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This paper introduces a novel numerical stochastic optimization algorithm inspired from
colonizing weeds. Weeds are plants whose vigorous, invasive habits of growth pose a serious
threat to desirable, cultivated plants making them a threat for agriculture. Weeds have shown
to be very robust and adaptive to change in environment. Thus, capturing their properties

would lead to a powerful optimization algorithm. It is tried to mimic robustness, adaptation
Index terms: and randomness of colonizing weeds in a simple but effective optimizing algorithm
designated as Invasive Weed Optimization (IWO). The feasibility, the efficiency and the
effectiveness of IWO are tested in details through a set of benchmark multi-dimensional
functions, of which global and local minima are known. The reported results are compared
with other recent evolutionary-based algorithms: genetic algorithms, memetic algorithms,
particle swarm optimization, and shuffled frog leaping. The results are also compared with
different versions of simulated annealing — a generic probabilistic meta-algorithm for the

Evolutionary algorithms
Invasive weed optimization
Nonlinear multi-dimensional
functions
Numerical optimization
Stochastic optimization
global optimization problem — which are simplex simulated annealing, and direct search
simulated annealing. Additionally, IWO is employed for finding a solution for an engineering
problem, which is optimization and tuning of a robust controller. The experimental results
suggest that results from IWO are better than results from other methods. In conclusion, the
performance of IWO has a reasonable performance for all the test functions.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction presentation of control variables and/or do not have continu-

ity, which are necessary for applying gradient-based optimi-

Engineering design problems and applications always involve
optimization problems that must be solved efficiently and
effectively. To solve a problem, an engineer must sketch a
proper view from the problem in her hand. So, the design is
the struggle of the designer for finding a solution which best
suits the sketched view. In support of this need, there have
been various optimization techniques proposed by scientists.
In practice, many engineering problems do not have explicit

zation techniques. In order to overcome this difficulty,
scientists proposed direct optimization methods that only
use objective function and constrain values to steer towards
the solution. Since derivative information is not used, the
direct search methods are typically slow, requiring many
function evaluations for convergence. For the same reason,
they can also be applied to different problems without
applying major changes in the algorithm.
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Recently, in the literature, there has been a considerable
attention paid for employing algorithms inspired from
natural processes and/or events in order to solve optimiza-
tion problems. For example, genetic algorithms (GAs) which
was first introduced by Holland (1975) are now a standard
optimization tool in engineering. There are also other
numerical direct search optimization methods, e.g. simulated
annealing (SA); tabu search (TS) (Pham and Karaboga, 2000);
Ant colony optimization (ACO) (Dorigo et al., 1996); and
particle swarm optimization (PSO) (Kennedy and Eberhart,
1995).

Recently, many studies were carried out with inspirations
from ecological phenomena for developing optimization
techniques. For instance, a novel evolutionary algorithm
inspired by the nature of spatial interactions in ecological
systems is introduced in (Kirley, 2002), where the author
have examined the response of the evolving population to
the process of fragmentation and disturbance cased by
natural events (like fire, floods or climate changes). Another
ecology-inspired EA is introduced in (Yuchi and Kim, 2005). In
the mentioned research, in each generation, according to the
feasibility of the individuals, the whole population is divided
into two groups: feasible group and infeasible group.
Evaluation and ranking of these two groups are performed
in parallel and separately. The best individuals from feasible
and infeasible groups are selected together as parents. The
number of feasible parents has a sigmoid-type relation with
that of feasible individuals, which is inspired by the natural
ecological population growth in a confined space.

This work is motivated by a common phenomenon in
agriculture that is colonization of invasive weeds. According
to the common definition, a weed is any plant growing where
it is not wanted. Any tree, vine, shrub, or herb may qualify as
a weed, depending on the situation; generally, however, the
term is reserved for those plants whose vigorous, invasive
habits of growth pose a serious threat to desirable, cultivated
plants. Weeds have shown very robust and adaptive nature
which turns them to undesirable plants in agriculture. That’s
why many Journals (e.g. Weed Biology and Management
Journal, Weed Research Journal, and Weed Science Journal)
are being published world-wide focusing on the study of
weed taxonomy, ecology and physiology, weed management
and control methodologies, etc. In this paper it is tried to
introduce a simple numerical general-purpose optimization
algorithm that is inspired by weed colonization designated as
Invasive Weed Optimization (IWO). The algorithm is simple
but has shown to be effective in converging to optimal
solution by employing basic properties, e.g. seeding, growth
and competition, in a weed colony. Simulation studies are
conducted to evaluate convergence and performance of the
proposed algorithm.

2. Weed ecology”

In this section our goal is to provide the reader some sense of
weed biology, ecology, and colonization.

1 Selected topics from (Dekker, 2005). Used with permission.

2.1. What weed is, and why it is important

A plant is called weed if, in any specified geographical area, its
populations grow entirely or predominantly in situations
markedly disturbed by man (without, of course, being delib-
erately cultivated plants) (Baker and Stebbins, 1965). The most
interesting feature of weeds that is now become a common
belief in agronomy it that “The Weeds Always Win”. The
harder people try, the better they get:

e After many thousands of years of tillage and hand-weeding
we still have weeds.

e After 50 years of herbicides we still have weeds in the same
fields.

¢ In every field, in every year, we always miss some weeds.

¢ New weed species appear frequently, spreading across the
country.

e No weed species have disappeared from production fields.

¢ Humans have recently created an entirely new category of
very nasty weeds: herbicide resistant weeds.

These properties indicates that the weeds are of the most
robust and troublous plants in agriculture. It is also a con-
firmation of the fact that weeds adapt with environment and
change their behavior and gets better (fitter). Weed biology
and ecology is the story of their success. The behavior of
weeds in occupying a territory and colonizing is made in the
following steps:

1) Our cropping systems create opportunity spaces by leaving
unused resources in local fields that are frequently dis-
turbed (e.g. tillage, herbicides).

2) Weeds invade these opportunity spaces by means of
dispersal, followed by colonization, followed by enduring
occupation of the field.

3) Weed biodiversity provides diverse plants with traits well
adapted to seize and exploit these opportunity spaces,
which become locally adapted and improved over time by
means of natural selection and adaptation.

4) Weedy traits are expressed at optimum times in the life
history of the plant as the agricultural season unfolds such
that they maximize their fitness in a plant community.

5) Agricultural plant communities assemble and interact with
each other based these traits.

2.2. Weed reproduction

Weeds may reproduce with or without using sex cells, depen-
ding on the type of the plant. Sexual reproduction is made by
means of seeds or spores. In sexual reproduction a plant is born,
and begins its life history, when the egg is fertilized by pollen
and forms a seed in a parent plant. Then it is distributed by
wind, water, animals, etc. (spatial dispersal) until it can find an
opportunity space for growth (independent ramet). Viable seeds
germinate and grow when conditions are good (juvenile). They
vegetate to adult plants while in interaction with other
neighbor plants (vegetative plant). They turn to flowering
plants and produce seeds at the final stage of their life (seed
productive growth). In their colonization neighboring plants
interfere with each other’s activities according to their age, size
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and distance apart. Such density stress affects the birth rates
and death rates of plant parts. As plants in a population develop,
the biomass produced becomes limited by the rate of availabil-
ity of resources so that yield per unit area becomes indepen-
dent of density — the carrying capacity of the environment. The
stress of density increases the risk of mortality to whole plants
as well as their parts and the rate of death becomes a function
of the growth rate of the survivors (Harper, 1977). Thus birth,
growth, and reproduction of plants are influenced by density,
population, and fitness of the plants’ colony. There are mainly
three components of fitness in the community, where these
different components are in conflict with each other, and any
estimate of fitness must consider all of them:

e reproduction,
e struggle for existence with competitors,
e avoidance of predators.

Any colony tries to improve its fitness to achieve a longer life.
2.3. Forces of selection acting on plant community dynamics

The study of population biology ought to display those forces
that are important at the level of the life of the individual and
what sort of variation is important in determining survivor-
ship and reproduction. The forces of selection have been
described as (I) directional selection (II) stabilizing selection,
and (III) disruptive selection. These broad categories of selec-
tive force are in a sense statistical rather than biological
category; the biological categories need to take into account
the nature as well as the direction of selection. A number of
generalized biological categories can be recognized:

e v and K selection,

¢ ecological combining ability,

e selection by activity of predators and pathogens,
e the evolutionary consequences of disturbances,
e selection in a patchy environment.

Where we are only interested in r and K selection:

2.3.1. r-selection: “live fast, reproduce quick, die young.”
Selection for the qualities needed to succeed in unstable and
unpredictable environments, where ability to reproduce rapidly
and opportunistically is at a premium, and where there is little
value in adaptations to succeed in competition. A variety of
qualities are thought to be favored by r-selection, including
high fecundity, small size, and adaptations for long-distance
dispersal. Weeds, and their animal equivalents, are examples,
in contrast with K-selection. It is customary to emphasize that
r-selection and K-selection are the extremes of a continuum,
most real cases lying somewhere between. Ecologist enjoys a
curious love/hate relationship with the r/K concept, often
pretending to disapprove of it while finding it indispensable
(Dawkins, 1999).

2.3.2.  K-selection: “live slow, reproduce slow, die old.”

Selection for the qualities needed to succeed in stable, pre-
dictable environments where there is likely to be heavy
competition for limited resources between individuals well-

equipped to compete, at population sizes close to the maxi-
mum that the habitat can bear. A variety of qualities are
thought to be favored by K-selection, including large size, long
life, and small numbers of intensively cared-for offspring, in
contrast with r-selection (Dawkins, 1999).

3. Simulating weed colonizing behavior

To simulate colonizing behavior of weeds some basic proper-
ties of the process is considered:

1) afinite number of seeds are being dispread over the search
area (initializing a population),

2) every seed grows to a flowering plant and produces seeds
depending on its fitness (reproduction),

3) the produced seeds are being randomly dispread over the
search area and grow to new plants (spatial dispersal),

4) this process continues until maximum number of plants is
reached; now only the plants with lower fitness can survive
and produce seeds, others are being eliminated (compet-
itive exclusion). The process continue until maximum iter-
ations is reached and hopefully the plant with best fitness
it the closest to the optimal solution.

The process is addressed in details as follows:
3.1. Initialize a population

A population of initial solutions is being dispread over the d
dimensional problem space with random positions.

3.2. Reproduction

A member of the population of plants is allowed to produce
seeds depending on its own and the colony’s lowest and
highest fitness: the number of seeds each plant produce
increases linearly from minimum possible seed production to
its maximum. In other words, a plant will produce seeds based
on its fitness, the colony’s lowest fitness and highest fitness
to make sure the increase is linear. Fig. 1 illustrates the
procedure.

This step adds a significant property to the search algo-
rithm. Often when evolutionary algorithms are adopted to
solve optimization problems, intuitively, feasible individuals
could be thought to be the ones with better fitness values than
infeasible individuals (here “better” means to have more
chance to survive and reproduce); thus, the infeasible indi-
viduals are not allowed to be reproduced. However, this kind
of view ignores one important thing that evolutionary algo-
rithm is a probabilistic and recurrent method (Yuchi and Kim,
2005). It is possible that some of the infeasible individuals
carry more useful information than feasible individuals during
evolution process. Moreover, quite often the system can reach
the optimal point more easily if it is possible to “cross” an
infeasible region (especially in non-convex feasible search
space) (Yuchi and Kim, 2005). Thus, the above reproduction
technique is proposed to give a chance to infeasible indivi-
duals to survive and reproduce similar to the mechanism
happens in the nature.
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3.3. Spatial dispersal

Randomness and adaptation in the algorithm is provided in
this part. The generated seeds are being randomly distributed
over the d dimensional search space by normally distributed
random numbers with mean equal to zero; but varying
variance. This means that seeds will be randomly distributed
such that they abode near to the parent plant. However,
standard deviation (SD), ¢ , of the random function will be
reduced from a previously defined initial value, initia, to a
final value, ofinay, in every step (generation). In simulations, a
nonlinear alteration has shown satisfactory performance,
which is given in Eq. (1)

(itermax—iter)"

- 7 (Tinitial~Cfinal) + Ofinal 1)
(itermax)

Oiter =
where iter, .« is the maximum number of iterations, oje, is the
SD at the present time step and n is the nonlinear modulation
index.

This alteration ensures that the probability of dropping a
seed in a distant area decreases nonlinearly at each time
step which results in grouping fitter plants and elimination
of inappropriate plants, representing transformation from r-
selection to K-selection mechanism.

3.4. Competitive exclusion

If a plant leaves no offspring then it would go extinct, otherwise
they would take over the world. Thus, there is a need of some
kind of competition between plants for limiting maximum
number of plants in a colony. After passing some iterations, the
number of plants in a colony will reach its maximum by fast
reproduction, however, it is expected that the fitter plants have
been reproduced more than undesirable plants. By reaching the
maximum number of plants in the colony, pmax, @ mechanism
for eliminating the plants with poor fitness in the generation
activates. The elimination mechanism works as follows: when
the maximum number of weeds in a colony is reached, each
weed is allowed to produce seeds according to the mechanism
mentioned in the section 3.2. The produced seeds are then
allowed to spread over the search area according to the section
3.3. When all seeds have found their position in the search area,
they are ranked together with their parents’ (as a colony of
weeds). Next, weeds with lower fitness are eliminated to reach
the maximum allowable population in a colony. In this way,
plants and offspring are ranked together and the ones with
better fitness survive and are allowed to replicate. As men-
tioned in step (2), this mechanism give a chance to plants with
lower fitness to reproduce, and if their offspring has a good
fitness in the colony then they can survive. The population
control mechanism also is applied to their offspring to the end
of a given run, realizing competitive exclusion.

4, Simulation studies

In this section several simulation studies are carried out to
demonstrate merits of the proposed optimization algorithm.
In the first step, the capability of the algorithm in finding
global minimum of three benchmark functions, which are

frequently employed in the literature, is demonstrated. These
functions are ‘Sphere’, ‘Griewank’ and ‘Rastrigin’; to show that
the algorithm converges to the global solution, the results are
compared to a standard GA.

As the second step, IWO algorithm is applied for finding
optimal solution of a high dimension Rastrigin function with
the dimension of d=30. Results are reported and discussed to
give a better insight in the effects of tuning parameters of
the IWO algorithm in finding global optima of continuous
functions.

Next, with the purpose of comparison with commonly used
numerical optimization algorithms, i.e. Genetic algorithms
(GAs), Memetic algorithms (MAs), Particle swarm optimization
(PSO) and Shuffled frog leaping (SFL), a set of studies are
conducted for optimizing very high order Griewank function
(d=10, 20, 50, 100) and EF10 function.

Finally, the performance of IWO is compared with different
versions of simulated annealing; specifically simplex simu-
lated annealing and direct search simulated annealing. The
simulations are performed for optimization of Easom function
and Griewank function.

4.1. Convergence of the invasive weed optimization
algorithm

Three studies are conducted to demonstrate ability of the IWO
algorithm in locating global minima of continues functions.
Employed benchmark examples are ‘Sphere’, ‘Griewank’ and
‘Rastrigin’ functions, which have properties reported in
Table 1.

4.1.1.  Sphere Function

Numerical values for a given run executed for minimizing the
Sphere function with dimension of d=2, in provided in Table 2.
Process of colonizing of weeds around the point with the best
fitness is shown in Fig. 2. It can be observed that the plants
grow towards the optimal point from the initialization area. In
their progress towards the optimal point, plants with higher
(worse) fitness are being excluded, and only weeds with low-
er (better) fitness are allowed to be reproduced, which leads
in colonization about the optimal point. The final value of
the fitness function for Sphere function is found to be fitness
(x0)=2.4362e-38, for the point: xo=[-0.1413e-3,-0.0662e-3]. It
is known that the optimal value of the function is zero for the
point [0, 0] in x-y plane.

A . .
1 1
max no. of seeds™~ "~~~ """""TTTTTooo Frocoos
| Py
I . |
: 7 :
1 . 1
P : '
floor % ' A
No.of g ¢ | ~ H / H
seeds I '
1 1
min no.ofseeds"'“j/'““h """"" roTTTo
| i .
I I v
min fitness max fitness
in the in the
colony  plant's fitness colony

Fig. 1-Seed production procedure in a colony of weeds.
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Table 1 - Optimization test functions

Name Formula Sketch in 2D
Sphere n
fR=> %
=
Griewank 1 & n X
2 i
X) = —— xi—[1 cos —‘>+1
509 =go05 3, %=1 (3
Rastrigin n
f(x)= (x2-10cos(2mx;) + 10) £
i=1 2 .
g CLTTRETRY
2 10° |
=+ min value
=+= max value
10710 - = mean value : : : : H : :
41.2 Griewank function 0 10 20 30 40 50 60 70 80 90 100

Finding minima of the Griewank function is a challenging
problem, which is the main reason for being a favorite bench-
mark for optimization algorithms. A schematic of Griewank
function with dimension of d=2 is illustrated in Fig. 3. It is
observed from Fig. 3 that the function has only one global
minima at [0, 0] in x-y plane but numerous local minima.

Setup of IWO algorithm for minimization of this function is
specified in Table 3. Fig. 4 illustrates the process of obtaining
optimal solution of the problem. To demonstrate merits of
proposed algorithm, same simulation is performed using
GA toolbox provided in MATLAB®, where the initial conditions
and number of maximum agents were identical in both
simulations. As depicted in Fig. 4, the proposed algorithm
outperformed GA in finding the minima of the Griewank
function.

4.1.3. Rastrigin function

In order to demonstrate IWO abilities in minimization of
different functions, another challenging optimization problem
that is minimization of Rastrigin function is addressed in this
part. Fig. 5 illustrates schematic of Rastrigin function with the
dimension of d=2. Fig. 5 clearly shows that the Rastrigin
function has numerous local minima — the “valleys” in the
plot — same as the Griewank function. However, the function
has just one global minimum, which occurs at the point [0, 0] in
the x-y plane, as indicated by the vertical line in the plot, where
the value of the function is zero. At any local minimum other
than global minima, the value of Rastrigin function is greater
than zero. The farther the local minimum is from the origin,
the larger the value of the function is at that point. Low or high

Table 2-IWO parameter values for sphere function
minimization

Fig. 2- Convergence of IWO to the optimal value of the Sphere
function.

dimension Rastrigin function is regularly used in the literature
to test evolutionary algorithms, because of its numerous local
minima which make it difficult for standard, gradient-based
methods to find the global optimum (Elbeltagi et al., 2005;
Chatterjee and Siarry, 2006). The contour plot in Fig. 6 of
Rastrigin function shows the alternating maxima and minima.

Setup of IWO algorithm for minimization of this function is
given in Table 3, which is the same as Griewank function.
Minimization procedure of the function is depicted in Fig. 7.
For a comparison, result of a GA run using MATLAB®
GA Toolbox is also added to illustrate performance of IWO
algorithm.

4.2. Effects of tuning parameters on the convergence of the
IWO algorithm

Armed with successful tests of IWO algorithm in finding global
optimal solution of different challenging functions, in this
section, further studies are conducted for understanding the
effects of tuning parameters of IWO algorithm on its

(x2+y2)l4000-cos(x.fsqr1(2)) cos(y/sqrt(2))+1

Symbol Quantity Value
No Number of initial population 10
itmax Maximum number of iterations 100
dim Problem dimension 2
[ Maximum number of plant population 15
Smax Maximum number of seeds 5
Smin Minimum number of seeds 0

n Nonlinear modulation index 3
Cinitial Initial value of standard deviation 3
Ofinal Final value of standard deviation 0.001
Xini Initial search area —40<X;n;<-30

Fig. 3-The Griewank function.
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Table 3-IWO parameter values for Griewank and

Rastrigin function minimization

Symbol Quantity Value
No Number of initial population 10
itmax Maximum number of iterations 500
dim Problem dimension 2
Pmax Maximum number of plant population 30
Smax Maximum number of seeds 5
Smin Minimum number of seeds 0

n Nonlinear modulation index 3
Cinitial Initial value of standard deviation 10
Ofinal Final value of standard deviation 0.1
Xini Initial search area -20<xj,1<20

convergence. To this end, the Rastrigin function with the
dimension of d=30 is considered as a benchmark. It is known
that the global optimum of the considered function is 0.0. The
benchmark is more complex than the ones in previous section
due to larger dimension size. The performance of IWO
algorithm is studied with different population size of weeds,
different algorithm iterations and different nonlinear modu-
lation index n, in each experiment with 100 trial runs in each
experiment. The parameters of the algorithm are specified in
Table 4. During the optimization process the weeds are
allowed to ‘grow’ outside the region specified by Xin;. The
performance of the proposed algorithm is specified in two
criteria: (1) the percentage of success, as represented by the
number of trials required for the object function to reach its
known target values, which is equal or lower than 0.05 in this
experiment; (2) the average value of the solution obtained in
all trails. In all experiments, the solution stopped when
maximum allowable iteration was reached. Table 5 presents
the performance obtained over all trail runs for the Rastrigin
function.

Considering the performance of the proposed algorithm for
all runs, one can observe that increasing the number of
iterations leads to a lower mean value for solution; however,
basically, it does not increase the number of successful
convergences to the desired global optima. The percentage

£k
@ r—
§ 10 ET—— ! b
= o S 1
mean value
6| |—=—GA min value| B T
10 I L 1 I
50 100 150 200 250 300 350 400 450 500
0
R e —— S ———V
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g 1072k 5 ."gl"ﬂli.l“m}. 4
g Wi,
@ -4 \\HJ At
> 107 i i |
sk My
10® i i i i
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iteration

Fig. 4-Upper diagram: optimizing process of the Griewank
function by IWO algorithm vs. standard genetic algorithm.
Lower diagram: associated variance of each generation.
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100

80
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40
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Fig. 5-The Rastrigin function.

of success is increased by decreasing population of weeds in a
colony. Hence, increasing the number of agents (weeds) does
not essentially lead to a satisfactory result (lower mean value
and/or successful convergence). The effect of the nonlinear
modulation index is also studied in this example. It is shown
that nonlinear modulation index has magnificent contribu-
tion on the performance of IWO algorithm, where much better
results are obtained when n is set equal to 3. The effect of the
nonlinear modulation index is considered in next subsection
of the paper too.

4.3. Comparing IWO with GAs, MAs, PSO, and SFL

In this section, the performance of IWO algorithm is compared
with four evolutionary algorithms (EAs): Genetic algorithms
(GAs) (Holland, 1975), Memetic algorithms (MAs) (Moscato,
1989), Particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995) and Shuffled frog leaping (SFL) (Eusuff and
Lansey, 2003). The results are compared with the ones
reported in (Elbeltagi et al., 2005). It should be noted that the
aim of reporting the results in (Elbeltagi et al., 2005) is

05 : @3 D)) _G‘.f.,a@m
D)) (@

\

_/"/‘A\\ : Loc:'alpnima

| \
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 6-Contour plot of Rastrigin function.
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Fig. 7-Upper diagram: optimizing process of the Rastrigin
function by IWO algorithm vs. standard genetic algorithm.
Lower diagram: associated variance of each generation.

comparison of abovementioned optimization algorithms;
therefore, it was tried to find the best possible parameters
values for the algorithms in order to have a reasonable
comparison and providing guidelines for determining the
best operators for each algorithm.

4.3.1. Griewank function
To have a sensible comparison between IWO and the men-
tioned optimization algorithms, in addition to studying the
influence of the parameter values on the performance of IWO,
the simulations are performed for a high-dimension Griewank
function (d=10, 20, 50, and 100). The performance of IWO for
finding the global optima of the benchmark is examined with
different population size of the weed colony, different algo-
rithm iterations and different nonlinear modulation index n.
Twenty trial runs are performed for each problem. Same as the
previous example during the optimization process the weeds
are allowed to ‘grow’ outside the region specified by xin;. The
performance of the proposed algorithm is specified in two
criteria, same as the previous example: (1) the percentage of
success; and (2) mean value of solutions. The parameters of
the algorithm are specified in Table 6. Note that in all expe-
riments, the solution stopped when maximum allowable
iteration was reached.

The results found from solving the test problem using the
four EAs vis-a-vis IWO are summarized in Table 7. As it can be

Table 4-IWO Numerical parameter values for high-

dimension Rastrigin function optimization

Symbol Quantity Value
No Number of initial population 10
itmax Maximum number of iterations 100 or 500
dim Problem dimension 30
[ Maximum number of plant population 20, 40, or 60
Smax Maximum number of seeds 3

Smin Minimum number of seeds 0

n Nonlinear modulation index 1,2,0r3
Cinitial Initial value of standard deviation 10
Ofinal Final value of standard deviation 0.02

Xini Initial search area —100<X;,;<100

Table 5 - Simulation results of high-dimensional Rastrigin

function optimization

Max. Nonlinear Max. no.  Comparison criteria
population modulation of S
of weeds Index (n) iterations % Mean
Success  solution
20 14 90.4242
40 3 500 12 69.3683
60 5 62.2004
20 27 2574.2
40 1 100 14 2427.1
60 9 2368.3
20 93 494.23
40 3 100 72 1538.7
60 67 1617.7
1 11 230.74
20 2 500 26 92.957
3 20 85.76

observed from Table 7, a well-tuned IWO performs very well in
finding global optima of the benchmark problem. The
interesting thing is that the GA performs more poorly than
all other four algorithms, which made the authors of Elbeltagi
et al, (2005) to verify their results with a commercial GA
package named Evolver (Elbeltagi et al., 2005; Evolver, 1998).
Thus, outperforming of IWO over a GA, reported in Section 4.1
is not really very surprising. Table 7 shows that increasing the
number of agents (weeds) in a colony does no essentially
increase the percentage of success, the fact that was observed
in the previous section as well. Moreover, in contrast with GA,
increase in dimensionality of the problem does not decrease
performance of IWO. It is also shown that IWO, in some cases,
has surpassed PSO and SFL. Hence, it can be concluded that
the proposed algorithm can be considered as one of efficient
EAs.

It is observed that the value of the nonlinear modulation
index, n, has considerable contribution on the performance of
IWO. The nonlinear modulation index has a key control on
IWO convergence. It makes the weed colony to change their
behavior in time and softly switch from a high value of stan-
dard deviation to a lower one. Thus, the algorithm starts with a
high initial standard deviation which should allow it to explore
new search areas aggressively and then decreases it gradually
according to (1) to find a finer local optimum solution in later

Table 6 -IWO parameter values for high-dimension

Griewank function optimization for comparison with
GAs, MAs, PSO AND SFL

Symbol Quantity Value

No Number of initial population 5

itmax Maximum number of iterations 30, 120, 200, 210

dim Problem dimension 30

Pmax Maximum number of plant 10, 20, 50, and 100
population

Smax Maximum number of seeds 3

Smin Minimum number of seeds 0

n Nonlinear modulation index 1,2,0r3

Cinitial Initial value of standard deviation 300

O final Final value of standard deviation 0.05

Xini Initial search area —512<x;p;<511
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Table 7 - Results of the Griewank function optimization for comparison with GAs, MAs, PSO AND SFL

Comparison Algorithm Max. The Max. no. Problem dimension
criteria population nonlinear of
of weeds modulation iterations 10 20 50 100
index (n)
% Success 10 70 80 95 100
20 3 200 65 95 100 100
30 75 85 100 95
1 10 10 40 50
IWO 20 2 200 95 25 80 85
3 65 95 100 100
30 35 35 45 35
20 3 120 95 75 100 95
210 80 90 100 100
GAs (Evolver) - - - 50 30 10 0
MAs - - - 90 100 100 100
PSO - - - 30 80 100 100
SFL - - - 50 70 90 100
Mean solution 10 0.0459 0.2108 2.4932 0
20 3 200 0.0373 0.0494 0 0
30 0.0215 0.1432 0 25.7871
1 1.0132 3.4364 64.239 395.33
IWO 20 2 200 0.019302 0.88883 7.8221 75.727
3 0.0373 0.0494 0 0
30 4.0067 65.3527 363.31 1085.9
20 3 120 0.018437 0.4245 0 49.34
210 0.016336 0.1066 0 0
GAs (Evolver) - - - 0.06 0.097 0.161 0.432
MAs - - - 0.014 0.013 0.011 0.009
PSO - - - 0.093 0.081 0.011 0.011
SFL - - - 0.08 0.063 0.049 0.019

iterations. As it can be concluded from simulations, this phe-
nomenon is accomplished better when n is set to 3.

The termination criterion that is used for IWO in simula-
tions is attaining to the maximum number of allowable
iterations; however, in other four EAs different termination
criteria was applied (Elbeltagi et al., 2005). For instance, in PSO
algorithm, upon experimentation, the suitable numbers of
particles and generations were found to be 40 and 10,000,
respectively (Elbeltagi et al., 2005). Hence, IWO is able to find
the optimal solution in fewer iterations vis-a-vis PSO in this
example, which is an advantage of the proposed algorithm.

4.3.2. EF10 Function
The F10 function is a non-linear, non-separable and involves
two variables, x and y (Elbeltagi et al., 2005)

F10(x,y) = (2 +y2)°> {sin?[(x* + y*)*}| + 1} (2)

An extended EF10 function is created to scale the original F10
function (2) to any number of variables (Elbeltagi et al., 2005):
N N
EF10(x) = > Y f10(x;,%;) (3)
J——

Similar to Griewank function, the global optimum solution
of the F10 function is known to be zero when all variables are
equal to zero.

The simulations are performed for a high-dimension F10
function with the dimension of d=10, 20, and 50. The perfor-
mance of IWO for finding the global optima of the benchmark

is examined with different population size of the weed colony
and different ratios of maximum number of allowable seed to
population (seed/pop ratio). Same as the previous example,
twenty trial runs are performed for each problem and during
the optimization process the weeds are allowed to ‘grow’ out-
side the region specified by xiy;. In addition the performance of
the proposed algorithm is specified in two criteria, same as the
previous example: (1) the percentage of success; and (2) mean
value of solutions. The parameters of the algorithm are
specified in Table 8. Note that in all experiments, the solution
stopped when maximum allowable iteration was reached.
Simulation results, as reported in Table 9, show that the
best performance is obtained when the maximum population
of weeds is set to 10 or 20. Additionally, the number of

Table 8-IWO Parameter values for EF10 function
optimization

Symbol Quantity Value

No Number of initial population 10

1tmax Maximum number of iterations 800

dim Problem dimension 10

DPmax Maximum number of plant 10, 20, or 30

population

ST Maximum number of seeds 15, 10, 6, 5, 4, 3, 2, or
1

Smin Minimum number of seeds 0

n Nonlinear modulation index 3

Ginitial Initial value of standard deviation 75

O final Final value of standard deviation le-6

Xini Initial search area -100<x;,; <100
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Table 9 - Simulation results of the EF10 function optimization

Comparison Algorithm Max. Seed/ Problem dimension
criteria opulation o
pofp weeds rIthiI:J e AU =
% Success 1/2 0 0 -
10 1/5 100 100 100
1/10 100 100 100
1/2 0 0 =
IWO 20 1/5 10 0 -
1/10 100 100 -
1/2 0 0 -
30 1/5 0 0 -
1/10 25 45 -
GAs (Evolver) = = 20 0 0
MAs - - 100 70 0
PSO - - 100 80 60
SFL - - 80 20 0
Mean solution 1/2 13.29 86.199 =
10 1/5 0 0 0
1/10 0 0 0
1/2 4.5622 59.452 -
IWO 20 1/5 2.0437 34.14 -
1/10 0 0 -
1/2 3.2214 43.652 =
30 1/5 0.68206 19.303 -
1/10 0.60547 10.655 =
GAs (Evolver) - - 0.455 1.128 5.951
MAs - - 0.014 0.068 0.552
PSO - - 0.009 0.075 2.895
SFL - - 0.058 2.252 6.469

allowable seeds for a weed has to be set equal to one or two in
order to achieve the best performance.

4.4, Comparison of IWO with SDS, SSA, and DSSA

Simulated annealing (SA) is a generic probabilistic meta-
algorithm for the global optimization problem, namely
locating a good approximation to the global optimum of a
given function in a large search space. It was independently
invented by Kirkpatrick et al. (1983) and Cerny (1985). The
name and inspiration come from annealing in metallurgy, a
technique involving heating and controlled cooling of a
material to increase the size of its crystals and reduce their
defects. The heat causes the atoms to become unstuck from
their initial positions (a local minimum of the internal energy)
and wander randomly through states of higher energy; the
slow cooling gives them more chances of finding configura-
tions with lower internal energy than the initial one (Simu-
lated annealing — Wikipedia). By analogy with this physical
process, each step of the SA algorithm replaces the current
solution by a random “nearby” solution, chosen with a pro-
bability that depends on the difference between the corre-
sponding function values and on a global parameter T (called
the temperature), that is gradually decreased during the
process. The dependency is such that the current solution
changes almost randomly when T is large, but increasingly
“downhill” as T goes to zero. The allowance for “uphill” moves
saves the method from becoming stuck at local minima—
which are the bane of greedier methods.

Because of some similarities between the proposed algo-
rithm and SA method, a comparison between IWO and SA

based algorithms is addressed in this section. The comparison
is based on the simulation results reported in (Hedar and
Fukushima, 2002) where a combination of SA and a direct
search (SDS) method is introduced for solving nonlinear
unconstrained global optimization problems. In the men-
tioned research paper, the authors have first suggested a
Simple Direct Search (SDS) method, which comes from some
ideas of other well-known direct search methods. Then, the
idea of SDS is hybridized with the standard SA to design a new
method, called Simplex Simulated Annealing (SSA) method,
which is expected to have some ability to look for a global
minimum. To obtain faster convergence, the authors first
accelerated the cooling schedule in SSA, and in the final stage,
they applied Kelley’s modification of the Nelder-Mead method
on the best solutions found by the accelerated SSA method to
improve the final results. They referred to the modified meth-
od as ‘Direct Search Simulated Annealing’ (DSSA) method.

Table 10-IWO parameter values for Easom function
optimization

Symbol Quantity Value
No Number of initial population 5
itmax Maximum number of iterations 200
dim Problem dimension 2
Pmax Maximum number of plant population 10
fheves Maximum number of seeds 2
Smin Minimum number of seeds 0

n Nonlinear modulation index 3
Cinitial Initial value of standard deviation 7.5
Ofinal Final value of standard deviation le-3
Xini Initial search area -10<xj,;<10
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Table 11 - Simulation results for Easom function optimization

Function Rate of success Average number of function Average error
evaluation
SDS SSA DSSA IWO SDS SSA DSSA IWO SDS SSA DSSA IWO
Easom 12 68 93 100 = 4318 1442 1609 - 4e-3 3e-9 <le-9
Griewank 36 82 90 100 = 12208 1830 1996 = 0.1 5e-9 <le-9

Two examples are considered to compare the performance of
IWO with SDS, SSA, and DSSA, which are Easom function and
Griewank function. The performance of IWO, SDS, SSA and
DSSA methods is evaluated based on (1) the percentage of
successful trials, (2) the average number of function evalua-
tion, and (3) the average error are related to only successful
trials over 100 runs with different starting points. The SDS,
SSA and DSSA algorithms are terminated when the function
values at all the vertices become closer than 1e-6 in SDS, SSA,
and le-8 in DSSA. Nevertheless, like earlier examples, assign-
ing maximum number of iteration for IWO algorithm is used
to terminate the search. More details on tuning of initial pa-
rameters and control parameters of SDS, SSA, and DSSA can be
found elsewhere (Hedar and Fukushima, 2002).

4.4.1. Easom function

Easom function is a nonlinear function with a global mini-
mum lying in a very narrow hole and outside this narrow hole
the graph the function is almost flat. Easom function is
defined as follows (Hedar and Fukushima, 2002):

ES(x,y) = —cos(x)cos(y)exp|~(x-m) >~ (y—)?] ()

The global minimum of the function is located in x, y== ,
where the function value is equal to —1. Parameter values of
IWO algorithm for optimization of Easom function is specified
in Table 10. The parameter values are selected from experi-
ences obtained from previous sections, for instance, the
nonlinear modulation index is selected equal to 3, the maxi-
mum population of weeds in the colony is set equal to 10, and
the maximum allowable number of seeds produced by a weed
is set to 2 (see Table 10 for more details). Note that the final
value of standard deviation mainly depends on the resolution
requested for the final answer. In this example the resolution
of le-2 is satisfactory. In addition, like earlier examples, as-
signing maximum number of iteration for the algorithm is
used to terminate the search.

Table 12 -IWO Parameter values for optimization of

Griewank function with the aim of comparison with
SDS, SSA, AND DSSA

In Table 11 the final results obtained from simulations for
optimization of Easom function using IWO are reported and is
compared with the performance of SDS, SSA, and DSSA. From
Table 11 it can be seen that the rate of success for IWO is much
better than SDS and SSA; IWO outperforms DSSA as well. Note
that for IWO when the fitness function is reached the value of
1e-9 or less, then the search is considered successful.

4.4.2. Griewank function

Griewank function with dimension of d=6 is also considered
to compare the performance of IWO with SDS, SSA, and DSSA
algorithms. Table 12 presents the initial parameter values of
IWO. The results found from solving the test problem using
the three mentioned algorithms vis-a-vis IWO are summa-
rized in Table 11, which clearly shows that the behavior of IWO
is the best of the four methods in all terms.

5. A practical example

An interesting application of optimization problems appears in
dynamic and control systems theory. A system is considered an
optimum control system when the system parameters are adjusted
so thatanindex —a quantitative measure of the performance of
the system —reaches an extreme value. For example, consider a
dynamic model of a flexible structure is given by Eq. (5):

(1 + ko2)s? + 2L wnS + @2
s2(s2 + 2{wns + w3)

G(s) =

(5)

where w,, is natural frequency of the flexible mode and ¢ is the
corresponding damping ratio. Generally, it is difficult to know
the structural damping precisely, while the natural frequency
can be predicted more accurately using well-established
modeling techniques (Dorf and Bishop, 1995). Assuming the
nominal values of w,=2rad/s, and k=0.1it is desired to design a
robust second order compensator to balance the uncertainty ¢
which may vary between zero and 0.1. The controlled closed-

Table 13 -IWO Parameter values for controller
optimization

Symbol Quantity Value Symbol Quantity Value
No Number of initial population 5 No Number of initial population 5
itmax Maximum number of iterations 200 itmax Maximum number of iterations 150
dim Problem dimension 6 dim Problem dimension 5
[Brovies Maximum number of plant population 10 [ Maximum number of plant population 10
S— Maximum number of seeds 2 SR Maximum number of seeds 2
Smin Minimum number of seeds 0 Smin Minimum number of seeds 0

n Nonlinear modulation index 3 n Nonlinear modulation index 3
Cinitial Initial value of standard deviation 0.75 Ginitial Initial value of standard deviation 0.5
Ofinal Final value of standard deviation le-4 O final Final value of standard deviation 0.01
Xini Initial search area —1<Xjpi<1 Xini Initial search area -0.1<x4p;<0.1
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loop system is supposed to follow the time response of a second
order system specified in Eq. (6):

(14 ka?)s? + 2{wyS + ?
s2(s2 4 2Lwps + w2)

Ge(s) = (6)

5.1. Controller optimization

A transfer function of a second order compensator is:

K(s+2z1)(s +2z2)

Gl = s p s 1 p2)

™)
where s=-z; and s=-p; are called zeros and poles of the
controller respectively, while K is called gain of the system.
The design problem becomes, then, the selection of zi, pi and
K in order to obtain a suitable closed-loop performance.
Thus, the optimization problem is to minimize the difference
between time responses of closed-loop system Eq. (8):

Gc(s)G(s)

R R C )

(8)
and the reference model G,(s) to a step command, which can
be specified as follows:

tmax
}@mummb[ [Yeu (O-ye(B)]dt ©)

where yci(t) and y,(t) are time response of the closed-loop
system and the reference model Eq. (5) respectively; to=0 and
tmax=200 stand for starting time and final time in seconds. In
this paper, IWO is employed to solve the abovementioned
optimization problem.

Numerical values for parameters of IWO algorithm are
specified in Table 13. Five trails are made to find best
parameters of the controller, which is found to be:

Gu(s) = 2427236+ 0.5483)(s + 0.0639)
= (s+3.847)(s +1.2)

(10)

Note that although the first generation in the IWO algo-
rithm was initialized in the area between -0.1 and 0.1, final

1.5 T T T T T T T T T

Amplitude

-=-r=0
© £=0.005
0 : r= =04 H

p— éecond—order reference model
T I I

L I
[¢] 20 40 60 80 100 120 140 160 180 200
time [sec]

Fig. 8- Step response of the closed-loop system with the
designed controller versus the reference model’s time response.

values of the some of search parameters are outside this area,
which demonstrates the ability of the proposed algorithm in
searching and locating optimal solutions out of the initial
search area.

Time responses of the closed-loop systems with different
values for {, and the reference model to a step command are
depicted in Fig. 8. As shown in Fig. 8, the closed-loop system is
very robust to uncertainties in damping ratio, which makes
the design very favorable.

6. Conclusion

Invasive Weed Optimization (IWO) is a numerical stochastic
search algorithm mimicking natural behavior of weed colo-
nizing in opportunity spaces for function optimization.
Adapting with their environments, invasive weed ride oppor-
tunity spaces left behind by improper tillage; followed by
enduring occupation of the field. They reproduce rapidly by
making seeds and raise their population. Their behavior
changes with time as the colony become dense leaving lesser
opportunity of life for the ones with lesser fitness.

Numerous numerical simulations are performed to demon-
strate effectiveness of IWO algorithm. As the first step,
convergence of IWO is studied for finding global minima of
three benchmark functions, which are ‘Sphere’, ‘Griewank’, and
‘Rastrigin’ functions. It is shown that the proposed algorithm
can outperform a standard genetic algorithm. Next, the effect of
tuning parameters on performance of the proposed algorithm
is studied. As the third step, the feasibility and efficiency of IWO
for optimization of two examples are compared to four recent
evolutionary algorithms — genetic algorithms (GAs), memetic
algorithms (MAs), particle swarm optimization (PSO), and
shuffled frog leaping (SFL). In order to give a better idea on
performance of IWO, its merits for optimization of two func-
tions — Easom function and Griewank function — is demon-
strated and compared to simulated annealing based search
algorithms — simplex simulated annealing and direct search
simulated annealing. In the final step, the proposed algorithm
is employed for solving an engineering problem that is optimal-
robust tuning of a second order compensator for controlling a
flexible structure with uncertain damping ratio.

It is shown in simulations that the proposed algorithm can
capture properties of colonizing weeds fairly well and is
capable in finding desired minima very fast in comparison
with other stochastic search algorithms. As an optimization
algorithm, it has the additional desirable properties of capa-
bility to deal with complex and non-differentiable objective
functions and escapes from local optima. The experimental
studies suggest that results from IWO are as good as (in some
cases are better than) results from other methods. In con-
clusion, the performance of IWO is comparable with other
evolutionary algorithms and IWO results are satisfactory for

all test functions.
From reported simulations, it is observed that increasing

the number of plant population in a colony decreases the
mean solution, but does not essentially increase the percent-
age of success. A colony with population of 10 to 20 weeds has
shown satisfactory performance. The maximum number of
allowable seeds for plants also plays an important rule in the
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performance of the algorithm. It is shown, when the maxi-
mum and the minimum number of seeds are set to 2 and zero
respectively, the behavior of colony is very satisfactory. In
addition, a suitable value for the nonlinear modulation index,
n, is found equal to 3 in simulations.
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