
Users’ Perceptions of Integrated GUI + EUP
Communicative Environments

Alberto Barbosa Raposo
Léo Pini Magalhães

DCA – FEEC
Universidade Estadual de Campinas

C.P. 6101, Campinas, SP, Brasil, 13083-970
+55 19 788 3706

{alberto, leopini}@dca.fee.unicamp.br

Clarisse Sieckenius de Souza
Depto. de Informática – PUC-Rio
R. Marquês de São Vicente, 225

Rio de Janeiro, RJ, Brasil, 22453-900
+55 21 529 9462 ext. 4344

clarisse@inf.puc-rio.br

RESUMO
GUI (Graphical User Interfaces) e EUP (End User
Programming) são tecnologias convergentes. Elas devem
ser utilizadas de maneira complementar para melhorar não
só a usabilidade da interface com o usuário, mas também o
entendimento do comportamento do sistema. Este artigo
introduz questões relacionadas a EUP e GUI, e apresenta
um caso de estudo com um sistema de animação por
computador que usa o paradigma de EUP. Os projetistas
do sistema apresentam os resultados desta experiência. Sua
principal contribuição é harmonizar os paradigmas de GUI
e EUP para diminuir a distância e integrar as capacidades
de programadores e artistas à procura de um melhor
entendimento do comportamento do sistema sob a
perspectiva do usuário final.

Palavras chave
Interfaces gráficas, programação para o usuário final,
animação por computador, linguagens de programação.

ABSTRACT
GUI (Graphical User Interfaces) and EUP (End User
Programming) are converging technologies. They should
be used in a complementary way in order to enhance not
only interface usability but also the way users understand
system behavior. This paper introduces EUP- and GUI-
related issues, and presents a case study carried out with a
computer animation system using an EUP-like approach.
The designers of the EUP language report the lessons
learned from this experience. Its main contribution lies in
harmonizing GUI and EUP approaches in order to shorten
the gap between and integrate the skills of computer
scientists and artists in search of a better understanding of
systems behavior from an end user perspective.

Keywords
Graphical User Interfaces, End User Programming,
Computer Animation, Programming Languages.

1. INTRODUCTION
Usability can be defined as a combination of the following
factors (Shneiderman, 1992): ease of learning, high speed
of user tasks’ performance, low user error rate, user

retention of constructs over time, and subjective user
satisfaction. Moreover, usability is also related to the
ability of users in applying known software to novel
problem situations (Adler and Winograd, 1992). This
requires not only that user interfaces support learning and
understanding of computer application conceptual models,
but also that they support creative usage encouraging
analogies and generalizations motivated by interface
design features.

End User Programming (EUP) introduced a new scenario
in Human-Computer Interaction. User interfaces can now
provide people not only with a means to fully explore the
resources embedded in computer applications, but also
with a means to customize, extend, and/or combine
resources for other contexts of needs and usage.
Furthermore, they can help users get closer to their
application design environment, reducing the gap between
system and interface. These ideas lead into the discussion
about which kind of programming language is better suited
for end users.

On the one side, some researchers claim that End User
Programming Languages (EUPL) should spare users from
dealing with the syntactic difficulties of typical
programming languages, and offer a higher abstraction
level for programming. The most appropriate EUPL would
be natural languages. However, due to the unsurmountable
complexities of these languages, there have not been
encouraging results with experiments trying to make
computers understand human languages.

Visual programming and programming by demonstration
have emerged as promising solutions (Chang, 1990;
Cypher, 1993; Myers, 1986). Their main advantage is
claimed to be that it is easier for users to program in the
same abstraction level of the application’s GUI (Graphical
User Interface). However, researchers recognize that,
although powerful for some purposes, these tools have
limitations. Visual programming, for example, may get
unwieldy in handling some programming concepts, such
as iterations and conditionals (Myers, 1992). Programming

abraposo
Anais do II IHC - Workshop sobre Fatores Humanos em Sistemas Computacionais (CD-ROM). Campinas, Brazil. 1999.

by demonstration is not adequate for non-repetitive tasks
(e.g., conditionals and random user actions), besides
posing problems related to wrong inferencing (i.e., the
computer’s interpretations of user’s demonstrations)
(Cypher, 1993; Nardi, 1993).

On the other hand, due to the limitations of more informal
languages, there is a current belief that the EUPL can or
should be real formal programming languages (Eisenberg,
1995; Gentner and Nielsen, 1996; Myers, 1992; Nardi,
1993; de Souza, 1996). The argument is that formal
languages are “specifically designed to enable the kind of
unambiguous, precise communication demanded by a
machine” (Nardi, 1993).

However, two fundamental challenges need to be overcome
in order to develop successful formal EUPL:

• How to combine GUI and EUP in a communicative
environment?

• How to make the formal EUPL easy and attractive to
the end user?

This paper presents an experience developed in the context
of ProSIm (see <http://www.dca.fee.unicamp.br/projects/
prosim/prosim.html>) where TOOKIMA 2.0 a Tool Kit for
scripting computer Modelled Animation (Raposo, 1996;
Raposo, 1997) reflects a design effort to harmonize GUI
and EUP languages into a communicative environment
aiming to introduce users into programming.

In the next section GUI and EUP will be briefly discussed.
Then, the issues regarding GUI and EUP will be discussed
in the context of a case study built in an animation
environment based on TOOKIMA.

2. USER INTERFACE
We adopt the view that User Interfaces are
metacommunications artifacts (de Souza, 1993). They are
designed to convey a message from system designer to
system user, and their intended meaning is the answer to
two fundamental questions:

• What kinds of problems is this application prepared to
solve?

• How can these problems be solved?

GUI and EUP offer different kinds of tools to help
answering these questions.

Combining GUI and EUP
GUI style interfaces (Apple, 1992; Microsoft, 1995) offer
pulldown menus and lists, buttons, icons, pointers, sliders,
status and scroll bars, sometimes canvas to text and/or
objects direct manipulations. This interaction style is based
on some idealized metaphor related to the user
environment (e.g. the desktop metaphor of the Macintosh),
codified in the User Interface Language (UIL).

EUP languages, in their turn, offer a wealth of resources,
normally based on application domain models, which

frequently exceeds a user’s typical knowledge about
computers and computing. Common EUPL features are
reference mechanisms for domain objects and conditional
structures that can be used to express novel processing
instructions, and this empowers users to design their own
software. The design challenges faced by EUP can be
summarized as that of designing a chain of intended high-
level interpretations of computer constructs that can lead
from algorithms to tasks, from data structures to domain
objects, from applications to resources. In EUP, some
concepts provide the interpretive guideline along which
users perform extensions, analogies, and semantic
transformations as they increase their insight about
computation.

In order to help users understand the application’s
commands, the objects and operators provided by the
EUPL should be consistent and continuous (i.e., have
meanings that can be connected to each other in a
continuous short chain of reasoning and thought) with
those of the UIL (Barbosa, 1999). By interpreting EUPL
commands and operators, the user should be able to create
a mental model for the language and the machine that
processes it. The way elements are presented in the
language, their coherent bindings with UIL objects, and
the user’s own experience, all influence the construction of
such model. The closer the model is to the language
semantics, the faster will the user understand that
language (Barbosa et al, 1997).

Several studies exploring the interaction between humans
and language formalisms suggest that there should be a
bridge from interface to programming (DiGiano, 1996;
Eisenberg, 1995; Stenning and Gurr, 1997). Some of them
take a semiotic approach, which adds a qualitative factor to
analysis and design of user interfaces in general, since it
can provide explanations and make predictions that are
theoretically connected to each other (Barbosa et al, 1997;
Barbosa, 1999; de Souza, 1996; de Souza, 1997).

Formal and Attractive EUPL
Eisenberg claims that well-designed applications should
have graphical user interfaces, suitable for naive users, and
should be so designed as to “keep an eye toward leading
the user gently into programming” (Eisenberg, 1995). In
other words, applications should contain both an extensive,
learnable user interface, and an interpreter for a
corresponding programming language.

This concept of “gently” introducing the user into the
formal language is essential, specially because users of an
EUP system expect to solve simple problems within a few
hours of use. It is necessary to avoid the problem of
“having to know everything to do anything”, common in
conventional programming languages (Nardi, 1993).

Another key issue for attractive EUPL is to make them
task-specific. It is necessary to have in mind that the end

user is not an underskilled user, but a specialist in a certain
domain, who is interested in achieveing some specific
computer tasks. The EUPL designer should be aware of the
user’s knowledge domain in order to develop a language
that “looks familiar” to the user. A language using familiar
primitives, well-known functions, and professional jargons
will certainly increase the end user’s will to learn and use
it.

It is important to clarify that by “formal EUPL” we don’t
mean mathematical formal languages and the like, many
times difficult even for experienced programmers. In this
context, “formal” simply means precise and unambiguous,
as is the case of musical notation, the alphabet, knitting
instructions, and baseball scoring notation, all of them
readily learned by their respective domain specialists
(Nardi, 1993).

3. A CASE STUDY
This section explores the complementarity between GUI
and EUP by means of a case study. It briefly surveys
TOOKIMA 2.0 and then discusses its application’s
interface and embedded languages more extensively.

TOOKIMA 2.0
TOOKIMA is an academic computer animation
environment designed to offer non-programmers (e.g.,
artists) a simple means of making relatively complex
computer modeled animations.

The TOOKIMA design environment is “scene-oriented”
i.e., oriented towards the creation of elements such as
actors, cameras, lights, etc. It is divided into modules, each
of them dealing with a specific object of the scene; for
instance, everything related to the camera goes in the
module CAMERA of the script, everything related to the
illumination goes in the module LIGHTS, and so on.

This design environment offers two distinct levels of
abstraction, the interactive and the scripting levels of one
and the same “scene-oriented” paradigm.

At the interactive level TOOKIMA is built out of
conventional graphic widgets like menus, buttons, etc,
offering all the necessary functions for the construction of
an animation. This enables naive users to create
animations almost immediately, without having to know
the scripting language. The work area of TOOKIMA’s
interface is shown in Figure 1.

Figure 1: the main window of TOOKIMA 2.0.

On top of the main window, there is a button bar with
affordances for the construction of the animation script
and the general control of the system (file manipulation,
general parameters, etc). Some buttons, if pressed, cause a
button column to appear on the left-hand side of the
screen. This column functions as a submenu of the button

in the top line and is divided into three parts: editing,
creation of movements and their cancellation. In the
editing part, the element can be created and altered. In the
movement specification part, both the position of the
element and its physical characteristics can be altered. In

the cancellation area, the movements of the element can be
deleted.

The text area, where the animation script is written (by the
system or by the user), occupies most of the main window
surface.

The third part of the main window is the message area, at
the bottom. This area shows the name of the script being
edited (on the right-hand side) and messages regarding the
current command (on the left-hand side). These messages
provide online help tips.

There are also two levels for movement control at the
interface. On the upper level, actors, camera and light
sources are associated with previously created trajectories
(the interface also allows for the creation of these
trajectories, using a “trajectory editor”). On the lower
level, movements are directly defined, by the use of
commands such as translate and rotate (for actors); zoom,
travelling and pan (for the camera).

At the scripting language abstraction level, the users can
actually write programs using the TOOKIMA scene-
oriented scripting language. The ordered sequence of
commands is interpreted unambiguously by the animation
system in the way described above.

It is necessary to emphasize here the fact that the authors’
attention is not geared towards good interface design from
a complete integrated perspective that joins cognitive
aesthetic and functional requirements, but rather geared
towards getting the application’s functionality and
usability across to users.

The use of both interface alternatives is possible in
TOOKIMA, a usual feature in many personal computing
applications (e.g., the Homesite HTML Editor (Homesite,
1998) offers GUI widgets to compose the document’s
structure – HTML tags – and a text editor, where the
content is written), but unusual in animation ones.
TOOKIMA’s scene-oriented scripting language is an
essential feature of the system because it allows a full
control of the animation (not only a visual control) and
facilitates incremental design (i.e., consecutive parameters’
adjustments to achieve the desired effects), which is very
important in the animation development process.

TOOKIMA’s languages will be considered in more detail
in the following.

GUI and EUP in TOOKIMA 2.0
GUI (interactive) and EUP (scene-oriented scripting
language) approaches are combined in the TOOKIMA,
according to the idea that well-designed EUPL should
provide a balanced combination of text and graphics. As
stated by B. Nardi, “text and graphics each have their own
special strengths and weaknesses, and the best strategy is
to exploit each according to its particular characteristics”
(Nardi, 1993).

The challenge was to design an environment where GUI
and EUP were harmonized so as to lead users into
progressively deeper understanding and familiarity with
programming in TOOKIMA’s embedded language.

As in any other interface, the focus of abstraction in both
levels is different. At the GUI level, users are allowed to
concentrate more closely on task components; required
parameters and structures present in scripts can be either
provided by default values or prompted for by unobtrusive
interactive means (like dialogue boxes, buttons, and the
like). At the scripting level, however, task-related focal
signs present in the interface are repeated and integrated
into extended linguistic constructs that give evidence of
explicit control mechanisms and structural articulation of
TOOKIMA objects.

The large text area of the interface (Figure 1) is the place
where the script can be directly manipulated (similarly to
text editing). While the script is being constructed by the
graphic elements of the interface, it is automatically
updated in the text area, “gently” introducing a naive user
into programming, and not establishing a clear cut
between naive and skilled users. Eventually, users are
expected to be able to generate scripts directly, if they so
wish. This “introduction to programming” is interesting
because, as stated previously, certain tasks are better and
more easily executed by the use of scripts.

In order to achieve harmony between GUI and EUP,
TOOKIMA’s interactive level maintains strict
correspondence with the scripting level, so that
interactions can be thought of as being interpreted into its
scene-oriented scripting language. To better explore this
relationship, a simple example showing how to move the
camera in a TOOKIMA’s animation is presented. In order
to do that, the user has to click the button Camera in the
top row of the main window (Figure 1) and then choose
the desired movement. Figure 2 shows the dialogue box for
the definition of a go_north movement (the camera moves
to the North, considering a sphere centered in the camera’s
viewpoint).

Figure 2: the dialogue box to define a camera movement
(go_north).

In the dialogue box in Figure 2, the user has to specify a
number of parameters: the degrees to be moved, the
duration of the movement (initial and final frames), and if
the movement will be made at each frame (i.e., the camera
will move the specified number of degrees per frame) or be
made incrementally, to complete the specified number of
degrees at the end of the interval. When the button Accept
is pressed, the dialogue box is closed and the following
code is added to the module CAMERA of the script (using
values shown in the figure):

 Between(FRAME(0),FRAME(6))

 go_north(1.) EACH_FRAME

The code above appears automatically in the text area of
the interface, establishing a mapping between the GUI and
the EUP (interface tasks generating script commands).
This mapping is essential to the apprenticeship of the
scripting language by a non-programmer, since it creates a
continuous link between the UIL and EUPL metaphors.
Nevertheless, the perfect mapping between the graphical
interface and the scripting language is difficult to be
achieved, since some features of a programming language
cannot be easily represented in a traditional GUI (notably
variables, conditionals, and loops, among others (Myers,
1992)). The result must be a trade-off between the
flexibility of the language and how well it reflects the GUI
metaphor.

As stated previously, another important characteristic of
well-designed EUPL is their task-specificity. TOOKIMA’s
scripting language uses cinema’s terminology for
movement functions (e.g., pan, zoom, for camera
movements) and, in order to be understood by those who
are not familiar with these jargon, it also uses a more
direct terminology (e.g., go_north, aim_left,
translate_actor_x).

Testing the Environment
Members of the ProSIm project group, including artists,
have tested the environment for two years. They have
created some experimental animations that can be found
on the Web (see <http://www.dca.fee.unicamp.br/projects/
prosim/galeryPS.html>). The use of the tool by project
members has been continuously highlighting the strengths
and weaknesses of the tool and guiding the realization of
improvements.

In order to verify if users would be able to make simple
animations after a little of training, understand the link
between UIL and EUPL, and use the scripting language,
the authors decided to carry out a case study with two
groups of end users: artists and computer scientists.

Eight users took part in the experiment. None of them had
ever had any previous contact with the TOOKIMA. The
experiments were conducted separately for each user and
consisted of three parts. Initially one of the authors

introduced TOOKIMA, showing its basic features (about
thirty minutes). Then users were asked to work with the
tool, trying to make some animations while being observed
unobtrusively by the author (from thirty minutes to more
than one hour, depending on the user’s excitement).
Finally, the user was interviewed about his/her subjective
satisfaction with the tool.

In the scenario of the experiment, after the initial
introduction to the tool, the user was asked to make a
simple animation (a sphere rotating around a cube).
Depending on the results, he/she was asked to make
improvements to it (adding new actors, moving the
camera, changing the velocity of the movement, etc). The
user was free to use the GUI or the scripting language. The
idea was to observe how comfortable the users feel using
the tool and whether the approach used would fastly guide
them into the scripting language.

The long-term experience with project members had
already shown the validity of the approach, but it was
necessary to observe more closely the effects of the first
contact with the tool. The expectations of the authors were
that artists would feel initially inhibited to use the scripting
language, since they supposedly did not have any
experience with programming languages (because of that,
computer scientists were also chosen to take part in the
experiments).

Lessons Learned
After the initial introduction, all users were able to make
the first animation in less than twenty minutes. In this first
attempt they used the GUI to construct the animation. This
indicates that the tool avoids the problem of “having to
know everything to do anything”. After two or three
modifications, invariably, the users started using the
scripting language at least for small alterations in the
animation (e.g., to change the degrees of a rotation). Of
course, during this experiment, the users did not have time
to completely understand the scripting language. But the
results have confirmed that the continuity between UIL
and EUPL metaphors efficiently introduced the users into
programming and after an initial apprentice stage users
tend to prefer the use of the scripting language for some
purposes, in spite of the GUI.

Regarding the subjective satisfaction with the tool, the
artists had a general opinion that it is easier to work with
tools that allow a graphical control of the animation (like
3DStudio), but they understood the importance of the
scripting paradigm and agreed that the approach used
makes it more accessible. The computer scientists thought
the tool is easy to use and the mapping between UIL and
EUPL is well implemented. Another interesting opinion
that appeared in the interviews is that the tool aims to
shorten the gap between artists and computer scientists
only in one direction: it introduces artists into
programming. According to this opinion, in order to

shorten the gap in both directions, it would be necessary to
introduce computer scientists into the field of computer
animation.

By comparing such outcomes with the initial expectations,
we can perceive the edge of a misconception. The artists,
despite their different background, had a similar
performance to that of computer scientists in the first
contact with the tool. The reason for that is, perhaps, the
fact that artists who took part in experiment were not
underskilled computer users; all of them had some
experience with computer graphics (however, this is
exactly the kind of user for whom TOOKIMA was
designed).

The experience developed within this case study has shown
that using domain-specific EUPL and a coherent mapping
between EUPL and UIL the end user becomes able to
explore both the convenience of a graphical interface and
the power of a programming language. This confirms that
the combination GUI + EUP is a valid approach in the
search of an appropriate mechanism to shorten the gap
between programming and non-programming
communities, denying the traditional idea that graphical
interfaces and programming are orthogonal approaches.

4. CONCLUDING REMARKS
EUP environments are present in many current systems,
one of the most popular of them is the Microsoft Word for
Windows (see e.g. (Barbosa et al, 1997)). This work used
some of the EUP ideas in order to support users when
working in an animation system environment. The
experiences were related to the use of EUP principles to
reduce the gap between system and end users metaphor.

In the presented context EUP has been shown to be a very
powerful paradigm for incremental design and repetitive
tasks, while GUI, a pleasant one for common use. The
same is true in many other applications, as for example in
the wordprocessors application.

Given our experience, the ideal solution for the interface
seems to be a compromise between GUI and EUP. This
compromise guided the presented case study, which
attempts to harmonize and integrate both techniques under
the same umbrella, and in a continuous way that permits
users to switch between both paradigms.

Successful animation systems should combine the skills of
computer scientists and artists shortening the gap between
these two communities. Harmonizing GUI and EUP is a
step toward this shortening.

ACKNOWLEDGEMENTS
The first author is sponsored by FAPESP (Fundação de
Amparo à Pesquisa do Estado de São Paulo). The authors
also wish to thank the Dept. of Computing Engineering
and Industrial Automation (DCA) of the Faculty of
Electrical and Computing Engineering (FEEC), Unicamp
(State University Campinas) and CNPq (Conselho

Nacional de Desenvolvimento Científico e Tecnológico)
for the expressive support granted to this research. Thanks
also to all the members of the ProSIm project (specially
José Tarcísio de Camargo, Fernando Lamanna and
Marcelo Malheiros) and the people that gently spent their
time using the TOOKIMA for the case study.

REFERENCES
Adler, P. and Winograd, T. (1992). Usability: Turning
Technologies into Tools. Oxford University Press.

Apple Computer (1992). Macintosh Human Interface
Guidelines. Addison-Wesley, Reading, Mass.

Barbosa, S., Cara, M. P., Cereja, J. R., da Cunha, C. K. V.
and de Souza, C. S. (1997). Interactive Aspects in
Switching between User Interface Language and End-User
Programming Environment: A Case Study. Proc. of the III
Workshop on Multimedia, Hypermedia and Human-
Computer Interaction (WOMH’97), pp. 107-118.

Barbosa, S. D. J. (1999). Programação via Interface. PhD.
Thesis. Dept. of Informatics, PUC-Rio, Rio de Janeiro.

Chang, S. K. (1990). Visual Languages and Visual
Programming. New York, Plenum Press.

Cypher, A. (ed) (1993). Watch What I Do: Programming
by Demonstration. Cambridge, MA. The MIT Press.

DiGiano, C. (1996). A Vision of Highly-Learnable End-
User Programming Languages. Position Statements of
Child’s Play’96.

Eisenberg, M. (1995). Programmable Applications:
Interpreter meets Interface. SIGCHI Bulletin 27(2): 68-93.

Gentner, D. and Nielsen, J. (1996). The Anti-Mac
Interface. Communications of the ACM, 39(8): 70-82.

Homesite 3.0 HTML Editor (1998). Web page available at
URL <http://www.homesite-now.com>.

Microsoft Corporation (1995). The Windows Interface
Guidelines for Software Design. Redmont, Microsoft
Press.

Myers, B. (1986). Visual Progamming, Programming by
Example, and Program Visualization: A Taxonomy. Proc.
of ACM CHI’86, pp. 59-66.

Myers, B. (ed) (1992). Languages for Developing User
Interfaces. Boston, Ma. Jones and Bartlett.

Nardi, B. A. (1993). A Small Matter of Programming:
Perspectives on End User Computing. Cambridge, MA.
The MIT Press.

Raposo, A. B. (1996). Um Sistema Interativo de Animação
no Contexto ProSIm. M.Sc. Thesis, DCA - FEEC -
UNICAMP. Available at the URL <http://www.dca.fee.
unicamp.br/projects/prosim/publiPS/tese_alb.zip>.

Raposo, A. B. (1997). Uma Linguagem para
Desenvolvimento de Roteiros de Animação. Internal
Report, 003/97 - DCA - FEEC - UNICAMP. Available at

the URL <ftp://ftp.dca.fee.unicamp.br/pub/docs/techrep/
1997/DCA97-003.ps.gz>.

Shneiderman, B. (1992). Designing the User Interface:
Strategies for Effective Human-Computer Interaction. 2nd

Ed., Addison-Wesley.

de Souza, C. S. (1993). The Semiotic Engineering of User
Interface Languages. International Journal of Man-
Machine Studies, 39: 753-773.

de Souza, C. S. (1996). The Semiotic Engineering of
Concreteness and Abstractness: From User Interface

Languages to End User Programming Languages.
Dagstuhl Seminar on Informatics and Semiotics, Schloss
Dagstuhl.

de Souza, C. S. (1997). Supporting End-User
Programming with Explanatory Discourse. Proc. of
ISAS'97 - Intelligent Systems and Semiotics - A Learning
Perspective, pp. 461-466. NIST, Gaithersburg, Md.

Stenning, K. and Gurr, C. (1997). Human-formalism
interaction: Studies in communication through formalism.
Interacting with Computers, 9: 111-128.

