 36). At
each time step, a new vertex (word) is added to the network, and the total number of
vertices, ¢, plays the role of time. At its birth, the new word connects to several
old ones. We do not know the original number of connections. We only know that
it is of the order of 1. It would be unfair to play with an unknown parameter to fit
the experimental data, so we set this number to 1 (one can check that the
introduction of this parameter does not change the degree distribution of the word
web noticeably). We use the simplest natural version of the preferential linking, so a
new word is connected to some old one p with the probability proportional to
its degree k,, like in the Barabasi-Albert model [55]. In addition, at each increment
of time, ¢t new edges emerge between old words, where ¢ is a constant coefficient
that characterizes a particular network. The linear dependence appears if each
vertex makes new connections at a constant rate, and we choose it as the most
simple and natural. These new edges emerge between old words p and v with
the probability proportional to the product of their degrees k,k, [102, 176] (see
section 9.6).

The mean degree of the network is equal to k(f) = 2 4 ct. According to the
preceding analysis, this yields the stationary degree distribution with the exponent
v=13/2 at long times. The additional constant, equal to 2, is important if we
are interested in how the stationary distribution is approached. Simple calculations
[127] in the framework of the continuum approach yield the following degree
distribution

Plk. 1) = 1es(24ces) 1

_— - 12
ct 14+2cs k’ 9.72)
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where s = s(k, ) is the solution of the equation

N\ 12 N\ 3/2

ct 2+ ct

k(s,t) = | — . .
(s,1) (CS> <2+cs> (9.73)

This distribution has two distinct regions separated by the crossover point
Keross = V/ct(2 + cl)3/2. The crossover moves in the direction of large degrees while
the network grows. Below this point, the degree distribution is stationary,
P(k) = 1k=3/2 (we use the fact that in the word web ¢z > 1). Above the crossover
point, we obtain P(k,t) %%(2+cl)3k’3, so that the degree distribution is non-
stationary in this region.

At first sight, contribution to the average degree of the network (or the input flow
of new links) from connections to new words seems negligible when compared with
links which emerge between old words (2 <« ¢t = 70). Nevertheless, as we see, this
small contribution produces an observable effect.

The position of the cut-off produced by finite-size effect (see section 9.4 for the
relation ljkwl dk P(k) ~ 1), is key ~ \/z/_8(2 4 01)3/2. In figure 9, we plot the degree
distribution of the model (the solid line). To obtain the theoretical curve, known
parameters of the word web were used, ¢ and k(r). The deviations from the
continuum approximation are accounted for in the small k region, k£ < 10. One sees
that agreement with the empirical distribution is excellent. Positions of theoretical
crossover and cutoff are also perfect. Note that no fitting was made. For a better
comparison, in figure 9, the theoretical curve is displaced upward to exclude two
experimental points with the smallest & since these points are dependent on the
method of the construction of the word web, and any comparison in this region is
meaningless in principle.

Note that few words are in the region above the crossover point ko ~ 5 x 103,
As language grows, ks increases rapidly but, as it follows from above relations, the
total number of words of degree greater than k.. does not change. It is a constant
of the order of 1/(8¢) = t/(8k) ~ 103, that is, of the order of the size of a small set of
words forming the kernel lexicon of the British English which was estimated as 5000
words [190]. Thus, the size of the core of language does not vary as language evolves.

9.11. Decaying networks

In section 9.6 we described a wide spectrum of possibilities to add edges to a
network. Results for various cases may be found in references [55, 56, 94, 166, 169,
175, 179, 180, 184, 181, 183]. Here, we discuss the opposite situation, namely, a
fraction of edges may disappear during the network growth. This situation, an
additional permanent deletion of edges, is considered in references [102, 176, 175].
Here we describe the result for a typical case of the model of directed growing
network from section 9.6 in which, for brevity, we set n = 0. Each time a vertex and
m edges are added, ¢ old randomly chosen connections disappear. If we define
v;(c = 0) = ~, the v; exponent is

Yo —2

=2+ .
7 1 — yoc/m+ (c/m)?

(9.74)

The resulting phase diagram, ¢/m versus -, is shown in figure 37. One sees that
random removal of edges increases the ; exponent which grows monotonously with
increasing ¢/m until it becomes infinite on the line vy = (¢/m) + 1/(c/m). In the
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Figure 37. Phase diagram of the directed network growing under condition of permanent
random damage—the permanent deletion of random edges—on axis 7o, ¢/m. At each
time step, m new edges are added and ¢ random edges are deleted (see the text). v is

the scaling exponent of the corresponding network growing without deletion of edges.
Curves in the plot are lines of constant ~;. v; = co on the line vo = (¢/m) + (¢/m) "

In the dashed region, the network is out of the class of scale-free nets.

dashed region of figure 37, the network is out of the class of scale-free nets. Note
that, for large enough ¢/m, the network may decay to a set of uncoupled clusters.

The effect of permanent random damage (the removal of edges) on undirected
growing networks, in fact, has been considered in section 9.6 (see the discussion of
(9.46)).

The permanent random removal of vertices produces a different effect on the
growing networks with preferential linking [175]. In this case, the v exponent does
not change. Nevertheless, the exponent (3 varies. Let a randomly chosen vertex be
deleted with probability ¢ each time a new vertex is added to the network. If, again
we introduce the notations v(¢ = 0) = vy and S(c = 0) = ), then one can show that
B=0/(1—-¢)and y=1+1/[B(1 —¢c)]=1+1/8y = 7. We see that the scaling
relation (9.15) is violated in this situation. The reason of this violation and of the
change of 3 is an effective renormalization of the s variable due to the removal of
vertices. In such an event, scaling forms of the degree-distributions for individual
vertices and of the total degree-distribution are p(k,s,?) = (s/1)°f[k(s/7)"] and
P(k) = k= 1+VIB0=A B (e /15),

9.12. FEigenvalue spectrum of the adjacency matrix

The structure of the adjacency matrix and, therefore, of the network itself, can be
characterized by its eigenvalue spectrum G(\). The eigenvalue spectra of classical
random graphs are well studied. For the undirected infinite random graph with the
Poisson degree distribution, the (re-scaled) eigenvalue spectrum has a semi-circle
shape (here, G(\) = G(—X\)) [191, 192]. If such a graph is large but finite, the tail of
the distribution decreases exponentially with growing \.

In the recent paper [193], the eigenvalue spectrum of the BA model, that is, of
the growing scale-free network with + =3, was studied numerically (see also
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reference [235]). A sharp difference from classical random graphs was observed. It
was found that its shape is very far from a semi-circle, and the tail of the spectrum is
of a power law form (compare with the observations for the Internet [5], see
section 5.3.2).

9.13. Scale-free trees

Above we discussed two main construction procedures producing scale-free
networks: the preferential linking mechanism for growing networks and the
construction procedure from graph theory for equilibrium uncorrelated networks
with a given degree distribution. In reference [97], the (grand canonical) statistical
ensemble of tree-like graphs was constructed, that is, an equilibrium random tree-
like graph. Each member of this ensemble is a connected tree. For mean degree k = 2
(in a tree-like graph, the total numbers of vertices N and edges L are rigidly coupled,
L=N—1, so that k = 2L/N =2 —2/N), the construction procedure [97] yields
scale-free trees with a ~ exponent which takes values in the range (2,00). This
procedure can also be used for construction of non-tree-like graphs. Cut-offs of the
degree distributions of these equilibrium networks were found to be at the same
point ke, ~ N'/0~1 as for growing scale-free nets (see (9.33) in section 9.4). Here N
is the network size.

In sharp contrast to the standard logarithmic dependence of the average
shortest-path length ¢ on the network size, the trees constructed in reference [97]
were found to have a quite different geometry with a power-law dependence
0 oc NV, Here the fractal dimension dy =2 for v >3 and dy = (v —1)/(y —2)
when 2 < v < 3.

10. Non-scale-free networks growing with preferential linking

A linear form of the preference function discussed in section 9 is only a
very particular case. It is difficult to believe that this case is the most widespread
in nature. Moreover, recent empirical studies of collaboration networks in the
scientific literature [15, 101] suggest that the preference function may be of a
power-law form (although in reference [103], a linear attachment was observed in
such networks).

One can demonstrate that it is not only a linear preference function that produces
scale-free networks. In fact, all the preference functions that have linear asymptotes
in the range of large degrees lead to power-law distributions [94, 95]. Other
preference functions do not provide scale-free networks. The case of a power-law
preference function was explicitly considered in references [94, 95]. The continuum
approach arguments for this situation can be found in reference [175].

In references [94, 95], the extension of the BA model to the case of the
preference function proportional to k& was studied. The results are as follows. The
situations with 0 < y < 1 and y > 1 differs sharply one from each other. The case
0 <y <1 is, in fact, describes crossover from the BA model (linear preferential
linking) to the linking without preference (y =0) that produces exponential
degree-distributions (see section 8). The exact result for the stationary degree
distribution [94, 95] is



1150 S. N. Dorogovtsev and J. F. F. Mendes

. k'my -2l
k}exp[—,ul—_y} %<}/<1,
2—1)/2 _ 1
P(k) kW =1/ exp[—Zu\/ﬂ y=7s, (10.1)
klfy ,LLZ kl*Zy
Y - fal 1 1
exp[ 'ul—y+21—2y} 3 <)y <3,

Here, ;1 depends on y and varies from 1 when y = 0 to 2 for y = 1. Near these points,
w(y) is linear: pu(y) — 1=20.5078y and 2 — u(y) = 2.407(1 — y).

In the case of y > 1, most of connections come to the oldest vertex. Furthermore,
for y > 2, there is a finite probability that it is connected to al/l other vertices. For
simplicity, let, at each increment of time, one vertex with one edge be added. Then,
probability P(¢) that the oldest vertex captures all edges satisfies the relation:
P(t+1)=P(t)?/[t- 1Y + ¢]. Then,

1
1+ 1=y

Plte=o0) =[] (10.2)
=1
This probability is indeed non-zero when y > 2.

Applying the master equation approach to this network, one can obtain the
following results [94, 95]. If y > 2, all but a finite number of vertices are connected
with the oldest vertex. For 1 < y < 2, the oldest vertex is connected to almost every
other vertex, but various situations are possible for the distribution of edges. For
(j+1)/j<y<j/(j—1), the number of vertices of degree k > j (this number is
equal to tP(k > j)) is finite and grows as *~ (k=1 < ¢! for k <j. This means that
P(k = 1,tz= 00)e= 1, so practically all the vertices are of unit degree and almost all
the connections are with the oldest vertex.

It would be a mistake to presume that linear preferential linking always provides
scale-free networks networks (or, more precisely, networks with power-law degree
distributions). We have to repeat that the growth producing power-law distributions
is only a very particular situation. In references [187, 188], the idea of preferential
linking [55] was combined with partial inheritance (partial copying) of degree of
individual vertices by new ones [194, 195]. (References [194, 195] as well as references
[196, 197, 198, 199, 200] are devoted to more complex models generically related to
biological evolution processes.)

As an illustrative example, the directed network in which the growth is governed
by the same rule of preferential linking as in the BA model, was considered
analytically. At each time step, apart from m new edges being distributed preferen-
tially, some additional connections emerge. These additional new edges are attached
to a new vertex. This one is ‘born’ with a random number of incoming edges which is
distributed according to some distribution function P, (g, ) depending on the state of
the network at the birth time. In this rather general situation, the master equation
looks like

. oP(q,1)

5 P = 0P — (0= DA = 1L0) = P, (103)

where (1) is the average in-degree of the net at time 7. One sees that the term §, on
the right hand side of (9.6) from section 9.2 is substituted by P.(q,?) in (10.3), so
(10.3) is the direct generalization of (9.6). If every new vertex is born by some



Evolution of networks 1151

randomly chosen old one, and at the moment of birth, it ‘inherits’ (copies) on
average, a fraction ¢ of its parent’s connectivity, the distribution P.(g,t) takes a
specific form which allows us to solve the problem explicitly. More precisely, with
probability ¢, each of ¢ incoming edges of a ‘parent’ creates an edge attached to its
heir, so that this copying is only partial. In particular, such type of ‘inheritance’
(copying) produces nodes of zero degree which cannot get new connections. Hence,
it is worth to consider only ‘active’ nodes of non-zero degree.

The resulting network is not scale-free. One may check that its in-degree
distribution is of a multifractal type. That means that moments of the distribution
depend on network size in the following way: M, (¢) ~ ") where 7(n) is a non-linear
function of n. Therefore, special attention must be paid to temporal evolution of the
in-degree distribution.

If, for example, ¢ is a random number distributed homogeneously within the
interval (0,1), and the evolution of the network starts from the distribution
P(q, 19> 1) = 6,4, then in-degree distribution P;(q, 1) of the vertices of non-zero
degree is of the form

Pi(q,t) = dirV21n (d2g) exp [\/ZInlln(l/qz)} . (10.4)

Here, 1 < ¢ < qov/t,d; =0.174...,and d» = 0.840 .. .. For t= 00, (10.3) takes the
stationary form

Pi(g) =L in (dxg). (10.5)
q
One may check that, in this case, 7(n) is indeed nonlinear, 7(n) =n/2 —n(n+ 1),
and the distribution is multifractal.

One should note that the nature of the new term in (10.3) is rather general, and
such effects should exist in various real networks. Unfortunately, as far as we know,
no checks for multifractality of real degree distributions have been made to date. In
fact, the quality of the existing experimental material (see section 5) does not let one
to separate power-law and multifractal behaviours. It is quite possible, that what is
often reported as a power-law degree distribution is, in fact, a multifractal one. The
situation may be similar to the one in the field of the self-organized criticality, where
numerous distributions first perceived as pure power-law dependences, are now
treated as multifractal functions.

Recently, a multifractal degree distribution was obtained in a model describing
the evolution of protein—protein interaction networks [189].

11. Percolation on networks

Rigorously speaking, percolation is a phenomenon determined for structures
with well-defined metric structure, e.g., regular lattices. In case of networks, where it
is hard to introduce metric co-ordinates, one can speak about the emergence of a
giant component. In physical literature, a phenomenon related to the emergence of a
giant component in networks is usually called percolation, and the phase transition
of the emergence of a giant component is called a percolation threshold [61, 81, 82].
We follow this tradition.

If the giant component is absent, the network is only a set of small clusters, so
that the study of this characteristic is of primary importance. For regular lattices, to
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observe the percolation phenomenon, one must remove a fraction of sites or bonds.
In case of networks it is not necessary to delete vertices or edges to eliminate their
giant components. For instance, one can approach the percolation threshold
changing the degree distribution of a network.

One should note that percolation phenomena in equilibrium and evolving
(growing) networks are of different nature, so hereafter we consider them separately.
Furthermore, the existing percolation theory for equilibrium networks [61] and its
generalizations are valid only for equilibrium uncorrelated graphs (see section 4).
Also, inasmuch as giant components are discussed, we stress that networks must be
large.

11.1. Theory of percolation on undirected equilibrium networks

The very significant results on percolation on random networks with arbitrary
degree distributions and random connections are due to Molloy and Reed [81, 82].
They were subsequently developed in references [61, 62, 147, 163], and the problem
was brought to the level of physical clarity. Here, we focus on the latter efficient
approach for equilibrium uncorrelated networks with a given degree distribution.

The generating function (or the Z-transform) apparatus is used extensively in
modern graph theory [76]. The Z-transform of the degree distribution is defined as

o(y) =3 PR, (1L.1)

k=0

where |y| < 1. Obviously, ®(1) = 1. For example, for the Poisson distribution (see
(6.2)), this yields the Z-transform ®(y) = exp[z;(y — 1)], where z; = k is the average
degree of a vertex, i.e., the average number of the nearest neighbours. The inverse Z-
transform is

1 d"o
) =5 dygcy)

! ()
=—¢d 11.2
ored R (1)
y=0 C

where C is a contour around 0 which does not enclose singularities of ®(y).
Moments of the distribution can be easily obtained from the Z-transform:

T = [(ydiy)l@(y)}y_l. (11.3)

In particular, the number of the nearest neighbours is z; =k = ®'(1) (naturally,
zZp = 1)

This technique is especially convenient for the description of branching processes
and trees. Let us outline the key points of the calculations. One can study the
percolation by ‘infecting’ a random vertex and considering the process of the
infection spreading step-by-step. Let this vertex belong to some connected com-
ponent. At the first step, the nearest neighbours will be infected, at the second—the
second neighbours, etc. until the step at which the entire connected component is
infected.

First, suppose that we choose randomly an edge in the network. It connects two
vertices. Each of them may have some extra edges being attached. How do edges
breed (multiply) at ends of the randomly chosen edge? To obtain this, one should
calculate the degree distribution for an end vertex (either of the two) of the randomly
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chosen edge. This distribution is equal to kP(k)/ )", kP(k). Indeed, the edge is
attached to a vertex with probability proportional to its degree k, and the degree
distribution of vertices is P(k). The denominator ensures proper normalization. The
Z-transform of the resulting distribution is

SukP()yt  @'(y) _ @'(y)
NG T 1) (11.4)
Meanwhile, one sees that the probability that a randomly chosen edge of such a
graph connects vertices of degrees k and k' is

_ kP(k)k'P(K")
[, kP(k)?

(compare with the corresponding distribution (9.65) for growing networks).
Actually, one needs a slightly different distribution than (11.4). We have to know
the distribution of the number of connections minus one for either of the two end
vertices of a randomly chosen edge since we do not want to account for the original
edge itself. This probability equals (k+ 1)P(k+ 1)/, (k+1)P(k+1), so one

immediately gets the corresponding Z-transform:
') 2

() RO

P(k,k") (11.5)

(11.6)

Note that (1) = 1.

Let us start from a randomly chosen vertex and look how the numbers of its
second-nearest neighbours are distributed. We recall that the network is large and its
vertices are statistically uncorrelated (i.e. connections are random), so, in particular,
one can neglect connections between the nearest neighbours. Moreover, one should
state that if such a network is infinitely large, then almost each of its connected
components has a tree-like structure. The results that we discuss are based on this
key statement. Then, one can see that the Z-transform of the number of the second
neighbours of a vertex is

> PR)@ ()] = &(®(v). (11.7)
7

Indeed, the reason to write P(k) in the sum is obvious: it is the probability that the
original vertex has k edges. To understand the [(I)l(y)]k factor, one should know the
following property of Z-transform. If W(y) is the Z-transform of the distribution of
values of some quantity X of a system, then [U(y)]" is the Z-transform of the
distribution of the sum 7 X; of the values of this quantity observed in m
independent realizations of the system. At this point we use the basic assumption
that vertices of the network are statistically uncorrelated. From this and (11.6), the
form of (11.7) follows immediately. Proceeding in this way, one gets the Z-transform
of the distribution of numbers of third-nearest neighbours, ®(®,(®,(y))) (we have
again used the tree-like structure of the network), etc.

Equations (11.4)—(11.7) are the basic relations of this approach. From (11.3) and
(11.7), one obtains the average number of second-nearest neighbours of a vertex,

5 =0/ (1)2](1) = z;®{(1) = Y k(k — 1)P(k). (11.8)
k
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Using the above Z-transform of the distribution of number of m-th-nearest
neighbours and (11.3), one readily obtains

m—1
o= 0l = 2] 2 (119)

Z1
We see that z,, is completely determined by z; and z,. If the giant connected
component spans almost all of the network, the typical shortest path between a pair
of randomly chosen vertices may be estimated from the condition, anzo Zm ~ N.

Substituting (11.9) into this condition and assuming N > z;,z,, one obtains [61]

ll’l(N/Zl) —+ 11’1[(22 — 21)/21]
11’1(22/21) )

This relation improves on the classical estimate of the typical shortest path described
in section 3.2. If the fraction S of the network occupied by the giant connected
component is less than one, one may try to improve the estimation by replacing
N= NS in (11.10) [61]. Note that (11.10) is of a general nature. It contains only the
local characteristics of the network, the numbers of the first and second nearest
neighbours, z; and z,.

One should stress that (11.10) is an estimate. Furthermore, an obvious problem
occurs when + < 3, when the mean number of second neighbours, z;, diverges
(see (11.8)) as Ne=oo. Indeed, let us try to estimate ¢ from below in this
‘dangerous’ region, using only (11.10). When 2 < v < 3, accounting for the degree-
distribution cut-off position k., ~ N/~ (see section 9.4), we obtain z, ~
fk“‘“ k*k= ~ NB®=)/0=1) _Substituting this relation into (11.10) gives the finite value
12 (y—1)/(3—~)+1=2/(3 —~) in the large network limit (note that another
estimate was recently made in reference [201]). The last equation demonstrates that
the above approach (the tree ansatz) fails when v < 3.

Let us consider the distribution of the sizes of connected components of the
networks. It is convenient not to consider this characteristic directly but to introduce
the distribution of the sizes of components which are reachable if we start from a
randomly chosen edge and move through one of its ends. Let its Z-transform be
H{(y). In references [61], following important equation was obtained for it,

Hy(y) = y®1(Hy(y)). (11.11)

The tree-like structure of large networks under consideration was again used. In this
situation, the probability to reach some connected component moving in such a way
is equal to the sum of probabilities, first, that there is only a single vertex, i.e., the
dead end; second, that this vertex has one extra edge leading to other component;
third, that it has two extra edges leading to two other components, and so on.
Accounting for this structure and for the already used property of powers of Z-
transform, one obtains (11.11) (compare it with the basic (11.4)). Now one can easily
write the expression for the Z-transform of the distribution of sizes of connected
components achievable beginning from a randomly chosen vertex. Practically
repeating the derivation of (11.7), one obtains [61]

H(y) = y®(H,(y)). (11.12)

The factor y appears here, since the starting vertex also belongs to the connected
component.

=~

(11.10)
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From (11.11) and (11.12), using (11.1) and (11.2), we can obtain the distribution
that we discuss. It is simple to identify the average size 5 of the connected component,
to which belongs a randomly chosen vertex. From (11.12), it follows that

S=H'(1)=1+®'(1)H/(1). (11.13)
H/(1) can be obtained from (11.11),
H/(1)=1+®/(1)H/(1), (11.14)
SO
T:1+1i{)é?1) (11.15)
From this, one sees that the giant connected component exists when
o(1) > 1, (11.16)
that is, when
®"(1) —®'(1) > 0, (11.17)
or, equivalently, when
> k(k—2)P(k) = k2 — 2k > 0. (11.18)

k

The average size § turns out to be infinite and the giant connected component
emerges when ), k(k — 2)P(k) = 0. Accounting for expression (11.8) for z, we see
that the giant connected component is present when the average number of second
nearest neighbours is greater than the average number of nearest neighbours,

Zy) > Z1. (1119)

This powerful result is due to Molloy and Reed [81, 82], and derived above
following references [61, 163] (heuristic arguments leading to (11.18) may be found in
[60]). It has several important consequences. In particular, from (11.18), it follows
that the giant connected component is present when ), . k(k — 2)P(k) > P(1) (the
case P(2) =1 is special since only in this situation has the network no tree-like
structure). Isolated vertices do not influence the existence of the giant connected
component. Then, if P(1) = 0, the giant component exists when ), ., P(k) > 0. We
see that dead ends are of primary importance for the existence of the giant
component. Indeed, only the term with P(1) in (11.18) prevents the giant connected
component.

If the giant component exists, the resulting relations are the same, equations
(11.11) and (11.12), but now H (y) corresponds to the probability that a vertex taken
from outside the giant component belongs to a connected component of a given size,
so H(1) =1— W, where W is the relative size of the giant connected component.
Then, from (11.11) and (11.12), one sees [61] that

1—-W=9ao(t,), (11.20)
where ¢, is the smallest real non-negative solution of

fe=®,(1,). (11.21)
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Notice that the effect of isolated vertices is trivial. They produce the natural
addendum P(0) on the right hand part of (11.20), and that is all. Also, the isolated
vertices do not influence the existence of the giant component. Therefore, we can
exclude these nodes from consideration and set P(0) = 0. Then, from (11.20) and
(11.21), we immediately see that the absence of dead ends, i.e., P(1) = 0, is sufficient
for W =1. (Note again that it should be P(2) < 1.) Indeed, in this case,
®1(0) x ®'(0) =0,s0 2, =0and W = 1. If P(1) > 0, usually W < 1. It seems, there
exists a situation [61], in which W =1, even if P(1) > 0. Let the degree distribution
be of a power-law form, P(k) oc k™7, k> 1 with exponent v < 2. Then its first
moment k = z; = ®'(1) = 372, kk~7 diverges. This means that ®;(y < 1) =0, and
(11.21) has the solution ¢, = 0. Therefore, this case provides W = 1. We should
warn, however, that, formally speaking, the tree ansatz, which is the basis for the
above conclusions, is not applicable in this situation. Note that degree distributions
with v < 2 lead to the divergence of the first moment, so the number of edges in such
nets grows faster than the number of vertices as the network size increases (see
section 9.10).

From (11.20) and (11.21), the size of the giant connected component of the
classical random graph of Erdds and Rényi can be easily found. We have seen that
its Poisson degree distribution produces ®(y) = ¢#0~1). Then 1 — W = ¢~*" . Hence
the giant connected component of such a network exists if its average degree exceeds
one [74].

From (11.11) and (11.12), one can understand the analytical properties of H(y)
and H;(y) near the percolation threshold. The analytical structure of H(y), in turn,
determines the asymptotic form of the probability P(w) that a vertex belong to a
connected component of size w. Substituting the inverse of r = H(y), ie.,
y = H;!(r), into (11.11), we obtain

y=r/®(r). (11.22)

The derivative of dy(r)/dr is zero at the point of singularity of H;(y), y*. This one is,
as one can find from (11.22), at the point »* which is determined from the equation

D(r*) — r*d (r*) = 0. (11.23)

At the percolation threshold, where the giant connected component emerges,
®((1) = 1. Accounting, in addition, for the equality ®(1) = 1, one sees that, at the
percolation threshold, r* = 1. Then, it follows from (11.22) that, in this situation, the
singularity of H;(y) reaches y* =

At the percolation threshold, it is easy to expand y(r) about r* = 1 using (11.22).
This gives y[l 4+ (r—1)] = 14+0—®"(1)(r—1)?/2. If ®”(1) # 0, that is not true
only for very special distributions, one gets r = H,(y) =2 1+ (1 — y)l/2 near y* = 1.

Equation (11.12) shows that this singularity in H,(y) coincides with the one in
H(y) since ®;(y) has no singularities for y < 1. Then, at the percolation threshold,
near y* = 1, H(y) appears thus:

H(y) = Cy + Cy(1 - )", (11.24)

where C; and C, are constants. Knowing the analytical structure of H(y) at the
percolation threshold, and using the properties of the Z-transform (recall that a
power-law function w4, as we> oo, yields the Z-transform of the form

Cs + C4 (1 — y)" ! + analytical terms



Evolution of networks 1157

near y = 1, where C3 and C,4 are constants), one can restore the structure of the
probability that a vertex belongs to a connected component of size w. Near the
critical point, it appears as [61]

P(w) ~ w327 (11.25)

where w* = 1/In|y*|, y* is the point of the singularity in H(y) closest to the origin
that is just the singularity that we discussed above. Near the percolation threshold,
y*is close to 1. The values of w* and y* depend on a particular form of the degree-
distribution. The exponent 3/2 is the same for all reasonable degree distributions.
This value is quite natural. Indeed, if at the threshold point the first moment of P(w)
diverges, as in standard percolation, this exponent cannot be greater than 2. We
emphasize that (11.25) is valid only near the percolation threshold.

From the probability P(w) one can easily obtain the size distribution Ps(w) of
finite connected components and vice versa:

Py(w) = [P(w)/w] / Z Pw)/w,  P(w) = wPs(w) / Z WP (w).

Therefore, the power-law form P(w) ~ w=3/2 of the probability to belonging to a
finite component of w vertices at the percolation threshold corresponds to the form
Ps(w) ~ w™3/2 of the size distribution for connected components. From this form,
using standard arguments of percolation theory, one finds that if the giant com-
ponent is absent, the largest connected component has size of the order of N?/3 (near
the percolation threshold). Here N is the size of the network. In this situation, the
size of the second largest connected component is of the order of In N. Also, one can
prove that, if the giant connected component exists and v > 2, the sizes of all other
connected components are of the order of In N or less [32]. The first moment of P(w)
and the second one of Ps(w) diverge at the critical point as in standard percolation
where these moments have the meaning of susceptibility. Note that the first moment
of P, (w) is finite at the threshold.

In principle, the theory outlined allows one to compute the main statistical
properties of these equilibrium networks. Analytical calculations are possible only
for the simplest degree distributions, but numerics are easily applicable [61]. The
results may be also checked by simulation using, e.g., efficient algorithm for
percolation problems [202].

In the same paper [61], one can find another generalization of this theory to the
case of undirected bipartite graphs (see figure 3, section 5.2). The bipartite graphs in
which connections are present only between vertices of different kinds were
considered. Such networks, in particular, describe collaborations (see section 5.2).
The proposed theory describes percolation on these networks. In addition, it allows
one to calculate the degree distribution of the one-mode projection of the bipartite
graph from two degree distributions of its vertices of different kinds. These relations
were checked using data on real collaboration graphs, of the Fortune 1000, movie
actors, collaborations in physics, etc. For example, from the data for the network of
the members of the boards of directors of the Fortune 1000 companies, the
distribution of the numbers of boards on which a director sits and the distribution
of the numbers of directors on boards were extracted. From these two distributions,
the distribution of the total numbers of co-directors for each director was calculated.
The result turned to be very close to the corresponding empirical distribution of the
co-directors.
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11.2. Percolation on directed equilibrium networks
This theory can be generalized to equilibrium directed networks with statistically
uncorrelated vertices [61, 112] (see figure 6 and section 5.3.2, where the definitions of
a giant strongly connected component (GSCC), a giant weakly connected com-
ponent (GWCC), and giant in- and out-components (GIN and GOUT) were given).
In this case, it is natural to consider the joint in- and out-degree distribution P(k;, k,)
and its Z-transform

B(x,y) = > Pl keg)xby%. (11.26)
kiko

If all the connections are inside of the network the average in- and out-degrees are equal
(see (3.2)): Ox®(x, 1)[ ;1= 0, ®(1,y)|,-, = 24 =z, /2, where z; is the mean degree of
the network. Z-transform of the degree distribution is ) (x) = ®(x, x). Using (11.20)
and (11.21), from ®)(x), one obtaints the relative size W of the GWCC.

The sizes of the GIN and GOUT can be obtained in the framework of the
following rigorous procedure [61]. One introduces the Z-transform of the out-degree
distribution of the vertex approachable by following a randomly chosen edge when
one moves along the edge direction, ‘I>(1”)(y) = 0,®(x,p)|._, /7). Also, <I>(li) (x) =
0,9 (x, J’)|y:1 /29 corresponds to the in-degree distribution of the vertex which one
can approach moving against the edge direction. The GIN and GOUT are present if
8" (1) = 8\'(1) = 2,8 (x, )], /2 > 1, i.e. when

> Qkiky — ki — ko) P(ki ko) =2 ki(ky — 1) Pk, k,)
kiko ki ko

=2 ko(ki—1)P(kk,) >0 (11.27)
kiko

—the generalization of (11.18). This is also the condition for the existence of the
GSCC. In this case, there exist non-trivial solutions of the equations

xe=0"(x),  ye=a" (). (11.28)

They have the following meaning. x, < | is the probability that the connected
component, obtained by moving against the edge directions starting from a
randomly chosen edge, is finite. y. < 1 is the probability that the connected
component, obtained by moving along the edge directions starting from a randomly
chosen edge, is finite. The expressions for the relative sizes of the GIN, 7, and
GOUT, O, have the form [61]

I=1-3(x.,1), 0=1-d(,y.). (11.29)

Recall that, in our definition, the GSCC is the interception of GIN and GOUT.
Accounting for the meaning of x. and y., we can find exactly the relative size of the
GSCC (see the derivation in reference [112]):

S = ZP(kiaka)(l - x?)(l _yf;“) =1- ‘I)(XC, 1) - ‘I’(l,y(f) + ‘I)(xcayc)- (11-30)
kisko

Furthermore, knowing W, S, I, and O, its simple to obtain the relative size of
tendrils,

T=W+S—1-0. (11.31)
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Equations (11.20), (11.21), and (11.28)—(11.31) allow us to obtain exactly the
relative sizes of all the giant components of equilibrium directed networks with
arbitrary joint in- and out-degree distributions, if their vertices are statistically
uncorrelated. It is useful to rewrite (11.30) in the form

S =10+ ®(x.,y.) — D(x,, H)O(1,y.). (11.32)

If the joint distribution of in- and out-degrees factorizes, P(k;, k,) = P;(k;)P,(k,),
(11.32) takes the simple form S = 10. Here, P;(k;) is the in-degree distribution of the
network, and P,(k,) is the out-degree distribution. Otherwise, such factorization of
S is impossible. At the point of the emergence of GIN, GOUT, and GSCC,
X, =y.=1,and I, O, and S simultaneously approach zero.

Variations of the giant components of equilibrium directed networks with some
control parameter were studied in reference [112] (see figure 38). I and O approach
the point of the emergence of the GSCC in a linear fashion, and S a quadratic
function of the deviation of the control parameter from its critical value.

We do not pretend to apply this theory for equilibrium networks to the WWW,
which is certainly non-equilibrium (growing); rather, we recall the relative sizes of the
giant components of the WWW. From the data in reference [6] (see section 5.3.2), in
the WWW, I =~ 0 = 0.490, so IO =~ 0.240, that is, less than that measured in
reference [6] S = 0.277, but is not far from it.

An attempt was made to model the WWW using the measured in- and out-degree
distributions and estimate the sizes of these components [61], but the result turned
out to be far from reality. The main point of the discrepancy was the following. The
reasonable values of parameters of the model network, used in the calculation (in
particular, the reasonable fraction of vertices with zero out-degree) produce a huge
difference between the sizes of the giant in- and out-components unlike nearly equal
in- and out-components of the WWW (see section 5.3.2). The authors of the paper
[61] ascribed this discrepancy to the approximation P(k; k,) ~ P;(k;)P,(k,) which
they used in their calculations, so the correlations between in- and out-degree of
vertices discussed in section 9.6 were not accounted for. We may add that the
equilibrium nets with statistically uncorrelated vertices, which we consider in this
section, are far from the WWW whose growth produces strong correlations between
its vertices.

11.3. Failures and attacks
The effect of random damage and attack on communications networks (WWW
and Internet) was simulated by Albert, Jeong and Barabasi [59]. In their simulations,
they used:

(i) the real sample of the WWW containing 325729 vertices and 1498 353 links;
(i1) the existing map of the Internet containing 6209 vertices and 24401 links;
(iii) the model for a scale-free network with the v exponent equal 3 (the BA

model); and
(iv) for comparison, the exponential growing network [55, 56] (see section 8).

One should again stress that all these growing networks differ from the equi-
librium networks considered in sections 11.1 and 11.2. Edges between their vertices
are distributed in a different manner because of their growth (see section 9.9). Recall
that the networks (i) and (ii) have the v exponents in the range between 2 and 3.
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Figure 38. Schematic plots of the variations of all the giant components versus some control
parameter for the undirected equilibrium network (a) and for the directed equilibrium
one (b). In the undirected graph, the meanings of the giant connected component
(GCO), i.e. its percolating cluster, and the GWCC coincide. Near the point of the
emergence of the GWCC, its size is a linear function of the control parameter. Near
the point of the emergence of the GSCC, GIN, and GOUT, the sizes of the giant in-
and out-components linearly varies with the control parameter, and the size of the
giant strongly connected component is a quadratic function of the deviation of the
control parameter from this point.

Failures (random damage) were modelled by the instant removal of a fraction of
randomly chosen vertices. The intentional damage (attack) was described by the
instant deletion of a fraction of vertices with the highest numbers of connections
(degree). The networks were grown and then were instantly damaged. In these
simulations, the networks were treated as undirected. The following quantities were
measured as functions of the fraction f* of deleted vertices:

(i) the average shortest path 7 between randomly chosen vertices of the network;
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(i) the relative size S of the largest connected component (corresponds to the
giant connected component if it exists); and

(iii) the average size § of connected components (excluding the giant connected
one).

A striking difference between the scale-free networks and the exponential one was
observed. Whereas the exponential network produces the same dependences ¢(f ),
S(f), and 5(f") for both kinds of damage, for all scale-free nets which are discussed
here, these curves are distinct for different types of damage. The qualitative effect
of the intentional damage was more or less the same for all four networks (see
figure 39). The average shortest path rapidly grows with growing f, the size of
the giant connected component turns to be zero at some point f, indicating the
percolation threshold, S(f,) = 0. Near this point, S(f') «x (f. —f) as in the mean-
field theory of percolation. At f, 5 has a peak of finite height. Hence, the behaviour is

Exponential Scalefree

1_0

[S—
[S—

1)
i

0 \
0 fcfloof f 1

C

Figure 39. Schematic plots of the effect of intentional and random damage (attack and
failures) on the characteristics of exponential undirected networks and scale-free
undirected ones with exponent y < 3 [59]. The average shortest path between vertices,
¢, the size of the largest connected component, S, and the average size of isolated
clusters, 5 are plotted versus the fraction of removed vertices f = 1 — p. The peaks of
5 are of finite height. The networks are large. The solid lines show the effect of the
random damage. The effect of the intentional damage is shown by the dashed lines.
For the exponential networks, both kinds of damage produce the same dependences.

For the scale-free networks with ~+ < 3, in the event of the random damage, the
percolation threshold is at the point fe=1.
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usual for the mean-field (or infinitely dimensional) percolation and for the percola-
tion in the classical random graphs. Nevertheless, one general distinct feature of
these scale-free nets should be emphasized. The value f, in them is anomalously
low—several percentage points, unlike the percolation threshold of the exponential
networks, so that such nets are very sensitive to intentional damage.

The main observation of [59] is that the random damage has far less pronounced
effect on the scale-free nets than the intentional one. The variations of the average
shortest distance with /" are hardly visible. The size of the giant strongly connected
component decreases slowly until it disappears in the vicinity of /' = 1. The average
size of finite connected components grows smoothly with growing / without visible
signs of singularity. This means that these scale-free networks are extremely resilient
to random damage. To destroy them acting in such a way, that is, to eliminate their
giant connected component and to disintegrate them to a set of uncoupled clusters, it
is necessary to delete practically all their vertices!

Similar observations were made for scale-free networks of metabolic reactions
[41], protein networks [44] and food webs [49].

The effect of the attack on the scale-free networks seems quite natural since
vertices of the highest degree determine the structure of these nets, but the vitally
important resilience against failures needs detailed explanation. Several recent
papers have been devoted to the study of this intriguing problem.

11.4. Resilience against random breakdowns

As we saw in section 11.3, the random breakdowns (failures) of networks more or
less correspond to the classical site percolation problem, i.e., a vertex of the network
is present with probability p =1 — f, and one has to study how properties of the
network vary with changing p. Now we have at hand the controlling parameter p to
approach the percolation threshold. This parameter can be easily inserted into the
general relations of section 11.1.

The first calculations of the threshold for failures in scale-free networks can be
attributed to Cohen, Erez, ben-Avraham and Havlin [60]. Here, for logical
presentation, we begin with the considerations based on Callaway, Newman,
Strogatz and Watts, work [62].

Let us consider (11.11) and (11.12) (for undirected equilibrium networks) are
modified when each vertex of a network is present with probability p (site
percolation). Let P(k) be the degree distribution for the original (i.e. undamaged or
virgin) network with p = 1. Again, to find H,(y), we have to start from a randomly
chosen edge, but now we start from a randomly chosen edge of the original network
with p = 1, so it may be absent when p < 1. Hence we must account for probability
1 — p that the very first vertex (the vertex at the end of the edges) is absent. This
produces the term (1 — p)y° in H;(y). Then, we can pass through this point with the
probability p, so the equation for H(y) takes the form

Hi(y) =1—p+py®i(Hi(y)). (11.33)

Similarly, while calculating H(y), we start from a randomly chosen vertex of the
original network with p = 1, which is absent in the network under consideration with
the probability 1 — p. Hence we obtain the additional term 1 — p in H(y) and must
multiply the remaining contribution (see (11.12)) by p. Therefore,

H(y) =1-p+py®(Hi(y)). (11.34)
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This pair of equations [62] actually solves the site percolation problem for networks
with random connections. In the event of bond percolation, i.e., when an edge is
present with the probability p, the form of (11.33) does not change (just follow the
justification of (11.33) above). Nevertheless, in this case, the equation for H(y)
differs from (11.34). Indeed, in the bond percolation problem, all vertices are present,
so when we start from a randomly chosen vertex, we can repeat the arguments
leading to (11.12). Then, again H(y) = y®(H,(y)).

For site percolation, as outlined in section 11.1, one obtains from (11.33) and
(11.34) the following expression for the average size of the connected component that
contains a randomly chosen vertex above the percolation threshold:

S=H'(y) = p<1+%> (11.35)

For bond percolation, it looks like

- p2'(1)
S = <1+T¢){(1)> (1136)

Therefore, the criterion for the existence of the giant connected component now
becomes ®'(1) > 1/p, i.e., p®"(1) — ®'(1) > 0, for both (!) site and bond percola-
tion. Now, instead of the criterion of Molloy and Reed (11.18), one has [60, 62]

Zk( 1+”> (k):ﬁ—l;”’%>0, (11.37)

for both site and bond percolation. We again emphasize that,_here, P(k) is the
degree distribution of the virgin network with p = 1, and k and k2 are the average
degree and the second moment for the virgin (unddmdged) network again. If we take
the distribution P(k) of the network with removed vertices or edges, we must use the
original relations of section 11.1.

Criterion (11.37) may be rewritten in the form:

Pz > zZy, (1138)

where z; and z; are the average numbers of the first and second nearest neighbours in
the virgin undamaged network, respectively. Compare (11.38) with (11.19). Hence
the percolation thresholds for both site and bond problems are at the same point,
1 Zl
De === 11.39
(k2 /k)—1 zy’ ( )

Note the beauty of this simple formula!

Proceeding in a similar way to the derivation in section 11.1, one obtains the
relations for the calculation of the relative size S of the giant connected component.
In the event of the site percolation problem,

1-S=H(l)=1—-p+pd(r*), (11.40)
where ¢* is the smallest real non-negative solution of the equation
t*=1—p+ pd,(t%). (11.41)

For the bond-percolation problem, one should apply (11.40) and * = &, (¢*) instead
of (11.41).
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These relations were used in reference [62] to study the effect of random damage
on networks with different degree distributions. The results of the numerical
calculations support the observations discussed in section 11.3, so that it is really
hard to eliminate the giant connected component by this means.

Basic relations (11.37) and the first of (11.39) were derived in reference [60] in a
different but instructive way. We shall outline it briefly. One begins the derivation by
applying the original criterion (11.18) of Molloy and Reed directly to the randomly
damaged network. Then, it contains the degree distribution P(k) of the damaged
network. This degree distribution may be expressed in terms of the original
distribution in the following way [60]:

0 !
Plk)=>Y" (k >pk(1 — kP, (11.42)
i \k
Note that this equation is valid both for the deletion of vertices and deletion of
edges. One may check that the first and second moments of the degree distribution
for the damaged network, P(k), are related to the moments of the degree distribution
of the virgin network:

T =k,

T _ (11.43)
2 = pk? + p(1 = p)k.

Substituting these relations into the criterion of Molloy and Reed (11.18), one
immediately obtains (11.37) and (11.39).

In reference [60], for networks with power-law distributions, the variation of the
size of the giant connected component with p was studied through simulation (see
figure 40). Strong size effects was observed. For v > 3, the percolation threshold is
visible at the point p. = 1 — f. > 0. For vy < 3, if a network is infinite, one sees that p,
approaches zero, so that in this situation, one has to remove (at random) practically
all vertices of the network to eliminate the giant connected component!

Figure 40. Schematic plot of dependences of the relative size of the largest connected
component in the randomly damaged finite size net versus the fraction of removed
vertices f =1 — p [60]. Distinct curves correspond to different network sizes N and
two values of the v exponent, 2 < v < 3 and v > 3. Arrows show displacement of the
curves with increasing N. Dashed lines depict the limits N=>oc. Notice the strong
size effects.
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This very important observation can be understood if one considers (11.37) and
(11.39). Indeed, from (11.39), it follows that the percolation threshold p. is zero if the
second moment of the degree distribution of the virgin (undamaged) network diverges.
This occurs in networks with power-law degree distributions when v < 3, but this is
only one particular possibility. For example, the second moment diverges in
networks with copying (inheritance) of connections of vertices [187, 188, 189] (see
section 10), so that these network are also super-resilient to failures.

The condition v < 3 for the resilience of scale-free networks to random damage
and failures makes the values of the exponents of the degree distributions of
communications networks quite natural. All of them are less than 3 (see section
5.3). Note that many other networks, e.g., biological ones, must be necessarily
resilient to failures. Therefore, this condition is of great importance.

One should note that this result is valid for infinite networks. As one can see from
figure 40, for v < 3, the size effects are very strong, and the curves slowly approach
the infinite network limit where p.(N<= o0) = 0. Here, N is the size of the network. Let
us estimate this size effect for 2 < v < 3 by introducing the size-dependent threshold
p:(N), whose meaning is clear from figure 40. When N > 1, from (11.39) we obtain

N1/ (=1
T J dk kk™
zZl ~ Jk
J dk Kk
ko

Notice, that, for 2 <y <3, the average number of second-nearest neighbours is
25 = k2, since the second moment diverges as Ne—> oo (see (11.8)). The nature of the
upper cut-off of the power-law degree distribution, ke /ko ~ N0~ was explained
in section 9.4. ky > 0 can be estimated as the minimal value of the degree in the
network. One may expect that kg ~ 1.

If 2 < v < 3, from (11.44), it follows that

p(?(N) = C(ko,y)N7(377)/(771>. (1145)

Here, C(kg,~) does not depend on N and is of the order of 1. C(k¢,~) actually
depends on the particular form of the degree distribution for small values of degree
and is not of great interest here. When + is close to 3, p. = 0 can be approached only
for a huge network. Even if v = 2.5 and a net is very large, we get noticeable values
of the threshold p,, e.g., p.(N = 10%) ~ 1072 and p.(N = 10°) ~ 1073.

This finite size effect is most pronounced when v = 3. In this case, (11.44) gives

(N) ~ —
PN E AN

For example, if kg =3, p.(N =10%)~0.07, p.(N =10°)~0.05, and p.(N =10?)~0.03.

These estimates demonstrate that in reality, that is, for finite scale-free networks,
the percolation threshold is actually present even if 2 < v < 3 (see figure 40). Only if
v < 2, the threshold p.(N) is of the order of 1/N (that is, the value of the natural
scale for p) and is not observable. From the estimate (11.45) one sees, that if v > 2, it
should be close enough to 2 for the extreme resilience of finite scale-free networks to
failures.

One may find the discussion of the resilience of directed equilibrium networks to
random damage in reference [112].

(11.46)
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Strictly speaking, all the results of this section were obtained for equilibrium
networks. We do not know any analytical answers for the problem of instant damage in
growing networks. However, it seems that the results for equilibrium networks describe
the observations [59] of instant damage in growing networks quite well. This is not
the case for permanent damage in growing networks [203, 204] (see section 11.7).

11.5. Intentional damage

The intentional damage (attack), as we have seen in section 11.3, can be defined
as the instant removal of a fraction of vertices with the largest degrees. The theory
outlined in sections 11.1 and 11.4 can be easily generalized to the situation when the
occupation probability depends on the degree of a vertex of the undamaged network,
so that p = p(k) [62]. Then, for the intentional damage, p(k) =1 if k < k¢, and
p(k) = 01if k > key. kew depends on the value of the fraction f of vertices which are
deleted, so that ke = key(f).

In reference [62], this approach was used for the computation of the dependence
of the size of the giant connected component on f. The networks with power-law
degree distributions without isolated vertices (i.e. P(0) = 0) were considered. The
calculations were performed for the power-law degree distributions with v = 2.4, 2.7,
and 3.0. It was shown that, in accordance with the observations in reference [59], the
deletion, in such a way, of a rather small fraction of vertices eliminates the giant
connected component. The corresponding threshold values of f* are really small,
fo(y=24)=23x1072, f.(2.7) = 1.0 x 1072, and £,(3.0) = 0.2 x 1072, In this re-
spect, the networks are very sensitive to these damage.

On the other hand, the corresponding values of k., at which the transition takes
place, were calculated to be kc, =9, 10, and 14 for v = 2.4, 2.7, and 3.0, respect-
ively. A simple estimate jkio.m(f dk P(k) = f yields ke (f) ~f~"0~=1) and provides
the values k¢ (f.(7)) close to the above ones. This means that for elimination of the
giant connected component in this situation, one has to delete even vertices of rather
low degree. In this regard, one must produce a really tremendous destruction to
disintegrate such networks. Similar observations were made for the WWW [6] (see
section 5.3.2). It was found that even the deletion of all vertices of in-degree larger
than 2 does not destroy the giant weakly connected component of the WWW.

Let us show how the threshold f, depends on . In reference [63] the dependence
f(v) was obtained in the framework of the continuum approach. Here we show how
one can get the exact results [205].

From the relations of reference [62] obtained for the situation when some vertices
are deleted, and the occupation probability p(k) depends on vertex degree, it is easy
to derive the following condition for the percolation threshold

f: k(k — 1) P(k)p(k) = f: kP(k) (11.47)
k=0 k=0

(compare with (11.37)). Here, P(k) is the degree distribution of the undamaged net-
work. The intentional damage cuts off vertices with k > k¢u (/' ), where k¢ (f ) can be
obtained from

keut
f=1=> Pk (11.48)
k=0
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Then, the condition (11.47) takes the following form:

00

k2 — 2k = ik(k—Z)P(k) = Y k(k—1)P(k). (11.49)
k=0

k=keu (f)+1

Here, k2 and % are the moments of the degree distribution of the undamaged
network. Equation (11.49) may be rewritten in the form [205]

ke (/) s
k(k —1)P(k) = kP(k). (11.50)
k=0 k=0

This is the generalization of the Molloy—Reed criterion to the case of intentional
damage.

Let us derive exact (11.49) and (11.50) in another way using the instructive ideas
of reference [63] but avoiding the continuum approximation. After the deletion of
the most connected vertices, all the edges attached to the deleted vertices must also
be removed. Connections in the network are random, so the probability f that an
edge is attached to one of the deleted vertices equals the ratio of the total number of
edges of deleted vertices to the total degree of the network:

f(f)y=">, Phk)y=1- P(k). (11.51)

k=keu(f)+1 k=

[=}

Now we can recall that (11.39) for the percolation threshold is also valid for bond
percolation. Therefore, it is possible to substitute p, = 1 — £, into it. In fact, at first,
the vertices of the highest degree were removed (the first step), and only afterwards
their connections were deleted (the second step). In this event, (11.39) describes only
the effect of removal of edges. Then, it seems natural to use in (11.39) the degree
distribution with the cut-off k. (f') arising after the first step. Accounting for this,
one obtains the relation

keur keut
(1=fo) > I2P(k) = (2~ fo) Y kP(k) (11.52)
k=0 k=0
from which (11.49) follows immediately. This demonstrates the equivalence of the
approaches of references [62] and [60, 63].
In the particular case of the power-law degree distribution, P(0) =0 and
P(k>1)=k™/¢(v), where ((y) = >_,2, k™7 is the zeta-function, (11.48) takes the
form

Kew 7—
cut k y
FERpDY =Ty (11.53)
()
and condition for the percolation threshold (11.49) looks like
keut keut
ST =Cy =1+ > K (11.54)
k=1 k=1

From (11.53) and (11.54), one can easily obtain k(v) and f.(v) (see figure 41
[205]). Note that f. > 0 only in the range 2 < v < 3.479.... When v < 2, a finite
number of vertices keep a finite fraction of all connections, so their removal
should have a striking effect on the network. For v > 3.479 ..., the giant connected
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Figure 41. Dependence of the percolation threshold f. =1—p, on the value of the ~
exponent of the large scale-free network for intentional damage (attack) [205]. Such a
dependence was originally obtained in the framework of a continuum approach [63].
Here we present the exact curve. f is the fraction of removed vertices with the largest
numbers of connections. The degree distribution of the network before the attack is
P(k) < k™7 for k>1, P(0) =0. The circle indicates the point v= 3.479... above
which f. = 0. The squares represent the results of calculations and simulation in
reference [62].

component is absent even before the attack. Indeed, in the undamaged network, the
giant connected component exists if > ;o (k* —2k)k™7 = ((y—2) —2¢(y—1) >0
(see (11.18)). This corresponds to v < 3.479....

The dependence f,(v) has the maximum, f™* = 0.030.... This is a really small
value, so the network is indeed weak against the attack. One should emphasize that
this result is very sensitive to the particular form of P(k) in the range of small k and
to the number of dead ends in the network. In particular, the range of the values of v,
where the giant connected component exists, crucially changes when the minimal
degree increases.

In reference [63], one more interesting observation was made. Usually, the
average shortest-path length between two vertices in random networks is of the
order of the logarithm of their size (see section 3.2). The same statement is valid for
vertices in their giant connected components. In reference [63], the average shortest-
path length between two vertices of the giant connected component was studied near
the percolation threshold. In such a situation, like in ordinary infinite-dimensional
percolation, the average shortest-path length of the giant component was found to
be proportional to the square root of the total number of vertices in the giant
connected component.

11.6. Disease spread within networks
The dynamics of disease spread in undirected networks with exponential and
power-law degree distributions was studied in references [206, 207] and then in
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references [208, 209, 210] (see popular discussion of these problems in reference
[211]). This process is generically related to the percolation properties of the
networks.

For the modelling of the spread of diseases within networks, two standard
models were used. In the susceptible-infected-susceptible (SIS) model,

(i) each healthy (susceptible) vertex is infected with rate v when it has at least
one infected neighbour; and
(i) infected vertices are cured (become susceptible) with rate 6.

Hence, the main parameter of the model is effective spreading rate A\ = v/¢.

The susceptible-infected-removed (SIR) model with three states of vertices
(susceptible (healthy), infected, and removed (dead or immunized)) is slightly more
complex. Nevertheless, the main parameter of interest describing the spread of the
disease is the same, that is, A, and main results for the SIR model on networks [208]
are similar to those for the SIS model [206, 207, 209], so here we discuss the simpler
case.

Thus, we speak about the SIS model on equilibrium undirected networks. In non-
scale-free networks (exponential, Poissonian, the WS network, and others) the
situation is very similar to the one for the disease spreading in ordinary homo-
geneous systems: there exists a nonzero epidemic threshold A, ~ k, where & is the
average degree of a network, below which the disease dies out exponentially fast.
This means that, after a random vertex becomes infected, the average density of
infected vertices (prevalence) p(¢) rapidly approaches zero.

When X\ > )\, the infection spreads and becomes endemic: p(t==00)=
p x (A — A.). Notice that the dependence is linear in the vicinity of the threshold.

For equilibrium undirected networks with arbitrary degree distribution P(k), the
epidemic threshold is at the point

k

== (11.55)

C

The relation was obtained in the framework of the dynamical mean-field approach
[206, 207]. Note that, if the ratio %/k2 is small, the form of (11.55) naturally coincides
with (11.39) for the percolation threshold of randomly damaged network, and
Ae & p.. Then the statements of sections 11.3 and 11.4 about the absence of the
percolation threshold in infinite scale-free networks with v < 3 can be repeated for
the epidemic threshold: in infinite networks, if v < 3, diseases spread and become
endemic for any X > 0. In general, in infinite networks, if k? diverges, the epidemic
threshold is absent, so that this result is applicable for a wide class of networks, e.g.,
see models of networks in references [187, 188, 189] (section 10). Thus, although the
infinite scale-free networks with v < 3 are extremely robust against random damage,
they are incredibly sensitive to the spread of infections. Both these, at first sight,
contrasting phenomena have the same origin, the fat tail of a degree distribution.

One may notice that most of the observed scale-free networks in nature (see
section 5, figure 24, and table 1) have v exponent between 2 and 3. Then, why are we
still alive? If the claim about the absence of the epidemic threshold in this networks is
perfect, pandemics would never stop.

We emphasize that the strong statement that the threshold is absent can be
applied only for infinite networks. In finite networks, the epidemic threshold is



1170 S. N. Dorogovtsev and J. F. F. Mendes

actually present. The estimates (11.45) and (11.46) also yield the dependence of the
effective epidemic threshold \.(N) = p.(N) on the network size. As we demonstrated
in section 11.4, A\ (N) in real networks with v < 3 may be large enough. Only if v is
close to 2 from above or smaller than 2, the threshold is unobservable. Notice that
many real networks have the ~ exponents in this range. (Another quite plausible
answer to our question is that the v exponent value of the web of human sexual
contacts may be greater than 3, see reference [132].)

In an infinite scale-free network with = 3, the prevalence in the endemic state is

p ~exp(—C/N), (11.56)

(see references [206, 207]) where C is a constant.
When ~ > 3 but is close enough to v = 3,

p~ (A= A0, (11.57)

Finally, according to continuum dynamic mean-field calculations in references [206,
207], when v>4, p~ (A — \.) (the degree distribution P(k) o< k~70(k —m) was
used). Note, however, that if m =1, for large values of 7, the giant connected
component is absent, the network is a set of disconnected clusters, and the disease
spread is impossible. Here we again repeat that the results of this section was
obtained for equilibrium random networks with statistically uncorrelated vertices.

How can we stop pandemics in widespread scale-free networks with v < 3?7 In
[208, 210], the effects of immunization for these networks were studied. The results
obtained [208, 210] may be easily understood if we recall the weak effect of random
damage to the integrity of such nets and strong effect of an intentional attack (see
sections 11.3,11.4, and 11.5). Analogously, random immunization cannot restore the
epidemic threshold, but targeted immunization programs for highly connected
vertices are the most effective way to stop an epidemic.

11.7. Anomalous percolation on growing networks

We have shown (see section 11.1 and figure 38) that percolation on equilibrium
networks displays many features of percolation on infinite-dimension lattices, i.e. of
standard mean-field or effective medium percolation. One might expect that such a
‘mean-field” behaviour is natural for all random networks which have no real metric
structure. Furthermore, it seems, the abrupt removal of a large fraction of randomly
chosen vertices or edges from the growing network presumably leads to rather
standard percolation phenomena (see section 11.3), although this issue is still not
clear. However, as it was found in reference [203], this is not the case for networks
growing under permanent damage which show quite unusual percolation phenom-
enon.

Here we discuss the process of the emergence of a giant connected component in
a growing network under the variation of growth conditions. In reference [203], the
simplest model of growing network, in which such a percolation phenomenon is
present, was studied (see section 4):

(i) At each time step, a new vertex is added to the network.
(i1) Simultaneously, » new undirected edges are created between b pairs of
randomly chosen vertices (b may be non-integer).

The degree distribution of this simple network is exponential. The matter of
interest is the probability P(s,7) that a randomly chosen vertex belongs to a
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connected component with s vertices at time ¢. The master equation for this
probability has the form [204]

s—1
z%+ Pls,t) = b1 +bs Y Plu,O)P(s — u, 1) — 2bsP(s, 1). (11.58)
u=1
This is a basic master equation for the evolution of connected components in
growing networks. Note that (11.58) is nonlinear, unlike master equations for degree
distributions discussed previously (see (8.3), in (9.2), (9.6), (9.22), and (10.3)). The
first term on the right-hand side of (11.58), i.e., the Kronecker symbol, accounts for
the addition of new vertices (single clusters) to the network, the second (gain) term is
the contribution from the fusion of pairs of connected components into larger ones,
the last (loss) term describes the disappearance of connected components due to the
fusion processes.

Equation (11.58) has a stationary solution P(s) in the long time limit. From the
distribution P(s), the relative size of the giant connected component also follows:
W =1-=32,P(s). The following surprising results were found numerically and by
simulation in reference [203] and then in the framework of exact analysis in [204].

It was shown that the phase transition of the emergence of giant connected
component (percolation transition) in the growing network cannot be described by
an effective medium theory. This phase transition is of infinite order, and, near the
percolation threshold, the relative size of the giant component behaves as

W (b) =0.590.. .exp{— (11.59)

T 1

2\/§ Vv b— b(?}’
where the constant 0.590... may be calculated with up to any desirable precision
[204]. Here the rate b of the emergence of new edges plays the role of a control
parameter. When b is small, the giant component is absent, and, obviously, when b is
large, the giant component must be present. The phase transition occurs at b, = 1/8.
All the derivatives of W (b) are zero at this point in sharp contrast to a linear W (b)
dependence in the standard mean field theory of percolation. This indicates that this
phase transition is of infinite order like the Berezinskii—Kosterlitz—Thouless phase
transition [212, 213].

When b < 1/8, i.e., in the phase without the giant connected component, the first
moment of P(s) is

1-+v1-8b
4b

?:

, (11.60)

When the giant component is present, i.e., when b > 1/8,

K : 11.61
This means that the first moment of the probability of belonging to a finite connected
component of size s jumps discontinuously at the percolation threshold from 2 at
b =1/8 — 0 (the phase without the giant component) to 4 at b = 1/8 4 0 (the phase,
in which the giant component is present) [203]. This behaviour is in contrast to the
divergence of this moment at the threshold point for standard percolation. (In the
latter case, the divergence takes place, either one approaches the threshold from
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Figure 42. Anomalous percolation in the growing network. (a) The giant connected
component size W versus the rate b of the creation of new edges in the growing
network (see (11.59)). (b) The average size 5§ of a finite connected component that
contains a randomly chosen vertex versus b (see (11.60) and (11.61)) [203]. The region
of anomalous percolation threshold b, = 1/8 is shown.

above or below.) We emphasize that the anomalous percolation transition is not
accompanied by any anomaly of the degree distribution.

The probability P(s) that a randomly chosen vertex belongs to a finite connected
component of size s shows surprising behaviour [204]. Recall that in standard
percolation and in percolation in equilibrium networks P(s) is of a power-law form
at the percolation threshold and it decreases exponentially both below and above the
percolation threshold. More precisely, near the standard percolation threshold, P(s)
is a power law with an exponential cutoff. In the growing network the situation is
quite different:

(i) P(s) o [sIns]"? at the percolation threshold,
(i) is a power-law function with an exponential cutoff at s. o< 1/W in the phase
with the giant component and,
(iii) in contrast to standard percolation, P(s) has a power-law tail in the entire
phase without the giant component.

Furthermore, in [204] this model was generalized, and the percolation in growing
scale-free undirected networks was studied (preferential linking mechanism was
applied). The results are similar to those described above. However, in this case,
the percolation threshold b. and factors in (11.59) depend on the value of the
exponent of the degree distribution.

This anomalous behaviour may be interpreted in the following way. New edges
are being attached to large connected components with higher probability, and large
connected components have a better chance to merge and grow. This produces the
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preferential growth of large connected components even in networks where new
edges are attached to randomly chosen vertices, that is, without any preference. Such
a mechanism of effective preferential attachment of new vertices to large connected
components naturally produces power-law distributions of the sizes of connected
components and power-law probabilities P(s). This ‘self-organized critical state’ is
realized in the growing network only if the giant component is absent.

As soon as the giant connected component emerges, the situation changes
radically. A new channel of the evolution of connected components is coming into
play, and, with high probability, large connected components do not grow up to
even larger ones but join to the giant component. Therefore, there are few large
connected components if the giant component is present, and then P(s) is
exponential.

Thus, in the growing networks, two phases are in contact at the point of the
emergence of the giant connected component—the critical phase without the giant
component and the normal phase with the giant component. This contact provides
the above described effects. There exists another example of a contact of a ‘critical
phase’ (the line of critical points) with a normal phase, namely, the Berezinskii—
Kosterlitz—Thouless phase transition [212, 213]. Interestingly, critical dependences in
both these cases have similar functional forms.

We finish this section with the following remark. Other percolation problems for
random networks can be considered. For instance, in a recent paper [214], ‘core’
percolation was introduced. Dead-end vertices and their nearest neighbours are
removed successively up to the point when no dead ends remain. The remaining
giant component (if it exists) is called ‘core’. For the classical random graph (Erd6s—
Rényi network), it was found that the core is present when the average degree & is
above e =2.718.... For comparison, in the same network, the ordinary giant
connected component exists if k > 1 [74] (see sections 6 and 11.1).

12. Growth of networks and self-organized criticality
We have demonstrated above that the growing networks often self-organize into
scale-free structures. The change of parameters controlling their growth removes
them from the class of scale-free structures. This is typical for the general self-
organized criticality phenomena [68, 69, 70], so the considered processes can be
linked with many other problems. In the present section, we discuss briefly this
linking without going into details.

12.1. Linking with sand-pile problems

As long as only a degree distribution, that is, the distribution of a one-vertex
characteristic, is studied, the models of networks growing under mechanism of
preferential linking can be reduced to the following general problem [169] (see figure
20). At each increment of time, m new particles are distributed among the increasing
number (by one per time step) of boxes according to some rule. Here, the boxes play
the role of vertices. The particles are associated with edges. The probability that a
new particle gets to a particular box depends on the filling of this box and on the
filling numbers of all other boxes. In fact, in sections 8, 9 and 10, we focused on
various versions of this classical model.

One can enumerate the boxes by age, so that such a system has boundaries, the
‘oldest’ box and the new one, and, naturally, the distributions of particles in different
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boxes are different. In fact, the resulting enumerated set of boxes looks like a sand
pile with a front (boxes being added) moving with unit rate. The height of the sand
pile increases as the box age grows.

Obvious relations to some other classical problems are also possible. For
instance, the arising master equations can be generically related to those for
fragmentation phenomena. One should also mention the Flory—Stockmayer theory
of the polymer growth [215, 216, 217].

12.2. Preferential linking and the Simon model

Reasons for power-law distributions occurring in various systems, including
systems mentioned in section 12.1, were a matter of interest of numerous empirical
and theoretical studies, beginning in 1897 [218, 219, 220]. An important advance was
achieved by H. A. Simon (1955), who proposed a simple model producing scale-free
distributions [65, 66].

The Simon model, can be formulated in the following way [172].

Individuals are divided to groups.

(i) At each increment of time, a new individual is added to the system.

(i1) (a) With probability p (Simon used the notation «), it establishes a new
family; (b) with the complementary probability 1 — p, it chooses at random
some old individual and joins its family.

The rule (ii) (b) simply means that new individuals are distributed among families
with probability proportional to their sizes, similar to rules for preferential linking.
The number of individuals, of course, equals ¢, and, at long times, the number of
families is pt. Using the master equation approach (see section 9.2), and passing to
the long-time limit it is possible to get the following stationary equation for the
distribution of the sizes of families,

Pk)+ (1 —p)lkP(k) — (k— 1)P(k—1)] = 64 (12.1)

(compare with master equations for degree distributions in networks growing under
mechanism of preferential linking, e.g., see (9.3), (9.6), (9.22), and (10.3)). Intro-
ducing v =1+ 1/(1 — p), we can write the solution of (12.1) in the form
P(k) = (v — 1)B(k,7) ‘&' k™, (12.2)

where B( ) is the beta-function. Therefore, the power-law distribution with exponent
~ naturally arises. Recently, the non-stationary distribution P(k,t) was also
described analytically [221] (see also reference [222]).

The Simon model was originally proposed without any relation to networks.
However, it is possible to formulate the Simon model for networks in terms of
vertices and, e.g., directed edges [177]:

(i) At each increment of time, a new edge is added to the network.

(i1) (a) Also, with probability p a new vertex is added, and the target end of the
new edge is attached to the vertex. (b) With the complementary probability
1 — p, the target end of the new edge is attached to the target end of a
randomly chosen old edge.

Here, rule (ii) (b) corresponds to the distribution of new edges among vertices
with probability proportional to their in-degree. One should indicate some difference
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between the Simon model and the models of growing networks with preferential
linking. In the models of sections 8, 9 and 10, one vertex was added at each time step.
In the Simon model, at each increment of time, one individual (edge) is added, and
the number of added families (vertices) is not fixed. Of course, this can not change
the stationary distributions and the value of v exponent. The behaviour of P(k, ¢) at
long times (large network sizes) is also similar.

In fact, both the original Simon model and the preferential linking concept are
based on a quite general principle—popularity is attractive. Popular objects (idols)
attract more new fans than the unpopular ones.

Nevertheless, one should note that the matter of interest of Simon was the one-
particle distribution, whereas, for networks, this is only a small part of the great
problem: what is their topology?

12.3. Multiplicative stochastic models and the generalized Lotka—Volterra equation

One may consider the models of the network growth under mechanism of
preferential linking from another point of view. The variation (increase) of the
degree of a vertex is proportional to the degree of this vertex. This allows us to relate
such models to the wide class of multiplicative stochastic processes. Last time, these
processes are intensively studied in econophysics and evolutionary biology [223, 224,
225, 226, 227, 228, 229]. In particular, they are used for the description of wealth
distribution. The most widely known example is the generalized Lotka—Volterra
equation [223],

wi(t+ 1) = ri()wi(t) + Atw(t) — c(w(t), )w;(2). (12.3)

Here, w;(r) may be interpreted as the wealth of agent 7, i=1,... N,
w(t) = SN, wi(£)/N is the average wealth at time 7. The distribution of the random
noise r;(¢) is independent of 7. Its average value is (r;(¢)) = Bt and the standard
deviation equals Dt. A4 is a positive constant, and c¢(w, ¢) is proportional to ¢ at long
times. Such a dependence on ¢ of the coefficients in (12.3) provides stationary
distributions at long times. In the differential form, (12.3) can be written as

dw; (1)
dr

= [r;(t) = 1w;(¢) + Atw(t) — c(w(2), t)wi(t). (12.4)

Interpretation of (12.3) and (12.4) in terms of the wealth distribution is quite
obvious. In particular, the last term restricts the growth of wealth. It was shown
[229, 230] that the average wealth w(z) approaches a fixed value W at long times, and
these equations produce the following stationary distribution

, AW
P(w;) exp<—5E> w; ', (12.5)
where the exponent of the power-law dependence is v =2+ A4/D. Equation (12.5)
gives P(0) = 0. Note that the resulting distribution is independent of B and c(w, ).

The main difference of the particular stochastic multiplicative process described
by (12.3) and (12.4) from the models considered in sections 8, 9, 10 and 12.2 is the
fixed number of the involved agents. Nevertheless, the outlined general approach can
be used for networks (e.g., see reference [185]). On the other hand, the results
obtained for the degree distributions of evolving networks (see sections 8§, 9 and 10)
may be interpreted, for example, in terms of wealth distribution in evolving societies.
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13. Concluding remarks

The progress in this field is incredibly rapid, and inevitably we shall have failed to
discuss a number of recent results. In particular, we have omitted random,
intentional, and adaptive walks on networks [98, 231, 232, 233, 234] which are
closely related to problems of the organization of effective search in communication
networks. We have not discussed the distribution of the number of the shortest paths
passing through a vertex, which has a power-law form in scale-free networks [235,
236], and many other interesting problems (e.g. references [237, 238, 239, 240, 241,
242,243,244, 245,246, 247, 248, 249, 250, 251, 252,253, 254, 255, 256, 257,258, 259,
260,261,262, 263,264, 265, 266,267,268, 269, 270,271, 272,273, 274, 275,276, 277,
278]). Many recent papers on networks can be found in electronic archives: http://
arXiv.org/ (mostly cond-mat), http://www.unifr.ch/econophysics/ (Econophysics
Forum), and http://www.santafe.edu/sfi/publications/ (Working Papers of Santa
Fe Institute). After this review had been submitted, we learned about a review of
Albert and Barabasi on the statistical mechanics of networks which is in preparation
[279], and call the reader’s attention to this paper.

Most studies which we reviewed focused on structural properties of growing
networks. Two aspects of the problem can be pointed out.

First, specific mechanisms of the network growth produce their structure and, in
particular, the degree distributions of their vertices. We demonstrated that the
preferential linking mechanism (preferential attachment of new edges to vertices
with a higher number of connections) provides degree distributions with long tails.
Such nets are abundant in nature. In particular, the communications networks have
degree distributions just of this kind. The preferential linking is the reason of the self-
organization of a number of growing networks into scale-free structures.

Second, the resulting networks with such long-tailed distributions have quite
different properties than classical random graphs with the Poisson degree distri-
bution. In particular, they may be extremely resilient to random damage. This
substantial property partly explains their abundance in nature. From the other hand,
diseases may freely spread within these nets. The global topology of such networks is
described by a theory that actually generalizes the standard percolation theory. This
theory is based on the assumption of statistical independence of vertices of an
equilibrium network. In such an event, the joint in- and out-degree distribution
P(k;, k,) completely determines and structure of the network. This is one of the
reasons why the knowledge of the degree distribution is so important. Despite the
evident success of this approach, one can see that its basic assumptions are not valid
for non-equilibrium, growing networks.

Keeping in mind most intriguing applications to the evolving communications
networks, we have to admit that, currently, the most of the discussed models and
ideas can be applied to the real networks only on a schematic, qualitative level. These
simple models are still far from reality and only address particular phenomena in real
networks.

The title of the seminal paper of Erdés and Rényi (1960) was ‘On the evolution of
random graphs’ [78]. What Erdés and Rényi called ‘random graphs’ were simple
equilibrium graphs with the Poisson degree distribution. What they called ‘evolution’
was actually the construction procedure for these graphs. Main recent achievements
in theory of networks are related with change-over to study of the evolving, self-
organizing networks with non-Poisson degree distributions. The rapid progress in this
field, in particular, means a very significant step toward understanding the most
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impressive exciting networks of our World, the Internet, the WWW, and basic
biological networks.
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