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Group Search Optimizer: An Optimization
Algorithm Inspired by Animal Searching Behavior

S. He, Member, IEEE, Q. H. Wu, IEEE, Senior Member, and J. R. Saunders

Abstract— Nature-inspired optimization algorithms, notably
evolutionary algorithms (EAs), have been widely used to solve
various scientific and engineering problems because of to their
simplicity and flexibility. Here we report a novel optimization
algorithm, group search optimizer (GSO), which is inspired
by animal behavior, especially animal searching behavior. The
framework is mainly based on the producer–scrounger model,
which assumes that group members search either for “finding”
(producer) or for “joining” (scrounger) opportunities. Based on
this framework, concepts from animal searching behavior, e.g.,
animal scanning mechanisms, are employed metaphorically to
design optimum searching strategies for solving continuous opti-
mization problems. When tested against benchmark functions,
in low and high dimensions, the GSO algorithm has competitive
performance to other EAs in terms of accuracy and convergence
speed, especially on high-dimensional multimodal problems. The
GSO algorithm is also applied to train artificial neural networks.
The promising results on three real-world benchmark problems
show the applicability of GSO for problem solving.

Index Terms— Animal behavior, behavioral ecology, evolution-
ary algorithm, optimization, swarm intelligence.

I. INTRODUCTION

IN THE PAST few decades, nature-inspired computation
has attracted more and more attention [1]. Nature serves

as a fertile source of concepts, principles, and mechanisms
for designing artificial computation systems to tackle complex
computational problems. Among them, the most successful are
evolutionary algorithms (EAs) which draw inspiration from
evolution by natural selection. Currently, there are several dif-
ferent types of EAs which include genetic algorithms (GAs),
genetic programming (GP), evolutionary programming (EP),
and evolutionary strategies (ES) [2].

In recent years, a new kind of computational intelligence
known as swarm intelligence (SI), which was inspired by
collective animal behavior, has been developed. Currently, SI
includes two different algorithms. The first one is ant colony
optimization (ACO), which was developed based on ants’
foraging behavior [3]. Another SI algorithm is particle swarm
optimizer (PSO), which gleaned ideas from swarm behavior
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of bird flocking or fish schooling [4]. Interested readers are
directed to an excellent survey of recent development of
PSO [5].

Broadly speaking, the two SI algorithms mentioned above
were inspired by some aspects of animal behavior, which is
a scientific study about everything animals do [6]. From this
aspect, we can add more algorithms to the category of the
so-called animal behavior-inspired algorithms. In [7], area-
restricted searching behavior has inspired synthetic predator
search (SPS) algorithm for solving combinatorial optimization
problems.

Intra- and intersociety interactions of animal societies, e.g.,
human and social insect societies, have been used to design
a stochastic optimization algorithm, called society and civi-
lization algorithm [8]. This algorithm was proposed to solve
single objective-constrained optimization problems based on a
formal society and the civilization model.

Bacteria, which are simple single-celled organisms, have
been studied for decades. Recently, bacterial foraging behav-
ior, known as bacterial chemotaxis, has served as the inspi-
ration of two different stochastic optimization algorithms.
The first one is the bacterial chemotaxis (BC) algorithm,
which was based on a bacterial chemotaxis model [9]. The
way in which bacteria react to chemoattractants in concentra-
tion gradients are employed to tackle optimization problems.
Another bacteria-inspired optimization algorithm is bacterial
foraging algorithm [10]. It was inspired by the chemotactic
(foraging) behavior of E. coli bacteria. Only small-scale (up to
five dimensions) optimization problems were tackled by these
two algorithms. The potential of bacteria-inspired algorithms
remains to be exploited.

Ideals from animal behavior have also been incorporated to
multiobjective evolutionary algorithm. In [11], predator–prey
model from animal behavior has been used to approximate the
shape of the Pareto-optimal set of multiobjective optimization
problems.

In this paper, inspired by animal behavior, especially animal
searching (foraging) behavior, we propose a novel optimiza-
tion algorithm, called group search optimizer (GSO), primar-
ily for continuous optimization problems. Animal searching
behavior may be described as an active movement by which
an animal finds or attempts to find resources such as food,
mates, oviposition, or nesting sites [12], and it is perhaps the
most important kind of behavior in which an animal engages.
The ultimate success of an animal’s searching depends on
[12] 1) the strategies it uses in relationship to the availability
of resources and their spatial and temporal distributions in
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the environment; 2) its efficiency in locating resources; and
3) the ability of a species to adapt to long-term or even short-
term environmental changes and the ability of an individual to
respond. Shaped by natural selection, the searching strategies
of all living animals are sufficient enough to survive in
nature [13]. For example, an animal can move in a way
that optimizes its chances of locating sparse randomly located
resources [14].

In animal behavioral ecology, group living, which is a
widespread phenomenon in the animal kingdom, has been
studied intensively. One consequence of living together is
that group searching allows group members to increase patch
finding rates as well as to reduce the variance of search
success [15]. This has usually led to the adoption of two
foraging strategies within groups: 1) producing, e.g., searching
for food; and 2) joining (scrounging), e.g., joining resources
uncovered by others. The latter has also been referred to as
conspecific attraction, kleptoparasitism, etc. [16]. Joining is
an ubiquitous trait found in most social animals such as
birds, fish, spiders, and lions. Individuals in a group that
are successful at searching for resources provide resources
at their expense to less successful individuals [17]. In order
to analyze the optimal policy for joining, two models have
been proposed: information sharing (IS) [18] and producer–
scrounger (PS) [2]. The IS model assumes that foragers search
concurrently for their own resource while searching for oppor-
tunities to join. On the other hand, foragers in the PS model
are assumed to use producing or joining strategies exclusively.
Recent studies suggest that, at least for the joining policy of
ground-feeding birds, the PS model is more plausible than IS
model [17].

Optimization, which is a process of seeking optima in a
search space, is analogous to the resource searching process
of animals in nature. The GSO proposed in this paper is a
population-based optimization algorithm which employs PS
model as a framework. Under this framework, concepts and
strategies of resource searching from animal searching behav-
ior is adopted metaphorically for designing optimum searching
strategies. General animal scanning mechanisms (e.g., vision)
are employed for producers. Scrounging strategies [2] of house
sparrows (Passer domesticus) are used in the GSO algorithm.
Besides the producers and scroungers, some group members
are dispersed from a group to perform random walks to avoid
entrapments in local minima.

A preliminary version of the GSO algorithm was presented
in [19], in which we only studied four benchmark functions. In
order to evaluate the performance of the GSO algorithm com-
prehensively, intensive studies based on a set of 23 benchmark
functions are presented in this paper. For comparison purposes,
we also executed GA and PSO on these functions. We also
adopted the published results of EP, ES, and their improved
variants, namely, fast EP (FEP) [20], fast ES (FES) [21], for
comparison. Experimental results show that, compared with
the other algorithms, GSO has better search performance for
multimodal functions, while maintaining similar performance
for unimodal functions.

The 23 benchmark functions used in our experiments have
been widely employed by other researchers to evaluate EAs

[21], [20]. However, their dimensions are small (up to 30)
compared with real-world optimization problems which usu-
ally involve hundreds even thousands of variables. In order
to further investigate whether GSO can be scaled up to
handle large-scale optimization problems, we tested our GSO
algorithm on six multimodal benchmark functions (e.g., f8 to
f13 studied in this paper) in 300 dimensions. The results are
encouraging: GSO generated results as good as those in the
30-dimensional cases, while other algorithms yielded poorer
results or even failed to converge.

Recognizing the fact that, for an optimization algorithm,
good performance in benchmark functions does not necessarily
guarantee good performance in real-world problems, we have
also applied GSO to train artificial neural networks (ANNs)
to solve three real-world classification problems. The results
are promising: the results produced by GSO-based ANNs
achieved better results than not only other evolutionary ANNs
but also some newly proposed sophisticated machine learning
algorithms such as ANN ensembles.

In the rest of the paper, we will first introduce GSO and
the details of its implementation in Section II. Then we will
present the experimental studies of the proposed GSO in
Section III and its application to ANN training in Section IV.
The proposed GSO is a new paradigm of swarm intelligence.
However, as a population-based algorithm, GSO does share
some similarities with other algorithms such as PSO and GAs.
Therefore, in Section IV, we will discuss the differences and
similarities between GSO and ACO, PSO, and other EAs .
The paper is concluded in Section VI.

II. GROUP SEARCH OPTIMIZER

The population of the GSO algorithm is called a group and
each individual in the population is called a member. In an n-
dimensional search space, the i th member at the kth searching
bout (iteration) has a current position Xk

i ∈ R
n , a head angle

ϕϕϕk
i = (ϕk

i1
, . . . , ϕk

i(n−1)
) ∈ R

n−1. The search direction of the

i th member, which is a unit vector Dk
i (ϕϕϕ

k
i ) = (dk

i1
, . . . , dk

in
) ∈

R
n that can be calculated from ϕϕϕk

i via a polar to Cartesian
coordinate transformation [22]

dk
i1

=
n−1∏
q=1

cos(ϕk
iq

)

dk
i j

= sin(ϕk
i( j−1)

) ·
n−1∏
q= j

cos(ϕk
iq

) ( j = 2, . . . , n − 1)

dk
in

= sin(ϕk
i(n−1)

). (1)

For example, in a 3-D search space, if at the kth search-
ing bout, the i th member’s head angle is ϕϕϕk

i = (π/3, π/4),
using (1) we can obtain the search direction unit vector
Dk

i = (1/2,
√

6/4,
√

2/2).
In GSO, a group consists of three types of members:

producers and scroungers whose behaviors are based on the
PS model; and dispersed members who perform random walk
motions. For convenience of computation, we simplify the PS
model by assuming that there is only one producer at each
searching bout and the remaining members are scroungers
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and dispersed members. The simplest joining policy, which
assumes all scroungers will join the resource found by the
producer, is used. In optimization problems, unknown optima
can be regarded as open patches randomly distributed in a
search space. Group members therefore search for the patches
by moving over the search space [23]. It is also assumed that
the producer and the scroungers do not differ in their relevant
phenotypic characteristics. Therefore, they can switch between
the two roles [2], [23].

At each iteration, a group member, which is located in the
most promising area and conferring the best fitness value, is
chosen as the producer. It then stops and scans the environment
to seek resources (optima). Scanning is an important
component of search orientation; it is a set of mechanisms
by which animals move sensory receptors and sometimes
their bodies or appendages so as to capture information
from the environment [12]. Scanning can be accomplished
through physical contact or by visual, chemical, or auditory
mechanisms. In the GSO, vision, which is the main scanning
mechanism used by many animal species, is employed by the
producer. To perform visual searches, many animals encode
a large field of view with retinas having variable spatial
resolution, and then use high-speed eye movements to direct
the highest resolution region toward potential target locations
[24], [25]. Good scanning performance is essential for sur-
vival. Najemnik and Geisler [26] showed humans use almost
optimal scanning strategies for selecting fixation locations in
visual search. In our GSO algorithm, basic scanning strategies
introduced by white crappie (Pomoxis annularis) [27] is
employed. In [27], they found that the scanning field of
white crappie might be a series wedges or cones, which were
characterized by maximum pursuit angle, maximum pursuit
distance, and maximum pursuit height. The apex of each
cone is the point at which the fish stops and scans for prey. In
our algorithm, the scanning field of vision is simplified and
generalized to an n-dimensional space, which is characterized
by maximum pursuit angle θmax ∈ R

1 and maximum pursuit
distance lmax ∈ R

1 as illustrated in a 3-D space in Fig. 1. The
apex is the position of the producer. In the GSO algorithm,
at the kth iteration the producer Xp behaves as follows.

1) The producer will scan at zero degree and then scan lat-
erally by randomly sampling three points in the scanning
field [27]: one point at zero degree

Xz = Xk
p + r1lmaxDk

p(ϕϕϕ
k) (2)

one point in the right hand side hypercube

Xr = Xk
p + r1lmaxDk

p(ϕϕϕ
k + r2θmax/2) (3)

and one point in the left hand side hypercube

Xl = Xk
p + r1lmaxDk

p(ϕϕϕ
k − r2θmax/2) (4)

where r1 ∈ R
1 is a normally distributed random number

with mean 0 and standard deviation 1 and r2 ∈ R
n−1

is a uniformly distributed random sequence in the range
(0, 1).

2) The producer will then find the best point with the best
resource (fitness value). If the best point has a better

Maximum pursuit angle θmax

Maximum pursuit angle θmax

Maximum persuit distance lmax

(Forward directed)

0°

Fig. 1. Scanning field in 3-D space [12].

resource than its current position, then it will fly to this
point. Or it will stay in its current position and turn its
head to a new randomly generated angle

ϕϕϕk+1 = ϕϕϕk + r2αmax (5)

where αmax ∈ R
1 is the maximum turning angle.

3) If the producer cannot find a better area after a iterations,
it will turn its head back to zero degree

ϕϕϕk+a = ϕϕϕk (6)

where a ∈ R
1 is a constant.

During each searching bout, a number of group members
are selected as scroungers. The scroungers will keep searching
for opportunities to join the resources found by the producer.
In their seminal paper on the PS model [2], Barnard and
Sibly observed the following basic scrounging strategies in
house sparrows (Passer domesticus). 1) Area copying: moving
across to search in the immediate area around the producer; 2)
Following: following another animal around without exhibiting
any searching behavior; and 3) Snatching: taking a resource
directly from the producer. In the GSO algorithm, only area
copying, which is the commonest scrounging behavior in
sparrows, is adopted. At the kth iteration, the area copying
behavior of the i th scrounger can be modeled as a random
walk toward the producer

Xk+1
i = Xk

i + r3 ◦ (Xk
p − Xk

i ) (7)

where r3 ∈ R
n is a uniform random sequence in the range

(0, 1). Operator “◦” is the Hadamard product or the Schur
product, which calculates the entrywise product of the two vec-
tors. During scrounging, the i th scrounger will keep searching
for other opportunities to join [2]. We modeled this behavior
by turning the i th scrounger’s head to a new randomly
generated angle using (5).

The typical paths of scroungers are illustrated in Fig. 2. It
is worth mentioning that in this figure we artificially placed
the producer in the global minimum, therefore, all scroungers
performed area copying to move toward the producer and
finally converged to the global minimum. In a search process
of GSO, if a scrounger (or a ranger which will be introduced
in the following paragraphs) finds a better location than the
current producer and other scroungers, in the next searching
bout it will switch to be a producer and all the other mem-
bers, including the producer in the previous searching bout,
will perform scrounging strategies. This switching mechanism
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Fig. 2. Paths of five scroungers moving toward the producer (in the center,
the global minimum) in five iterations.

helps the group to escape from local minima in the earlier
search bouts.

The rest of the group members will be dispersed from their
current positions. In nature, group members often have dif-
ferent searching and competitive abilities; subordinates, who
are less efficient foragers than the dominant, will be dispersed
from the group [28], [29]. Various forms of dispersions are
observed, which range from simple insects to human being
[30]. Dispersed animals may adopt ranging behavior to explore
and colonize new habitats. Ranging is an initial phase of a
search that starts without cues leading to a specific resource
[31]. In the GSO algorithm, if the i th group member is
dispersed, it will perform ranging. We call this disperse mem-
bers rangers. In nature, ranging animals perform searching
strategies, which include random walks and systematic search
strategies to locate resources efficiently [32]. Random walks,
which are thought to be the most efficient searching method
for randomly distributed resources [14], are employed by the
rangers. At the kth iteration, it generates a random head angle
ϕϕϕi using (5); and then it chooses a random distance

li = a · r1lmax (8)

and move to the new point

Xk+1
i = Xk

i + li Dk
i (ϕϕϕ

k+1). (9)

To maximize their chances of finding resources, animals use
several strategies to restrict their search to a profitable patch.
One important strategy is turning back into a patch when its
edge is detected [33]. This strategy is employed by GSO to
handle the bounded search space: when a member is outside
the search space, it will turn back into the search space by
setting the variables that violated bounds to its previous values.
The flowchart of the GSO algorithm is presented in Fig. 3. The
pseudocode for the GSO algorithm is listed in Table I.

III. SIMULATION RESULTS

A. Test Functions

According to the No Free Lunch theorem, “for any algo-
rithm, any elevated performance over one class of problems

Terminate

Termination Criterion
Satisfied?

No

Yes

Evaluate members

Dispersed the rest members to perform
ranging

Scroungers perform scrounging

Choose scroungers

The producer performs producing

Choose a member as producer

Generate and evaluate initial members

Fig. 3. Flowchart of the GSO algorithm.

is exactly paid for in performance over another class” [34].
To fully evaluate the performance of the GSO algorithm
without a biased conclusion toward some chosen problems, we
employed a large set of standard benchmark functions which
are given in Table II. The set of 23 benchmark functions can
be grouped into unimodal functions ( f1 to f7), multimodal
functions ( f8 to f13), and low-dimensional multimodal func-
tions ( f14 to f23). Although this set of benchmark functions
have been widely adopted by other researchers [20], their
dimensions are chosen relatively small (up to 30) compared
to those of real-world optimization problems. It is our interest
to investigate whether our GSO algorithm can be scaled
up to handle large-scale optimization problems. Therefore,
multimodal functions f8 to f13, for which the number of
their local minima increases exponentially with respect to
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TABLE I

PSEUDOCODE FOR THE GSO ALGORITHM

Set k := 0;
Randomly initialize positions Xi and head angles ϕϕϕi of all members;
Calculate the fitness values of initial members: f (Xi );
WHILE (the termination conditions are not met)

FOR (each members i in the group)
Choose producer: Find the producer Xp of the group;
Perform producing: 1) The producer will scan at zero degree and then scan laterally by randomly

sampling three points in the scanning field using (2) to (4).
2) Find the best point with the best resource (fitness value). If the best point
has a better resource than its current position, then it will fly to this point.
Otherwise it will stay in its current position and turn its head to a new angle
using (5).
3) If the producer can not find a better area after a iterations, it will turn its
head back to zero degree using (6);

Perform scrounging: Randomly select 80% from the rest members to perform scrounging;
Perform dispersion: For the rest members, they will be dispersed from their current position to

perform ranging: 1). Generate a random head angle using (5); and 2). Choose
a random distance li from the Gauss distribution using (8) and move to the
new point using (9);

Calculate fitness: Calculate the fitness value of current member: f (Xi );
END FOR
Set k := k + 1;

END WHILE

the increase of dimension, are selected and extended to 300
dimensions as listed in Table III.

B. Experimental Setting

The parameter setting of the GSO algorithm is summa-
rized as follows. The initial population of GSO is generated
uniformly at random in the search space. The initial head
angle ϕϕϕ0 of each individual is set to be (π/4, . . . , π/4).
The constant a is given by round(

√
n + 1) where n is the

dimension of the search space. The maximum pursuit angle
θmax is π/a2. The maximum turning angle αmax is set to be
θmax/2. The maximum pursuit distance lmax is calculated from
the following equation:

lmax = ‖ U − L ‖ =
√√√√ n∑

i=1

(Ui − Li )2

where Li and Ui are the lower and upper bounds for the i th
dimension.

The most important control parameter that affects the search
performance of GSO is the percentage of rangers; our recom-
mended percentage is 20%, which was used throughout all
our experiments. Because the producer requires three function
evaluations, the population size of the GSO algorithm was set
to be 48 in order to keep the number of function evaluations
the same as other algorithms in a generation.

We compared the performance of GSO with that of four
different EAs:

1) genetic algorithm (GA) [35];
2) evolutionary programming (EP) [36], [37];
3) evolution strategies (ES) [38];
4) particle swarm optimization (PSO) [39].
Since there are no ES and EP toolboxes available pub-

licly, we adopted the test results of f1– f23 from [20] and

[21] directly for comparison. In their studies, Yao and Liu
proposed FEP and FES which replace Guassian mutations
of conventional EP (CEP) and conventional ES (CES) with
Cauchy mutations. We also employed the publicly available
GA and PSO toolboxes in order to compare their accuracy and
convergence rate with the GSO algorithm. The GA toolbox we
used in our experiments was the genetic algorithm optimiza-
tion toolbox (GAOT) [40]. The GA algorithm we executed
was real-coded with heuristic crossover and uniform mutation.
The selection function we used was normalized geometric
ranking [40]. The population of the GA was 50. All the control
parameters, e.g., mutation rate and crossover rate, etc., were
set to be default as recommended in [40]. We also employed
PSOt—a particle swarm optimization toolbox for MATLAB
[41], which includes a standard PSO algorithm and several
variants. The PSO algorithm we executed is the standard one.
The parameters were given by default setting of the toolbox:
the acceleration factors c1 and c2 were both 2.0 and a decaying
inertia weight ω starting at 0.9 and ending at 0.4 was used.
The population of 50 was used in the PSO algorithm.

For the 300-dimensional cases, since there are very few
results published at present, besides GAOT and PSOt we also
implemented EP and ES for comparison. The implementation
of EP was based on the algorithm described in [37] and [42].
The population size and the tournament size for selection
were 100 and 10, respectively. The initial standard deviation
of the EP algorithm was 3.0. The ES algorithm used in our
experiments is a state-of-the-art (μ, λ)-ES algorithm which
was implemented according to [38]. The population μ was
set to at 30, and the offspring number λ was 200. A standard
deviation of 3.0 was adopted. Global intermediate recombina-
tion [43] was also employed in the ES algorithm.

One thousand independent runs of the GSO algorithm,
GA, and PSO were executed on 30-dimensional benchmark
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TABLE II

TWENTY THREE BENCHMARK FUNCTIONS, WHERE n IS THE DIMENSION OF THE FUNCTION, AND fmin

IS THE GLOBAL MINIMUM VALUE OF THE FUNCTION

Test function n S fmin

f1(x)= ∑n
i=1 x2

i 30 [−100, 100]n 0
f2(x)= ∑n

i=1 |xi | + ∏n
i=1 |xi | 30 [−10, 10]n 0

f3(x)= ∑n
i=1

(∑i
j=1 x j

)2
30 [−100, 100]n 0

f4(x)= maxi {|xi |, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x)= ∑n−1
i=1 (100(xi+1 − x2

i )2 + (xi − 1))2 30 [−30, 30]n 0
f6(x)= ∑n

i=1(�xi + 0.5�)2 30 [−100, 100]n 0
f7(x)= ∑n

i=1 i x4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x)= −∑n
i=1

(
xi sin

(√|xi |
))

30 [−500, 500]n −12569.5
f9(x)= ∑n

i=1(x2
i − 10 cos(2πxi ) + 10)2 30 [−5.12, 5.12]n 0

f10(x)= −20 exp

(
−0.2

√
1
n

∑n
i=1 x2

i

)
− exp

(
1
n

∑n
i=1 cos 2πxi

)
30 [−32, 32]n 0

+ 20 + e

f11(x)= 1
4000

∑30
i=1(xi − 100)2 − ∏n

i=1 cos
(

xi −100√
i

)
+ 1 30 [−600, 600]n 0

f12(x)= π
n

{
10 sin2(πy1) + ∑29

i=1(yi − 1)2[1 + 10 sin2(πyi+1)] 30 [−50, 50]n 0

+ (yn − 1)2
}

+ ∑30
i=1 u(xi , 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

u(xi , a, k, m) =

⎧⎪⎨
⎪⎩

k(xi − a)m , xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m , xi < −a

f13(x)= 0.1
{

sin2(π3x1) + ∑29
i=1(xi − 1)2[1 + sin2(3πxi+1)] 30 [−50, 50]n 0

+ (xn − 1)2[1 + sin2(2πx30)]
}

+ ∑30
i=1 u(xi , 5, 100, 4)

f14(x)=
[

1
500 + ∑25

j=1
1

j+∑2
i=1(xi −ai j )

6

]−1
2 [−65.536, 65.536]n 1

f15(x)= ∑11
i=1

[
ai − x1(b2

i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5]n 0.0003075

f16(x)= 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316285

f17(x)=
(

x2 − 5.1
4π2 x2

1 + 5
π x1 − 6

)2 + 10
(

1 − 1
8π

)
cos x1 + 10 2 [−5, 10] × [0, 15] 0.398

f18(x)= [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 2 [−2, 2]n 3

+ 6x1x2 + 3x2
2 )] × [30 + (2x + 1 − 3x2)2(18 − 32x1

+ 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )]

f19(x)= −∑4
i=1 ci exp

[
−∑4

j=1 ai j (x j − pi j )
2
]

3 [0, 1]n −3.86

f20(x)= −∑4
i=1 ci exp

[
−∑6

j=1 ai j (x j − pi j )
2
]

6 [0, 1]n −3.32

f21(x)= −∑5
i=1[(x − ai )(x − ai )

T + ci ]−1 4 [0, 10]n −10

f22(x)= −∑7
i=1[(x − ai )(x − ai )

T + ci ]−1 4 [0, 10]n −10

f23(x)= −∑10
i=1[(x − ai )(x − ai )

T + ci ]−1 4 [0, 10]n -10

TABLE III

SIX 300-DIMENSIONAL MULTIMODAL BENCHMARK FUNCTIONS, WHERE

n IS THE DIMENSION OF THE FUNCTION, S IS THE FEASIBLE SEARCH

SPACE, AND fmin IS THE GLOBAL MINIMUM VALUE OF THE FUNCTION

Test function n S fmin

f8(x)300 300 [−500, 500]n −125694.7
f9(x)300 300 [−5.12, 5.12]n 0
f10(x)300 300 [−32, 32]n 0
f11(x)300 300 [−600, 600]n 0
f12(x)300 300 [−50, 50]n 0
f13(x)300 300 [−50, 50]n 0

functions f1– f13. The reason for using 1000 runs is that for
some benchmark functions, e.g., f10, a small number of runs,
e.g., 50 runs, was not enough to get convergent standard
deviations, which will lead to an unsustainable conclusion

on the algorithms’ true performance. For low-dimensional
functions f14– f23, 50 runs were executed. Following the stop
criterion in [20] and [21], we tabulated the numbers of function
evaluations for the 23 benchmark functions in Table IV. It can
be seen from the table that the number of function evaluations
are less than or equal to those of [20] and [21]. For 300-
dimensional benchmark functions, five independent runs of the
GSO algorithm and the other four algorithms were executed
to obtain average results. The maximum number of function
evaluations for the six 300-dimensional benchmark functions
were set to be 3 750 000 for GSO and the other four algorithms.

The experiment included an average test on all the algo-
rithms for each benchmark function. In order to further assess
the performance of the GSO algorithm in a stochastic search
process with a consideration of randomly distributed initial
populations, a set of two-tailed t-tests were adopted [20],
[44]. The t-test assesses whether the means of two groups of
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TABLE IV

NUMBER OF FUNCTION EVALUATIONS FOR FUNCTION f1– f23

Function GSO/GA/PSO CEP/FEP and CES/FES Function GSO/GA/PSO CEP/FEP and CES/FES

f1 1 50 000 1 50 000 f13 1 50 000 1 50 000
f2 1 50 000 2 00 000 f14 7500 10000
f3 2 50 000 5 00 000 f15 2 50 000 4 00 000
f4 1 50 000 5 00 000 f16 1250 10 000
f5 1 50 000 2 000 000 f17 5000 10 000
f6 1 50 000 1 50 000 f18 10 000 10 000
f7 1 50 000 3 00 000 f19 4000 10 000
f8 1 50 000 9 00 000 f20 7500 20 000
f9 2 50 000 5 00 000 f21 10 000 10 000
f10 1 50 000 1 50 000 f22 10 000 10 000
f11 1 50 000 2 00 000 f23 10 000 10 000
f12 1 50 000 1 50 000

TABLE V

COMPARISON OF GSO WITH GA AND PSO ON BENCHMARK FUNCTIONS f1– f7. ALL RESULTS HAVE BEEN AVERAGED OVER 1000 RUNS

Function Algorithms Mean Std. t-test CPU

GA 3.1711 1.6621 −60.33† 12.5
f1 PSO 3.6927 × 10−37 2.4598 × 10−36 5.29† 36.3

GSO 1.9481 × 10−8 1.1629 × 10−8 N/A 27.6

GA 0.5771 0.1306 −139.70† 13.1
f2 PSO 2.9168 × 10−24 1.1362 × 10−23 13.59† 38.5

GSO 3.7039 × 10−5 8.6185 × 10−5 N/A 29.0

GA 9749.9145 2594.9593 −118.74† 12.8
f3 PSO 1.1979 × 10−3 2.1109 × 10−3 49.66† 36.4

GSO 5.7829 3.6813 N/A 24.5

GA 7.9610 1.5063 −164.94† 12.1
f4 PSO 0.4123 0.2500 −37.93† 36.7

GSO 0.1078 3.9981 × 10−2 N/A 27.4

GA 338.5616 361.497 −25.18† 11.3
f5 PSO 37.3582 32.1436 8.85† 37.6

GSO 49.8359 30.1771 N/A 27.8

GA 3.6970 1.9517 −59.49† 12.3
f6 PSO 0.1460 0.4182 −9.45† 38.9

GSO 1.6000 × 10−2 0.1333 N/A 27.1

GA 0.1045 3.6217 × 10−2 −9.83† 12.2
f7 PSO 9.9024 × 10−3 3.5380 × 10−2 21.79† 41.4

GSO 7.3773 × 10−2 9.2557 × 10−2 N/A 31.4

results are statistically different from each other, for which the
statistical difference of the experimental results between the
GSO algorithm and GA and PSO were measured. In this case,
a critical value tcrit was set up to be ±1.96 and the level of
significance was placed as α = 0.05 for a benchmark function,
with 1998 degrees of freedom at this level. This means if
|t | > 1.96 the difference between the two means of the two
tests is statistically significant.

The experiments were carried out on a PC with a 1.80-GHz
Intel Processor and 1.0-GB RAM. All the programmes were
written and executed in MATLAB 6.5. The operating system
was Microsoft Windows XP.

C. Unimodal Functions

It is worth mentioning that unimodal problems can be solved
efficiently by many deterministic optimization algorithms that

use gradient information. However, unimodal functions have
been adopted to assess the convergence rates of EAs [21]. We
tested the GSO on a set of unimodal functions in comparison
with the other two algorithms. Table V lists the the mean
and standard deviations of the function values found in 1000
runs, t-test values between these algorithms, and the average
CPU time in seconds (denoted as CPU in the table) for each
algorithm on unimodal functions f1– f7. The results generated
from CEP, FEP, CES, and FES are tabulated in Table VI in
comparison with the results generated by our GSO algorithm.

Table V shows that the GSO generated significantly better
results than GA on all the unimodal functions f1– f7. From
the comparisons between GSO and the PSO, we can see
that, GSO had significantly better performance on f4 and f6.
However, the GSO algorithm yielded statistically the worst
results on the rest benchmark functions compared to PSO.
In summary, the search performance of the three algorithms
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TABLE VI

COMPARISON AMONG GSO WITH CEP, FEP, CES, AND FES ON BENCHMARK FUNCTIONS f1– f7

Mean function value (Rank)
(Standard deviation)

Function GSO FEP CEP FES CES

f1 1.9481 × 10−8 (1) 5.7 × 10−4 (5) 2.2 × 10−4 (3) 2.5 × 10−4 (4) 3.4 × 10−5 (2)
(1.1629 × 10−8) (1.3 × 10−4) (5.9 × 10−4) (6.8 × 10−4) (8.6 × 10−6)

f2 3.7039 × 10−5 (1) 8.1 × 10−3 (3) 2.6 × 10−3 (2) 6.0 × 10−2 (5) 2.1 × 10−2 (4)
(8.6185 × 10−5) (7.7 × 10−4) (1.7 × 10−4) (9.6 × 10−3) (2.2 × 10−3)

f3 5.7829 (5) 1.6 × 10−2 (3) 5.0 × 10−2 (4) 1.4 × 10−3 (2) 1.3 × 10−4 (1)
(3.6813) (1.4 × 10−2) (6.6 × 10−2) (5.3 × 10−4) (8.5 × 10−5)

f4 0.1078 (2) 0.3 (3) 2.0 (5) 5.5 × 10−3 (1) 0.35 (4)
(3.9981 × 10−2) (0.5) (1.2) (6.5 × 10−4) (0.42)

f5 49.8359 (5) 5.06 (1) 6.17 (2) 33.28 (4) 6.69 (3)
(30.1771) (5.87) (13.61) (43.13) (14.45)

f6 1.6000 × 10−2 (3) 0 (1) 577.76 (5) 0 (1) 411.16 (4)
(0.1333 ) (0) (1125.76) (0) (695.35)

f7 7.3773 × 10−2 (5) 7.6 × 10−3 (1) 1.8 × 10−2 (3) 1.2 × 10−2 (2) 3.0 × 10−2 (4)
(9.2557 × 10−2) (2.6 × 10−3) (6.4 × 10−3) (5.8 × 10−3) (1.5 × 10−2)

Average rank 3.14 2.42 3.43 2.71 3.14

Final rank 3 1 5 2 3

TABLE VII

COMPARISON OF GSO WITH GA AND PSO ON BENCHMARK FUNCTIONS f8– f13. ALL RESULTS HAVE BEEN AVERAGED OVER 1000 RUNS

Function Algorithms Mean Std. t-test CPU

GA −12566.0977 2.1088 −50.85† 16.2
f8 PSO −9659.6993 463.7825 −198.40† 43.0

GSO −12569.4882 2.2140 × 10−2 N/A 32.7

GA 0.6509 0.3594 8.8042† 17.4
f9 PSO 20.7863 5.9400 −81.62† 71.4

GSO 1.0179 0.9509 N/A 50.1

GA 0.8678 0.2805 −97.81† 19.3
f10 PSO 1.3404 × 10−3 4.2388 × 10−2 −0.97 44.1

GSO 2.6548 × 10−5 3.0820 × 10−5 N/A 34.4

GA 1.0038 6.7545 × 10−2 −4.13† 16.1
f11 PSO 0.2323 0.4434 −14.37† 45.4

GSO 3.0792 × 10−2 3.0867 × 10−2 N/A 35.9

GA 4.3572 × 10−2 5.0579 × 10−2 −19.26† 23.2
f12 PSO 3.9503 × 10−2 9.1424 × 10−2 −13.66† 44.8

GSO 2.7648 × 10−11 9.1674 × 10−11 N/A 34.4

GA 0.1681 7.0681 × 10−2 −53.18† 22.6
f13 PSO 5.0519 × 10−2 0.5691 −2.80† 45.5

GSO 4.6948 × 10−5 7.001 × 10−4 N/A 35.6

tested here can be ordered as PSO > GSO > GA. From this
table, we can also find that the average CPU time required for
GA is less than those of GSO and PSO.

It can be found from Table VI that GSO was ranked the third
and was outperformed by FEP and FES. However, according
to Table IV, GSO required much fewer function evaluations
than the other four algorithms.

D. Multimodal Functions

1) Multimodal Functions With Many Local Minima: This
set of benchmark functions ( f8– f13) are regarded as the
most difficult functions to optimize since the number of local
minima increases exponentially as the function dimension
increases [45]. The experimental results from 1000 runs,

e.g., mean and standard deviations of the function values,
t-test values, and average CPU time in seconds, are listed in
Table VII. Results adopted from [20] and [21] are tabulated in
Table VIII in comparison with the results produced by GSO.

From Table VII, it is clear to see that for three of the tested
benchmark functions, GSO markedly outperformed GA and
PSO. For example, on function f8, GSO found the global
minimum almost every run, while the other four algorithms
generated poorer results in this case. GSO generated significant
better results than those of PSO on most functions. The only
exception is the Rastrigin function ( f11). GA outperformed
GSO statistically.

From our experiments, we also found that for functions f12
and f13 the best results found by the PSO are better than
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TABLE VIII

COMPARISON OF GSO WITH CEP, FEP, CES AND FES ON BENCHMARK FUNCTIONS f8– f13

Mean function value (Rank)
(Standard deviation)

Function GSO FEP CEP FES CES

f8 −12569.4882 (1) −12554.5 (3) −7917.1 (4) −12556.4 (2) −7549.9 (5)
(2.2140 × 10−2) (52.6) (634.5) (32.53) (631.39)

f9 1.0179 (3) 4.6 × 10−2 (1) 89.0 (5) 0.16 (2) 70.82 (4)
(0.9509) (1.2 × 10−2) (23.1) (0.33) (21.49)

f10 2.6548 × 10−5 (1) 1.8 × 10−2 (3) 9.2 (5) 1.2 × 10−2 (2) 9.07 (4)
(3.0820 × 10−5) (2.1 × 10−2) (2.8) (1.8 × 10−3) (2.84)

f11 3.1283 × 10−2 (2) 1.6 × 10−2 (1) 8.6 × 10−2 (4) 3.7 × 10−2 (3) 0.38 (5)
(2.87567 × 10−2) (2.2 × 10−2) (0.12) (5.0 × 10−2) (0.77)

f12 2.7648 × 10−11 (1) 9.2 × 10−6 (2) 1.76 (5) 2.8 × 10−2 (3) 1.18 (4)
(9.1674 × 10−11) (6.1395 × 10−5) (2.4) (8.1 × 10−11) (1.87)

f13 4.6948 × 10−5 (1) 1.6 × 10−4 (3) 1.4 (5) 4.7 × 10−5 (2) 1.39 (4)
(7.001 × 10−4) (7.3 × 10−5) (3.7) (1.5 × 10−5) (3.33)

Average rank 1.5 2.17 4.67 2.22 4.33

Final rank 1 2 5 3 4

those found by the GSO in terms of accuracy and conver-
gence speed. However, the average results and the standard
deviations generated by PSO indicate that PSO is more likely
to be trapped by poor local minima, and therefore it leads
to inconsistent search performance on these two functions. It
can be concluded from Table VII that the order of the search
performance of these three algorithms is GSO > GA > PSO.
From the table, it can be seen that the GSO algorithm requires
less CPU time than PSO but more CPU time than GA.

It can be found from Table VIII that, in comparison with
CEP, FEP, CES and FES, GSO has the best performance
(Rank 1) with less function evaluations. It can also be found
from Table VIII that, for four out of six functions, GSO
generated better results than the other four algorithms. The two
exceptions are the Rastrigin ( f9) and Griewank ( f11) functions.
GSO was outperformed by FEP and FES on the Rastrigin
function and by FEP on the Griewank function.

2) Multimodal Functions With a Few Local Minima: This
set of benchmark functions f14– f23 are multimodal but in low
dimensions (n ≤ 6) and they have only a few local minima.
Compared to the multimodal functions with many local min-
ima ( f8– f13), this set of functions are not challenging: some of
them can even be solved efficiently by deterministic algorithms
[46], [47].

From Table IX, we can see in comparison to GA, GSO
achieved better results on all benchmark functions. Two-
tailed t-test also indicated that for 8 out of 10 benchmark
functions, GSO statistically outperformed GA. For the rest two
benchmark functions ( f14 and f20), no statistically significant
difference can be found between GSO and GA. In comparison
with PSO, it can be seen that GSO has a better performance
on most of the functions except the Shekel’s family functions
( f21– f23) where PSO generated better average results than
those of GSO. From the two-tailed t-test, it can be found that,
statistically, GSO outperformed PSO on functions f16– f20 and
achieved similar results on functions f14, f15, and f21. From
Table IX we can see that the order of the search performance
of these three algorithms is GSO > PSO > GA.

Table X reveals that GSO ranked the first in comparison
with CEP, FEP, CES, and FES. For functions f14– f19, GSO
has the best performance. However, it was outperformed by
the other four algorithms on the Hartman’s Function f20 and
Shekel’s family functions ( f21– f23).

3) 300-Dimensional Multimodal Functions: Many real-
world optimization problems usually involve hundreds or even
thousands of variables. However, previous studies have shown
that although some algorithms generated good results on rel-
atively low-dimensional (n ≤ 30) benchmark problems, they
do not perform satisfactorily for some large-scale problems
[48]. Therefore, in order to assess the scalability of our GSO
algorithm, which is crucial for its applicability to real-world
problems, a set of multimodal benchmark functions ( f8– f13)
were extended to 300 dimensions and used in our experimental
studies as high-dimensional benchmark functions. The results
are presented in Table XI.

From Table XI it can be seen that, in terms of final average
results, GSO markedly outperformed the other algorithms. For
the six problems we tested, the GSO algorithm converged
to good near-optimal solutions. It can also been seen that
although PSO achieved satisfactory results in 30-dimensional
multimodal benchmark problems (see Table VII), it cannot be
scaled up to handle most of the 300-dimensional cases except
f10(x)300.

A limited scale of research scalability of EAs has been
found [48], [49]. In [48], four EP algorithms, namely CEP,
FEP, improved FEP (IFEP) [20], and a mixed EP (MEP)
[48], were studied. The benchmark functions used in their
studies were a unimodal function f1 (Sphere function) and a
multimodal function f10 (Ackley’s function) with dimensions
ranging from 100 to 300. It was found that CEP and FEP failed
to converge on function f10. The average results generated
by IFEP and MEP on function f10 in 300 dimensions were
7.6 × 10−2 and 5.5 × 10−2, respectively, which were both
worse than that generated by our GSO algorithm. Liu and
Yao also improved FEP with cooperative coevolution [49]
by decoupling the whole optimization function to a set of
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TABLE IX

AVERAGE FITNESS VALUES OF BENCHMARK FUNCTIONS f14– f23. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

Function Algorithms Mean Std. t-test CPU

GA 0.9989 4.4333 × 10−3 −1.03 0.9
f14 PSO 1.0239 0.1450 −1.26 1.8

GSO 0.9980 0 N/A 1.5

GA 7.0878 × 10−3 7.8549 × 10−3 −15.33† 15.3
f15 PSO 3.8074 × 10−4 2.5094 × 10−4 −0.08 63.5

GSO 3.7713 × 10−4 2.5973 × 10−4 N/A 36.6

GA −1.0298 3.1314 × 10−3 −3.27† 0.5
f16 PSO −1.0160 1.2786 × 10−2 −8.62† 0.3

GSO −1.031628 0 N/A 0.2

GA 0.4040 1.0385 × 10−2 −4.79† 0.5
f17 PSO 0.4040 6.8805 × 10−2 −6.23† 1.1

GSO 0.3979 0 N/A 0.7

GA 7.5027 10.3978 −25.82† 1.0
f18 PSO 3.0050 1.2117 × 10−3 −3.30† 2.3

GSO 3.0 0 N/A 1.5

GA −3.8624 6.2841 × 10−4 −2.86† 0.3
f19 PSO −3.8582 3.2127 × 10−3 −10.06† 0.9

GSO −3.8628 3.8430 × 10−6 N/A 0.5

GA −3.2627 6.0398 × 10−2 −1.29 0.7
f20 PSO −3.1846 6.1053 × 10−2 −6.70† 1.8

GSO −3.2697 5.9647 × 10−2 N/A 1.0

GA −5.1653 2.9254 −2.32† 1.3
f21 PSO −7.5439 3.0303 0.30 2.5

GSO −6.09 3.4563 N/A 1.7

GA −5.4432 3.2778 −2.18† 1.3
f22 PSO −8.3553 2.0184 3.15† 2.6

GSO −6.5546 3.2443 N/A 1.8

GA −4.9108 3.4871 −2.85† 1.4
f23 PSO −8.9439 1.6304 3.15† 2.8

GSO −7.4022 3.2131 N/A 1.9

coordinates of populations. Eight functions, including four uni-
modal and four multimodal functions were used as benchmark
functions in their studies. The results presented in their paper
were excellent, e.g., the result on 300-dimensional f10 was
3.6×10−4. In this case, it is unfair to compare our current GSO
algorithm with their algorithm without population decoupling.

E. Investigation of the Contributions of the Producers and
Rangers

In Section II, we simplified the PS model by assuming
that there is only one producer in the whole group. In this
section, we will find out the best number of producers for
search performance. Since we were more interested in how
GSO performs on the multimodal functions, we selected four
multimodal functions, namely, f8, f9, f10, and f13. We tested
the GSO algorithm with 0 to 10 producers on the four
benchmark functions for 50 runs. The average results are
tabulated in Table XII. From the table, we can see that for
the four functions, the group that does not contain a producer
performed worse than the groups with producers; and for
f9, f10, and f13, with the number increased from 1 to 10,
the performance of the groups deteriorated. It is more obvious
for function f13; the result decreased from 1.29 × 10−9 to
3.66 × 10−4 when the number of producers increased from 5

to 6. From these results, we can conclude that 1) the fewer
the number of producers, the better the search performance;
and 2) at least for functions f9, f10, and f13 the search
performance of GSO deteriorates as the number of producers
increases.

It is interesting to note that, in nature, many species only
have relatively few informed or experienced group members
playing an important role in guiding the whole group [50]. As
Couzin et. al. suggested “the larger the group, the smaller the
proportion of informed individuals need to guide the group”
and “only a very small proportion of informed individuals is
required to achieve great accuracy” [50]. This provides us an
intuitive explanation for selecting fewer number of producers.

The original PS model consists of only producers and
scroungers. For the optimization purpose, e.g., avoiding
entrapments by local minima, we introduced the rangers. In
this section we will also investigate how these rangers affect
the search performance of the GSO algorithm. We kept other
control parameters, e.g., number of producers, unchanged and
varied the percentage of rangers from 0% to 100% and have
listed the results on the selected benchmark functions in
Table XIII. From the table, we can see that for functions f8 and
f9, the GSO algorithm generated the best results by dispersing
20% of the whole members. However, for functions f10 and
f13, a percentage of 10% rangers was better than 20%. With
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TABLE X

COMPARISON AMONG GSO WITH CEP, FEP, CES AND FES ON BENCHMARK FUNCTIONS f14 ∼ f23

Mean function value (Rank
Standard deviation)

Function GSO FEP CEP FES CES

f14 0.9980 (1) 1.22 (3) 1.66 (4) 1.20 (2) 2.16 (5)
(0) (0.56) (1.19) (0.63) (1.82)

f15 4.1687 × 10−4 (1) 5.0 × 10−4 (2) 4.7 × 10−4 (2) 9.7 × 10−4 (4) 1.2 × 10−3 (5)
(3.1238 × 10−4) (3.2 × 10−4) (3.0 × 10−4) (4.2 × 10−4) (1.6 × 10−5)

f16 −1.031628 (1) −1.03 (2) −1.03 (2) −1.0316 (4) −1.0316 (4)
(0) (4.9 × 10−4) (4.9 × 10−4) (6.0 × 10−7) (6.0 × 10−7)

f17 0.3979 (1) 0.398 (4) 0.398 (4) 0.398 (2) 0.398 (2)
(0) (1.5 × 10−7) (1.5 × 10−7) (6.0 × 10−8) (6.0 × 10−8)

f18 3.0 (1) 3.02 (5) 3.0 (1) 3.0 (1) 3.0 (1)
(0) (0.11) (0) (0) (0)

f19 −3.8628 (1) −3.86 (2) −3.86 (5) −3.86 (4) −3.86 (3)
(3.8430 × 10−6) (1.4 × 10−5) (1.4 × 10−2) (4.0 × 10−3) (1.4 × 10−5)

f20 −3.2697 (3) −3.27 (2) −3.28 (1) −3.23 (5) −3.24 (4)
(5.9647 × 10−2) (5.9 × 10−2) (5.8 × 10−2) (0.12) (5.7 × 10−2)

f21 −6.09 (3) −5.52 (5) −6.86 (2) −5.54 (4) −6.96 (1)
(3.4563) (1.59) (2.67) (1.82) (3.10)

f22 −6.5546 (4) −5.52 (5) −8.27 (2) −6.76 (3) −8.31 (1)
(3.2443) (2.12) (2.95) (3.01) (3.10)

f23 −7.4022 (4) −6.57 (5) −9.10 (1) −7.63 (3) −8.50 (2)
(3.2131) (3.14) (2.92) (3.27) (1.25)

Average rank 2 3.5 2.4 3.2 2.8

Final rank 1 5 2 4 3

TABLE XI

COMPARISON OF GSO WITH GA, PSO, EP, AND ES ON BENCHMARK FUNCTIONS f8(x)300 f13(x)300

Mean function value

Function GSO GA PSO EP ES

f8(x)300 −125351.2 −117275.3 −87449.2 −78311.9 −66531.3
f9(x)300 98.9 121.3 427.1 383.3 583.2
f10(x)300 1.3527 × 10−3 6.24 3.9540 × 10−6 0.2946 9.6243
f11(x)300 1.8239 × 10−7 0.37 1.81 2.8244 × 10−2 0.1583
f12(x)300 8.2582 × 10−8 52.82 14.56 39.3 3093.2
f13(x)300 2.0175 × 10−7 178.34 549.2 738.2 2123.2

the percentage increased, the search performance deteriorated.
From the results, we believe that by setting 20% members as
rangers it is more likely for the algorithm to strike a balance
between exploration and exploitation.

It is also interesting to note that the GSO algorithm per-
formed without rangers (0%) or with all rangers (100%),
i.e., without scroungers, generated similar poor results, which
shows the contributions of the rangers and scroungers to the
search process. We can also see from the table that the effect of
selecting different percentages of rangers on the performance
of GSO is more significant than selecting different numbers
of producers.

F. Investigation of the Effects of Other Control Parameters

Apart from the percentage of rangers, there are several other
control parameters, e.g., the initial head angle ϕϕϕ0, maximum
pursuit angle θmax, maximum turning angle αmax, and maxi-
mum pursuit distance lmax. Usually, these parameters do not

need to be fine-tuned to generate satisfactory results. However,
it is of interest to investigate the effect of these parame-
ters on the search performance. Similar to the experiments
presented in Section III-E, we selected the same four 30-
dimensional multimodal functions, namely, f8, f9, f10, and
f13, to investigate the influence of these parameters on the
search performance.

For maximum pursuit angle θmax, we executed GSO with
the values 4π/ka2 where k = 1, . . . , 16. We have tabulated
the results in Table XIV. From the table, we can see that
the the best performance was achieved at π/a2 for functions
f8 and f9. For functions f10 and f13, the best results were
generated when θmax was set to 2π/3a2 and 5π/4a2, respec-
tively. However, it can be seen from the table that, unlike the
percentage of rangers, the effect of selecting different values of
maximum pursuit angle is not significant on the performance
of GSO for the four tested functions.

In order to investigate the effect of the different values of
maximum turning angle αmax, we set the maximum pursue
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TABLE XII

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10, AND f13 WITH DIFFERENT NUMBERS OF PRODUCERS. ALL

RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

No. of producers Mean Std. Mean Std. Mean Std. Mean Std.

0 −12184.44 367.63 6.83 2.3007 7.59 × 10−2 0.1458 2.65 × 10−3 4.63 × 10−3

1 −12569.48 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

2 −12440.42 684.64 1.02 1.21 2.57 × 10−5 1.42 × 10−5 5.78 × 10−10 1.31 × 10−9

3 −12367.64 1103.94 1.33 1.22 2.66 × 10−5 2.47 × 10−5 9.83 × 10−10 2.29 × 10−9

4 −12569.48 2.81 × 10−2 1.29 1.08 3.44 × 10−5 2.91 × 10−5 1.76 × 10−9 5.37 × 10−9

5 −12561.58 43.24 1.34 0.96 4.88 × 10−5 5.28 × 10−5 1.29 × 10−9 2.16 × 10−9

6 −12569.39 0.37 2.05 1.41 8.02 × 10−5 1.36 × 10−4 3.66 × 10−4 2.00 × 10−3

7 −12565.49 21.61 2.36 1.51 1.57 × 10−4 2.13 × 10−4 3.66 × 10−4 2.00 × 10−3

8 −12565.00 21.62 2.75 1.85 2.40 × 10−4 2.13 × 10−4 3.72 × 10−4 2.16 × 10−3

9 −12568.95 2.57 3.07 1.76 4.58 × 10−4 6.31 × 10−4 7.32 × 10−4 2.79 × 10−3

10 −12568.53 2.98 3.79 1.72 9.15 × 10−4 9.60 × 10−4 1.10 × 10−3 3.35 × 10−3

TABLE XIII

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10, AND f13 WITH DIFFERENT PERCENTAGES OF RANGERS. ALL

RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

% of rangers Mean Std. Mean Std. Mean Std. Mean Std.

0 −7530.56 1334.99 168.67 23.11 14.29 0.92 2437.36 2248.40
10% −12569.47 0.11 1.69 1.21 8.95 × 10−8 2.55 × 10−7 4.84 × 10−14 2.14 × 10−13

20% −12569.48 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

30% −12569.41 0.19 1.46 1.24 1.42 × 10−3 6.42 × 10−4 3.68 × 10−4 2.01 × 10−3

40% −12545.64 70.00 4.59 2.28 2.03 × 10−2 9.53 × 10−3 1.26 × 10−3 3.33 × 10−3

50% −12510.27 112.08 11.25 3.42 0.31 0.29 9.41 × 10−3 6.66 × 10−3

60% −12448.12 124.97 17.04 5.20 1.31 0.54 0.18 9.55 × 10−2

70% −12093.03 408.60 31.79 9.08 2.80 0.32 1.69 0.70
80% −11299.67 598.61 59.65 13.27 4.45 0.70 15.36 12.22
90% −10427.03 627.52 97.99 21.65 6.55 0.66 62.96 20.85
100% −6571.71 768.98 245.02 21.37 17.45 0.86 2248.10 1334.90

TABLE XIV

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10, AND f13 WITH DIFFERENT VALUES OF MAXIMUM PURSUIT

ANGLE θmax. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

θmax Mean Std. Mean Std. Mean Std. Mean Std.

4π/a2 −12429.96 192.52 4.47 1.72 4.23 × 10−4 3.28 × 10−4 5.49 × 10−4 2.45 × 10−3

2π/a2 −12556.68 86.82 1.19 0.82 4.94 × 10−5 6.50 × 10−5 3.79 × 10−9 1.28 × 10−8

4π/3a2 −12569.46 9.19 × 10−3 1.04 0.96 7.65 × 10−6 3.76 × 10−6 1.83 × 10−11 2.10 × 10−11

π/a2 −12569.49 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

5π/4a2 −12563.55 70.00 1.35 0.93 1.07 × 10−5 2.24 × 10−5 1.72 × 10−11 3.51 × 10−11

2π/3a2 −12569.46 3.07 × 10−1 1.79 0.76 4.48 × 10−6 3.67 × 10−6 2.57 × 10−11 7.03 × 10−11

4π/7a2 −12569.48 2.45 × 10−2 2.39 1.74 1.44 × 10−5 1.44 × 10−5 1.48 × 10−5 6.59 × 10−5

π/2a2 −12569.47 1.04 × 10−1 3.08 1.28 1.57 × 10−5 1.54 × 10−5 1.97 × 10−10 3.75 × 10−10

angle to π/a2, which generated the best results, and executed
GSO with the values θmax/k where k = 1, . . . , 8. The
results obtained with different values of αmax on the four
benchmark functions are tabulated in Table XV. It can be
seen from the table that, for functions f8 and f13, θmax/2
generated the best result on all the tested benchmark functions.
For functions f9 and f10, θmax/4 and θmax/3 generated the
best result. From the table, we can see that similar to the
maximum pursuit angle, the influence of selecting different
values of the maximum turning angle is limited on the

search performance of GSO at least for the four benchmark
functions.

We also investigated the effect of the different values of
maximum pursuit distance lmax. By setting θmax = π/a2 and
αmax = θmax/2, we tested GSO with the values of maximum
pursuit distance lmax/k where k = 1/4, 1/2, 1, 2, . . . , 8. The
results are tabulated in Table XVI. It can be seen from the table
that when the maximum pursuit distance was smaller than
lmax, the performance on function f9 deteriorated. However,
the results obtained from all the tested functions are not
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TABLE XV

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10 AND f13 WITH DIFFERENT VALUES OF MAXIMUM TURNING

ANGLE αmax . ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

αmax Mean Std. Mean Std. Mean Std. Mean Std.

θmax −12423.81 282.65 2.25 1.83 6.79 × 10−5 2.92 × 10−5 3.72 × 10−8 1.43 × 10−7

θmax/2 −12569.49 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

θmax/3 −12546.50 101.46 0.85 0.88 1.39 × 10−7 1.62 × 10−7 8.68 × 10−10 7.11 × 10−10

θmax/4 −12569.48 3.70 × 10−2 0.84 0.81 7.78 × 10−6 1.07 × 10−5 7.61 × 10−9 2.09 × 10−8

θmax/5 −12569.40 2.70 × 10−1 1.69 1.21 4.87 × 10−6 6.71 × 10−6 3.97 × 10−10 1.58 × 10−9

θmax/6 −12569.47 6.67 × 10−2 1.84 1.13 8.34 × 10−6 9.83 × 10−6 5.49 × 10−4 2.45 × 10−3

θmax/7 −12569.31 6.81 × 10−1 1.80 0.88 3.02 × 10−5 6.77 × 10−5 2.86 × 10−9 1.01 × 10−8

θmax/8 −12568.98 1.35 3.60 1.48 2.39 × 10−5 2.53 × 10−5 1.74 × 10−7 7.72 × 10−7

TABLE XVI

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10, AND f13 WITH DIFFERENT VALUES OF MAXIMUM PURSUIT

DISTANCE lmax. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

lmax/k Mean Std. Mean Std. Mean Std. Mean Std.

4lmax −12569.32 6.43 × 10−1 2.98 4.67 4.29 × 10−5 4.86 × 10−5 6.62 × 10−12 1.60 × 10−11

2lmax −12568.99 1.41 3.48 4.87 2.05 × 10−5 4.44 × 10−5 3.63 × 10−9 1.60 × 10−8

lmax −12569.49 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

lmax/2 −12569.49 2.23 × 10−3 3.04 2.25 6.62 × 10−5 3.03 × 10−5 2.34 × 10−9 2.85 × 10−9

lmax/3 −12569.49 3.73 × 10−12 4.23 2.14 1.55 × 10−4 9.24 × 10−5 8.80 × 10−9 1.51 × 10−9

lmax/4 −12542.59 190.21 5.98 2.26 2.65 × 10−4 1.83 × 10−4 2.06 × 10−8 1.77 × 10−8

lmax/5 −12569.49 7.35 × 10−12 7.34 2.77 4.55 × 10−4 2.55 × 10−4 4.38 × 10−8 5.51 × 10−8

lmax/6 −12569.49 6.67 × 10−12 9.42 1.48 6.14 × 10−4 5.47 × 10−4 6.72 × 10−8 5.04 × 10−8

lmax/7 −12569.47 7.82 × 10−2 10.61 3.05 9.68 × 10−4 8.12 × 10−4 2.99 × 10−7 6.26 × 10−7

lmax/8 −12420.93 667.22 13.27 3.12 1.20 × 10−3 9.16 × 10−4 3.18 × 10−7 7.50 × 10−7

TABLE XVII

MEAN BEST FITNESS VALUES AND STANDARD DEVIATIONS OF FUNCTIONS f8, f9, f10, AND f13 WITH DIFFERENT VALUES OF INITIAL HEAD ANGLE

ϕϕϕ0. ALL RESULTS HAVE BEEN AVERAGED OVER 50 RUNS

f8(x) f9(x) f10(x) f13(x)

ϕϕϕ0 Mean Std. Mean Std. Mean Std. Mean Std.

π −12287.34 314.90 1.09 1.01 1.57 × 10−4 3.85 × 10−4 4.72 × 10−9 7.56 × 10−9

π/2 −12569.40 2.15 × 10−1 0.60 0.75 8.65 × 10−5 1.57 × 10−5 5.84 × 10−9 9.56 × 10−9

π/3 −12569.49 3.73 × 10−12 1.17 1.36 3.39 × 10−5 2.70 × 10−5 1.65 × 10−9 3.72 × 10−9

π/4 −12569.49 5.92 × 10−3 0.92 0.94 2.04 × 10−5 1.40 × 10−5 2.24 × 10−10 2.25 × 10−10

π/5 −12569.49 1.13 × 10−2 1.39 1.24 3.53 × 10−5 5.72 × 10−5 2.54 × 10−9 7.38 × 10−9

π/6 −12569.49 1.79 × 10−2 1.59 0.99 3.47 × 10−4 5.80 × 10−4 1.01 × 10−9 2.61 × 10−9

π/7 −12569.49 4.47 × 10−3 1.65 1.23 3.14 × 10−4 1.79 × 10−4 5.85 × 10−10 1.24 × 10−9

π/8 −12569.49 4.47 × 10−3 1.24 1.24 3.59 × 10−4 3.43 × 10−4 6.69 × 10−9 2.59 × 10−8

significantly different, which indicates that at least for the
four benchmark functions, the influence of selecting different
values of the maximum pursuit distance on the performance
of GSO is also limited.

The effect of different initial head angles ϕϕϕ0 was also stud-
ied. We tested GSO with the values of initial head angle π/k
where k = 1, . . . , 8. The results are tabulated in Table XVII.
For functions f10 and f13, the best results were generated
when ϕϕϕ0 = π

4 ; and for functions f8 and f9, π/3 and π/3
generated the best results. However, the best results generated
by these values were not significantly better than the GSO with
other values of ϕϕϕ0. Again, we can conclude from the table that
the influence of selecting different values of the initial head
angle is limited on the performance of GSO at least for the
four benchmark functions.

From the investigations above, we can conclude that it
is possible to obtain a more accurate result for a specific
function by fine tuning these four control parameters, e.g.,
ϕϕϕ0, θmax, αmax, and lmax. However, overall the performance
of the GSO algorithm is not sensitive to these parameters,
which shows the robustness of the algorithm. It is interesting
to note that, in nature, social animals search in groups in order
to reduce the variance of search success [15]. This might be
the intuitive explanation behind the robustness of the GSO
algorithm.

IV. APPLICATION OF GSO TO ARTIFICIAL NEURAL

NETWORKS TRAINING

Since we proposed the GSO for continuous function opti-
mization problems, it is quite natural to apply the GSO
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TABLE XVIII

ERROR RATE (%) OF GSOANN AND OTHER ANNS OF THE FISHER IRIS DATASET. THE RESULTS WERE AVERAGED OVER 50 RUNS

Training Set Test Set
Method Mean Std. Min Max Mean Std. Min Max

GSOANN 12.03 1.60 8.63 15.36 3.52 2.27 0.00 8.00
SGAANN 16.24 5.92 7.21 30.23 14.20 8.82 0.00 36.00
EPANN 18.54 6.47 7.69 29.77 12.56 8.42 0.00 32.00
ESANN 14.47 5.25 6.97 27.43 7.08 6.40 0.00 26.00

PSOANN 13.27 5.39 7.38 25.84 10.38 9.36 0.00 32.00
BPANN 12.50 0.90 10.95 14.17 2.92 1.86 0.00 8.00

TABLE XIX

COMPARISON BETWEEN GSOANN AND OTHER APPROACHES IN TERMS OF AVERAGE TESTING ERROR RATE (%) ON THE FISHER IRIS DATASET

Algorithm GSOANN GANet-best [53] SVM-best [54] CCSS [55] OC1-best [56]

Test error rate (%) 3.52 6.40 1.40 4.40 3.70

TABLE XX

ERROR RATE (%) OF GSOANN AND OTHER ANNS OF THE WISCONSIN BREAST CANCER DATASET. THE RESULTS WERE AVERAGED OVER 50 RUNS

Training Set Validation Set Test Set
Method Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

GSOANN 3.35 0.09 3.26 3.56 2.17 0.21 1.93 2.89 0.65 0.25 0.00 1.14
SGAANN 3.88 0.63 3.04 5.63 3.86 1.14 2.59 7.82 1.50 0.72 0.00 2.85
EPANN 3.58 0.63 3.03 6.18 3.30 1.45 1.85 8.99 1.54 1.16 0.57 6.29
ESANN 2.98 0.11 2.73 3.16 2.70 0.39 2.14 3.52 0.95 0.66 0.00 2.86

PSOANN 3.26 0.24 2.92 3.80 2.37 0.43 1.37 3.35 1.24 2.02 0.00 11.43
BPANN 4.26 1.60 3.21 11.89 3.52 2.07 1.97 11.44 1.54 1.42 0.00 6.29

GSO

ANN

Desired Output

ANN OutputInput

Ajust Parameters

Error

Fig. 4. Schematic diagram of GSO-based ANN.

algorithm to ANN weight training. The ANN weight training
process can be regarded as a hard continuous optimization
problem because the search space is high-dimensional and
multimodal and is usually polluted by noises and missing data.
The ANN tuned by our GSO algorithm is a three-layer feed-
forward ANN. The parameters (connection weights and bias
terms) are tuned by our GSO algorithm as shown in Fig. 4.

In order to evaluate the performance of the GSO-trained
ANN (GSOANN), several well-studied machine learning
benchmark problems from the UCI machine learning repos-
itory were tested: Fisher Iris data, Wisconsin breast classi-
fication data, and Pima Indian diabetes data. They are all
real-world problems which are investigated by human experts
in practice. The Fisher Iris data is a standard benchmark and
has been tested by many machine learning algorithms. The last
two datasets contain missing attribute values and are usually

polluted by noise. Therefore, they represent some of the most
challenging problems in machine learning field [51].

For comparison, we also employed an improved gradient-
based training algorithm: scaled conjugate gradient (SCG)
backpropagation [52]; and four EA-based training algorithms,
namely, simple genetic algorithm (SGA) [35] based algorithm;
evolutionary programming (EP) [36], [37] based algorithm;
evolution strategies (ES) [38] based algorithm, and particle
swarm optimizer (PSO) [39] based algorithm. Although the
GSOANN proposed here is relatively simple and, so it is not
fair to compare the results of GSOANN to those of other
sophisticated ANNs, it is of interest to compare the results we
have obtained with the latest papers published in the literature.

A. Experimental Setting

The parameter settings of the GSO algorithm and other
evolutionary algorithms, e.g., PSO, GA, EP, and ES are as
same as those used in Section III-B.

For GSOANN and the other four EAs trained ANNs, the
maximum epoch was set to be 300. We ran the experiments
fifty times to get an average result of each algorithm for each
benchmark problem.

B. Fisher Iris Dataset

The Fisher dataset is the best known benchmark in the
pattern recognition society. It is a multiclass classification
problem which contains three iris species: Setosa, Versicolour,
and Virginica. The dataset contains four attributes of iris
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TABLE XXI

COMPARISON BETWEEN GSOANN AND OTHER APPROACHES IN TERMS OF AVERAGE TESTING ERROR RATE (%) ON THE WISCONSIN BREAST

CANCER DATASET

Algorithm GSOANN GANet-best [53] COOP [58] CNNE [59] EPNet [51]

Test error rate (%) 0.65 1.06 1.23 1.20 1.38

Algorithm MGNN [57] SVM-best [54] CCSS [55] OC1-best [56] EDTs [60]

Test error rate (%) 3.05 3.1 2.72 3.9 2.63

TABLE XXII

ERROR RATE (%) OF GSOANN AND OTHER ANNS OF THE PIMA DIABETES DISEASE DATASET. THE RESULTS WERE AVERAGED OVER 50 RUNS

Training Set Validation Set Test Set
Method Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

GSOANN 16.43 0.21 15.97 16.80 14.82 0.21 14.37 15.21 19.79 0.96 17.19 21.88
SGAANN 17.73 0.96 16.05 20.67 16.48 1.23 14.61 19.44 24.46 3.75 20.31 35.94
EPANN 18.38 1.56 16.28 21.34 17.18 1.87 14.75 20.55 25.75 4.89 18.23 36.46
ESANN 15.85 0.28 15.32 16.37 14.26 0.35 13.34 16.51 20.93 1.76 17.19 25.52

PSOANN 16.25 0.19 15.76 16.77 14.74 0.47 14.20 16.51 20.99 1.47 18.23 23.96
BPANN 19.34 2.20 15.60 23.25 17.38 2.25 13.72 20.99 27.74 6.58 18.23 39.06

TABLE XXIII

COMPARISON BETWEEN GSOANN AND OTHER APPROACHES IN TERMS OF AVERAGE TESTING ERROR RATE (%) ON THE PIMA DIABETES DISEASE

DATASET

Algorithm GSOANN GANet-best [53] COOP [58] CNNE [59] COVNET [61]

Test error rate (%) 19.79 24.70 19.69 19.60 19.90

Algorithm EENCL [62] EPNet [51] SVM-best [54] CCSS [55] OC1-best [56]

Test error rate (%) 22.1 22.38 22.7 24.02 26.0

TABLE XXIV

COMPARISONS BETWEEN GSO, PSO, AND ACO

Feature/Property GSO PSO ACO

Conceptual inspiration Animal social searching behavior Animal swarm behavior (BOID) Ants’ path following behavior

Searching strategies Producing, scrounging and ranging Flocking Following pheromone trails

Memory Producer remember its previous head angle Remember the best position (pbest) Pheromone acts as memory

Information sharing Given out by the producer Given out by the best particle Given out by pheromone

Suitable problems Continuous, high-dimensional, multimodal Continuous, unimodal Discrete

plants: sepal length, sepal width, petal length, and petal width.
The dataset was randomized and partitioned as a training set
which consists of 100 instances and a test set of the rest 50
instances.

We have tabulated the results generated by GSOANN and
the other five ANNs in Table XVIII. We can see from the table
that GSOANN yielded a better average result over 50 runs than
those of evolutionary ANNs. However, the error rate is slightly
worse than that of the SCG backpropagation trained ANN.

The results from current literature are listed in Table XIX.
Among them, GANet-best is the best result produced by an
ANN trained by a subset of features selected by a binary-
encoded GA [53]. SVM-best is the best result of eight least
squares SVM classifiers [54]. CCSS is a decision tree ensem-
ble [55]. From this table, we can see the SVM classifier
generated the best result among these algorithms.

C. Wisconsin Breast Cancer Dataset

The dataset currently contains nine integer-valued attributes
and 699 instances of which 458 are benign and 241 are

malignant examples. In order to train ANNs to classify a tumor
as either benign or malignant, we partitioned this dataset into
three sets: a training set which contains the first 349 examples;
a validation set which contains the following 175 examples;
and a test set which contains the final 175 examples.

Results from GSO and the other five ANNs trained by EAs
and BP algorithms are listed in Table XX. It can be seen that
GSOANN produced the best average testing result. Although
the other ANNs yielded reasonable best results, e.g., four
ANNs generated a testing error rate of 0%, the worst results
found by these ANNs greatly deteriorated their overall perfor-
mance, e.g., the worst results found by PSOANN was 11.43%.

The comparison between results produced by GSOANN and
those of 10 other algorithms is tabulated in Table XXI. Among
these algorithms, MGNN [57] and EPNet [51] evolve ANN
structure as well as connection weights; COOP [58] is an evo-
lutionary ANN ensemble evolved by cooperative coevolution;
CNNE [59] is a constructive algorithm for training cooperative
ANN ensembles. CCSS [55], OC1-best [56], and EDTs [60]
are state-of-the-art decision tress classifiers, including decision
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tree ensembles [55], [60] and hybrid evolutionary decision
tree [56]; GANet-best and SVM-best are also the best results
from [53] and [54]. It is worth mentioning that the decision
trees [55], [60], [53] and SVM [54] techniques used k-fold
cross-validation, which generated more optimistic results.

Compared to the sophisticated classifiers mentioned above,
we can find that this simple GSOANN produced the best
average result as seen from Table XXI.

D. Pima Indian Diabetes Dataset

The dataset has eight numeric-valued attributes and
768 instances, of which contains 500 instances of patients with
signs of diabetes and 268 instances of patients without. The
dataset was partitioned: the first 384 instances were used as
the training set, the following 192 instances as the validation
set, and the final 192 instances as the test set.

We have tabulated the results generated by GSOANN and
the other five ANNs in Table XXII. Again, GSOANN yielded
the best average result over 50 runs.

This problem is one of the most difficult ones since the
dataset is relatively small and is heavily polluted by noise.
Results from other state-of-the-art classifiers are tabulated in
Table XXIII. COVNET [61] is a cooperative coevolutionary
model for evolving ANNs. EENCL is evolutionary ensembles
with negative correlation learning presented in [62]. Twelve-
fold cross-validation was used by EENCL. GANet-best is also
the best result from [53].

Referring to Table XXIII, it can be seen that GSOANN is
outperformed by COOP [58] and CNNE [59], which are both
ANN ensembles. However, GSOANN produced better results
than the rest classifiers including evolutionary ANN ensembles
COVNET [61] and EENCL [62].

V. DISCUSSION

As reviewed in Section I, there are only a few optimization
algorithms inspired by animal behavior. The most notable and
successful one is ACO. Although both GSO and ACO draw
inspiration from animal social foraging behavior, there are
many obvious differences. The most distinct one is that ACO
is inspired specifically by behavior of ant colonies: by laying
pheromone trails, ants collectively establish the shortest path
between their colony and feeding sources. The GSO algorithm
is inspired by general animal searching behavior and a generic
social foraging model, e.g., the PS-model. Another difference
is that ACO was proposed primarily for combinatorial opti-
mization problems, whereas at present GSO is more applicable
to continuous function optimization problems.

PSO is another newly emerged optimization algorithm
inspired by animal behavior. Like GSO, it was also proposed
for continuous function optimization problems. However, it
is not difficult to note that there are some major differences
between GSO and PSO. First and the most fundamental one
is that PSO was originally developed from the models of
coordinated animal motion such as Reynolds’s Boids [63] and
Heppner and Grenander’s model [64]. Animal swarm behavior,
mainly bird flocking and fish schooling, serves as the metaphor
for the design of PSO. The GSO algorithm was inspired by

general animal searching behavior. A generic social foraging
model, e.g., PS model, was employed as the framework to
derive GSO. Secondly, although the producer of GSO is
quite similar to the global best particle of PSO, the major
difference is that the producer performs producing, which is
a searching strategy that differs from the strategies performed
by the scroungers and the dispersed members: while, in PSO
each individual performs the same searching strategy. Thirdly,
in GSO the producer remembers its head angle when it
starts producing. In PSO each individual maintains memory
to remember the best place it visited. Finally, unlike GSO,
there is no dispersed group members that perform ranging
strategy in PSO. The differences among GSO, PSO, and ACO
are listed in Table XXIV.

Although the EAs and GSO were inspired by completely
different disciplines, as a population-based algorithm GSO
shares some similarities with other EAs. For example, they
all use the concept of fitness to guide search toward better
solutions; the scrounging behavior of scroungers is similar to
the crossover operator, e.g., extended intermediate crossover
[65] of real-coded GA.

It is also interesting to compare the scanning procedure
of the producer in GSO with direct search methods. There
are some similarities between the scanning procedure and
the Nelder–Mead method [66], e.g., for a 2-D optimization
problem, the Nelder–Mead method also calculates three points
to form a simplex, which is similar to the three sampling points
in the scanning field of GSO. However, for an N -dimensional
problem, the simplex of the Nelder–Mead method is actually
a polytope of N + 1 vertices instead of three fixed sampling
points in the scanning procedure of GSO. Moreover, the
Nelder–Mead method performs the search using four different
steps, namely, reflection, expansion, contraction, and shrink,
while in GSO, the search is simply conducted by turning the
head to a new angle, e.g., (5). The scanning procedure of
GSO is like a simplified direct search method. Therefore, it
would be interesting to investigate whether techniques in direct
search methods could be incorporated into GSO as producing
strategies to improve its search performance.

The above comparisons between GSO and other heuristic
optimization algorithms may provide a possible explanation
of why GSO could generate better results on some problems:
although the GSO is inspired by animal search behavior, it is
similar to a hybrid heuristic algorithm that combines search
strategies of direct search, EAs, and PSO, and therefore it is
possible for GSO to better handle problems that are difficult
for a single heuristic optimization algorithm.

VI. CONCLUSION

We have proposed a novel optimization algorithm—GSO,
which is based on animal searching behavior and group
living theory. This algorithm is conceptually simple and easy
to implement. From our study of the effect of the control
parameters, we found that the GSO algorithm is not sensitive
to most of the parameters except the percentage of rangers,
and shows the robustness of the algorithm. GSO can handle a
variety of optimization problems (including large scale), which
makes it particularly attractive for real world applications.
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A set of 23 benchmark functions have been used to test
GSO in comparison with GA, PSO, CEP, FEP, CES, and FES,
respectively. For the unimodal functions, the results show that
the GSO does not possess an obvious advantage over PSO
but has a better performance over that of GA in terms of
accuracy and convergence rate. Compared to CEP, FEP, CES,
and FES, GSO was outperformed by FEP an FES. For most of
the multimodal benchmark functions with many local minima,
GSO is able to statistically find better average results than
those generated by the other six algorithms. The test results
obtained from the multimodal benchmark functions with a
few local minima showed that GSO also outperformed the
other six algorithms. We also evaluated the GSO on a set of
multimodal functions in 300 dimensions. In these cases, the
GSO generated better averaged results than those generated
by GA, PSO, EP and ES.

In order to validate the applicability of the GSO algorithm
in real-world problems, we also applied it to train a three-layer
feed-forward ANN to solve three real-world classification
problems. The results on the the Wisconsin breast cancer
and the Pima Indian diabetes diagnosis problems are better
than other evolutionary ANN training algorithms and the SCG
backpropagation training algorithm. However, although the
result of GSO-based training algorithm on Fisher Iris classifi-
cation problem is better than those of other evolutionary ANN
training algorithms, it does not provide better generalization
performance compared to the SCG backpropagation training
algorithm. In comparison to other state-of-the-art machine
learning algorithms on the three classification problems, the
GSO-based training algorithm also achieved the best result
in the literature on the Wisconsin breast cancer dataset and
also outperformed many other algorithms on the Pima Indian
diabetes dataset and the Fisher Iris classification problem.

A new paradigm of swarm intelligence, i.e., GSO, has been
presented in this paper. One of the most significant merits of
GSO is that it provides an open framework to utilize research
in animal behavioral ecology to tackle hard optimization
problems. Under millions even billions of years of natural
selection, animal behavior, especially searching behavior, has
been honed and sharpened by evolution. Research in animal
behavior provides many off-the-shelf searching strategies to
be incorporated into GSO to solve difficult optimization prob-
lems. The proposed GSO may also contribute back to the
research of animal behavior by providing some new insights
into the social foraging models. For example, the introduction
of the dispersed members into the PS model in the GSO
algorithm may raise many interesting questions for biologists
to investigate.
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