
Generating Random Vectors from the Multivariate NormalDistributionIstv�an T. Hern�adv�olgyi �July 27, 1998
AbstractThe multivariate normal distribution is often the assumed distribution underlyingdata samples and it is widely used in pattern recognition and classi�cation [2][3][6][7].It is undoubtedly of great bene�t to be able to generate random values and vectorsfrom the distribution of choice given its su�cient statistics or chosen parameters.We present a detailed account of the theory and algorithms involved in generatingrandom vectors from the multivariate normal distribution given its mean vector ~� andcovariance matrix � using a random number generator from the univariate uniformdistribution U(0; 1).1 Road mapFirst we introduce our notation, characterize the multivariate normal distribution and state somebasic de�nitions. This is followed by the relevant theory needed to understand the algorithm.Then we describe how to put it altogether to generate the random vectors. The stages are:� generate n random values x1; :::; xn (by separate invocations of the random number gener-ator), where xi � U(0; 1). Then x = Pni=1 xi�n2p n12 � N(0; 1) approximately, according to theCentral Limit Theorem.� generate a d dimensional vector ~x, where ~xi � N(0; 1). The distribution of ~x is N(~0; Id),where I is the d� d identity matrix.�istvan@csi.uottawa.ca 1



� using diagonalization and the derivation of the mean and variance of a linear transforma-tion, transform ~x! ~y such that ~y � N(~�;�).2 Notation~v denotes a column vector~0 represents the 0 vectorI denotes the identity matrix~p � ~q is the dot product of ~p and ~q~vi denotes the ith element of ~vjAj is the determinant of the square matrix A� represents a covariance matrix of a multivariate distribution~� is the mean vector of a multivariate distribution� is the mean of a univariate distribution�2 denotes the variance of a univariate distributionAT and ~vT denote the transpose of matrix A and vector ~v respectivelyk~vk is the norm of ~vN(�; �2) represents the univariate normal distribution with mean � and variance �2N(~�;�) represents the multivariate normal distribution with mean vector ~� and covariancematrix �U(a; b) represents the univariate uniform distribution on [a; b]X � N(0; 1) denotes that random variable X is normally distributedE[X] represents the expectation of random variable X� is a diagonal matrix whose diagonal entries are eigenvalues� is a matrix, whose columns are normalized eigenvectors3 The Multivariate Normal DistributionThe probability density function of the general form of the multivariate normal distribution is1q(2�)dj�je� 12 (~x�~�)T��1(~x�~�)
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where ~� is the mean or expectation, � is the covariance matrix and d is the dimension of thevectors. The covariance matrix measures how dependent the individual dimensions are.� = E[(X � ~�)(X � ~�)T ] = 0BBB@ �1;1 �1;2 ::: �1;d�2;1 �2;2 ::: �2;d::: ::: ::: :::�d;1 �d;2 ::: �d;d 1CCCAwhere the covariance of dimension i and j is de�ned as�i;j = E[(~xi � ~�i)(~xj � ~�j)]Since �i;j = �j;i and �i;j � 0 8i; j, � is symmetric and positive de�nite1. Figure 1 illustrates the
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Figure 1: Bivariate Normal with ~� =  12 ! and � =  1 0:30:3 0:6 !general shape of the bivariate normal distribution and its level curves2. If � is diagonal then theprincipal axes of the ellipses are parallel to the axes of the coordinate system and the dimensions1In theory, � is positive semi-de�nite, as values from a particular dimension may have 0 variance. We do notconsider such a case, and it is very unlikely to occur in sampling if there is su�cient data available.2Level curves are solutions to f(~x) = k where k is some constant. Points on the same level curve (or levelsurface in higher dimensions) are equiprobable. 3



are independent. In particular, if � = �I { where I is the identity matrix and � is a positiveconstant { then the level curves are circles (or hyper spheres in higher dimensions).As we have already noted, we use a random number generator from the univariate uniformdistribution U(0; 1). The univariate uniform distribution U(a; b) is usually de�ned by the twoparameters a and b, with probability density function:f(x) = ( 1b�a x 2 [a; b]0 x 62 [a; b]with � = a+b2 and �2 = (b�a)212 . There is ample literature on how to generate pseudo randomvalues from U(0; 1) and code is readily available3.4 TheoryIn this section, we present the theory and the proofs that are needed to understand the mathe-matics of generating the random vectors. First, we start with the Central Limit Theorem whichprovides the means of generating random values from N(0; 1). we investigate the distribution ofthe random variable Y = PX obtained from X by applying the linear transformation P . Thenwe show how to �nd P such that if X � N(~0; I) then Y = PX � N(~�;�).Theorem: Central Limit TheoremIf X1; :::; Xn are a random sample from the same distribution with mean � andvariance �2, then the distribution of(Pni=1Xi)� n��pnis N(0; 1) in the limit as n!1.The Central Limit Theorem gives us an algorithm to generate random values distributed N(0; 1)from a random sample of values from U(0; 1).limn!1 (Pni=1 U(0; 1))� n2q n12 � N(0; 1)The question is, how large should n be. If n = 2 then the bell curve approximates a triangle, ifn = 3 then the true distribution is 3 pieces of quadratic curves and in general for n = k k-many348 bit pseudo random number generator is part of the core C library random.4



k � 1 degree polynomial pieces are approximated by N(0; 1) [1]. Of course, the larger n is, thebetter the approximation. In practice4, n = 12 yields very good approximation.The probability density function of ~x where each xi � N(0; 1) and the elements are not corre-lated has level curves of concentric circles. Points with the same distance from the origin areequiprobable and � = Id where Id is the identity matrix with dimension d. However we areinterested in obtaining random vectors with covariance matrix �. Our strategy is to use lineartransformations which turn Id into �.Theorem: Mean and Variance of a Linear TransformationLet X have mean E[X] and covariance matrix E[(X � E[X])(X � E[X])T ] = �X ,both of dimension d. Then for� = 0BBB@ e1;1 e1;2 ::: e1;de2;1 e2;2 ::: e2;d::: ::: ::: :::ek;1 ek;2 ::: ek;d 1CCCA ~v = 0BBB@ v1v2:::vk 1CCCAY = �X + ~v has mean E[Y ] = ~v +�E[X] and covariance matrix �Y = ��X�TProof. E[Y ] = E[�X + ~v] = E[�X] + E[~v] = �E[X] + ~v�Y = E[(Y � E[Y ])(Y � E[Y ])T ] =E[(�X + ~v � �E[X]� ~v)(�X + ~v � �E[X]� ~v)T ] =E[(�(X � E[X]))(�(X � E[X]))T ] =E[�(X � E[X])(X � E[X])T�T ]�E[(X � E[X])(X � E[X])T ]�T = ��X�TIt is clear that ~v = ~� is the translation vector. It is less obvious to �nd � such that ���T = I.De�nition: Similar MatricesTwo matrices are similar if there exists an invertible matrix5 P such that B =P�1AP .4see appendix5invertible: PP�1 = I or jP j 6= 0. 5



De�nition: Diagonalizable MatrixA matrix is diagonalizable if it is similar to a diagonal matrix.We are looking for P such that P�P�1 = I (which can also be written as P�1IP = �). First we�nd Q such that, Q�1�Q = � where � is a diagonal matrix, and let P = � 12Q. Once we haveQ, and X has covariance matrix I, then Y = (� 12Q)X has covariance matrix (� 12Q)I(� 12Q)T =Q� 12 I� 12QT = Q�QT 6. Later we prove that, if the columns of Q form an orthonormal basisof Rd, then Q�1 = QT . Thus Q�Q�1 = Q�QT = � and for P = � 12Q and X � N(~0; I),Y = PX + ~� � N(~�;Q�QT ) = N(~�;�). � being diagonal also eases the computation of � 12� 12 = 0BBB@ �1 0 ::: 00 �2 ::: 0::: :::: ::: :::0 0 ::: �d 1CCCA 12 = 0BBBBB@ � 121 0 ::: 00 � 122 ::: 0::: :::: ::: :::0 0 ::: � 12d
1CCCCCATo �nd such a diagonal matrix, we introduce the concept of eigenvalue and eigenvector.De�nition: Eigenvalue and EigenvectorIf A is an n� n matrix, then a number � is an eigenvalue of A ifA~p = �~pfor some ~p 6= ~0. ~p is called an eigenvector of A.Let ~v be a vector of dimension d. Then k~vk = p~v � ~v and 1k~vk~v is a unit vector in Rd in thedirection of ~v (by the Pythagoras' Theorem). Suppose A has n eigenvectors ~p1; :::; ~pn associatedwith eigenvalues �1; :::; �n. Then forQ =   1k~q1k! ~q1; :::; 1k~qnk! ~qn! = 0BBBBBBB@ 1k~q1k~q1;1 1k~q2k~q2;1 ::: 1k~qnk~qn;11k~q1k~q1;2 1k~q2k~q2;2 ::: 1k~qnk~qn;2::: ::: ::: :::1k~q1k~q1;n 1k~q2k~q2;n ::: 1k~qnk~qn;n

1CCCCCCCAQ�1AQ = 0BBB@ �1 0 ::: 00 �2 ::: 0::: ::: ::: :::0 0 ::: �n 1CCCA = �6A diagonal matrix (�) of size n� n commutes with all n� n matrices with respect to multiplication. �A =A� 6



where �1; :::; �n are the eigenvalues of A.Proof. A 1k~q1k~q1 = �1k~q1k~q1A 1k~q2k~q2 = �2k~q2k~q2:::A nk~qnk~qn = �nk~qnk~qnhence AQ = 0BBB@ �1 0 ::: 00 �2 ::: 0::: ::: ::: :::0 0 ::: �n 1CCCAQ = �QQ�1AQ = Q�1�Qbut � is diagonal, thus Q�1AQ = �Q�1Q = �As the columns of Q form an orthonormal basis of Rn (they are orthogonal with unit length, andthere are n of them by assumption) Q�1 = QT .Proof.The diagonal entries are obtained by � 1k~qik� ~qTi � � 1k~qik� ~qi = 1, while the o� diagonalentries are the dot products of orthogonal vectors, hence QTQ = I.For � = A, the linear transformation P = � 12Q is such that if X � N(~0; I) then Y = PX �N(~0;�). All that left to do is to prove that � has orthogonal eigenvectors and there is analgorithm to calculate them.Theorem: Eigenvectors of Symmetric MatricesIf A is a symmetric n� n matrix, then A has orthogonal eigenvectors.Proof.
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If A is symmetric, then (A~p) � ~q = ~p � (A~q). As A = AT ,(A~p) � ~q = (A~p)T~q =~pTAT~q = ~pTA~q = ~p � (A~q)Let A~p1 = �1~p1 and A~p2 = �2~p2 where �1 6= �2. Then�1(~p1 � ~p2) = (A~p1) � ~p2 =~p1 � (A~p2) = �2(~p1 � ~p2)Hence ~p1 � ~p2 = 0, which implies that ~p1 and ~p2 are orthogonal.We also need a guarantee that � of dimension d has d eigenvectors. As far as � has linearlyindependent rows (or columns), this is guaranteed. On the other hand, if j�j = 0, or it haslinearly dependent rows, then the general form of the normal density is not de�ned (j�j is in thedenominator). Often the parameters (including �) are obtained by estimation from a randomsample. If there is su�cient data available, it is next to impossible to encounter the problem ofj�j = 0 unless some dimensions di�er so little that arithmetic resolution may render them zero. Ifthat is the case, a particular dimension or dimensions can be scaled by the linear transformation� = 0BBB@ c1 0 ::: 00 c2 ::: 0::: ::: ::: :::0 0 ::: cd 1CCCAwhere ci scales dimension i. If X � N(~�;�), then Y = �(X � ~�)+ ~� � N(~�;���T ). If we cangenerate random vectors ~y � Y , then ~x = ��1(~y � ~�) + ~� � N(~�;�).Obtaining the eigenvectors and eigenvalues of a matrix is not trivial. By de�nition, the eigen-values of A are the solutions of the characteristic polynomial pA(x) = jxI � Aj, where I isthe identity matrix. For n = 2 and n = 3, it is trivial to calculate the eigenvalues, as closedform formulae exist for quadratic and cubic polynomials. For larger n, �nding the roots of thepolynomial is impractical. Instead a version of the iterative QR algorithm [4][5][8][9] is used.5 AlgorithmAll what is left is to put the theory together to generate the random vectors.Objective: generate random vectors from N(~�;�) given ~� and � (~� and � are of dimension d).8



1. Generate ~x, such that ~xi = 12U(0; 1) � 6, where U(0; 1) denotes one random value fromU(0; 1) obtained by an independent invocation of a pseudo random number generator fromU(0; 1). According to the Central Limit Theorem ~x is approximately from N(~0; I).2. Let � be the d � d matrix whose columns are the normalized eigenvectors of � and let� be the diagonal matrix whose diagonal entries are the eigenvalues of � in the ordercorresponding to the columns of �. Let Q = � 12�. According to the derivation of themean and variance of a linear transformation ~y = Q~x+ ~� is from N(~�;�).6 Appendix6.1 Random values from N(0; 1)The following experiments use the formulaPni=1 U(0; 1)� n2q n12for n = 2, n = 3 and n = 12 to generate random values from N(0; 1).Figure 2 shows the histograms of 1000 randomly generated points over�tted by the real density
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-4 -3 -2 -1 0 1 2 3 4n = 2 n = 3 n = 12Figure 2: 1000 pseudo random values from N(0; 1).function of N(0; 1), 1p2�e�x22 .6.2 A Detailed ExampleLet us walk through the steps visually with the bivariate normal. Our objective is to obtainrandom vectors from N(~�;�) where ~� =  12 ! and � =  1 0:30:3 0:6 !.9



First we obtain � and �. p�(�) = j�I � �j = �2 � 1:6�+ 0:51�1 = 0:8 + 0:05p52�2 = 0:8� 0:05p52hence � =  0:8 + 0:05p52 00 0:8� 0:05p52 ! =  1:1606 00 0:4394 !Now we calculate �  1 0:30:3 0:6 ! e1;1e1;2 ! = 0:8 + 0:05p52 e1;1e1;2 !0@ 0:2� 0:05q(52) 0:30:3 �0:2� 0:05p52 1A!  1 0:30:2�0:05p520 0 !! e1 = 0BBBBBBBB@
1r12+� 0:2�0:05p52�0:3 �20:2�0:05p52�0:3r12+� 0:2�0:05p52�0:3 �2

1CCCCCCCCA 1 0:30:3 0:6 ! e2;1e2;2 ! = 0:8� 0:05p52 e2;1e2;2 !0@ 0:2 + 0:05q(52) 0:30:3 �0:2 + 0:05p52 1A!  1 0:30:2+0:05p520 0 !! e2 = 0BBBBBBBB@
1r12+�0:2+0:05p52�0:3 �20:2+0:05p52�0:3r12+�0:2+0:05p52�0:3 �2

1CCCCCCCCAand thus� = (e1e2) = 0BBBBBBBB@
1r12+�0:2�0:05p52�0:3 �2 1r12+� 0:2+0:05p52�0:3 �20:2�0:05p52�0:3r12+�0:2�0:05p52�0:3 �2 0:2+0:05p52�0:3r12+� 0:2+0:05p52�0:3 �2

1CCCCCCCCA =  0:8817 0:47190:4719 �0:8817 !10



-5

0

5 -5

0

5

0

0.05

0.1

0.15

0.2

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

-4

-2

0

2

4

-4 -2 0 2 4

~� =  00 ! � =  1 00 1 ! ~̂� =  0:01490:0392 !�̂ =  1:0084 �0:0251�0:0251 0:9882 !Figure 3: Distribution N(~0; I)Figure 3 shows the real bivariate density N(~0; I), its level curves and 1000 random points gen-erated from this distribution. ~̂� and �̂ are the most likelihood estimates [3] of the parameters.~̂� = 1n nXi=1 ~xiwhere ~xi is the ith vector from the sample.�̂ = 1n nXi=1(~xi � ~̂�)(~xi � ~̂�)TFigure 4 shows the application of the linear transformation P = � 12� to the real density as wellas to the very same 1000 random points.Finally, �gure 5 represents the distribution N(~�;�). It is obvious from the �gures, that therandomly generated points follow the level curves and density of the underlying distribution.The most likelihood estimates of the parameters are indeed very close to the parameter valuessupplied. 11
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7 Concluding RemarksOur focus was to introduce the theory of generating random vectors from the multivariate nor-mal distribution, at a level that does not require extensive background in Linear Algebra andStatistics. We did not concern ourselves with the e�ciency and complexity of these algorithms.The reader is encouraged to further investigate and study the particulars of e�ciently �ndingeigenvalues and eigenvectors and generating pseudo random values from U(a; b) and N(�; �2).The method we presented can be applied backwards to the distribution X � N(~�;�). ForP1 = ��1 = �T , Y1 = P1(X�~�)+~� � N(~�;�), where � is a diagonal matrix of eigenvalues. Asthe covariance matrix of the distribution of Y1 is diagonal, the linear transformation P1 rendersthe individual dimensions independent. Suppose X is a bivariate density that approximates theweight and height distribution of a particular species. It is reasonable to assume that heightand weight are dependent; the taller the specimen the heavier it is. On the other hand, Y1 hasindependent or orthogonal components, where each dimension is a linear expression of height andweight. To make statistical inferences about the species, these independent measures may bemore appropriate. For P2 = �� 12P1, Y2 = P2(X � ~�) + ~� � N(~�; I), or in other words, not onlyY2 has independent dimensions, but they also have the same variance: 1.8 AcknowledgementI would like to thank Dr. John Oommen from Carleton University for teaching the insipirationalcourse that awoke my interest in Multivariate Statistics and Statistical Pattern Recognition.References[1] R. V. Hogg, E. A. Tanis: Probability and Statistical Inference.Macmillan Publishing Co. 1993[2] J. W. Pratt, H. Rai�a, R. Schlaifer: Statistical Decision Theory. MIT Press. 1995[3] R. O. Duda, P. E. Hart: Pattern Classi�cation and Scene Analysis. John Wiley & Sons. 1973[4] W. K. Nicholson: Elementary Linear Algebra with Applications. PWS-KENT. 1990[5] C. G. Cullen: Matrices and Linear Transformations. Dover Publications. 1990[6] S. K. Kachigan: Multivariate Statistical Analysis. Radius Press. 1991[7] H. Cherno�, L. E. Moses: Elementary Decision Theory. Dover Publications. 1986[8] E. Isaacson, H. B. Keller: Analysis of Numerical Methods. Dover Publications. 199413
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