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Abstract

Many GIS applications require efficient algorithms to
manipulate huge volume of data about terrains stored in
external memory. One of these applications is the viewshed
computation which consists in obtaining the points that can
be viewed by a given point. In this paper, we present an ef-
ficient algorithm to compute the viewshed on huge terrains
stored in external memory.

1. Introduction

Terrain modeling is an important area in GIS applica-
tions and the recent technological advances in data acquisi-
tion (such as LiDAR) have produced a huge volume of in-
formation about the earth surface. For example, a 10km×
10km terrain sampled at 1m resolution is represented by
108 points. To manipulate this huge volume of data (which
does not fit in the internal memory) it is essential to use
methods that minimize the external memory access [2, 6].
More generically, Aggarwal and Vitter [1] proposed a com-
putational model to evaluate the complexity of algorithms
that manipulate data stored in external memory. The com-
plexity is defined considering the number of I/O operations
executed.

An important problem involving terrains is the viewshed
computation which consists in determining all points or re-
gion that can be viewed by a given point [4]. This problem
has many applications such as: to determine the minimum
number of cell phone towers to cover a region; to optimize
the number of guards to safeguard a region, etc.

In this work, we consider a terrain represented by a reg-
ular grid (DEM) stored in the external memory and we
present an I/O efficient algorithm to compute the viewshed
of a point in the terrain. Our algorithm is an adaptation of
Franklin’s method [5] to allow an efficient manipulation of
huge terrains (4GB or more). The large number of disk ac-
cesses is optimized using the library STXXL [3]. Comparing
our algorithm with the algorithm proposed by Haverkort et
al. [7], the tests showed that our algorithm is about 4 times
faster than Haverkort’s one and also, it is much simpler and
easier to implement.

2. Computing viewshed on external memory
Given a terrain represented by a n × n elevation ma-

trix T and given a point p on T , the algorithm proposed
by Franklin [5] computes the viewshed of p considering a
circle of radius r (the radius of interest) centered on p. To
sweep this circle, the algorithm uses a square bounding box
of side 2r and each cell in the square border is connected to
p. For each ray, the algorithm determines if the terrain posi-
tions are visible or not from p. More precisely, initially all
cells are set as not visible and given a ray l, the algorithm
starts at p setting the ray height as −∞ (i.e., a big nega-
tive number). So, this height is updated (increased) when-
ever a higher cell is accessed, that is, supposing the cur-
rent ray height is h and the next cell height is h′, if h < h′

then the cell is marked as visible and the ray height is up-
dated to h′; on the other hand, if h ≥ h′, the cell status
and the ray height are preserved. The viewshed is stored in
a 2r × 2r bit matrix where the visible positions are indi-
cated by 1 and the not visible by 0 (the positions inside the
square but outside the circle are set as not visible).

When the terrain is huge and the grid does not fit in the
internal memory, one could think to do a simple adaptation
to access the grid stored in the external memory. But, as-
suming the grid (matrix) is stored row by row, the cells pro-
cessing order would require a “random” access sequence
and the execution time would be too long.

To avoid the “random” access order we rearrange the
cells based on the processing order. This is done using an
external memory list L, managed by the STXXL library, and
each list element is a pair containing a cell and an index in-
dicating “when” that cell should be processed. The list is
initialized with all cells and their respective indices, com-
puted as described below. Next, the list is sorted by the in-
dices and the cells are processed in this order.

To compute indices, let’s suppose the rays are numbered
0, 1, · · · k in the counterclockwise order, starting in the hor-
izontal left to right ray - see figure 1 (a). So, the index ind
of a cell c is given by ind = ri ∗n+d, where ri is the num-
ber of the ray passing through c, n is the number of cells in
each ray 1 and d is the (horizontal or vertical) distance be-



tween the cell c and the point p. Notice that a cell can have
more than one index (i.e, a cell will be processed more than
one time); in this case, the cell is inserted in the list more
than one time, one for each index - see figure 1 (b).

Figure 1. The processing order indices.

Thus, if the cells are processed in the sequence given by
the list (sorted by the indices), it corresponds to a sequen-
tial access order and when a cell c is processed, all the “pre-
vious” cells that could block the visibility of c were already
processed. Also, when a cell located on the square bound-
ary is processed, it means that the processing of a ray has
finished and the next cell in the list will be the observer’s
cell indicating that the processing of a new ray will start.
So, the “random” access order is avoided.

3. Results, conclusion and future work

Our algorithm was implemented in C++, using g++
4.1.1, and it was executed in a PC Pentium with 2.8 GHZ,
1 GB of RAM, 80 GB HD running Mandriva Linux. In this
implementation, named EM VS, we maintain a piece of the
terrain in the internal memory and those cells that are not in
the internal memory are stored in the list L.

The efficiency of our algorithm was compared with the
Franklin’s algorithm (WRF VS) which was adapted to ma-
nipulate huge terrains stored externally. This adaptation also
maintains a piece of the terrain in internal memory.

The table 1 shows the execution time (in seconds, includ-
ing the index processing time) to compute the viewshed of
a point (using different radii of interest - ROI) in terrains
with 32427× 32427 and 48040× 48040 points (about 2GB
and 4GB resp., since each elevation uses 2 bytes). These
terrains were artificially generated by the concatenation of
many instances of a 1201 × 1201 matrix representing the
Lake Champlain (USA-Canada border). This dataset is in-
teresting because it has flat regions (lake) and mountains.

Based on these results, we can conclude that our al-
gorithm is about 4 times faster than the Franklin’s algo-

1 Considering the square box, this number is constant for all rays.

EM VS WRF VS
ROI 2GB 4GB 2 GB

100 32 18 121
500 27 87 122

1000 31 87 128
5000 73 155 316

10000 219 587 833
15000 446 848 1855

Table 1. Execution time.

rithm and also, it allows the processing of much larger ter-
rain (4GB or more while the original is limited to 2 GB).
Furthermore, comparing our algorithm execution time with
those reported by Haverkort et al. [7], we can conclude that
our algorithm, besides of being much more simpler, it is
also more than 4 times faster than that one.

As a next step, we are working on the NP-hard optimiza-
tion problem of siting observer in huge terrains where our
aim is to develop an approximation algorithm to place the
minimum number of observers necessary to “see” (almost)
the whole terrain.
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