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Abstract. The coordination of cooperative workflows occurs in parallel to
the definition of a common communications infrastructure among
organizations. In this paper, we present a library of coordination
mechanisms modeled with Petri Nets. These mechanisms specify and
control the interaction between workflow processes. The separation
between activities and dependencies, managed by the coordination
mechanisms, allows the reuse of these mechanisms in other environments
and also the use of different coordination policies in the same environment.

1. Introduction

The increasing globalization of the world economy offers promising opportunities
for the field of interorganizational workflows, which cross a single organization
boundary, being composed of several organizations working cooperatively. However,
the necessity of cooperation raises many problems which we can separate into two
main classes, those related to the definition of a joint communications infrastructure
and those related to the coordination of cooperative workflows.

The first class of problems deals with the integration of heterogeneous software
environments in a common communications infrastructure. These problems can be
roughly summarized by the difficulties of establishing an “interoperability contract” [1]
among the cooperative organizations. This “contract” must establish, among other
things, which workflow engines within an organization are capable of interoperating
with which engines within other organizations, the transport technology, the
communication protocol, security policies and exception handling. The Workflow
Management Coalition (WfMC) is currently working on standards addressing these
issues [2].

The other class of problems – those related to the coordination of cooperative
workflows – appears in a higher abstraction level and, to our knowledge, it has not been
addressed by the WfMC yet. Here, it is assumed that the communications environment
is well-defined by the partners and the major concerns are related to the coordination of
interdependent activities. Since this kind of problem is the main focus of the paper, we
purposely use the term “multi-workflow environment” instead of the standard
“interorganizational workflow”.

Coordination can be defined as “the act of managing interdependencies between
activities performed to achieve a goal” [3]. The coordination is highly dynamic,
because it needs to be “renegotiated” almost continuously during a collaborative effort.
The great challenge in proposing coordination mechanisms to control a cooperative
activity is to achieve the flexibility demanded by the dynamism of the interaction
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among the partners [4]. In other words, coordination policies vary according to the
cooperation instance, or even during the evolution of the same instance. Therefore, it is
essential that coordination mechanisms be flexible enough to handle these variations. It
is not reasonable to think that organizations will spend time and money to establish a
common communications infrastructure with their partners if they are not sure about
the effectiveness of the coordination structure of their cooperative workflows.

This paper presents a library of coordination mechanisms that can be reused in
several workflow environments. The main idea is to separate the coordination
mechanisms from the tasks that constitute the workflow. The separation between
activities (tasks) and dependencies (managed by the coordination mechanisms) allows
the use of different coordination policies in the same environment by changing only the
coordination mechanisms. Moreover, the same mechanisms can be used in different
single- or multi-workflow environments.

To model the proposed coordination mechanisms, we use an approach based on
Petri Nets (PNs). The graphical representation of PNs, besides being easy to
understand, enables detail encapsulation, offering a very clear hierarchical description
model, which is adequate to model the different coordination levels. Furthermore, PNs
offer a strong theoretical support for the analysis of an environment’s behavior and
supplementary simulation techniques. With the PN based model, it is possible to
anticipate and test the behavior of multi-workflow environments before their
implementation.

This paper is structured as follows. The next section briefly introduces PNs.
Section 3 makes an overview of previous works regarding the use of PNs in
coordination, workflow applications and interorganizational workflows. The library of
coordination mechanisms is presented in Section 4, and an example of use is shown in
Section 5. The last section presents the conclusions and next issues.

2. Petri Nets Fundamentals

PNs [5], [6] are a modeling tool applicable to a variety of fields and systems,
specially suitable for systems with concurrent events. Formally, a PN can be defined as
a 5-tuple (P, T, F, w, M0), where: P = {P1, ..., Pm} is a finite set of places; T = {t1, ..., tn}
is a finite set of transitions; F ⊆ (P × T) ∪ (P × T) is a set of arcs; w: F → {1, 2, ...} is a
weight function; M0: P → {0, 1, 2, ...} is the initial marking; with (P ∩ T) = ∅ and
(P ∪ T) ≠ ∅ .

In a PN model, states are associated to places and marks (also called tokens), and
events to transitions. A transition t is said to be enabled if each input place Pi ∈ •t is
marked with at least w(Pi, t) tokens, where w(Pi, t) is the weight of the arc between Pi

and t. Once enabled, a transition will fire when its associated event occurs. Firing
transition t, w(Pi, t) tokens are removed from each input place Pi and w(t, Po) tokens are
added to each output place Po ∈ t•. Here, •t and t• means, respectively, the set of input
and output places of transition t.

A very useful notation for PNs is the graphical notation (Figure 1) which will be
used in the examples throughout this paper. In this notation, circles represent places,
rectangles represent transitions, dots represent tokens and arrows represent the arcs,
with weights above. By definition, an unlabeled arc has weight 1.

In the PN of Figure 1, only transition t2 is enabled; t1 is not enabled because it
would require two tokens in P1 to fire, since w(P1,t1)=2. When t2 is fired, the tokens
in P2 and P3 are removed and P4 receives one token. Note that the number of tokens in
a PN is not necessarily conserved.



Figure 1: PNs graphical and mathematical notations.

In addition to the basic PN model, several extensions appears in the literature [6].
In this paper we use two extensions: inhibitor arcs and nets with time. An inhibitor arc
connects a place P with a transition t and enables t only if P has no tokens. In the
graphical notation, inhibitor arcs are represented with a circle on the edge. The basic
PN model does not consider the notion of time. One way to include this notion in the
model is to establish a waiting time for the tokens in a place before they enable the
output transitions [7]. Time can also be associated with transitions firing. In this case,
tokens do not stay in input places waiting for the firing, but they are removed from that
places and some time later (firing time) are added to the output places. This kind of
non-instantaneous firing is called firing with token reservation.

Besides the modeling capabilities of PNs, their support for analysis is very
important and useful on the verification of workflows. “The abundance of available
analysis techniques shows that Petri nets can be seen as a solver independent medium
between the design of the workflow process definition and the analysis of the
workflow” [8]. These analysis techniques are based on the properties of the
mathematical model. Some of these properties are:

Reachability: is there a sequence of firing that reaches a given state? The
coverability tree, that offers a vision of the complete sequence of transitions and
states in a PN, can be used to verify this property.

Liveness: is there any state or sequence of states which will not be reached
anymore, indicating a possible deadlock?

Reversibility: is it possible to return to a defined initial state M0?
Boundness: will a place be overloaded? A PN is defined as k-bounded if the

number of tokens in each place does not exceed k.
Persistence: is the firing of any pair of enabled transitions interdependent, i.e., the

firing of one will disable the other? A pair of transitions with interdependent
firings indicates a conflict, because only one of them will be fired (logical OR).

Three kinds of analysis can be applied to a PN model; verification, validation and
performance analysis [8]. The verification analysis is used to guarantee that the net is
correctly defined. It is verified whether the net has deadlocks, whether there are dead
transitions, whether it reaches any undesired state, among others. In the validation
analysis, it is checked whether the model works as expected. Tests are made via
iterative simulations of fictitious cases to ensure that the model treats them correctly.
Finally, the performance analysis evaluates the capacity of the system to achieve
requisites such as average waiting time, throughput times, resource use, and so on.
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Graphical Notation Mathematical Notation

P = {P1, P2, P3, P4}

T = {t1, t2}

F = {(P1,t1), (P2,t2), (P3,t2), (t1,P4), (t2,P4)}

w(P1,t1) = 2
w(P2,t2) = w(P3,t2) = w(t1,P4) = w(t2,P4) = 1

M0 = [1 1 1 0]T



Summarizing, PNs provide interesting modeling characteristics, a strong theoretical
support for analysis and also a number of simulation techniques, which make them a
powerful tool for workflow applications. They enable designers to preview and test the
workflow behavior before implementing it.

3. Related Work

In 1985 Anatol Holt used PNs to coordinate activities in computer supported work
environments [9]. He proposed a new interpretation for PNs, connecting their formal
structure with the “natural structure” of human (or computational) work. Moreover, he
also identified some essential aspects of coordination technology, which at that time
was very promising for the creation of electronic work environments. Among these
aspects, the most important was related to the flexibility of coordination mechanisms.
As stated by Holt, to be useful, the desired patterns of task coordination “must be done
in a flexible yet well-integrated manner, with plenty of leeway for the unpredictability
of real life” [9].

Holt’s work resulted in the creation of Diplan, a formal graphical language to the
planning of activities involving multiple collaborative agents [10]. This language is
based on Predicate/Transition Nets [11], with some alterations, such as the specification
of a time for state changes (non-instantaneous transitions) and the explicit reference to
the human role in the tasks’ execution. The CHAOS (Commitment Handling Active
Office System) is another system for the coordination of activities in office automation
based on PNs [12].

PNs also constitute the basis of Trellis, a model for prototyping interaction
protocols in collaborative systems [13]. The generated protocol defines how a central
server must process clients’ requests. Trellis uses colored PNs [14], in which tokens
have a type (color) and carry information. The notion of time appears in the form of
delays and timeouts to the firing of transitions. The functionality of Trellis is different
from that of Diplan because the former is not restricted to the coordination of activities,
creating “hyperprograms” that join hypermedia navigation to collaboration support.

The ideas related to the automation and coordination of tasks led up to the
development of workflow systems [15], [16], defined as “a particular kind of
groupware intended to assist groups of people in executing work procedures; they
contain knowledge of how work normally flows through the organization” [17]. PNs
and their extensions are also used for the modeling of this kind of system. There are
many papers in the literature presenting the mapping of workflow concepts into PNs
(e.g., [17], [18]). Basically, tasks are represented by transitions and jobs are represented
by tokens flowing through the net. The state of a job is given by the marking of the PN
at a given instant. Control activities are also represented by transitions, which are used
in basic workflow connections such as joins and splits. Examples of variations of PNs
used in workflow applications are the ICNs (Information Control Nets) [17] and the
Workflow Nets (WF-Nets), a class of PNs appropriate to the representation, validation
and verification of sets of interdependent tasks [8].

PNs are not the only way to evaluate workflow systems before implementing them.
Current workflow tools offer approaches less formal than PNs for analysis, which have
a larger penetration in the business world [19]. SIMPROCESS [20] is an example of a
commercial tool that uses workflow based simulation and analysis to evaluate
alternatives prior to implementing them.

Recently, interorganizational workflows have attracted a lot of attention from
developers. PRODNET II [19] is an example of a project aiming to develop an open



and flexible support infrastructure suited to the needs of small and medium enterprises.
The PRODNET II architecture implements a clear separation between support services
and control mechanisms, and adopts a workflow based coordination approach.

METEOR (Managing End-To-End OpeRations) [21] is a well-succeeded academic
workflow management system that generated a commercial product. METEOR
specifies human and automated tasks and intertask dependencies, generating automatic
code from graphical specification. Communication channels between heterogeneous
and distributed workflow engines are provided by means of a CORBA and Java Web-
based implementation.

PNs have also been used in interorganizational workflows. An example is the
virtual machine (a PN) that controls the behavior of mobile agents in COSM (Common
Open Service Market) [22]. COSM uses mobile agents to support the management of
interorganizational workflows, an approach specially suitable for situations where
partners do not intend to tighten their cooperation (e.g., in order to make a price survey
with several suppliers and get the best offer). This is not the case covered by this paper;
here we assume that partners have a well-established set of tasks in the cooperation.

To our knowledge, the work more closely related to ours is that of van der Aalst
[23], who realized that it is necessary to address the contents of the coordination
structure of interorganizational workflows. As stated by him “the semantics of the
constructs needed to model interorganizational workflows should be defined before
solving the technical issues (mainly syntactical)” [23]. He expanded his previous work
on WF-Nets [8] in order to model and analyse interorganizational workflows.

Although being motivated by similar concerns and making use of the same
modeling tool (PNs), there are differences between his work and ours. The main goal of
van der Aalst’s work is to formally verify the correctness of interorganizational
workflows and their consistency with the message sequence charts used to specify the
interaction between workflow processes. Our main goal, on the other hand, is to
provide a set of PN-modeled coordination mechanisms that can be used to specify such
interaction in several workflow environments. The correctness and consistency of the
generated workflow can be verified by means of available PN analysis and simulation
tools. In order to facilitate this task, we also have developed a prototype tool capable of
“inserting” those mechanisms between interdependent tasks of a PN modeled with a
specific software tool.

4. A Library of Coordination Mechanisms

As already stated, this work intends to provide mechanisms to manage
interdependencies between tasks in a multi-workflow environment. In order to achieve
this goal, we propose a library of PN-based primitives to model coordination
mechanisms for several possible interdependencies. Each coordination mechanism
ensures that the associated dependency will not be violated. The idea is that workflow
designers be concerned only with the definition of tasks and interdependencies among
them, and not with the management of those dependencies, since mechanisms to
manage them are provided by the library.

In the proposed schema, an environment is modeled in two distinct levels,
workflow and coordination. In the workflow level, each workflow is modeled separately
by a PN, in which tasks are represented by transitions, and that may include
“traditional” workflow connections (splits and joins) and routings (parallel routing,
conditional routing, etc). Also in this level, it is necessary to establish the
interdependencies between tasks in different workflows, or even in the same workflow.



The coordination level is built under the workflow level by the expansion of
interdependent tasks according to a model defined in [18] and the insertion of
corresponding coordination mechanisms between them.

In the passage from the workflow to the coordination level, each task (a transition
in the workflow level) which has a dependency with another is hierarchically expanded
in a system with five transitions (ta, tb, ti, tf and tc) and four places (P1, P2, P3 and
P4), as proposed by van der Aalst et al [18]. As shown in Figure 2, attached to each
expanded task there are also five places that represent the interaction with the resource
manager and the agent that executes the task. The places request_resource,
assigned_resource and release_resource connect the task with the resource manager.
The places start_task and finish_task connect the task with the agent that performs it,
respectively indicating the beginning and the end of the task execution.

Figure 2: An expanded task in the coordination level.

Based on the model of Figure 2, it is possible to conclude that a task can be
connected with two sub-nets: a resource manager (which has request_resource and
release_resource as input places and assigned_resource as output place), and another
representing the logistics of the task (which has start_task as input place and
finish_task as output place).

The library recognizes two general classes of interdependencies: temporal and
resource management dependencies. The former is related to the logistics sub-net cited
above, while the latter is related to the resource manager sub-net.

The library construction enables to build the coordination level from the workflow
level, because once the interdependencies are defined, the expansion of tasks according
to the model of Figure 2 and the insertion of coordination mechanisms can be
automated.

In the following sections we present the set of mechanisms of the library.

4.1. Temporal Dependencies

Temporal dependencies establish the execution order of “disconnected tasks” (e.g.,
tasks belonging to different workflows). By the use of coordination mechanisms
proposed for temporal dependencies, it is possible to define if a task is executed before,
after, or during another task.

In order to define the possible temporal dependencies between tasks, we refer to a
classic temporal logic paper by J. F. Allen [24]. In this paper, Allen states that there is a
set of primitive and mutually exclusive relations that can be applied to time intervals:
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[x1, x2] equals [y1, y2] iff x1 = y1 and x2 = y2. (X and Y are the same time
interval.)

[x1, x2] starts [y1, y2] iff x1 = y1 and x2 < y2. (X and Y start together, but X
finishes before Y.)

[x1, x2] finishes [y1, y2] iff x2 = y2 and x1 > y1. (X and Y finish together, but X
starts after Y.)

[x1, x2] before [y1, y2] iff x2 < y1. (X happens before Y, and they do not overlap.)
[x1, x2] meets (y1, y2] iff x2 = y1. (X happens before Y, which starts immediately

with the end of X.)
[x1, x2] overlaps [y1, y2] iff x1 < y1 < x2 < y2. (X starts before Y, which starts

before the end of X.)
[x1, x2] during [y1, y2] iff x1 > y1 and x2 < y2. (X is totally contained in Y.)

Allen defined possible relations between time intervals. We adapted these relations
for the definition of temporal dependencies between tasks in multi-workflow
environments, adding a couple of new relations and a few variations of those originally
proposed. The following temporal dependencies are defined in the library:

task1 equals task2: this dependency establishes that both tasks must be executed
simultaneously. In the coordination level, it is necessary to ensure that tasks
only start when both are ready (tokens in places start_task – Figure 2) and that
they finish together (tokens simultaneously sent to place finish_task).

task1 starts task2: according to Allen’s definition, both tasks must start together
and task1 must finish before task2 (we called this relation startsA). However,
we also relaxed the second part of the definition, creating a variation of the
relation in which it does not matter which task finishes before ([x1, x2] startsB
[y1, y2] iff x1 = y1).

task1 finishes task2: the original definition establishes that both tasks must finish
together and task1 must start after task2 (finishesA). Similarly to the previous
dependency, it is possible to relax the definition, creating a variation in which it
does not matter which task starts before ([x1, x2] finishesB [y1, y2] iff x2 = y2).

task2 after task1: this relation derived from the original relation before. In this
case, there is a restriction on the execution of task2, which can only occur after
the execution of task1. There is no restriction on the performance of task1. This
relation models the notion of pre-requisite, frequently used in workflows. It is
possible to define two variations of this relation. The first one (afterA)
establishes that each execution of task1 enables a single execution of task2. The
second variation (afterB) enables many executions of task2 after a single
execution of task1.

task1 before task2: differently from the previous relation, the restriction here
occurs on the execution of task1, which cannot be performed if task2 has started
to execute. There is no restriction on the execution of task2 (i.e., task2 does not
have to wait for the execution of task1, as was the case for task2 after task1).
From the temporal logic point of view, the difference between these two
relations may not be significant, but it generates totally different coordination
mechanisms.

task1 meets task2: according to this dependency, task2 must begin immediately
with the end of task1. In the coordination level, we achieve this by blocking the
end of task1 (token in finish_task – Figure 2) while task2 is not ready (token in
start_task).



task1 overlaps task2: this dependency generates two different models. The first one
(overlapsA) follows the original definition, which establishes that task2 must
start before the end of task1, which must finish before task2. The second model
relaxes the last part of the original definition and does not require that task1
finishes before task2 ([x1, x2] overlapsB [y1, y2] iff x1 < y1 < x2).

task2 during task1: this dependency establishes that task2 must be executed during
the execution of task1. Once more, the relation enables two different
interpretations, which generates two different coordination mechanisms. In the
first case (duringA), task2 can be executed only once during the performance of
task1. In the second case (duringB), task2 can be executed several times.

In the following, we show the models for the coordination mechanisms related to
starts and during dependencies. Other mechanisms are shown in the Appendix and the
full set of coordination mechanisms is described in [25].

Figure 3 shows the coordination mechanism for the relation Task1 startsB Task2,
without the restriction on which task should finish before. In the figure, transition t1 is a
control activity that constitutes, at the same time, an AND-join and an AND-split,
ensuring the simultaneous beginning of both tasks. The transitions called task1 and
task2 represent the logistic of the tasks. They are represented as non-instantaneous
transitions with token reservation (indicated by the letter “R” in the transitions). In order
to model the relation with the restriction that Task1 must finish before Task2 (startsA),
it is necessary to add an AND-join after the tasks, ensuring that a token will be sent to
place finish_task2 only after the end of both tasks (Figure 4).

Figure 3: Coordination mechanism for Task1 startsB Task2.

Since the goal of the coordination mechanisms is to deal with relations between
tasks that sometimes belongs to complex procedures, it is interesting to add mechanisms
to reduce deadlocks. For example, in relation Task1 startsB Task2, the first workflow
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could be blocked in Task1 if the second workflow has an alternative path that does not
execute Task2. This kind of problem can be minimized by the use of timeouts added to
the original schema.

 Figure 4: Coordination mechanism for Task1 startsA Task2.

Two kinds of timeouts are proposed. In the first kind (called timeoutA), an
alternative task (task’) is executed after a certain waiting time if the original task has
not been executed yet. The other kind of timeout (timeoutB) is modeled by a timed
transition that removes the token from start_task and returns it to the input places of the
task after a certain waiting time. This enables to follow alternative paths that do not
execute the blocked task. In this kind of timeout, it is also necessary to put a token in
release_resource if the task have requested a specific resource. An example of
timeoutB is shown in Figure 3 for Task1 (transition timeout1) and examples of
timeoutA are shown in Figure 4 for both tasks.

The coordination mechanism for the relation Task2 duringA Task1 is shown in
Figure 5. In the model, the firing of t1 sends tokens to places P1 and P2, the latter
indicating to Task2 that Task1 has already started (enabling the firing of task2 only
once). After the firing of task1 (token in P3), a token will only be sent to finish_task1 at
the end of Task2 (token in P4). In order to avoid that Task1 waits indefinitely, there is a
timeout inhibited by the presence of a token in start_task2 (i.e., Task1 will not be
finished if Task2 is ready to begin).

In order to enable multiple executions of Task2 during the execution of Task1
(duringB), it is necessary to make a few modifications in the model of Figure 5. The
first one is to add a return arc from task2 to P2, enabling future firings of task2. In
addition, transition t2 must have P2 as input place instead of P4, which is removed
from the model. The reason for this is that, at the end of Task1 (firing of t2) the token
must be removed from P2 to avoid future occurrences of Task2. It is also necessary to
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include an inhibitor arc from start_task2 to t2, avoiding that Task1 finishes while Task2
is ready to be executed. The resulting model is presented in Figure 6.

Figure 5: Coordination mechanism for Task2 duringA Task1.

Figure 6: Coordination mechanism for Task2 duringB Task1.
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In both cases (duringA and duringB) there is an internal timeout to avoid that
Task1 waits indefinitely for Task2. In other words, Task1 may be skipped if it takes too
long to starts its execution.

The coordination mechanisms presented in this section cover only those
dependencies related to the synchronization of tasks. Dependencies related to the use of
resources are modeled by another class of mechanisms presented in the following
section.

4.2. Resource Management Dependencies

 The coordination mechanisms for resource management are complementary to
those presented in the previous section and can be used in parallel to them. This kind of
coordination mechanism deals with the distribution of resources among the tasks. It is
necessary to clarify that the term “resource” in this context refers not only to the agent
that performs the task (similar to the concept of actor [17]), but also to any artifact
needed to the execution of the task (e.g., a pen in a shared whiteboard interaction).

We define three basic coordination mechanisms for resource management:

Sharing: a limited number of resources needs to be shared among several tasks. It
represents a very common situation that occurs, for example, when various
computers share a printer.

Simultaneity: a resource is available only if a certain number of tasks requests it
simultaneously. It represents, for instance, a machine that can only be used with
more than one operator.

Volatility: indicates whether, after the use, the resource is available again. For
example, a printer is a non-volatile resource, while a sheet of paper is volatile.

Differently from temporal dependencies, resource management dependencies are
not binary relations. It is possible, for example, that more than two tasks share a
resource. Moreover, each of the above mechanisms requires a parameter indicating the
number of resources to be shared, the number of tasks that must request a resource
simultaneously, or the number of times a resource can be used (volatility).

Figure 7 shows the coordination mechanism for the simultaneity, which assigns a
resource only if N tasks request it simultaneously. The model has a place Pn with N
tokens (in the figure, N=2, as indicated by the two tokens in Pn) that return to this place
at the end of the tasks (via release_resource). Place Pn is connected to transition t1 by
an arc with weight N. Transition t1 fires only when there are N tokens in Pn (indicating
N available instances of the resource) and also N tokens in P1 (indicating that N tasks
have already requested the resource). After the firing, t1 sends N tokens to P2, which
distributes them among the N assigned_resource places. Places P3 and P4 are used to
indicate which tasks have requested the resource and to avoid that the same task
requests the resource more than once (i.e., the resource must be assigned to N distinct
tasks).

The library also defines composite mechanisms from the basic ones discussed
above.

Sharing M + simultaneity N: represents the situation in which up to M groups of N
tasks can share a resource.

Sharing M + volatility N: situation in which up to M tasks can share the resource,
which can be used N times.

Simultaneity M + volatility N: the resource is assigned to groups of M tasks
simultaneously. This can be done N times.



Sharing M + simultaneity N + volatility Q: up to M groups of N tasks can share a
resource. This can be done Q times.

Figure 7: Resource manager for simultaneity (N=2), with two tasks able to request the
resource.

Similarly to temporal dependencies, it is possible to define timeouts for the tasks in
order to reduce deadlocks. In this case, there is a single type of timeout, which is
modeled by a timed transition from request_resource back to the input places of the
task (see Figure 7).

4.3. A Prototype Implementation

In order to automate the passage from the workflow level to the coordination level
of the models, by the expansion of tasks and the insertion of coordination mechanisms,
we implemented an application based on three components: a PN simulation tool, a
language for the definition of interdependencies among tasks, and a program capable of
generating the PN in the coordination level (Figure 8).

The specific language for the description of PNs (input files) normally varies
according to the simulation tool used. However, the language for the definition of
interdependencies is independent of the simulation tool. The file with the
interdependencies define, one at each line, all the dependencies among tasks in the
workflow level. It is necessary that tasks in this file have the same name as the
transitions representing them in the workflow level. Otherwise, the program will not be
able to know where to insert the coordination mechanisms. Basically, a dependency is
defined as <dependency name> [parameters] “<task1 name>”
“<task2 name>” [“<taskn name>”] [timeouts] , where parameters are
needed for resource management dependencies and the list of timeouts is optional. As
an example, the simultaneity dependency shown in Figure 7 is described as sim 2
“task1” “task2” time_out . In this example, parameter N=2 and only the first
task has a timeout.
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Figure 8: Schema for the use of the library with a PN simulation tool.

The implemented prototype uses the Visual Simnet [26] as simulation tool. This is
a freeware tool, capable of modeling and analysing conventional and stochastic PNs
(whose firing times are given by probability functions). It has a graphical editor and
several resources for the analysis of PNs, including animated simulation, coverability
tree, structural and performance analysis, among others. Besides its good analysis
capacity, Visual Simnet was chosen because it has a very simple textual format for the
description of PNs (MoDeL – Model Description Language) and it allows the
exportation for other tools (e.g., INA – Integrated Net Analyzer [27], a tool with further
analysis capabilities1).

The result of the application is a file in MoDeL describing the coordination level of
the defined model, which can be simulated, analysed and validated using the Visual
Simnet or a tool to which it can be exported. In the next section we present some
analysis results derived from the use of this tool.

5. Example

To illustrate the use of the library, we present an example of a hypothetical multi-
workflow environment composed of three independent “organizations”, a consumer, a
shop and a producer. This environment tries to represent a typical situation in e-
commerce, in which a consumer contacts a virtual shop to buy some goods. The shop,
however, is just an intermediary between consumer and producer, having to contact the
latter to receive the goods that will be delivered to the consumer. The workflow level of
this environment is shown in Figure 9, stressing aspects of the relation between the
shop and the producer.

The consumer’s workflow is very simple. It must start the process by contacting
the shop to make the order, and then wait for the goods or cancel the order. However,
the order can only be canceled if the product has not been delivered by the shop. This
defines the relation cancel_order (consumer) before deliver_goodsS (shop). The shop,
after receiving an order, starts two parallel activities: verification of the consumer’s
credit card and contact with the producer. This contact starts the process in the
producer. If there is any problem with the consumer’s credit card, the shop cancels the
order. Otherwise, the shop is able to schedule the delivery of the product, a task that
must occur simultaneously to the scheduling made by the producer (schedule_deliveryS
equals schedule_deliveryP). Note that, if there is a problem with the credit card,
schedule_deliveryS will not be executed, and consequently neither will
schedule_deliveryP. Using a timeout in task schedule_deliveryP, the producer has the
option to follow an alternative path that cancels the production. Finally, there is also the
relation that the shop receives the goods after the producer delivers them.

                                                       
1 INA does not handle transitions with token reservation. Therefore, some coordination mechanisms
cannot be treated by this tool.

Input File for the simulation
tool (workflow level)

File with the description of
the interdependencies
among tasks

Program

Another input
file for the
simulation
tool
(coordination
level)



Figure 9: Workflow level of the example.

To construct the coordination level for this example using the application presented
in the previous section, the following file is written to define the interdependencies
among tasks (note that  cancel_order and schedule_deliveryP have timeouts of type B):

before “cancel_order” “deliver_goodsS” time_outB
startsB “contact_producer” “receive_orderP”
equals “schedule_deliveryS” “schedule_deliveryP” no_time_out

       time_outB
afterA “receive_goodsS” “deliver_goodsP”

The model of the coordination level for this example is shown in Figure 10. At first
glance, this model may seem complicated, but it is highly modular and easily built from
the model of Figure 9, by expanding interdependent tasks (open rectangles) and
inserting the pre-defined coordination mechanisms.

An observation should be made regarding the expansion of tasks. As can be seen in
Figure 10, interdependent tasks are not expanded exactly according to the model of
Figure 2. The reason is that in the case of temporal dependencies, only places start_task
and finish_task are needed, therefore, we use a simplified version of the model. A
similar simplification is made for the case of resource management dependencies. The
complete model of a task, as in Figure 2, is only used if it has both a temporal and a
resource management dependency.
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Figure 10: Coordination level of the example.

The PN of the coordination level was simulated and analysed with the Visual
Simnet, validating the model. The analysis of the coverability tree presented twelve
final states. Some of these final states, although correct, indicates that the model could
be improved. For example, if there is a problem with the credit card, the workflows will
finish correctly from the functional point of view, but there will be a “dead token” in
the place between contact_producer and schedule_deliveryS in the shop’s workflow,
which indicates a badly-structured workflow [8]. Performance could be analysed, for
instance, to measure average consumers’ waiting time, given the rates with which
goods can be produced.

The previous example used only temporal dependencies, but resource management
dependencies could also be used in a straightforward way. For example, the shop could
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have a stock, which defines an alternative route to that of contacting the producer. The
task of getting the goods from the stock would have a volatility dependency, indicating
that the stock would eventually finish.

It is necessary to reinforce that the presented example represents just a hypothetical
situation. We did not stress all details for the modeled scenario (e.g., the consequences
of the consumer’s cancellation, such as refund, devolution of the goods to the producer,
and so on). Its main goal was to show how the coordination mechanisms can be used in
a practical situation.

6. Conclusions

This paper intends to contribute in two different ways. The first one is the
definition of a generic set of interdependencies among tasks, and the second are the PN
based coordination mechanisms. Due to this clear separation, non-PN based
applications can also follow the ideas presented here using the interdependencies
among tasks and constructing appropriate coordination mechanisms.

Petri Nets, due to their support for modeling, simulation, and analysis, has proven
to be a powerful tool for verifying the correctness and validating the effectiveness of
multi-workflow environments before their actual implementation [8], [17].
Furthermore, the hierarchical description of PNs showed an appropriate way to define
the coordination structure in different abstraction levels (workflow and coordination
levels).

Nevertheless, a typical problem in the use of PNs is the state explosion, which can
occur in our context when the number of workflows and interdependencies increases.
This problem can be minimized by the use of high level PNs, such as
predicate/transition and colored nets. We are currently investigating how the use of
these kinds of PNs can simplify the coordination mechanisms of the library [28]. We
are also studying the possibility of using methodologies such as CPM (Critical Path
Method) and PERT (Program Evaluation and Review Technique) [29] to concentrate
the coordination effort in the critical path of complex nets.

Another use of the coordination mechanisms are in collaborative virtual
environments, where remote users can be simultaneously present and interact with each
other and with the objects of the simulated 3D world. In this scenarios, users can be
compared to an organization in a multi-workflow environment, because their behavior
is defined by an independent workflow. The collaborative interaction in the virtual
world is defined by interdependencies among tasks executed by the users and
coordinated by the mechanisms here presented. Therefore, a collaborative virtual
environment can be viewed as a multi-workflow environment. A similar experience has
been made using PNs to control computer animation [30].

The library presented in this paper does not claim to be complete. We believe it
would be very difficult to establish a framework of all possible interdependencies
between tasks. For that reason, we preferred to opt for extensibility instead of
completeness. When a new kind of interdependency arises, a corresponding
coordination mechanism can be modeled and inserted to the library, by adding a new
“command” to the definition language and extending the program (Figure 8) to
recognize the new dependency.

Finally, we reinforce our belief that the coordination of interdependent tasks in
multi-workflow environments is a problem that should be addressed to ensure the
effectiveness of the cooperation among organizations. The separation between activities



and dependencies, and the utilization of reusable coordination mechanisms are steps
towards this goal.
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Appendix – Other Coordination Mechanisms

In this appendix we shortly present some other coordination mechanisms of the
library. The complete set of mechanisms is shown in [25].

The first mechanism presented is for dependency Task1 before Task2 (Figure A1).
The core of the model is transition t1, which determines the execution of Task2 and is
inhibited if there is any token in start_task1 or P3 (Task1 is ready or being executed,
respectively). The firing of t1 sends a token to P1, inhibiting the firing of t2 and,
consequently, the execution of Task1. If Task2 has not been executed yet (no token in
P1), t2 can be fired, sending tokens to P2, which enables task1, and to P3, which
inhibits t1. At the end of Task1 t4 is fired, removing the token from P3. Transition t3



enables other executions of Task2 (after the first one, which puts a token in P1), which
can happen independently of the presence of tokens in start_task1 (Task1 will not
happen anymore). It is important to use a timeout to ensure that Task1 returns to its
initial state when it cannot be executed anymore.

Figure A1: Coordination mechanism for Task1 before Task2.

Another mechanism presented here is for resource management dependency
sharing N. The coordination mechanism for this dependency consists of a place Pn with
N tokens representing the available resources. This place is the input place for a
transition connecting request_resource to assigned_resource, defining whether there
are available resources. At the end of the task, the token returns to Pn via
release_resource. Figure A2 shows the model for N = 3.

Finally we show the coordination mechanism for the composite relation
simultaneity M with volatility N. This mechanism is similar to that of simultaneity M
(Figure 7). The difference is the inclusion of place Pn relative to the volatility. The
timeouts presented in the figure are optional, but very important when the resource
finishes. Figure A3 shows this mechanism for M = 2 and N = 4. It is important to note
that N is the number of times the resource is going to be used, and not the number of
groups of M tasks that is going to use it.
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Figure A2: Resource manager for sharing N (N = 3) with two tasks able to request the
resource.

Figure A3: Resource manager for simultaneity 2 with volatility 4.
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