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 [Learning]  Classifier systems are a kind of rule-based system with general 
mechanisms for processing rules in parallel, for adaptive generation of new 
rules, and for testing the effectiveness of existing rules. These mechanisms make 
possible performance and learning without the “ brittleness”  characteristic of 
most expert systems in AI.     
                     
     Holland et al., Induction, 1986 

1. Introduction 

Learning Classifier Systems (LCS) [Holland, 1976] are a machine learning technique 
which combines evolutionary computing, reinforcement learning, supervised learning 
or unsupervised learning, and heuristics to produce adaptive systems. They are rule-
based systems, where the rules are usually in the traditional production system form 
of “ IF state THEN action” . An evolutionary algorithm and heuristics are used to 
search the space of possible rules, whilst a credit assignment algorithm is used to 
assign utility to existing rules, thereby guiding the search for better rules. The LCS 
formalism was introduced by John Holland [1976] and based around his more well-
known invention – the Genetic Algorithm (GA)[Holland, 1975]. A few years later, in 
collaboration with Judith Reitman, he presented the first implementation of an LCS 
[Holland & Reitman, 1978]. Holland then revised the framework to define what 
would become the standard system [Holland, 1980; 1986a]. However, Holland’s full 
system was somewhat complex and practical experience found it difficult to realize 
the envisaged behaviour/performance [e.g., Wilson & Goldberg, 1989] and interest 
waned. Some years later, Wilson presented the “zeroth-level”  classifier system, ZCS 
[Wilson, 1994] which “keeps much of Holland’s original framework but simplifies it 
to increase understandability and performance”  [ibid.]. Wilson then introduced a form 
of LCS which altered the way in which rule fitness is calculated – XCS [Wilson, 



1995]. The following decade has seen resurgence in the use of LCS as XCS in 
particular has been found able to solve a number of well-known problems optimally. 
Perhaps more importantly, XCS has also begun to be applied to a number of hard 
real-world problems such as data mining, simulation modeling, robotics, and adaptive 
control (see [Bull, 2004] for an overview) and where excellent performance has often 
been achieved. Further, given their rule-based nature, users are often able to learn 
about their problem domain through inspection of the produced solutions, this being 
particularly useful in areas such as data mining or safety-critical control for example. 
However their combination of two machine learning techniques and potentially many 
heuristics means that formal understanding of LCS is non-trivial. That is, current 
formal understanding of, for example, Genetic Algorithms and Reinforcement 
Learning is significant but understanding of how the two interact within Learning 
Classifier Systems is severely lacking. The purpose of this volume is to bring together 
current work aimed at understanding LCS in the hope that it will serve as a catalyst to 
a concerted effort to produce such understanding.  

The rest of this contribution is arranged as follows: Firstly, the main forms of 
LCS are described in some detail. A number of historical studies are then reviewed 
before an overview of the rest of the volume is presented. See [Barry, 2000] for more 
on early LCS. 

2. Holland’s LCS 

Holland's Learning Classifier System [Holland, 1986] receives a binary encoded input 
from its environment, placed on an internal working memory space - the blackboard-
like message list (Figure 1). The system determines an appropriate response based on 
this input and performs the indicated action, usually altering the state of the 
environment. Desired behaviour is rewarded by providing a scalar reinforcement. 
Internally the system cycles through a sequence of performance, reinforcement and 
discovery on each discrete time-step.   

The rule-base consists of a population of N condition-action rules or "classifiers". 
The rule condition and action are strings of characters from the ternary alphabet 
{ 0,1,#} . The # acts as a wildcard allowing generalisation such that the rule condition 
1#1 matches both the input 111 and the input 101. The symbol also allows feature 
pass-through in the action such that, in responding to the input 101, the rule IF 1#1 
THEN 0#0 would produce the action 000. Both components are initialised randomly. 
Also associated with each classifier is a fitness scalar to indicate the "usefulness" of a 
rule in receiving external reward. This differs from Holland's original implementation 
[Holland & Reitman, 1978], where rule fitness was essentially based on the accuracy 
of its ability to predict external reward (after [Samuel, 1959]).  

On receipt of an input message, the rule-base is scanned and any rule whose 
condition matches the external message, or any others on the message list, at each 
position becomes a member of the current "match set" [M]. A rule is selected from 
those rules comprising [M], through a bidding mechanism, to become the system's 
external action. The message list is cleared and the action string is posted to it ready 
for the next cycle. A number of other rules can then be selected through bidding to fill 



any remaining spaces on the internal message list. This selection is performed by a 
simple stochastic roulette wheel scheme. Rules' bids consist of two components, their 
fitness and their specificity, that is the proportion of non-# bits they contain. Further, a 
constant (here termed β) of "considerably" less than one is factored in, i.e., for a rule 
C in [M] at time t: 

 
),( fitness)(y  specificit ),( Bid tCCtC ⋅⋅= β  

 
Reinforcement consists of redistributing bids made between subsequently chosen 
rules. The bid of each winner at each time-step is placed in a "bucket". A record is 
kept of the winners on the previous time step and they each receive an equal share of 
the contents of the current bucket; fitness is shared amongst activated rules. If a 
reward is received from the environment then this is paid to the winning rule which 
produced the last output. Holland draws an economic analogy for his "bucket-
brigade" algorithm (BBA), suggesting each rule is much like the middleman in a 
commercial chain; fitness is seen as capital. The reader is referred to [Sutton & Barto, 
1998] for an introduction to reinforcement learning. 
 
 

 
 

Fig. 1: Schematic of Holland’s Learning Classifier System. 
 
 

The LCS employs a steady-state Genetic Algorithm operating over the whole rule-set 
at each instance. After some number of time-steps the GA uses roulette wheel 
selection to determine two parent rules based on their fitness relative to the total 
fitness of the population: 
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The effect of this scheme is to bias reproduction towards those rules which appear to 
lead to higher reward from the environment. Copies are made of the chosen rules 
which are then subjected to two genetic operators: mutation and crossover. Mutation 
is applied probabilistically at a per-locus rate (e.g., 1/100) along the length of the rule 
and upon satisfaction the value at that locus is altered – typically, a locus becomes 
one of the other two possible values with equal probability. For example, if the above 
mentioned rule 1#1:0#0 experiences a mutation event on its last locus it could become 
1#1:0#1 or 1#1:0##. Crossover begins by randomly choosing a position within the 
rules and then swaps them from that point to their end. For example, the two rules 
000:000 and 111:111 which experience crossover at position two would become 
001:111 and 110:000 respectively. The purpose of the genetic operators is to 
introduce new rules into the population based on known good rules with the aim of 
discovering better rules.  The new rules then replace two existing rules, often chosen 
using roulette wheel selection based on the reciprocal of fitness. The reader is referred 
to [Eiben & Smith, 2004] for a recent introduction to evolutionary computing. 

It is important to note that the role of the GA in LCS is to create a cooperative set 
of rules which together solve the task. That is, unlike a traditional optimisation 
scenario, the search is not for a single fittest rule but a number of different types of 
rule which together give appropriate behaviour. The rule-base of an LCS has been 
described as an evolving ecology of rules - “each individual rule evolves in the 
context of the external environment and the other rules in the classifier system.”  
[Forrest & Miller, 1991]. A number of other mechanisms were proposed by Holland 
but for the sake of clarity they are not described here (see [Holland et al., 1986] for an 
overview). 

3. Wilson’s ZCS 

As noted above, Wilson introduced the simple ZCS to increase understandability and 
performance. In particular, Wilson removed the message list and rule bidding (Figure 
2) and did not allow wildcards in actions. He introduced the use of action sets rather 
than individual rules, such that rules with the same action are treated together for both 
action selection and reinforcement. That is, once [M] has been formed a rule is picked 
as the output based purely on its fitness. All members of [M] that propose the same 
action as the selected rule then form an action set [A]. An "implicit" bucket brigade 
[Goldberg, 1989] then redistributes payoff in the subsequent action set.  

A fixed fraction - equivalent to Holland's bid constant - of the fitness of each 
member of [A] at each time-step is placed in a bucket. A record is kept of the 
previous action set [A]-1 and if this is not empty then the members of this action set 
each receive an equal share of the contents of the current bucket, once this has been 
reduced by a pre-determined discount factor γ  (a mechanism used in temporal 
difference learning to encourage solution brevity [e.g., Sutton & Barto, 1998]). If a 
reward is received from the environment then a fixed fraction of this value is 
distributed evenly amongst the members of [A] divided by their number. Finally, a tax 
is imposed on the members of [M] that do not belong to [A] on each time-step in 
order to encourage exploitation of the fitter classifiers. That is, all matching rules not 



in [A] have their fitnesses reduced by factor τ thereby reducing their chance of being 
selected on future cycles. Wilson considered this technique provisional and suggested 
there were better approaches to controlling exploration. The effective update of action 
sets is thus: 

 
fitness ( [A] ) �  fitness ([A])  + β  [ Reward + γ fitness( [A]+1 ) – fitness( [A] ) ] 

 
where 10 ≤≤ β  is a learning rate constant. Wilson noted that this is a change to 

Holland's formalism since specificity is not considered explicitly through bidding and 
pay-back is discounted by 1-γ on each step. ZCS employs two discovery mechanisms, 
a steady state GA and a covering operator. On each time-step there is a probability p 
of GA invocation. When called, the GA uses roulette wheel selection to determine 
two parent rules based on fitness. Two offspring are produced via mutation and 
crossover. The parents donate half their fitness to their offspring who replace existing 
members of the population. The deleted rules are chosen using roulette wheel 
selection based on the reciprocal of fitness. The cover heuristic is used to produce a 
new rule with an appropriate condition to the current state and a random action when 
a match-set appears to contain low quality  rules, or when no rules match an input. 
 
 

 
 

Fig. 2: Schematic of ZCS. 
 
 
When ZCS was first presented, results from its use indicated it was capable of good, 
but not optimal, performance [Wilson, 1994][Cliff & Ross, 1995]. More recently, it 
has been shown that ZCS is capable of optimal performance, at least in a number of 
well-known test problems, but appears to be particularly sensitive to some of its 
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parameters [Bull & Hurst, 2002]. It should be noted that ZCS has two closely related 
forerunners, namely BOOLE [Wilson, 1987] and NEWBOOLE [Bonelli et al., 1990]. 

4. Wilson’s XCS 

The most significant difference between XCS (Figure 3) and most other LCS (e.g., 
ZCS) is that rule fitness for the GA is not based on payoff received (P) by rules but on 
the accuracy of predictions (p) of payoff. Hence, XCS has been termed an accuracy-
based LCS, in contrast to earlier systems which were for the most part strength-based 
(also called payoff-based systems). The intention in XCS is to form a complete and 
accurate mapping of the problem space (rather than simply focusing on the higher 
payoff niches in the environment) through efficient generalizations. In RL terms, XCS 
learns a value function over the complete state/action space. In this way, XCS makes 
the connection between LCS and reinforcement learning clear and represents a way of 
using traditional RL on complex problems where the number of possible state-action 
combinations is very large (other approaches have been suggested, such a neural 
networks – see [Sutton & Barto, 1998] for an overview). 
     XCS shares many features with ZCS, and inherited its niche GA, deletion scheme 
and an interest in accuracy from Booker’s GOFER-1 [Booker, 1982]. 
 

 
 

Fig. 3: Schematic of XCS. 
 
On each time step a match set is created. A system prediction is then formed for each 
action in [M] according to a fitness-weighted average of the predictions of rules in 
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each [A]. The system action is then selected either deterministically or randomly 
(usually 0.5 probability per trial). If [M] is empty covering is used. 

Fitness reinforcement in XCS consists of updating three parameters, ε, p and F for 
each appropriate rule; the fitness is updated according to the relative accuracy of the 
rule within the set in five steps: 

 
i) Each rule’s error is updated: εj = εj + β( | P - pj | - εj)  where as in ZCS 

10 ≤≤ β  is a learning rate constant. 

ii) Rule predictions are then updated: pj = pj + β(P-pj) 
iii) Each rule’s accuracy κj is determined:                                                                     

κj = α(ε0/ε)ν or κ=1 where ε < ε0
                                         

where  ν, α and ε0 are constants controlling the shape of the accuracy 
function. 

iv) A relative accuracy κj’  is determined for each rule by dividing its 
accuracy by the total of the accuracies in the action set. 

v) The relative accuracy is then used to adjust the classifier’s fitness Fj using 
the moyenne adaptive modifee (MAM) procedure: If the fitness has been 
adjusted 1/β times, Fj = Fj + β(κj’  - Fj). Otherwise Fj is set to the average 
of the values of κ ’  seen so far. 

 
In short, in XCS fitness is an inverse function of the error in reward prediction, with 
errors below ε0 not reducing fitness. The maximum P(ai) of the system’s prediction 
array is discounted by a factor γ and used to update rules from the previous time step. 
Thus XCS exploits a form of Q-learning [Watkins, 1989] in its reinforcement 
procedure, whereas Holland’s 1986 system and ZCS both use a form of TD(0) (as 
noted in [Sutton & Barto, 1998]). 

The GA acts in action sets [A], i.e., niches. Two rules are selected based on fitness 
from within the chosen [A]. Rule replacement is global and based on the estimated 
size of each action set a rule participates in with the aim of balancing resources across 
niches. The GA is triggered within a given action set based on the average time since 
the members of the niche last participated in a GA (after [Booker, 1989]). 

XCS is more complex than ZCS but results from its use in a number of areas have 
been impressive. Wilson originally demonstrated results on the Boolean multiplexer 
function and a maze problem [Wilson, 1995]. Early on Kovacs emphasised its ability 
to learn complete, accurate, and minimal representations of Boolean functions 
[Kovacs, 1997]. XCS has since shown good performance on data mining tasks [e.g., 
Bernado, Llora & Garrell, 2002] and has been widely adopted in the LCS community; 
the majority of contributions to a recent volume on applications of LCS [Bull, 2004] 
used XCS. An algorithmic description of XCS can be found in [Butz & Wilson, 
2001], while further details of XCS and an example execution cycle can be found in 
[Kovacs, 2004]. A brief overview of selected theoretical works now follows. We 
concentrate on pre-ZCS and XCS systems in order to complement the remaining 
chapters of this text, and on formal studies rather than experimental ones. 



5. Previous Research on the Foundations of LCS 

Since Learning Classifier Systems combine two machine learning algorithms, 
previous studies of their behaviour from a theoretical standpoint have tended to focus 
on one aspect over the other. The following historical review is divided to reflect this. 
Further related material is available in [Wilson & Goldberg, 1989; Lanzi & Riolo, 
2001]. 

 
5.1 Rule Discovery: Evolutionary Algor ithms 

 
The term Evolutionary Algorithm denotes a family of stochastic problem solvers 
based on a population of solutions being manipulated by the neo-Darwinian processes 
of selection, recombination and mutation. The Genetic Algorithm, as briefly described 
above, is the most commonly used approach but recent work has included parameter 
self-adaptation [e.g., Bull et al., 2000] normally associated with Evolution Strategies 
[Rechenberg, 1973] and the later forms of Evolutionary Programming [e.g., Fogel, 
1992], and the use of LISP S-expressions to represent rules [e.g., Lanzi, 1999b] as 
found in Genetic Programming [Koza, 1992]. Until the early 1990’s, Holland’s 
Schema Theorem [Holland, 1975] was the most widely used theoretical tool for 
understanding GAs and thus it was also used as a basis for some of the earliest work 
on Learning Classifier Systems. 
 Smith and Valenzuela-Rendon [1989] presented a simple proportion vector form 
of the canonical GA through which they considered the propagation of the set of 
eighteen rules with two-bit conditions and one-bit actions where there was no pass-
through in the latter, i.e., the rules 00:0 to ##:1. Roulette wheel selection and single-
point crossover were included in this infinite population generational model - a model 
based on the traditional scenario of replacing the whole population per reproduction 
cycle. The LCS was assigned a stimulus-response task, that is, a task under which 
each response from the LCS is rewarded immediately by the environment; three 
Boolean functions of varying difficulty were used. Initial results showed how a 
standard GA is unable to converge to a solution containing a full set of rules required 
to solve the given tasks. That is, the GA operated as it does in the standard function 
optimization scenario and simply sought solutions/rules which typically led to the 
highest fitness/reward only. They then examined the effects of fitness sharing in their 
model. Fitness sharing was highlighted by Booker [1982] as a way to prevent the GA 
population from clustering around such solutions. Simply, individuals are said to 
share the reward received with those who are similar to them in some way. In GA 
function optimization similarity is traditionally based on Hamming distance, i.e., on 
how many loci are of the same value, with all those within a predefined neighborhood 
being included [e.g., Goldberg & Richardson, 1987]. Using this scheme, Smith and 
Valenzuela-Rendon [1989] found complete rule sets were maintained in two of the 
three cases and the failure in the third was identified as being due to the disruptive 
actions of crossover. That is, rules which were individually useful always produced 
rules which were not useful through their recombination. Booker [1982] also 
suggested that mating restrictions could be used such that sufficiently dissimilar rules 
do not recombine. Using a simple mating restriction scheme Smith and Valenzuela-
Rendon [1989] found the previously unsolved problem benefited but that another no 



longer maintained a full solution. They concluded by suggesting that the combination 
of both schemes may be beneficial.   

The Schema Theorem has been somewhat criticized for reasons such as the 
difficulty in using it to explain the dynamical or limit behaviour of GAs. Goldberg 
and Segrest [1987] presented a Markov chain for a simple finite population 
generational GA and the use of such models has remained widespread [e.g., Vose, 
1999] as they enable more predictive analysis. Holland [1986b] was the first to 
consider using Markov chains to model LCS, the BBA in particular (reprinted in this 
volume). Horn et al. [1994] presented a version of Goldberg and Segrest’s model to 
examine fitness sharing in LCS and the effects of varying the amount of interaction 
between two rule classes. Their model enabled them to vary the fitness ratio between 
the two rule types and the degree of overlap in their generalizations of the input space. 
By calculating the expected time to absorption of the Markov chain, they were able to 
show that rule maintenance times are very large even for relatively small 
population/rule base sizes but that this niching pressures reduces as the degree of 
overlap increases. Horn et al. also calculated the steady state distributions during the 
maintenance of both rule classes through a well-known manipulation of the absorbing 
Markov chain to create an ergodic chain. The degree of overlap in the generalization 
space was again shown to be important, causing a decrease in the probability of 
achieving the coverage/constitution expected from the given fitness ratio.    
 As noted above, these two studies used models of generational GAs as their basis. 
However, as described in Section 4, LCS use a steady-state GA whereby only a small 
percentage of the rule base is replaced per GA invocation which means that the 
selection pressure can be very different for example [e.g., Chakraborty et al., 1997]. 
Bull [e.g., 2002] presented a steady-state GA version of Goldberg and Segrest’s 
[1987] Markov model to examine aspects of accuracy-based fitness as presented by 
Wilson in XCS. In comparison to a traditional strength-based fitness scheme (that is, 
of Holland-style systems) without fitness sharing, it was shown that XCS-type 
accuracy-based fitness maintained selective pressure against an incorrect rule 
regardless of the degree of its incorrectness, whereas the strength-based fitness 
scheme selected for the incorrect rule in certain cases. That is, without fitness sharing, 
it was shown that under strength-based fitness, a rule whose average payoff is higher 
than that of a correct rule can lead to the extinction of the correct rule. This 
phenomenon has been termed “overgeneralization”  [e.g., Wilson, 1995]. Using a 
simple set of difference equations, Bull and Hurst [2002] showed how fitness sharing 
has the potential to avoid overgeneralization in both single and multi-step scenarios. 
Bull [2002] also included mutation into his model and showed how the accuracy-
based fitness scheme appears more sensitive to the mutation rate than the strength-
based scheme, a result which was previously suggested in his work on self-adaptation 
[Bull et al., 2000]. A simple two-step problem was also examined with the Markov 
chain which indicated that, under certain relationships between the rewards given for 
each route to the goal state, selection pressure can disappear depending upon the 
constituency of the rule-base. That is, using roulette-wheel selection, the effective 
selection pressure can vary significantly over time due to the coevolutionary nature of 
LCS.  

 
 



5.2 Credit Assignment 
 

The first implemented classifier system, CS-1, [Holland & Reitman, 1978] used an 
epochal credit assignment scheme partly inspired by Samuel’s work on checkers 
[Samuel, 1959]. This scheme found little subsequent use (see e.g., [Smith et al., 2004] 
for a recent example) as it was supplanted by the Bucket-Brigade Algorithm (BBA) 
introduced in section 2. However, many difficulties with the BBA were soon found 
and alternatives suggested, e.g., [Wilson & Goldberg, 1989; Riolo, 1989; Liepins et 
al., 1991; Huang, 1989]. The most common form is the implicit bucket brigade 
described above for ZCS and XCS, wherein matching rules do not bid for control of 
the system, and, instead, credit is apportioned between all rules proposing a given 
action. After [Holland, 1986b], Westerdale [e.g., 1991; 1999] has developed a general 
Markov chain model for a learning entity approximating the payoff (value) of states 
within a given transition matrix/environment via the BBA. The aforementioned closer 
connection between the BBAs of ZCS and XCS and the temporal difference 
algorithms of the reinforcement learning literature have put credit assignment in 
recent LCS on firmer ground than their predecessors. For example, as noted in 
Section 4, XCS evolves complete maps of the entire state/action space to an estimate 
of value, unlike earlier systems which aim only to form a best action map, mapping 
each state to an action and estimate of value. The difference is significant as the more 
complete map potentially allows better exploration control and proper propagation of 
credit through the state space in the manner of reinforcement learners [Kovacs, 2004]. 
Indeed, convergence proofs for reinforcement learning methods require infinite 
updates to the estimated value of all state/action pairs. 

Some early work also considered the use of tools emerging from the field of 
complexity/non-linear systems to examine LCS. Forrest and Miller [1991] cast the 
internal processes of Holland’s LCS, in particular with a message list, as a Random 
Boolean network [Kauffman, 1984]. Here each node of the network is a rule and 
connections are formed between nodes/rules if the antecedent of one satisfies the 
condition of the other. By varying the specificity of rules, they show a phase 
transition-like dynamic exists for the emergence of self-sustaining/long inductive 
chains; too much or too little generalization and the LCS is unable to sustain 
“appropriate”  internal activity. Compiani et al. [e.g., 1991] considered the fact that 
rule discovery and credit assignment operate over different timescales. As such, they 
present models of the dynamics of rule updating, for a message list of a given size, as 
rule discovery occurs. They find “random regimes”  exist which temporarily disrupt 
system performance, to a significant degree, if a careful balance is not maintained 
against exploring newly introduced rules and exploiting existing ones. 

Yates and Fairley [1994] used aspects of Evolutionary Game Theory [Maynard 
Smith, 1986] to show that LCS under the BBA are “evolutionary stable.”  That is, the 
rule-base of the LCS will be optimally configured for the learning task. After 
identifying commonalities between the features required for an evolutionary stable 
learning rule, i.e., one capable of finding an evolutionary stable state (ESS), and the 
BBA, they show a simplified LCS without a GA solving a well-known two-player 
game to its ESS. However, akin to the findings of Compiani et al. [1991], they note 
the GA is likely to disrupt the ESS, even if only temporarily. 

 



5.3 Other  Ear ly Considerations 
 
As noted in Section 2, LCS typically use a ternary alphabet { 0,1,#}  to represent rule 
conditions. Rule conditions are minterms, and sets of rule conditions are in 
Disjunctive Normal Form. This simple syntax, very similar to the binary strings used 
with genetic algorithms, was chosen by Holland as it was thought to be most suitable 
for genetic search. In particular, it was argued that the lower the cardinality of the 
alphabet, the higher the number of schemata and the higher the degree of implicit 
parallelism [Booker et al., 1989; Goldberg, 1989].  

A consequence of the limited expressive power of individual rules is that sets of 
rules are required to represent solutions for non-trivial tasks, which introduces issues 
concerning the interaction of rules (i.e., competition and cooperation). Under some 
fitness schemes the system becomes co-evolutionary (as the fitness of one rule 
depends on what others exist), which complicates credit assignment and hence 
adaptation. 

Although sets of rules using the ternary alphabet are capable of representing 
complex information (indeed, Holland’s LCS is computationally complete [Forrest, 
1985]), concerns have been raised regarding the utility of this language [e.g., Belew & 
Forrest, 1988; Carbonell, 1989; Grefenstette, 1989; Schuurmans & Schaeffer, 1989]. 
In response, Booker [1991] demonstrated a number of more expressive languages 
using the ternary alphabet, claiming it was the syntax of the language, rather than the 
cardinality of the alphabet, which was often at fault. 

Whilst many continued to advocate the use of low-cardinality alphabets, the 
application of evolutionary methods to more complex data structures such as trees and 
graphs, with Genetic Programming being perhaps the best-known approach, has 
become widespread. Wilson suggested the use of LISP S-expressions in a classifier 
system [Wilson, 1994], and Lanzi subsequently studied the use of messy encodings 
[Lanzi, 1999a] and then S-expressions [Lanzi, 1999b] (see also [Ahluwalia & Bull, 
1999]). Other representations include fuzzy logic [e.g., Valenzuela-Rendon, 1991] 
and neural network rules [e.g., Bull & O’Hara, 2002]. Our view is that LCS are rule-
based systems, and that the vast array of possible rule languages gives them 
considerable expressive power, comparable to other learning methods. As always, the 
representation (and inductive methods) used must suit the task at hand. 

Default Hierarchies (DHs) are sets of rules in which exception rules override the 
action of default rules (see [Holland et al, 1986] for discussions). A typical example 
consists of an overgeneral default rule and a set of more specific exception rules. It 
seems plausible that a default rule, which provides better than random performance, 
might be found first and that the exception rules would then be found and gradually 
refine the performance of the rule population as a whole. In addition to allowing such 
gradual refinement of representation, DHs have been seen as a means of increasing 
the number of solutions to a problem without increasing the size of the search space. 
A final advantage of DHs is that they allow more compact representations of the 
solution [e.g., Valenzuela-Rendon, 1989a, 1989b]. Despite these potential advantages, 
it has proved difficult to form and retain DHs in practice due to the complex co-
evolutionary dynamics they introduce, and interest in them waned in the early 1990s. 
The most advanced work on the subject remains that by Smith and Goldberg [1991]. 



6. Foundations of Learning Classifier  Systems: An Overview 

The rest of this book, in keeping with the distinct areas of formal enquiry which have 
emerged from the field, is divided into three main sections: rule discovery, credit 
assignment, and problem characterization. 

 
6.1 Rule Discovery 

 
Jon Rowe – Population Dynamics of Genetic Algorithms. As noted above, formal 
understanding of evolutionary optimization techniques has progressed significantly in 
recent years. This contribution introduces one of the more commonly used models by 
which this has been done, that of Michael Vose [1999], and then introduces some 
extensions which are relevant to LCS thereby indicating a potentially fruitful way 
forward.  
 
Lashon Booker – Approximating value functions in classifier systems. The quality of a 
solution to a reinforcement learning problem depends on the quality of the value 
function approximation (assuming one is used). This chapter notes the similarity 
between tile coding and a classifier system with a fixed rule population and compares 
the quality of the value function approximation made by the two approaches. 
Although the standard approach, minus the genetic algorithm, performs poorly 
compared to tile coding, a new hyperplane coding is introduced and the best of 
several variations on it is found comparable to tile coding. This represents a 
promising new direction for function approximation with LCS. 
 
Larry Bull – Two Simple Learning Classifier Systems. LCS are complex and as such 
the production of meaningful executable models is non-trivial. This chapter presents 
canonical forms of each basic type, i.e., strength and accuracy-based systems, with 
which to examine the underlying features of each through such models.   
 
Martin Butz et al. – Computational Complexity of the XCS Classifier System. Based 
on experimental results with Boolean multiplexer problems, Wilson [1998] 
hypothesized that the difficulty of a problem for XCS (in terms of population size and 
amount of experience needed) grows as a low order polynomial of the problem 
complexity. This chapter presents an overview of the authors’  previous work to 
examine these, and other, aspects of XCS formally, and establishes that k-DNF 
functions are PAC-learnable by XCS. 
 
Christopher Stone and Larry Bull – An Analysis of Continuous-Valued 
Representations for Learning Classifier Systems. For a number of applications, 
particularly data mining [e.g., Wilson, 2000] and adaptive control [e.g., Hurst et al., 
2002], an interval encoding has been used. This contribution considers the biases 
inherent within such an encoding, for both panmictic and niche-based GAs. 

 
 
 
 



6.2 Credit Assignment 
 

Jeremy Wyatt – Reinforcement Learning: A Brief Overview. LCS are now clearly 
identified as reinforcement learners. This contribution presents the basic mathematical 
framework used in the formal understanding of such techniques and discusses the 
various forms and extensions built from it. 
 
John Holland – A Mathematical Framework for Studying Learning Classifier 
Systems. Shortly after presenting the most well-known instantiation of his LCS 
framework, Holland published this vision of a path to a more formal understanding of 
LCS ([Holland, 1986b] Reprinted with kind permission from Elsevier).  
 
Pier-Luca Lanzi – Learning Classifier Systems: A Reinforcement Learning 
Perspective. This contribution demonstrates the direct connection between XCS and 
traditional reinforcement learning. Further, it suggests that a GA is exactly the right 
sort of approach to build generalizations over the input-output space of such 
techniques (see also [Hartmann, 1994] for a similar conclusion but from the 
perspective of learning difficulty in LCS). 
 
Tim Kovacs – Rule Fitness and Pathology in Learning Classifier Systems. This 
chapter considers the conditions in which undesireable types of rules may prosper. 
Specifically, the concepts of strong overgeneral and fit overgeneral rules are 
introduced and linked to the structure of the value function. The prospects for such 
rules are investigated in both strength and accuracy-based systems, and it is suggested 
that accuracy-based systems have an advantage in dealing with them. This work 
demonstrates the existence of the above rule types using very simple tasks, to which 
any reinforcement learner could be applied. In doing so it demonstrates one way in 
which complex tasks and learners can be analysed. 
 
Atsushi Wada et al. – Learning Classifier Systems with Convergence and 
Generalization. LCS for reinforcement learning incorporate function approximation 
through the use of rules which generalize over (aggregate) states. This chapter takes 
steps toward integrating LCS and standard formulations of linear function 
approximation in reinforcement learning. The chapter also considers convergence 
results. Convergence proofs exist for a number of tabular reinforcement learning 
methods, but no such proofs for LCS appear in the literature. As a first step, this 
chapter introduces a variant of ZCS to which an existing convergence proof extends. 
Although this version of ZCS generalizes over states, it is limited to a fixed rule 
population. 

 
6.3 Problem Character ization 

 
Anthony Bagnall and Zhanna Zatuchna – On the Classification of Maze Problems. 
Surprisingly, despite the many papers and many maze problems which have been 
presented, an overarching categorization of such tasks has been presented to date. 
This paper highlights features of such problems and how they can be used to group 
previously presented mazes and design new ones. 



Tim Kovacs and Manfred Kerber – What Makes a Problem Hard for XCS? This 
contribution identifies four dimensions of problem complexity for XCS in the domain 
of Boolean functions. It suggests functions which bound the complexity of the space 
of functions of a given string length, and discusses how to measure the complexity of 
a function for XCS. Finally, it proposes a scalable Boolean test suite and argues for its 
use. Interested readers are referred to related work in Bernado and Ho [to appear]. 

7. Summary 

Almost thirty years after Holland presented the Learning Classifier System paradigm, 
the ability of LCS to solve complex real-world problems is becoming clear. In 
particular, the XCS system Wilson presented ten years ago has sparked renewed 
interest in LCS. This article has given a brief introduction to LCS and previous formal 
studies of their behaviour. The rest of the book brings together work by a number of 
individuals who are contributing to the current formal understanding of how they 
achieve good performance. Future work must build on these insights to produce a 
coherent picture of how LCS work. 
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