Direct and surrogate sensing for the Gyil african xylophone

Shawn Trail
Dept. of Computer Science
University of Victoria
Victoria, Canada
shawn@intrinsicaudiovisual.com

Tiago Fernandes Tavares
Dept. of Computer Science
University of Victoria
Victoria, Canada
tiagoft@gmail.com

George Tzanetakis
Dept. of Computer Science
University of Victoria
Victoria, Canaad
gtzan@cs.uvic.ca

Dan Godlovitch
School Of Earth And Ocean Sciences
University of Victoria
Victoria, Canada
dgodlovitch@gmail.com

ABSTRACT

The Gyil is a pentatonic African wooden xylophone with 14-15 keys. The work described in this paper has been motivated by three applications: computer analysis of Gyil performance, live improvised electro-acoustic music incorporating the Gyil, and hybrid sampling and physical modeling. In all three of these cases, detailed information about what is played on the Gyil needs to be digitally captured in real-time. We describe a direct sensing apparatus that can be used to achieve this. It is based on contact microphones and is informed by the specific characteristics of the Gyil. An alternative approach based on indirect acquisition is to apply polyphonic transcription on the signal acquired by a microphone without requiring the instrument to be modified. The direct sensing apparatus we have developed can be used to acquire ground truth for evaluating different approaches to polyphonic transcription and help create a “surrogate” sensor. Some initial results comparing different strategies to polyphonic transcription are presented.

Keywords
hyerinstruments, indirect acquisition, surrogate sensors, computational ethnomusicology, physical modeling, performance analysis

1. INTRODUCTION

The ability to interface existing musical instruments to computer systems opens up a variety of interesting possibilities. The term ‘hyperinstrument’ has been used to refer to an acoustic musical instrument that can be played conventionally which has been augmented with various sensors to transmit information about what is played to a computer system expanding the sonic palette of the acoustic instrument. The most common use of hyperinstruments has been in the context of live electro-acoustic music performance where they combine the wide variety of control possibilities of digital instruments such as MIDI keyboards with the expressive richness of acoustic instruments. Another interesting application of hyperinstruments is in the context of performance analysis. The most common example is the use of (typically expensive) acoustic pianos fitted with a robotic actuation system on the keys that can capture the exact details of the player actions and replicate them. That system allows the exact nuances of a particular piano player to be captured, and when played back on the same acoustic piano will sound identical to the original performance. The captured information can be used to analyze specific characteristics of the music performance such as how timing of different sections varies among different performers. The majority of hyperinstruments that have been proposed in the literature have been modifications of Western musical instruments. The focus of this paper is extending the Gyil which is a traditional wooden african xylophone with digital sensing capabilities. The conventional Gyil has 14 or 15 wooden bars tuned to a pentatonic scale that are mounted on a wooden frame. Hollowed-out gourds are hung from the frame blow the wooden bars to act as resonators. The Gyil sound is characterized by a buzzing resonance, due to the preparation of the gourds, which have holes drilled and them that are papered over with spider silk egg casings. The egg casings act as vibrating membranes, but have irregular forms due to their material properties and the hole shape.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).
electro-acoustic mediums are largely unexplored due to the typically limited access to the associated technologies. The paper is organized as follows: The next section describes related work and provides context for our system. Section 3 describes the sensing apparatus we have developed specifically for the Gyil. In Section 4 we show how this sensing technology can be used together with a physical model of the gourd resonators to create an acoustically excited hybrid model that retains the wooden bars but models the gourds virtually. Section 5 describes our experiments in trying to use sound source separation algorithms that have been tailored specifically to the Gyil to perform real-time causal transcription potentially bypassing the need for direct sensing. The direct sensing apparatus is used to train this indirect “surrogate” sensor by automatically providing ground truth to evaluate how good the transcription is. An underlying theme of our work is that we can achieve better results in both sensor design and audio analysis by tailoring them specifically for the Gyil. The paper concludes by discussing future work. Audio and video examples of the work described in this paper can be found at http://opihi.cs.uvic.ca/nime2012gyil.

2. RELATED WORK

Hyperinstruments are acoustic instruments that have been augmented with sensing hardware to capture performance information [?]. The majority of existing hyperinstruments have been standard western instruments such as guitars, keyboards, piano and strings. A similar emphasis on western music occurs in musicological and music information retrieval research. It has motivated research in computational ethnomusicology which is defined as the use of computers to assist ethnomusicological research [?]. In world music, the use of hyper-instruments has been explored in the context of North Indian music [?] and digital sensors have been used in the development of Gamelan Electrica [?], a new electronic set of instruments based on Balinese performance practice. One interesting motivation behind the design of Gamelan Electrica is a reduction in physical size and weight, simplifying transportation. This concern also motivated us to investigate replacing the gourd resonators by simulating them digitally using physical modeling. The hybrid use of microphones to capture sound excitation and simulation to model the needed resonances has been proposed in context of percussion instruments and termed acoustically excited physical modeling [?]. Past work in the physical modeling of pitched percussion instruments has mostly focused on the vibraphone and marimba [?].

Indirect acquisition refers to the process of extracting performance information by processing audio of the performance captured by a microphone rather than using direct sensors. It has been motivated by some of the disadvantages of hyperinstruments such as the need for modifications to the original instrument and the difficulty of replication [?, ?]. In general it requires sophisticated audio signal processing and sometimes machine learning techniques to extract the required information. An interesting connection between direct and indirect acquisition is the concept of a surrogate sensor. The idea is to utilize direct sensors to train and evaluate an algorithm that takes as input the audio signal from a microphone and outputs the same control information as the direct sensor [?]. When the trained surrogate sensor(s) exhibits satisfactory performance it can replace the direct sensor(s).

The goal of automatic source separation is to separate the individual sound sources that comprise a mixture of sounds from a single channel recording of that mixture. Such systems can be used as front ends to automatic transcription which has the related but different goal of detecting when and for how long different sources are activated without requiring actual separation of the signals. A large family of source separation/music transcription algorithms are based on various forms of factorization in which the time-frequency representation of the mixture is decomposed into a weighted linear combination from a dictionary consisting of basis functions that correspond to the time-frequency representations of the individual sound sources [?]. The majority of existing approaches are not causal (require all of the input signal) and are designed for more general types of sound sources. Therefore they are not appropriate for real-time processing. In this paper we investigate the potential of such techniques in a real-time context and with a dictionary specifically tailored to the Gyil. One possible criterion for evaluating how good is a certain approximation is the least mean squares [?]. Since sound source activities avoided, this is an important consideration when it comes to physical modeling, because the convenience of uniform distribution is not an afforded luxury, therefore each instrument and each bar on that instrument must be considered individually, along with its corresponding gourd and the sympathetic resonances from each unique neighboring gourd and the subsequent individual character of each bar.

The direct sensing we have prototyped relies on a combination of standard digital pro-audio equipment: Firewire AD/DA multi-channel audio interface, personal computer with appropriate audio processing capabilities, necessary software, playback speakers and low cost (less than 1 cent when bought in bulk) piezo transducers being used as contact microphones (hot glued directly to the bars) to ac-

4. HYBRID ACOUSTIC/PHYSICAL MODEL

The Gyil differs from the marimba or the xylophone primarily in the use of gourds that are hung on the body of the instrument, below the wooden bars as seen in Figure 2. They act as resonators amplifying the sound of the wooden bars. The characteristic buzzing sound of the Gyil is the result of the preparation of the gourds, which have holes drilled in them, which are papered over with spider silk egg casings. The egg casings act as vibrating membranes, but are irregular in their form, due to the shape of the holes, and their material properties. In this section we describe a physical model for the Gyil gourd. It has been motivated by the desire to create sound synthesis techniques based on physical modeling for the Gyil as well as a way to simplify the transportation of the instrument as the gourds are large in volume, awkward in shape, and fragile. The direct sensing apparatus described in the previous section can be easily packed as it consists of wires, contact microphones and an external multi-channel sound card. The wooden bars can be easily folded and are quite robust. In addition it lowers the cost of making an instrument. The developed physical model is designed to act as an electronic replacement for the gourd while preserving the unique timbre of the instrument.

The proposed system consists of a model for the gourd itself, and a model for the membrane. We make the assumption that the feedback from the gourd to the wooden bar is negligible and therefore can be viewed as a source-filter system. In order to make measurements of the acoustic properties of a single gourd, we removed the bars from the Gyil frame. Investigations were carried by exciting the gourd with a sine and triangle waves of fixed frequency and varying amplitude which led to the wave wrapping model of the membrane described below. It was found that there is a clear threshold over which there is significant high frequency distortion which we speculate is caused when the egg casing membranes start deforming instead of simply vibrating. The gourds are considered as simple resonant bodies, which can be modeled by resonant band pass filters. The frequency of the filter is inversely proportional to the volume of the gourd, and the resonance or Q-factor is inversely proportional to the size of the opening at the top. For that reason, larger gourds are chosen to be associated with the lower pitched notes. The range of gourd sizes may either be selected by hand, or a scaling constant, $0 < s < 1$, may be used, so that the center frequency of the bandpass filter representing the smallest gourd, f_0, is selected and the frequency of the n^{th} gourd is given by $s^{n-1}f_0$.

The membranes are modeled using wave folders, which have the property to wrap the input signal around two predefined limits. Mathematically, for an input signal with amplitude x_{in}, and specified reflection amplitude A, the

$$
\text{Normal Reflection: } r_{\text{norm}} = \frac{x_{in}}{x_{in}} - A
$$

$$
\text{Partial Reflection: } r_{\text{partial}} = \frac{x_{in}}{x_{in}} - A
$$
output signal y is given by:

$$x_{out} = \begin{cases}
A & -cA < x_{in} < A \\
x_{in} - A & x > A \\
-cA & x_{in} < -cA
\end{cases}$$

where $0 \leq c \leq 1$ is a parameter which we may set to adjust the asymmetry of the folding, that is, the difference between the absolute values of the high-level and the low-level limits, as can be seen in Figure 3. The choice of wave folding over a clipping function reflects the need for a greater degree of harmonic content to be generated than clipping produces, when processing a dynamic signal.

Figure 3: A simple wave folder with adjustable symmetry used to model membranes on the gourds.

The resonant filter yields signal to a number of membranes, which are wave folders as described by Expression 1. To mimic the different sizes of the membranes, and the slight variations in material, the wave folders have different parameter settings for A and c (as defined in Expression 1). To simplify the implementation of the model, and to make it more transparent, an adjustable scaling parameter $0 < s_n < 1$ is specified so that, for a model with N membranes, the level at which signal is folded in the n^{th} membrane is given by $s_n A$, thus reducing the number of adjustable parameters for the wave folders from N to 2.

Last, the output of the wave folders is fed back into the resonant filter, with a controllable gain. The whole system may be visualized in Figure 4.

Figure 4: Diagram of signal flow for one gourd.

The signal yielded by the physical model is the output of the resonant filter, which will be very close to the sound of the vibrating bar for low amplitudes and will have a considerable amount of distortion for high amplitudes.

The gourd has the effect of amplifying the two harmonics present in the bar, and introducing a significant amount of spectral content between 1kHz and 7kHz, as can be seen by comparing the top and middle plots in Figure 5. Our gourd model driven by the output of the piezo-electric direct sensor succeeds in introducing high frequency content in a similar manner to the Gyil gourd, as seen in the lowest spectral plot in Figure 5. It can be seen that the Gyil gourd produces a more broadband spectrum than our model, which is characterized by well-defined spectral peaks. The broadband spectrum introduced by the gourd suggests a greater degree of non-linearity in the physical system than in our first-order model. We plan to address this issue in future revisions of the model.

The proposed model benefits from the direct sensors. In the physical instrument, larger gourds are related to the sound of lower pitched notes with higher intensity, and the same holds for smaller gourds and higher pitched notes. If the sound signal from the Gyil is simply obtained through a single microphone, this pitch-dependent coupling is not possible. By using a different channel for sensing each bar, it is possible to route signals through different instances of the model described above, hence obtaining a sound whose timbre is closer to that of the natural Gyil sound.

5. SOUND SOURCE SEPARATION AND AUTOMATIC TRANSCRIPTION

This section discusses the application of digital signal processing techniques for the purpose of obtaining the same data yielded by the multi-channel direct sensors, but using as input only a single channel. This single channel can either be the summation of the sensor signals or the sound data acquired from a regular microphone that is not directly attached to the instrument. The motivation is to attempt to extract the same information without requiring any modifications to the actual instrument. For this purpose we decided to investigate sound source separation algorithms. In order to obtain satisfactory performance we tailored the approach to the Gyil. In order to evaluate transcription algorithms it is necessary to have some form of ground truth of what the right answer should be. In most of the existing literature this is obtained through symbolic representations of the music that is then synthesized and passed through the source separation system. In the music
Microphone Contact

Algorithm called Non-Negative Least Squares (NNLSQ), as proposed in [2], which aims to obtain the best description (considering the least square error) of a certain signal using a non-negative combination of a set of pre-defined basis functions. The signal representation used for the purpose of this detection is the logarithm of the magnitude spectrum, which was obtained by dividing the input signal in frames of 12 ms (with a 6 ms overlap), multiplying each frame by a hamming window, zero-padding it to twice its length and, for each frame x, calculating the spectrogram as $y = \log_{10}(1 + |\text{DFT}(x)|)$. The resulting spectra are trimmed in order to eliminate frequency components outside the spectra of the instrument's notes (and reduce the computational load). The basis vectors are obtained by averaging a few frames of the spectrogram of an execution of each isolated note. The NNLSQ algorithm is, then, executed over each frame of the analyzed piece's spectrogram, yielding the activation level of each note. This approach is similar to the one proposed by [7]. This information may be used either for sound source separation or for automatic transcription, as described below.

The dataset used in this experiment consists of an audio recording approximately 2 minutes long. It was simultaneously recorded using the direct sensors (as separate tracks) and a microphone placed in front of the instrument. After the recording, the data from the direct sensors was artificially mixed, simulating the process of analog mixing that is part of the first scenario described above. Hence, there were three different synchronized tracks: a multi-channel track where each bar of the instrument is explicitly recorded in one different channel, a single-channel track containing data obtained from the direct sensors and a single-channel track obtained from a microphone recording. All experiments in this section take in account using direct (contact) and indirect (microphone) sensors both to acquire the basis functions and to test the performance of the analyzed methods.

5.1 Sound Source Separation

In this section, an NNLSQ-based technique for sound source separation is evaluated. This technique relies on the assumption that polyphonic audio signals that result from the mixing of several different sources are, in terms of physical measures, the sum of the signals corresponding to each individual source. Also, the human perception derived from listening to that sound is essentially the superposition of the sensations triggered when listening to each individual source. Therefore, a reasonable mathematical model for the phenomenon of sound source identification is:

$$X = BA.$$ \hspace{1cm} (2)

In that model, B is a set of basis functions, that is, a set of vector representations of the sources to be identified, X is the representation of several measures of the phenomenon in the same domain as B, and A is a set of weight coefficients that represent how much each source defined in B is active in each measurement. Evaluation of the technique is based on a resynthesis schema, as follows. Since the spectral representation related to each base vector is known, it is possible to re-synthesize the expected audio for each channel. That is done by summing the magnitude spectral representation of each basis, weighted by the activation level of that note, using the phase information from the input signal and then calculating an inverse DFT. In the experiments, the input signal was separated and then remixed. The final result was compared to the input using the evaluation method described by Vincent [7]. The Signal-to-Distortion ratio (SDR) is reported, as it is the only meaningful evaluation metric for one input, one output systems. The results are reported in Table 1.

Table 1: Signal-to-Distortion Ratio for the source separation techniques.

<table>
<thead>
<tr>
<th>Input</th>
<th>Basis source</th>
<th>Microphone</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone</td>
<td>0.0408</td>
<td>0.0049</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>0.0857</td>
<td>0.1558</td>
<td></td>
</tr>
</tbody>
</table>

As it may be seen, the use of sound-source separation techniques is not as effective as the use of individual sensor data regardless of the basis vectors used. This means that the use of multiple channels of direct sensors is interesting for the purpose of obtaining audio data. The next section describes an algorithm for obtaining control data, namely, the onsets and pitches that are played.

5.2 Automatic Transcription

Although obtaining audio data from the mono signal, as described above, may be difficult with today’s techniques, it might only be desired to simply obtain the control data that would be provided by the direct sensors. Experiments were conducted aiming to determine the limits under which control data may be reliably obtained from these single-channel mixes. The ground truth transcription data was obtained by automatically detecting onsets using straightforward energy thresholding in the multi-channel track (offsets were ignored, as the Gyil does not have gestures related to offsets). This method of obtaining ground truth data is called surrogate sensing [7], and by using it a large amount of annotated data can be acquired in real-time.

The method used to obtain symbol data in this paper relies on obtaining basis vectors and then running the NNLSQ algorithm over the testing data. In order to obtain discrete control data, the activation levels are, yielded to a rule-based decision algorithm that works as follows. First, all activation levels below a certain threshold a are set to zero. After that, all values whose activation level difference are below another threshold b are set to zero. When a non-zero value for the activation value is found, an adaptive threshold value is set to that level multiplied by an overshoot factor c. The adaptive threshold decays linearly at a known rate d, and all values activation levels below it are ignored. Finally, the system deals with polyphony by assuming that a certain activation level only denotes an onset if it is greater than a ratio g of the sum of all activation values for that frame. After this process a list of events, described by onset and pitch, is yielded. The events in the ground truth list and in the obtained list are matched using the automatic algorithm described in [7]. An event is considered correct if its pitch is equal to the pitch of the matched event and its onset is within a 100 ms range of the ground truth. The values reported are the Recall (R, number of correct events divided by the total number of events in the ground truth), Precision (P, number of correct events divided by the total number of yielded events) and the F-Measure ($F = 2RP/(R + P)$). These are standard metrics used for evaluating transcription and originating from in-
formation retrieval. Table 2 show these coefficients for both analyzed pieces.

Table 2: Event detection accuracy (%), using different sensors to acquire basis.

<table>
<thead>
<tr>
<th>Input Source</th>
<th>Basis from direct sensor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphone</td>
<td>Recall</td>
<td>36.39</td>
<td>Precision</td>
</tr>
<tr>
<td>Contact</td>
<td>Recall</td>
<td>81.01</td>
<td>Precision</td>
</tr>
<tr>
<td>Basis from indirect sensor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microphone</td>
<td>Recall</td>
<td>59.81</td>
<td>Precision</td>
</tr>
<tr>
<td>Contact</td>
<td>Recall</td>
<td>20.89</td>
<td>Precision</td>
</tr>
</tbody>
</table>

As can be seen, results degrade when using different sensors to calculate the basis vectors than the sensors used to acquire the signal in which the detection will be performed on. That is because the microphone signal is considerably noisier - due to normal ambient noise when playing, as well as sounds from the Gyil frame - and the basis vectors obtained from microphone recordings take these model imperfections into account. It is also important to note that the precision obtained when analyzing direct sensors was always greater, which is easily explainable by the absence of ambient noise in the recording. The results, however, indicate that there is significant room for improvements, and for greater accuracy requirements it is necessary to use the multi-channel direct sensor data, as current real-time techniques for polyphonic transcription have limited reliability. The direct sensing has been essential in enabling us to evaluate these different approaches. It is also important to note that the results degrade drastically when using basis functions that are not obtained from Gyil recordings.

6. CONCLUSIONS AND FUTURE WORK

We have described a direct sensing apparatus specifically designed for the African wooden xylophone called the Gyil. An array of piezo-electric pickups mounts on the wooden bars enables the capture of detailed performance data. The raw audio data produced can be used to drive a physical model of the gourds. We also describe how the direct sensors can be used to obtain ground truth information for evaluation audio transcription approaches tailored to the particular instrument. There are many directions for future work. We hope to study the variations in technique among different players in the context of performance analysis. The physical model can be improved by more detailed modeling of the gourd resonators as well as including coupling between neighboring gourds. We also plan to create a full physical model in which the wooden bar excitation is simulated. Based on our existing algorithms, indirect acquisition is not sufficiently accurate to obtain performance data. We plan to investigate several variations of factorization methods. The surrogate sensor approach to obtaining ground truth will be essential in continuously improving our algorithms. Finally we plan to include the developed hyper-instruments in live performances of electro-acoustic music.

Acknowledgments

Tiago Fernandes Tavares thanks CAPES - Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Proc. 2300-11-7 - for funding. The support of the National Science and Research Council of Canada is gratefully acknowledged. We thank the late Kakraba Lobi, a great maestro and advocate of the Gyil, who built the two instruments used in this work.