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Abstract 
 

In this work we present a methodology to express both 
analytically and graphically the interdependencies among 
tasks realized in a collaborative environment. For each 
interdependency expression, a coordination mechanism is 
built, modeling the global behavior of the environment, 
i.e., the structure that ensures the realization of the tasks 
according to the established interdependencies.  
 
 
1. Introduction 
 

An important aspect of collaborative work is the 
notion of tasks interdependencies [5]. These 
interdependencies are normally positive, in the sense that 
each participant wants the works of others to succeed. 
However, they are not always harmonious. It is necessary 
for coordination between tasks to exist in order to 
guarantee the efficiency of the collaboration. Without 
coordination, there is the risk that participants would get 
involved in conflicting or repetitive tasks. Coordination, 
in this context, is defined as “the act of managing 
interdependencies between activities performed to 
achieve a goal” [3].  

In this sense, coordination in collaborative 
environments is managed by coordination mechanisms, 
defined as a “coordinative protocol with an 
accompanying artifact, such as, for instance, a standard 
operating procedure supported by a certain form” [7].   

One of the main challenges related to the coordination 
of collaborative activities is to develop coordination 
mechanisms that are, at the same time, global and 
localized. The global part of the coordination mechanism 
should be able to collect, from the complex relationships 
among tasks in the collaborative environment, all the 
conditions that enable or not the beginning of the tasks. 
The localized part should be responsible to coordinate the 
pre-authorized execution of tasks, following the kind of 
relationship established for these tasks.  

This paper introduces a methodology called RG 

(Relationships Graph) that describes, analytically and 
graphically, the relationships among collaborative tasks 
and constitutes the basis upon which global coordination 
mechanisms can be assembled from localized ones. The 
next section discusses some general issues regarding 
coordination mechanisms. The RG methodology is 
presented in Section 3 and a set of coordination 
mechanisms built using this methodology is presented in 
Section 4. Section 5 presents the conclusions of this work. 
 
2. Temporal Coordination Mechanisms 
 

The nature of the coordination (i.e., temporal, causal, 
etc.) is established by the set of relationships allowed 
among tasks. For example, if those relationships are 
temporal, then the tasks’ behaviors are coordinated in 
relation to their execution times (e.g., task A must be 
executed before task B and at the same time of task C). 
On the other hand, if the relationships are causal, then 
tasks are coordinated based on events (e.g., if task A 
occurs, then task B and task C must also occur). 

The execution of an activity occurs in a time interval 
and may be considered as the result of a set of tasks 
(atomic actions). Consequently, these tasks are related by 
the time parameter. The non-execution of one or more 
tasks may harm the execution of the whole activity, 
depending on the degree of interdependency of the 
involved tasks. 

The coordination of the realization of interdependent 
tasks in collaborative environments requires mechanisms 
that should be able to model those interdependencies and 
ensure that they will not be violated, enabling that the 
collaborative activity be fully, partially, or not executed. 
If all the tasks that compose the activity are authorized to 
execute, then the activity is fully executed. The 
coordination mechanism authorizes a task only when its 
realization does not violate any defined interdependency.  

In the following sections we are going to present a 
methodology to describe activities and to procedurally 
obtain the coordination mechanisms from these 
descriptions. 
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3. The RG Methodology 
 

The RG methodology consists in obtaining a set E of 
expressions that describes, from a set of relations 
(primitives) R, the interdependencies in a group of tasks. 
These tasks are related to each other composing a 
collaborative activity. This approach does not restrict the 
number of relations a task may have with another. 

Examples of activities adequate for this methodology 
are the construction of a multimedia presentation, and the 
assembly of a product composed of several pieces that 
become available during the assembly process. In the first 
case, tasks may be the presentation of texts, the 
reproduction of audios, videos, images, among others, 
which need to be synchronized. In the second example, 
tasks are the connections of the different pieces. 

Once the relations among tasks are described by the 
set E, it is necessary to define the coordination 
mechanism for each expression ei∈E. The elements of E 
have both an analytical and a graphical representation. In 
the following sections it will be shown how an expression 
ei may be mapped onto a connex graph.        
 
3.1. The Set of Relationships in RG 
 

The set of relations R adopted in this work is based on 
the temporal logic proposed by Allen [1]. He proved that 
there is a set of primitive and mutually exclusive relations 
that could be applied over time intervals (i.e., any pair of 
time intervals are necessarily related by one and only one 
of Allen’s relations). From Allen’s first order predicate 
logic, we have chosen the 7 primitives that constitutes R 
(Fig. 1). 

Figure 1. Set R of the 7 relations presented in [1]. 

The fact of being applied over time intervals (and not 
over time instants) made the relations of Fig. 1 suited for 
task coordination purposes, because tasks, although being 
the atomic actions of collaborative activities, are non-
instantaneous operations. 
 
3.2. The Expressions in RG 
 

The primitives of R are binary relations, i.e., they 
relate only two tasks. However, it is possible to overcome 

this limitation, allowing that a single task be related to k 
other tasks by means of those primitives. 

In order to describe an expression formed by n tasks t1, 
t2, …, tn in the RG methodology we adopt the notation of 
the Graph Theory used by [8] as described below. 

Definition 1: An expression e(T,R) is composed of a 
finite non-empty set T of tasks and a set R of labeled 
ordered pairs with distinct elements of T. The labels of 
the elements of R are defined by associating them to one 
of the following unitary sets, which respectively indicates 
the relations before, during, equal, finishes, meets, 
overlaps and starts: {b}, {d}, {e}, {f}, {m}, {o} and {s}. 

The expression  e(T,R) has a graphical representation 
where tasks ti∈T, i = 1, 2, …, n, correspond to distinct 
points of the plane located in arbitrary positions. The 
elements of R correspond to labeled arcs that connect two 
distinct points of the plane given by the ordered pair. Fig. 
2 illustrates an example for n=12. 

Figure 2. (a) An expression e(T,R). (b) Its graphical 
representation 

In an expression e(T,R) a task ti has a degree k if it is 
related with k other tasks. For instance, in Fig. 2,  
degree(t3) = 3.           

The expression  e(T,R) is called cyclic if there exists a 
sequence of k tasks, 1≤ k < n, where we start in a task ti 
and return to it following that sequence in the graph. In 
this paper we are investigating acyclic expressions. 

An expression e(T,R) does not generates an 
inconsistency if it is acyclic, i.e., the n-1 primitives do not 
generate an unrealizable configuration. This fact is 
guaranteed by the mutual exclusion and exhaustiveness 
properties of the primitives of R [9]: 

Property 1: Given two tasks, X and Y, there is an ri∈R 
such that X ri Y or Y ri X is true (exhaustiveness).       

Property 2: If X ri Y, where ri∈R, then there is no rj ≠ 
ri, rj∈R, such that X rj Y is true (mutual exclusion). 
 
4. Coordination Mechanisms for Expressions 
 

The coordination mechanism for an expression in E is 
constructed in two phases. In the first one, called Global 
Coordination Mechanism (GCM), the conditions that 
must be satisfied to authorize the beginning of the tasks 
are modeled. These conditions are established by the 
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primitives that define the expression. In the second phase, 
called Local Control Mechanism (LCM), it is modeled the 
mechanism that guarantees the execution of the temporal 
relation established for two tasks. 

Analyzing the example in Fig. 2, we can see that, for  
example, task t12 is related only to t11 (degree(t12)=1) and, 
therefore, does not need to satisfy any global condition. 
However, degree(t11)=5, which means that this task must 
satisfy some global conditions. For example, the 
beginning of t11 must be authorized simultaneously to the 
beginning of t10 (since t11 equal t10), t6 (t11 starts t6) and t7 
(t7 starts t6). Another global condition for t11 is that it must 
start some time after the end of t8 (since t8 before t7, and 
the beginning of t7 must be simultaneous to that of t11, as 
shown above). This is enough to give an idea that the 
determination of global conditions may not be easily 
accomplished only by looking at the graph of e(T,R). 
The following sections will present a procedural approach 
to find the global conditions.    

 
4.1. GCM – Global Coordination Mechanism 
 

The process of a GCM construction adopts an 
“outside-in” approach, i.e., it starts with the most external 
tasks (degree=1), going to the most internal ones (higher 
degrees). This approach is justified because tasks with 
degree=1 do not need to satisfy global conditions and 
generally represent the majority of tasks in an expression. 

Hence, given an expression e1, we obtain a new 
expression e2 by eliminating all tasks with degree=1. The 
derived expression e2 also has a set of tasks with 
degree=1. Geometrically, we have a star of k legs, where 
the center is a task with degree=k and the legs are the arcs 
connecting it with its k related tasks. A star is defined as a 
sub-expression of E corresponding to a task t related to k 
other tasks (degree(t)=k) –  see Fig. 3.  

Figure 3. (a) First iteration, indicating tasks with 
degree=1 that will be removed from the expression. (b) 
and (c) following iterations. 

The next step is to determine the global conditions for 
the tasks of degree=1 in e2 regarding the k tasks related to 
them. In the example of Fig. 3, these tasks are t3 and t8. 

The next iteration repeats the same steps, i.e., from e2 
we obtain an expression e3 eliminating all tasks with 
degree=1 in e2. Then we determine the global conditions 

for the tasks with degree=1 in e3 regarding the k’ tasks 
related to them, excepting those representing the center of 
the stars analyzed in the previous iteration. For example, 
in Fig. 3 (c), which corresponds to the expression e3, the 
tasks with degree=1 are t11 and t7. From the k’ tasks 
related to t11, task t3 is the center of the star analyzed in 
the previous iteration. 

In the second iteration two levels of stars appear; a 
more external one, generated in the first iteration and a 
more internal star, generated in the second iteration. In 
Fig. 3, the first iteration generates stars with centers t3 and 
t8, while the second iteration generates stars with centers 
t11 and t7. Continuing with the process, we need to 
connect the stars of these both levels, by considering the 
relation with the centers of two adjacent stars. 

The iterations are executed until the expression ei, i<n, 
has one or two tasks. It can be demonstrated that this 
process is consistent and always finishes with one or two 
tasks. The algorithm for this process is described below: 
Given an expression e(T,R) with n tasks; 
Determine the degree of all tasks; 
While there is a task t with degree(t)=1 
 Eliminate tasks t with degree(t)=1; 
 Generate stars for tasks t’ with degree(t’)=1; 
 Connect these stars with stars of the previous iterations; 

  
4.1.1. Global Conditions. Global conditions (GCs) are 
conditions imposed to a task in order to guarantee the 
logic of the primitives that compose the expression. For 
example, the beginning of t11 in the expression of Fig. 3 
(a) must be authorized simultaneously with the beginning 
of t6, t7 and t10.  

The determination of GCs follows the algorithm 
presented in the previous section, i.e., it is established the 
global conditions for the stars generated in iterations i and 
i+1, and then the conditions corresponding to the 
connections of adjacent stars. 

The adopted strategy for the determination of GCs is 
to construct a map M with all possible global conditions. 
This way, based on M, it is possible to determine the 
conditions that are pertinent to any relation in a star. 

The map M is elaborated evaluating 14 forms of 
relationships possible for a task a. These possibilities 
corresponds to the 7 primitives of R and their respective 
inverse relationships. This occurs because r(a,b) ≠ r(b,a). 
For example, a before b is different from b before a. The 
only exception is when r=equal. Fig. 4 describes these 
forms of relationships, where the order in which the tasks 
are related are indicated by the arrow.  

The GCs related to task a are more easily identified if 
the tasks related to it are positioned, according to their 
respective interdependencies, over a timeline. This 
process generates a consistency graph, as shown in Fig. 5. 
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Figure 4. All possible relations involving a task. 

Figure 5. Consistency graph for a task. 

Based on the consistency graph for task a, as shown in 
Fig. 5, the list of GCs used in the specification of the map 
M is described below:  

c1) a must start simultaneously to a2; 
c2) a must start simultaneously to a9; 
c3) a3 may start if a has already started; 
c4) a may start if a10 has already started; 
c5) a may start if a4 has already started; 
c6) a11 may start if a has already started; 
c7) a must start simultaneously to a5; 
c8) a12 must start simultaneously to a; 
c9) a may start if a6 has already started; 
c10) a13 may start if a has already started; 
c11) a may start if a7 is ready to begin, but a7 may  
        only start at the end of a; 
c12) a14 may start if a is ready to begin, but a may  
        only start at the end of a14; 
c13) a8 may start only after the end of a; 
c14) a may start only after the end of a15; 
c15) the end of a must be simultaneous to that of a4, 
        a5, a11, and a12; 
c16) the conditions to the end of the other tasks are 
        controlled by their LCMs. 

 
4.2. LCM – Local Coordination Mechanism 
 

The LCM connects two related tasks, guaranteeing that 
a single interdependency between them will not be 
violated. The LCM is responsible for telling each task 
when it may or must start and finish its execution. It is 

called “local” because it coordinates only one relation 
between two tasks, without knowledge of GCs related to 
each of them. In order to implement the LCMs we use a 
set of Petri net-based coordination mechanisms proposed 
in  [4].  

A detailed explanation of the LCMs is out of the scope 
of this paper. What is important here is that LCMs may be 
viewed as black boxes connecting two tasks in map M. In 
the Petri net-based map, each of the possible forms of 
relationship of a task may be modeled according to the 
schema presented in Fig. 6. 

Figure 6. Schema to connect two related tasks. 

In the schema of Fig. 6, task a is the center of the star 
and has a temporal relation r(a,b) or r(b,a) with task b. In 
this schema, task b is associated to two places, one 
transition and a box representing the LCM for this 
relation. Place stb indicates that b is ready to start and 
place ftb indicates the end of its execution. Transition tb 
receives all the conditions that b must satisfy and, when 
fired, indicates to the LCM that the global conditions for 
b are satisfied and it is authorized to begin. The LCM 
then  assumes the coordination of the relation between b 
and the center of the star (task a).       
    
4.3. The Coordination Map  
 

The map M is the Petri net representation of all 
possible relationships involving a task a (as in Fig. 4). Its 
main goal is to show the “worst case” situation, from 
which other situations may derived. The map (Fig. 7) is 
constructed by applying the schema of Fig. 6 and the list 
of GCs (Section 4.1.1) to each of the 14 tasks related to 
task a. 

In M, places sai indicate that task ai is ready to start, 
and places fai indicate the end of ai. The firing of  
transition tsai authorizes the beginning of ai.  

Transition t1sa models conditions c1, c2, c7, and c8 
(Section 4.1.1). The arc (sa7,t1sa) indicates that a7 is 
ready to start (part of condition c11). The arc (t1sa, Pa14) 
ensures that a14 will start only when a is ready to start 
(part of c12). Transitions tsa10, tsa4 and tsa6 respectively 
indicate to a that a10, a4 and a6 have already started 
(conditions c4, c5 and c9).  
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Figure 7. The map M. 

Transition t2sa implements condition c14, and 
transition t3sa implements the second part of c12. The 
firing of t2sa must occur before the firing of t3sa because 
task a15 finishes before a14, as may be visualized in the 
consistency graph (Fig. 5). Tansition t4sa authorizes  
simultaneously  the beginning of task a at all LCM 
involved with it. 

Transitions tsa3, tsa11 and tsa13  respectively control the 
global conditions necessary for the beginning of a3, a11, 
and a13 (conditions c3, c6 and c10, respectively).  

Transition tsa7  authorizes the beginning of a7 as soon 
as a finishes. (second part of condition c11). Transition 
tsa8  authorizes the beginning of a8 if a has already 
finished (condition c13). Finally, transition tfa1 
synchronizes the end of a with the end of a4, a5, a11, and 
a12.  

The map M considers one instance of each possible 
relation to task a. However, two situations may occur: i) a 
does not have all of the 14 relations, ii) a is related with 
different tasks, but with the same kind of relation. In the 
first situation, the GCM is obtained by reproducing map 
M only with the existent relations. In the second situation, 
it is necessary to repeat the implementation of the 
conditions pertinent to the primitive that appears more 
than once. Fig. 8 (a) and (b) shows the GCMs of the stars 
t3 and t11 of the expression presented in Fig. 2. 

Finally, it is necessary to consider the connection two 
adjacent stars. Suppose that a star a is generated in 
iteration i and a star b is generated in iteration i+1. 
Therefore, the relation connecting both stars (i.e., r(a,b) 
or r(b,a)) is modeled in the GCM of a and, following the 
schema of Fig. 6, there is a transition tb that models the 
GC of b in relation to the tasks of star a. Similarly, there 
is in the GCM of b another transition tb that models the 
GCs of b in relation to the tasks of star b. These 
transitions tb, when fired, authorize the execution of b. 

Hence, to connect both stars, it is necessary to merge 
transitions tb. This is done by eliminating tb from the 
GCM of a and redirecting the GCs to tb of the GCM of b, 
creating a single tb that authorizes the LCM to execute b. 
Fig. 8 (c) shows the GCM resulting from the connection 
of stars t3 and t11, and (d) shows the whole GCM for the 
expression of Fig. 2.  
 
5. Conclusion 
 

We present a methodology to describe and coordinate 
interdependencies of sets of tasks in collaborative 
environments. Based on the description, the algorithm to 
obtain the coordination mechanisms is shown. 

Among the contributions of this methodology, we can 
cite the global treatment given to the coordination 
process, i.e., a task is executed only if no relation of 
interdependency is violated.  

Another approach to group coordination based on 
partial knowledge of the tasks structure of the 
environment is presented in [2]. Its goal is to create a 
framework for the coordination of a group (involving 
human and software agents) to guarantee that the tasks 
are completely solved in a timely and efficient manner. 

The use of concepts from the graph theory allowed an 
effective approach in the modeling of the global 
conditions, generating a standard procedure that is 
independent of the number of tasks taking part in the 
collaborative activity. This is a further step in previous 
approaches that limit the number of tasks to which a task 
may be related (e.g., [5]).   

The consistency graph used for the identification of 
the global conditions may also be used to verify if a set of 
tasks is realizable, i.e., if it does not generate an 
inconsistent configuration. 

The relations graph offers a map of the whole 
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(a) GCM of t3 

 
 

(b) GCM of t11 

 
 

(c) Connection of GCMs of t3 and t11 

 
 (d) Compete GCM for the expression of Figure 2.  

Figure 8. The construction of a GCM.

collaborative activity and this, in conjunction with 
techniques from the graph theory, may be used for 
analysis processes in order to decide for example what 
will happen if a certain task is not executed.  

Finally, it is important to reinforce that not all cycles in 
the relations graph generate inconsistencies. One of the 
next steps of this work is to investigate properties that 
could enable the existence of cycles in the graph. Another 
future work is to create software components that 
implement the GCMs, based on the LCM implementation 
presented in [6]. 
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