
Using Fuzzy Petri Nets to Coordinate Collaborative Activities

Alberto B. Raposo, André L. V. Coelho, Léo P. Magalhães, Ivan L. M. Ricarte

DCA, FEEC, State University of Campinas (Unicamp)

Campinas, SP, Brazil

{alberto, coelho, leopini, ricarte}@dca.fee.unicamp.br

Abstract
This paper presents a fuzzy Petri net based approach
suitable for the modeling of flexible coordination
mechanisms to deal with temporal interdependencies
between collaborative tasks. Such approach is based
on an extension of the Generalized Fuzzy Petri Net
model, including the notion of time for the execution
and synchronization of these tasks. A scenario of
study is described, indicating the suitability of the
proposal.

1. Introduction
A collaborative activity (CA) is defined as a
coordinated set of tasks realized by multiple actors to
achieve a common goal. Tasks are the building blocks
of activities. They can be atomic or composed of
subtasks, and are connected to one another through
dependencies.

The coordination of computer-supported CAs, which
is the act of managing interdependencies between the
tasks, is a very important and difficult endeavor [1].
The great challenge in proposing coordination
mechanisms to control a CA is to achieve the
flexibility demanded by the dynamism of the
interaction between the partners [2].

We have defined a set of interdependencies that
frequently occur in CAs and proposed coordination
mechanisms (modeled using Petri nets - PNs) for
these dependencies [3]. The idea is to separate tasks
from dependencies (controlled by the coordination
mechanisms), enabling the use of different
coordination policies in the same collaborative
domain, by changing only the coordination
mechanisms. Moreover, these mechanisms may be
reused in other collaborative domains.

Nevertheless, it is sometimes very difficult to
completely define the interdependencies underlying
CAs. This happens because those relationships may
already embed in their essence a not so well defined
(or fuzzy) semantics. Such modeling imprecision
implies, as a positive side effect, more flexibility to

application designers as they can focus on their own
definition of the relation, in a manner more closely
related to the subjective human reasoning. Using the
resources offered by the fuzzy sets theory,
interdependencies in CAs can assume a more
manageable perspective, improving both the
understandability and the feasibility of the interacting
rules that identify the whole process.

This paper presents a fuzzy PN-based approach
suitable for the modeling of flexible coordination
mechanisms for CAs. In the following, some aspects
related to CAs and their inner interdependencies, as
well as the use of PN as a coordination tool, are
briefly pointed out. In Section 3, we describe the fuzzy
PN approach and its simulation algorithm. A case
study comes in Section 4. The paper resumes with
conclusions and suggestions of future research.

2. Coordination of Collaborative Activities
It is possible to characterize different kinds of
interdependencies that frequently occur in CAs and
identify coordination mechanisms to manage them
[1]. Among them, we can highlight temporal
interdependencies, which encompass those situations
in which it is necessary to establish an execution order
for tasks, resembling a scheduling process.

To create the coordination mechanisms for those
dependencies, we have employed an approach based
on PNs [3]. The graphical representation of PNs,
besides being clear, allows detail encapsulation,
offering an adequate infrastructure to model different
coordination levels. Furthermore, PNs offer a strong
support for analysis and simulation.

Taking into account temporal interdependencies, the
employment of conventional PNs brought with itself
some restrictions on the modeling of the
aforementioned coordination mechanisms, since tasks
can only be synchronized by their start or finish times.
This rigidity limits the analysis of the activities of a
range of common collaborative scenarios, since it
prohibits, for instance, commencing a second task

abraposo
Proc. of the Joint 9th IFSA (International Fuzzy Systems Association) World Congress and 20th NAFIPS (North American Fuzzy Information Processing Society) International Conference, p.1494 - 1499. Vancouver, Canada. IEEE Press, 2001.

when the first is "almost finished". In this sense, this
paper presents a further step towards the development
of flexible temporal coordination mechanisms for CAs
by means of fuzzy PNs, extending results achieved in
a former work [3].

3. The Fuzzy Petri Net Model
There are several approaches that combine fuzzy sets
and Petri nets theories, differing not only in the fuzzy
tools used, but also in the elements of the nets that are
fuzzified (tokens, markings, or transition firings).
Amongst them, we choose the Generalized Fuzzy
Petri Net (GFN) [4] as our basis because of its
consistence with the Boolean PN model (i.e., a safe
PN, where places can have only 1 or 0 tokens) and its
powerful and flexible way to fuzzify not only the
transition firing rules, but also the tokens flow
through the net.

3.1. GFN – Generalized Fuzzy Petri Net
The GFN set of state update equations is
straightforward and very malleable to compute, since
it is based only on simple inferences over t- and s-
norm aggregations. The degree of a transition firing is
given as [4]

where T and s denote, respectively, a t- and an s-
norm, xi ∈ [0,1] is the (fuzzy) marking of input place
i of the transition (it has a total of n input places), and
wi is the weight factor that represents the contribution
of place i to the overall level of firing. The symbol
“→” denotes a fuzzy implication defined as

where t is a t-norm. Therefore, ri in Equation (1)
modulates the “strength of firing coming from the i-th
input place” [4].

A transition in a GFN is enabled if its degree of firing
z is equal or higher than a threshold level λ ∈ [0,1].
Once an enabled transition is fired, each of its input
places will have its marking decreased according to
the following distribution

where z’ is the complement of z.

Similarly, each output place j of the transition will
increase its marking yj according to Equation (4)

As in conventional PNs, it is also possible to define
inhibitory input places for a transition (Equation (5)).
The only difference between the excitatory term z+

and the inhibitory term z- is that the latter is a
function of the complement of the input place’s
marking (x’i).

The GFN model, however, was developed for rule-
based systems (actually, it is based on neural nets) and
does not address the timing of transition firings. For
our synchronization purposes, it is crucial to include
the notion of time in the model. For that reason, we
have developed an extension of the GFN model
presented in the following.

3.2. Extending GFN
Our extension of the GFN model includes the notion
of time by means of two distinct and independent time
intervals that can be associated to each transition: the
firing delay d = [tmin, tmax] and the firing duration ∆.
The former delimits the minimum and maximum time
between the enabling of the transition and its firing
[5]. The value of tmin establishes the minimal time that
must elapse between the time the transition becomes
enabled and the time it can fire. The value of tmax

defines the maximal time the transition can be
enabled without firing. At this time, the transition
must fire if it has not fired yet (and if it is still
enabled). Using this model, it is correct to state that, if
a transition fires, this happens in a time tf ∈ d, where
tf is measured relatively to the time the transition
becomes enabled.

Due to its delay, the transition may not be fired
immediately once enabled (the tokens remain in their
input places), being possible that other transitions
remove them, disabling the delayed transition. In this
case, it will not fire in tmax.

The delay introduces a non-fuzzy temporal
uncertainty to the firing of the transitions. There is a
couple of approaches that fuzzifies the firing delay of
transitions (e.g., [6], [7]), but we use the original non-
fuzzy delay [5] in our current implementation.

(2) }b c a | [0,1] csup{ba ≤∈=→ t

(3) (next) z’ xx tii =

(4) (next) z y y jj s=

→

→=

==

≠≠

+

])’{[(]){[(

 z z z

iii

n

ji
jjj

n

ij

-

 wxr wxr

(5)

ss t

t

TT

(1)] w)xr[(iii

n

1
 T sz

i

→=
=

The second time interval associated to each transition
in our GFN extension is the firing duration ∆ [8]. The
value of ∆ defines the “execution time” of a transition.
If ∆ > 0, its firing is not an instantaneous (atomic)
operation. This kind of non-instantaneous firing is
important to encapsulate details of the tasks
execution, allowing us to represent these tasks (which
are not instantaneous) simply as transitions in our
model.

Originally, the value of ∆ associates a deterministic
firing duration and two events (start firing and end
firing) to a transition [8]. The start firing event
removes tokens from the transition’s input places. The
end firing event (∆ units of time later) adds tokens to
the transition’s output places. In between these events,
the firing is in progress.

A consequence of the use of non-instantaneous firings
is that the state of the net cannot be defined only by its
token distribution. It is also necessary to verify the
firings which are in progress and their remaining
firing times (RFTs).

In order to give more flexibility to the specification of
temporal interdependencies between tasks, the
transitions that represent these tasks have their firing
duration ∆ fuzzified. In this case, ∆ is seen as a
linguistic variable defined over a temporal scale. The
designer is the one who stipulates the amount, the
meaning, and the format of the membership functions
associated to the linguistic terms ranging over each ∆
partition (so, each transition can be customized). The
linguistic terms allow for the definition of time
parcels representing possible synchronization points
between two tasks. As illustrated in Figure 1, the
duration ∆ is associated with three linguistic terms
(beginning, middle, finish), whose membership
functions overlap. In this case, P1 and P2 are two
synchronization points given by

where

are the α-cuts of middle and finish in relation to the
universe of discourse defined by ∆ and to the
threshold levels defined by τ1 and τ2, respectively.

Figure 1: Firing duration ∆ as a linguistic variable.

In order to directly specify the temporal
interdependence between a pair of tasks, say <T1, T2>,
the designer delimits a threshold value explicitly
indicating the minimal degree to be achieved by the
linguistic term (synchronization point) for assuming
that “T1 is fired in relation to T2”. This strategy allows
for the “relative firing” between different pairs of
tasks. Therefore, <T1, T2> (e.g., T2 will commence
when T1 is "almost finished") and <T1, T3> (e.g., T3

will commence after the “very beginning” of T1)
should incur distinct synchronization points for the
same transition T1. In the PN model, this means that
the transition representing T1 will release the tokens
to an input place of T3 shortly after its beginning and
to an input place of T2 only later, shortly before its
end. It is worthy to note that this abstraction does not
imply that the tasks themselves have fuzzy temporal
periods associated to them, but simply that the tokens
in the model of the coordination mechanism will be
released in accordance with the fuzzy semantics of
their temporal interdependencies.

It is important to reinforce that d and ∆, although
independent, have complementary roles, in the sense
that they may be applied simultaneously in the same
transition, but the use of one does not imply the use of
the other. The delay is employed to insert a non-
deterministic behavior in the modeling of tasks
execution. Conversely, the firing duration introduces
fuzzy synchronization points by means of which the
tasks can have their execution interrelated.

3.3. Simulation Algorithm
In order to model CAs using the proposed fuzzy PN-
based approach, we have developed an algorithm to

(6) infP

infP

2t2

1t
1

τ

τ

finish

middle

∆∈

∆∈

=

=

(7) })(| t {

})(| t {

 2 2

1
1

ττ

ττ
≥

≥

=
=

tfinishfinish

tmiddlemiddle

simulate the behavior of such PNs. The algorithm
reads an input file that describes the structure of the
net (places and their initial markings, transitions and
arcs) and its additional parameters: ri, wi, d, ∆ and λ
for each transition, and the membership functions
(beginning, middle and finish) and synchronization
points (given by a dominant function and a threshold
value τ, such as in Eqs. (6) and (7)) for each output
place of each transition. The output of the simulation
is a file describing, at each instant, the state of the
PN, the firing rule z for each transition, the list of
enabled transitions, and the next state change. Figure
2 shows the pseudo code of this simulation algorithm.

4. Applying the Model to Collaborative Activities
In the proposed coordination model, CAs can be
described in two abstraction levels [3]. In the
workflow level, each actor’s activity is modeled
separately by a PN, in which his/her tasks are
represented by transitions. Also in this level, it is
necessary to establish the interdependencies between
the tasks. The coordination level, on the other hand, is
built under the workflow level by the expansion of
interdependent tasks according to a model defined by
W. van der Aalst [9] and the insertion of
corresponding coordination mechanisms between
them. Coordination mechanisms, in this context, are
reusable pre-defined PNs which ensure that the
associated interdependency between tasks will not be
violated.

By means of the proposed GFN extension, we are able
to redefine the whole set of coordination mechanisms
for temporal interdependencies underlying CAs in a
more flexible way. This set of temporal
interdependencies was proposed elsewhere [3] and is
based on the interval logic of J. Allen [10], which was
adapted to the context of CAs.

Amongst temporal interdependencies, we choose the
equals relation as our case study. This relation
establishes that two tasks must be executed
simultaneously. In a hypothetical manufacturing
system, for example, the arms and the legs that will
compose a doll must be produced at the same time by
different machines. Therefore, we can say that both
tasks (production of arms and production of legs)
have the equals interdependency. Formally speaking,
considering two tasks T1 and T2 that occurs,
respectively, in intervals [t1i, t1f) and [t2i, t2f), then T1
equals T2 iff t1i = t2i and t1f = t2f.

do while not end
Select_firing

if time == max_simulation_time then
end = true

for each transition in progress Tp
for each output place of Tp

if synchronization point then
send tokens to output place
exit Select_firing

if ∆(Tp) is finished then
finish execution

for each disabled transition in its delay time
reset delay

for each enabled transition Te
if Te is not yet in its delay time then

set delay
 if it is time to fire Te (i.e., time =

 random value ∈ d) then
select Te

if there is a selected transition then
go to Fire

 else if there is no transition in progress AND
no enabled transition before its delay
interval then

end=true
 exit Select_firing

Fire
if there is a selected transition Ts then

 for each input place of Ts
remove tokens from input place

if ∆(Ts) > 0 then start execution of Ts
if ∆(Ts) ==0 then

for each output place of Ts
send tokens to output place

exit Select_firing
End Fire

 increment time
End Select_firing

End do while
Figure 2: Simulation algorithm for the GFN
extension.

The coordination mechanism for this interdependency
is shown in Figure 3. Places start_taski indicates that
taski is ready to begin and finish_taski indicates it is
finished. Transitions t1 and t2 ensure, respectively, the
simultaneous beginning and end of both tasks. The
transitions called taski are non-instantaneous (∆ > 0)
and represent the logistic of each task.

Figure 3: Coordination mechanism for task1 equals
task2.

Either Boolean or fuzzy constructs could be applied in
this coordination mechanism. The great limitation of
this coordination mechanism using Boolean PN is
that each task can start only when both are ready and
finish only when the other also finishes. This rigidity
can cause frequent deadlocks in the PN, especially if
the tasks belong to complex CAs. For example, if the
actor that is supposed to realize task2 has an
alternative path that does not execute this task, the
other task (task1) can be blocked. In Boolean
coordination mechanisms, this problem is reduced by
the use of timeouts, which execute alternative tasks if
the original ones have not been executed after a
certain waiting time. Using fuzzy coordination
mechanisms, the number of deadlock situations is
reduced because a task not completely ready can
enable the execution of another.

Another aspect on the use of fuzzy coordination
mechanisms is that the degree of parallelism in the
execution of tasks is enhanced. In the manufacturing
system example, the production of legs could be
started a bit before the production of arms, because it
takes a little longer (i.e., the first task may start when
the other is almost ready). To “quantify” this situation
we use the product as t-norm (a t b = ab), the
probabilistic sum as s-norm (a s b = a + b - ab) and
consider that transition t1 has ri = 0.8 and wi = 0.5 for
both input places. If the first task is completely ready
(xstart_task1 = 1) and the other is 70% ready (xstart_task2 =
0.7), then, according to Equation (1), z(t1) = 0.9375.
Therefore, if the threshold λ(t1) is equal or less than
this value, then t1 will fire (even if task2 is not
completely ready) sending tokens to places P1 and P2,
which can enable the execution of task1 and/or task2.
A similar situation can occur in relation to transition
t2 at the end of the tasks.

The notion of synchronization points can be used to
commence a third task before the actual end of task1

and task2. In the manufacturing system example, this
third task could be the assembly of the doll, which
needs the arms and legs resulting from task1 and
task2. In the Boolean situation, this task may start
only after the end of the first two tasks. However, if
there is an initial phase of this task that does not
require these pieces (e.g., to fit the head in the body of
the doll), it could be started when the pieces are, say,
80% finished. For this situation, a synchronization
point

can be defined for task1 in relation to its output place
P3. Considering that the membership functions of the
linguistic terms for ∆ are three gaussian functions
G(x) = exp[-0.18(x-center)2] centered, respectively, on
0, ∆/2 and ∆ (similar to Figure 1), then P = ∆-1.11,
which means that a token will be sent to P3 1.11 units
of time before the end of task1. A similar approach
may be used for task2.

The comparison with the Boolean case can be made
using several criteria, such as time elapsed until a
given state is reached, number of states needed to
reach a desired state, number of deadlock situations,
among others. For the example presented in this
section, we can make a straightforward comparison
considering the time needed to achieve the end of
both tasks (tokens in finish_taski). In the fuzzy case,
we initially may have a gain because it is not
necessary to wait until the slower task becomes
totally ready. Taking the values discussed previously,
the waiting time to start task1 and task2 will be
max{t_rtask1, 0.7*t_rtask2}, where t_rtaski is the time
needed for taski to become ready. In the Boolean
case, this waiting time will be max{t_rtask1, t_rtask2}. If
t_rtask2 > t_rtask1, there will be a gain. The other gain in
the fuzzy case is related to synchronization points in
the execution of the tasks. Once tokens may be
released before the actual end of the tasks, the desired
state can be reached earlier. Therefore, we can
conclude that, in the fuzzy case, the desired state is
reached in a time which is less or (in the worst
situation) equal than that of the Boolean case.

Although rough, the above comparison clearly
indicates that using fuzzy coordination mechanisms
designers are able to manipulate tasks
interdependencies according to a very flexible
semantics and create CAs with an improved degree of
parallelism.

8.0 infP
t

finish
∆∈

=

5. Conclusion
This paper presented two distinct contributions. The
first one is the extension of the GFN model to include
the notion of time. The second contribution is the
employment of GFN-based coordination mechanisms
in CAs, which provides a higher degree of flexibility
in the definition of tasks interdependencies, when
compared to the approach using conventional PNs.
This is particularly noticeable for the reduction in the
use of timeouts, which are necessary in the
conventional approach to avoid the frequent deadlocks
caused by the rigidity of coordination mechanisms [3].
The case study also showed that the use of fuzzy
coordination mechanisms may improve the degree of
parallelism in the execution of CAs and give them a
more manageable perspective. The price to be paid for
this flexibility is that designers must deal with a
larger number of variables. However, by means of
simulation tools, they can have powerful support to
lighten this difficulty.

The next step of this research will be the complete
formalization of the GFN extension and the definition
of qualitative and quantitative metrics to prove the
efficiency of fuzzy coordination mechanisms. We also
intend to extend the use of fuzzy coordination
mechanisms to other kinds of interdependencies
besides temporal ones (e.g., resource management
dependencies [3]).

Finally, we reinforce that task coordination is a
problem that should be addressed to ensure the
effectiveness of CAs. The use of fuzzy coordination
mechanisms can bring to this field a higher degree of
flexibility that should be explored.

6. Acknowledgement
The first and second authors are sponsored by
FAPESP (00/10247-3) and CNPq (140719/1999-7),
respectively.

7. References
[1] T.W. Malone, and K. Crowston, “What Is

Coordination Theory and How Can It Help
Design Cooperative Work Systems?”, Proc.
ACM Conf. on Computer Supported
Cooperative Work, 1990, pp 357-370.

[2] W.K. Edwards, “Policies and Roles in
Collaborative Applications”, Proc. ACM Conf.
on Computer Supported Cooperative Work,
1996, pp 11-20.

[3] A.B. Raposo, L.P. Magalhães, and I.L.M.
Ricarte, “Petri Nets Based Coordination
Mechanisms for Multi-Workflow Environ-
ments”, Int. J. of Computer Systems Science
and Engineering (special issue), Vol. 15, Nr. 5,
September 2000, pp 315-326.

[4] W. Pedrycz, and F. Gomide, “A Generalized
Fuzzy Petri Net Model”, IEEE Trans. on Fuzzy
Systems, Vol. 2, Nr. 4, November 1994, pp
295-301.

[5] P.M. Merlin, and D.J. Farber, “Recoverability
of Communication Protocols - Implications of a
Theoretical Study”, IEEE Trans. on
Communications, Vol. COM-24, Nr. 9,
September 1976, pp 1036-1043.

[6] R. Valette, J. Cardoso, and D. Dubois,
“Monitoring Manufacturing Systems by means
of Petri Nets with Imprecise Markings”, IEEE
Int. Symp. on Intelligent Control, 1989, pp
233-238.

[7] T. Murata, “Temporal Uncertainty and Fuzzy-
Timing High-Level Petri Nets”, Int. Conf. on
Applications and Theory of Petri Nets, LNCS
1091, Springer-Verlag, 1996, pp 11-28.

[8] M.A. Holliday, and M.K. Vernon, “A
Generalized Timed Petri Net Model for
Performance Analysis”, IEEE Trans. on
Software Engineering, Vol. SE-13, Nr. 12,
December 1987, pp 1297-1310.

[9] W.M.P. van der Aalst, K.M. van Hee, and G.J.
Houben, “Modelling and analysing workflow
using a Petri-net based approach”, Proc. 2nd

Workshop on Computer-Supported
Cooperative Work, Petri nets and related
formalisms,1994, pp 31-50.

[10] J.F. Allen, “Towards a General Theory of
Action and Time”, Artificial Intelligence, Vol.
23, 1984, pp 123-154.

