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Cidade Universitária, Recife, PE, Brazil

cribari@de.ufpe.br

Alejandro Frery
Universidade Federal de Alagoas

Instituto de Computação
BR 104 Norte km 97, Maceió, AL, Brazil
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Abstract

This paper presents adjusted profile likelihoods forα, the
roughness parameter ofG0

A(α, γ,L) distribution. This dis-
tribution has been widely used in the modelling of data cor-
rupted by speckle noise (SAR images). We focus on point es-
timation and on signalized likelihood ratio tests. As far as
point estimation is concerned, the numerical evidence pre-
sented in the paper favors the Cox and Reid’s adjustment
[1], and in what concerns signalized likelihood ratio tests,
the results favor the approximation to Barndorff–Nielsen’s
adjustment based on the results in [2]. An application to
real synthetic aperture radar imagery is presented.

1. Introduction

Imagery obtained with coherent illumination suf-
fers from a noise known as speckle. This is the case of
laser, sonar, ultrasound-B and Synthetic Aperture Ra-
dar (SAR) images. The noise does not follow the classical
Gaussian additive structure, being multiplicative in na-
ture. Classical techniques for image analysis are thus inef-
ficient for extracting information from speckled data.

This phenomenological model states that the observa-
tion in every pixel is the outcome of a random variable
Z: Ω → IR+ which is, in turn, the product of two inde-
pendent random variables:X : Ω → IR+, the ground truth
or backscatter, related to the intrinsic dielectric properties of
the target, andY : Ω → IR+, the speckle noise, which fol-
lows a square root of gamma law. The distribution of the
return,Z = XY , is completely specified by the distributi-
ons ofX andY .

The univariate multiplicative model began as a single
distribution, namely the Rayleigh law, was extended by [4]
to accomodate theK law and was later further improved
by [3] to theG distribution, which generalizes the previ-
ous probability distributions.

The GA0 law is an important particular case of the
more generalG distribution. It can successfully model a
wide range of targets through their roughness. IfZ is a
G0

A(α, γ,L)-distributed random variable, then its probabi-
lity density function is

p(z; α, γ,L) = p(z) =
2LLΓ(L − α)z2L−1

γαΓ(L)Γ(−α)(γ + Lz2)L−α
,

with −α, γ, z ≥ 0 andL ≥ 1. The parameterα is direc-
tly related to the roughness of the target. For typical sen-
sors and scenes, ifα ≤ −10 then the area is homogeneous
(usually crops or pastures), if−10 < α ≤ −5 then the re-
gion is heterogeneous (usually forests or undulated relief),
and−5 < α < 0 is associated with extremely heteroge-
neous targets (usually urban areas).γ is a scale parameter
that can be viewed as a nuisance parameter, andL, the num-
ber of looks (it will be assumed known in our study), is di-
rectly related to the signal-to-noise ratio (the smallerL, the
noisier the image).

This paper presents two new results regarding inference
under the GA0 model, namely: we obtain analytically im-
proved parameter estimators and develop improved one-
sided likelihood ratio inference. Improved parameter esti-
mation is achieved by maximizing an adjusted profiled li-
kelihood function ([1], [2]). We also develop one-sided im-
proved likelihood ratio inference for the GA0 roughness pa-
rameter. The chief goal of such inference lies in identifying
whether a given scanned region is extremely heterogene-



ous, heterogeneous or homogeneous. This kind of analysis,
that turns data into valuable information for decision ma-
king, is one of the ultimate goals of environmental studies.

2. Monte Carlo Results

Images are richly structured data consisting of several
underlying classes, that turn into more or less discernible
groups of values; these values can be displayed as shades of
gray or as colors. A digital image is a functionf : S → Kp,
whereS ⊂ ZZ2 is the (finite) support of the data,p ∈ IN

is the number of bands or dimensionality of the data and
K ⊂ IR is the set of possible values.

Neighborhoods are usually squares of odd side, cal-
led ‘windows’, centered on the pixel being processed. The
smallest non-trivial odd window is of size3 × 3, but odd
windows up to side11 are frequently used. This defines the
sample sizes that we used in the Monte Carlo experiments,
namely,25, 49, 81 and121 (11 × 11).

The following values were used for(−α;L): (1; 1),
(1; 3), (5; 3), (5; 8), (8; 3), (8; 8), (10; 3), (10; 8), (15; 3),
(15; 8). The value of the nuisance parameter was chosen so
that the resultingG0

A-distributed random variable has unit
mean.

In what follows we shall present numerical results re-
lated to the inference of the roughness parameterα. All
Monte Carlo results are based on 10,000 replications. Ma-
ximum likelihood estimators obtained from usual likelihood
(MLE), adjusted profile likelihood based on [1] (aMLE–1),
and adjusted profile likelihood based on [2] (aMLE–2) are
considered.

To save space we only consider the situation whereα =
−1, i.e., we simulate observations on the return signal am-
plitude of an extremely heterogeneous region, e.g., an urban
area. For a window of size7 × 7 and number of looks (L)
equal to one, the least favorable situation, the relative bias of
the estimatoraMLE–1(0.973%) was approximately twenty
times smaller than that ofMLE (20.349%). The mean squa-
red errors of these estimators were 0.097 and 1.421, respec-
tively, that is, the mean squared error ofaMLE–1was over
14 times smaller than that ofMLE. The best performing es-
timator wasaMLE–1, followed by the estimatoraMLE–2.

We have also performed one-sided signalized likelihood
ratio tests on the roughness parameter using the test statis-
tic: signal(α̂ − α)

√
LR, whereLR denotes the likelihood

ratio test statistic based on the usual likelihood (LRT) or
on the adjusted profile likelihoods,aLRT–1([1]) andaLRT–
2 ([2]), and α̂ denotes the respective maximum likelihood
estimate:MLE, aMLE–1andaMLE–2. We performed two
tests, namely:

1. homogeneous and heterogeneous regions× extremely
heterogeneous region,

2. homogeneous region× heterogeneous and extremely
heterogeneous regions.

The main goal here is to compare the finite-sample behavior
of the different tests. The asymptotic null distribution ofall
test statistics is standard normal.

To save space we only consider the Test 1 and the null re-
jection rates of the different signalized likelihood ratiotests
at the 10% significance level. The value ofα is −5 and we
consider the following pair(n,L) = (81, 3). The tests ba-
sed on adjusted profile likelihoods displayed the smallest
size distortions. The null rejection rates of the tests based on
LRT, aLRT–1andaLRT–2were equal to 7.920%, 10.500%,
9.080%, respectively. At the 5% significance level, when
the null hypothesis is false, the rejection rates (power) of
the testaLRT–1were always greater than those of the other
tests; the next best performing test wasaLRT–2.

3. Application to Real Data

Finally, we have analyzed real data from a single look
image obtained by the E-SAR airborne sensor over surroun-
dings of München, Germany, originally of1024×600pixels
with a resolution of the order of one meter. We selected sam-
ples from the three typical regions present (crops, forest and
urban areas) in the image. The adjusted profile maximum
likelihood estimators proved to be more capable of provi-
ding useful information about the nature of the ground truth
than the usual maximum likelihood estimator. Usual and ad-
justed profile likelihood ratio test statistics were computed
using the same data. Decisions based on the former always
suggested that the imaged area was urban, even when that
was clearly not so, whereas the adjusted profile likelihood
test yielded much more sensible inference.
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