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Abstract

The multivariate normal distribution is often the assumed distribution underlying
data samples and it is widely used in pattern recognition and classification [2][3][6][7].
It is undoubtedly of great benefit to be able to generate random values and vectors
from the distribution of choice given its sufficient statistics or chosen parameters.
We present a detailed account of the theory and algorithms involved in generating
random vectors from the multivariate normal distribution given its mean vector ji and
covariance matrix ¥ using a random number generator from the univariate uniform
distribution U(0,1).

1 Road map

First we introduce our notation, characterize the multivariate normal distribution and state some
basic definitions. This is followed by the relevant theory needed to understand the algorithm.
Then we describe how to put it altogether to generate the random vectors. The stages are:

e generate n random values x4, ..., z, (by separate invocations of the random number gener-

n

12

ator), where z; ~ U(0,1). Then z = Lﬁ ~ N(0,1) approximately, according to the

Central Limat Theorem.

e generate a d dimensional vector 7, where & ~ N(0,1). The distribution of # is N(0, I,),
where [ is the d x d identity matrix.

*istvan@csi.uottawa.ca



e using diagonalization and the derivation of the mean and variance of a linear transforma-
tion, transform ¥ — ¥ such that § ~ N(i, ).

2 Notation

v denotes a column vector

0 represents the 0 vector

I denotes the identity matrix

- ¢ is the dot product of p and ¢

7; denotes the i element of ¥

|A| is the determinant of the square matrix A

Y represents a covariance matrix of a multivariate distribution

ji is the mean vector of a multivariate distribution

1 is the mean of a univariate distribution

o? denotes the variance of a univariate distribution

AT and 7" denote the transpose of matrix A and vector 7 respectively

|¥7]| is the norm of ¥

N(u,0?) represents the univariate normal distribution with mean yu and variance o
N(ji,X) represents the multivariate normal distribution with mean vector [i and covariance
matriz 3

U(a,b) represents the univariate uniform distribution on |a, 0]

X ~ N(0,1) denotes that random variable X is normally distributed

E[X] represents the expectation of random variable X

A is a diagonal matrix whose diagonal entries are eigenvalues

® is a matrix, whose columns are normalized eigenvectors

3 The Multivariate Normal Distribution

The probability density function of the general form of the multivariate normal distribution is



where i is the mean or expectation, ¥ is the covariance matrix and d is the dimension of the
vectors. The covariance matrix measures how dependent the individual dimensions are.
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where the covariance of dimension 7 and j is defined as
oi; = El(#; — ;) (25 — ;)]

Since 0; ; = 0;,; and 0; ; > 0 V1, j, ¥ is symmetric and positive definite!. Figure 1 illustrates the
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Figure 1: Bivariate Normal with ji = ; and ¥ = 013 82

general shape of the bivariate normal distribution and its level curves?. If ¥ is diagonal then the
principal axes of the ellipses are parallel to the axes of the coordinate system and the dimensions

'In theory, ¥ is positive semi-definite, as values from a particular dimension may have 0 variance. We do not
consider such a case, and it is very unlikely to occur in sampling if there is sufficient data available.

2Level curves are solutions to f(Z) = k where k is some constant. Points on the same level curve (or level
surface in higher dimensions) are equiprobable.



are independent. In particular, if ¥ = Al — where [ is the identity matrix and A is a positive
constant — then the level curves are circles (or hyper spheres in higher dimensions).

As we have already noted, we use a random number generator from the univariate uniform
distribution U(0,1). The univariate uniform distribution U(a, b) is usually defined by the two
parameters a and b, with probability density function:

1
| = relab]
f(x)_{o v ¢ [a,)
Withu:—andozzM

5 = —- There is ample literature on how to generate pseudo random
values from U(0, 1) and code is readily available®.

a+b

4 Theory

In this section, we present the theory and the proofs that are needed to understand the mathe-
matics of generating the random vectors. First, we start with the Central Limit Theorem which
provides the means of generating random values from N(0,1). we investigate the distribution of
the random variable Y = PX obtained from X by applying the linear transformation P. Then
we show how to find P such that if X ~ N(0,7) then Y = PX ~ N(fi, ).

Theorem: Central Limit Theorem

If Xy,...,X, are a random sample from the same distribution with mean g and
variance o2, then the distribution of

( ?:1 XZ) —np
o\/n

is N(0,1) in the limit as n — oo.

The Central Limit Theorem gives us an algorithm to generate random values distributed N (0, 1)
from a random sample of values from U(0, 1).

roU0,1) — 2
hm(1,21(7)) 2

n— o0 n

12

~ N(0,1)

The question is, how large should n be. If n = 2 then the bell curve approximates a triangle, if
n = 3 then the true distribution is 3 pieces of quadratic curves and in general for n = k k-many

348 bit pseudo random number generator is part of the core C library random.



k — 1 degree polynomial pieces are approximated by N(0,1) [1]. Of course, the larger n is, the
better the approximation. In practice?, n = 12 yields very good approximation.

The probability density function of ¥ where each x; ~ N(0,1) and the elements are not corre-
lated has level curves of concentric circles. Points with the same distance from the origin are
equiprobable and ¥ = [; where [; is the identity matrix with dimension d. However we are
interested in obtaining random vectors with covariance matrix 3. Our strategy is to use linear
transformations which turn /; into X.

Theorem: Mean and Variance of a Linear Transformation

Let X have mean F[X] and covariance matrix E[(X — F[X])(X — EF[X])!] = Sy,
both of dimension d. Then for

€11 €12 ... €14 U1

€21 €22 ... €24 - V2
@ — ) ) ) U=

ek,l €k2 ... €kd Vi

Y = OX + ¢ has mean E[Y] = 7 + OF[X] and covariance matrix Yy = O3y 07

Proof.

E[Y] = E[OX + 1] = E[©X] + E[i] = OE[X] + ¥

Sy = E[(Y —EYD)(Y - E[Y])] =
E[(OX + 7 — OF[X] - ) (0X + 7 - OF[X] - #)'] =
E[(O(X — BEX]))(O(X — E[X])"] =
E[O(X - E[X])(X — E[X])' 6]
OF[(X - E[X])(X — B[X])"e" =exx67
It is clear that ¥ = [7 is the translation vector. It is less obvious to find © such that OX0T = T.

Definition: Similar Matrices

Two matrices are similar if there exists an invertible matrix® P such that B =
P TAP.

4see appendix
Sinvertible: PP~1 =1 or |P| # 0.



Definition: Diagonalizable Matrix
A matrix is diagonalizable if it is similar to a diagonal matrix.

We are looking for P such that PSP~ = I (which can also be written as P~'IP = X). First we
find @ such that, Q '¥Q = A where A is a diagonal matrix, and let P = A%Q. Once we have
@, and X has covariance matrix I, then Y = (A2Q)X has covariance matrix (A2Q)I(AzQ)” =
QA%IA%QT = QAQ"Y. Later we prove that, if the columns of @ form an orthonormal basis
of R%, then Q' = Q7. Thus QAQ ' = QAQT = ¥ and for P = AZQ and X ~ N(ﬁ, I),
Y = PX +ji~ N(jii, QAQT) = N(ji,¥). A being diagonal also eases the computation of A2

1
N 0 .0 > AP0 0
1
0 0 A 00 53

To find such a diagonal matrix, we introduce the concept of eigenvalue and eigenvector.
Definition: Figenvalue and Figenvector
If Ais an n x n matrix, then a number X is an eigenvalue of A if
Ap=Ap
for some 7 # 0. §is called an eigenvector of A.

Let @ be a vector of dimension d. Then ||7|| = 7 -7 and ﬁﬁ is a unit vector in R? in the

direction of ¥ (by the Pythagoras’ Theorem). Suppose A has n eigenvectors p, ..., P, associated
with eigenvalues Ay, ..., A,. Then for
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6A diagonal matrix (A) of size n x n commutes with all n x n matrices with respect to multiplication. AA =
AA



where Aq,..., \, are the eigenvalues of A.

Proof.
1 . Moo
A—rq1 = j q1
]| |
1 Ay
Aerp = 42 q2
|| |
n o An
171"~ 1 ||
hence
M 0 .00
e R LR
0 0 .. A\,
Q 'AQ =Q'AQ

but A is diagonal, thus
Q'AQ =AQ'Q = A

As the columns of @ form an orthonormal basis of R" (they are orthogonal with unit length, and
there are n of them by assumption) Q' = Q™.

Proof.

The diagonal entries are obtained by (Ilqu) q; (qull) ¢; = 1, while the off diagonal

entries are the dot products of orthogonal vectors, hence QT Q = I.

For ¥ = A, the linear transformation P = A3 is such that if X ~ N(0,1) then Y = PX ~
N(0,X). All that left to do is to prove that ¥ has orthogonal eigenvectors and there is an
algorithm to calculate them.

Theorem: Figenvectors of Symmetric Matrices

If Ais a symmetric n x n matrix, then A has orthogonal eigenvectors.

Proof.



If A is symmetric, then (Ap)-¢=p- (Ag). As A= AT,

(Ap) - q = (Ap)' 7=
AT =T AT =7 (A])
Let Aﬁl = /\1ﬁ1 and AﬁQ = /\2ﬁ2 where )\1 75 /\2. Then

M (D1~ p2) = (Ap1) - Dy =

P (Aph) = Ma(fi - )

Hence pj - po = 0, which implies that p; and p5 are orthogonal.

We also need a guarantee that > of dimension d has d eigenvectors. As far as ¥ has linearly
independent rows (or columns), this is guaranteed. On the other hand, if |X| = 0, or it has
linearly dependent rows, then the general form of the normal density is not defined (|X] is in the
denominator). Often the parameters (including 3) are obtained by estimation from a random
sample. If there is sufficient data available, it is next to impossible to encounter the problem of
|¥| = 0 unless some dimensions differ so little that arithmetic resolution may render them zero. If
that is the case, a particular dimension or dimensions can be scaled by the linear transformation

C1 0O ... 0
O — 0 Cy ... 0
0 0 .. Cq

where ¢; scales dimension i. If X ~ N(fi,X), then Y = O(X — i)+ ji ~ N(ji,0X07T). If we can
generate random vectors ¢ ~ Y, then ¥ = O~ 1§ — i) + i ~ N(ji,2).

Obtaining the eigenvectors and eigenvalues of a matrix is not trivial. By definition, the eigen-
values of A are the solutions of the characteristic polynomial pa(x) = |zl — A|, where [ is
the identity matrix. For n = 2 and n = 3, it is trivial to calculate the eigenvalues, as closed
form formulae exist for quadratic and cubic polynomials. For larger n, finding the roots of the
polynomial is impractical. Instead a version of the iterative QR algorithm [4][5][8][9] is used.

5 Algorithm

All what is left is to put the theory together to generate the random vectors.

Objective: generate random vectors from N (ji,Y) given i and ¥ (ji and ¥ are of dimension d).
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1. Generate 7, such that #; = 12U(0,1) — 6, where U(0, 1) denotes one random value from
U(0,1) obtained by an independent invocation of a pseudo random number generator from
U(0,1). According to the Central Limit Theorem ¥ is approzimately from N(0,T).

2. Let ® be the d x d matrix whose columns are the normalized eigenvectors of ¥ and let
A be the diagonal matrix whose diagonal entries are the eigenvalues of ¥ in the order
corresponding to the columns of ®. Let QQ = Az . According to the derivation of the
mean and variance of a linear transformation ¢ = QZ + [ is from N(ji,%).

6 Appendix

6.1 Random values from N(0,1)
The following experiments use the formula

Xin U(0,1) - §

n

12

for n =2, n = 3 and n = 12 to generate random values from N(0,1).

Figure 2 shows the histograms of 1000 randomly generated points overfitted by the real density

n=2 n=3 n=12

Figure 2: 1000 pseudo random values from N(0,1).

[M]

function of N(0,1), \/%76*%.

6.2 A Detailed Example
Let us walk through the steps wisually with the bivariate normal. Our objective is to obtain

random vectors from N(ji, ¥) where ji = ( ; ) and ¥ = ( 013 82 )

9



First we obtain A and ®.
ps(A) =AM — ] = A* — 1.6\ +0.51
A = 0.8+ 0.05V/52
Ay = 0.8 — 0.05v/52

hence

0.8 4 0.05v/52 0 1.1606 0
A — =
0 0.8 — 0.05v/52 0 0.4394

Now we calculate ®

1 0.3 €11 o €11
( 03 06 ) ( €12 ) = 0.8 +0.05v52 ( ey )

1
0.3 K
( 0.2 0.05,/(52) 0.3 ) . ( L 5o o0svas ) e )
0.3 —0.2 — 0.05v/52 0 0 02005/

_\2
0.2-0.05v52
i ()

1 0.3 €21 . _ €21
( 03 06 ) ( €22 ) = 0.8 - 0.05v52 ( e )

1
\/12+(0.2+0602\/52)2
0.3 ’
0.2+ 0.05,/(52) 0.3 AN A
0.3 —0.2 +0.05v52 0 0 0'2+Bb9§\/572

2
0.240.05v/52
e (e2)

and thus
1 1
\/12+(70'2“b°§“§)2 \/12+(0-2+0693\/§)2
d = (e1e) = B - _ ( 0.8817  0.4719 )
0.2-0.08v/53 0.240.05v/52 0.4719 —0.8817

2 2
0.2-0.05v52 0.240.05v/52
¢(7 ) ¢(7 )
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Figure 3: Distribution N(0, 1)

Figure 3 shows the real bivariate density N(0, 1), its level curves and 1000 random points gen-
erated from this distribution. /i and ¥ are the most likelihood estimates [3] of the parameters.

Figure 4 shows the application of the linear transformation P = Az® to the real density as well
as to the very same 1000 random points.

Finally, figure 5 represents the distribution N(ji,¥). It is obvious from the figures, that the
randomly generated points follow the level curves and density of the underlying distribution.
The most likelihood estimates of the parameters are indeed very close to the parameter values
supplied.
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Figure 4: Distribution N(0, %)
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7 Concluding Remarks

Our focus was to introduce the theory of generating random vectors from the multivariate nor-
mal distribution, at a level that does not require extensive background in Linear Algebra and
Statistics. We did not concern ourselves with the efficiency and complexity of these algorithms.
The reader is encouraged to further investigate and study the particulars of efficiently finding
eigenvalues and eigenvectors and generating pseudo random values from U(a, b) and N(u, 0?).

The method we presented can be applied backwards to the distribution X ~ N(ji,¥). For
P=o"1'=®" Y, =P (X —f)+~ N(ji, ), where A is a diagonal matrix of eigenvalues. As
the covariance matrix of the distribution of Y7 is diagonal, the linear transformation P renders
the individual dimensions independent. Suppose X is a bivariate density that approximates the
weight and height distribution of a particular species. It is reasonable to assume that height
and weight are dependent; the taller the specimen the heavier it is. On the other hand, Y; has
independent or orthogonal components, where each dimension is a linear expression of height and
weight. To make statistical inferences about the species, these independent measures may be
more appropriate. For P, = A 2P, Y, = Py(X — [i)+ ji ~ N(ji,I), or in other words, not only
Y, has independent dimensions, but they also have the same variance: 1.
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