
Using Graph of Relations to Construct
Coordination Mechanisms for Workflows

Dennis PELLUZI a,1 , Léo P. MAGALHÃES a
a Department of Computer Engineering and Industrial Automation, School of

Electrical and Computer Engineering, State University of Campinas

Abstract. This work approaches the problem of coordination of activities in
workflow systems. Workflow systems are characterized by a composite of several
interdependent activities with a common goal. In order to guarantee the correct
execution of activities, a coordination mechanism is required. One of the
difficulties in designing coordination mechanisms is to guarantee that such
mechanisms are consistent with the specification of the workflow. Some works
suggest the use of modeling tools such as Petri Nets or coordination languages to
construct a coordination mechanism. The Graph of Relations methodology,
namely GR methodology, is one of them. This paper uses the extended GR
methodology to construct coordination mechanism for workflow systems.

Keywords. Coordination mechanism, workflow systems, Petri net, graph.

Introduction

A workflow system is composed of a set of activities that are related. If there are
dependences among activities, for example, temporal relations, then there is the
necessity of a coordination mechanism [1]. This coordination mechanism has to
guarantee the restrictions imposed on the execution of activities.

Regarding Internet, we have Service-Oriented Computation. In this architecture,
software is seen as a service and an application web is composed of several services
[2]. In other words, each service is seen as a basic block of construction of an
application (services composition). The services composition and the Internet allow
Inter-organizational collaboration among activities through Inter-organizational
workflow. In order to make it possible, it is necessary to coordinate activities. One of
the difficulties to design workflow systems, with interdependent activities, is the
construction of the coordination mechanism. The designer must know the behavior of
activities and the relations among them. Some authors like [1], [3] and [4] approach the
management of dependences among activities under different applications.

1 Corresponding author: E-mail: pelluzi@dca.fee.unicamp.br

1. Coordination

Some works use Petri Net-based models of coordination, for example, [4], [5] and [6].
Models based on Petri Nets (classic or extended) [7] are chosen because they have
mathematical support for analysis and simulation of activities behavior. Some of these
works consider specific coordination mechanisms for a class of application, for
example, multimedia. While others, as [4], consider independent coordination
mechanisms which can be used for many classes of application.

Some works ([8] and [9]) explore the use of coordination languages. Such
languages are specific of a determinate issue (coordination of concurrent processes or
construction of collaborative applications) and aim to assist the programmer.
Therefore, the coordination languages have similar syntax to the programming
languages. However, coordination languages have low abstraction level and do not
support verification techniques.

In a simple way, coordination is the effort to guarantee that the parts of an
environment work together, without conflicts, in order to achieve a common goal.
According to Malone [1], coordination is the management of dependences among
activities. If there is not interdependence among activities then coordination is not
necessary.

In the context of this work, activities are interdependent if they are related to
themselves. In other words, the execution of an activity depends of the execution of
others in some way. If the execution of activities leads to a common objective, then the
activities are collaborative.

Service-Oriented Computation (software as a service) has been an increasing
interest in software engineering. Services can be executed in different and distributed
platforms. Each service is seen as a basic block of construction of applications
(services composition). Web service is the most important realization of that concept.
A web service (WS) provides specialized service for other WS. Thus, we can construct
a complex application using web services composition.

Services composition is the main interest in applications development using web
services, [10]. The services composition allows the Inter-organizational collaboration
among activities (Inter-organizational workflow). As pointed by van der Aalst et al
[11], there are several languages of WS composition such as WSFL, WSCI, WS-
Coordination, BPML, XLANG and BPEL4WS. However, these languages provide
different techniques for web service composition without a solid coordination theory
[12].

2. Extended GR Methodology

Cruz [13] proposed a methodology, namely Graph of Relations (GR) methodology,
which allows expressing graphically and analytically temporal interdependences
among activities in a computational environment. The GR methodology has three
abstraction levels for modeling systems. In the first level (specification level – L1), it
defines the behavior of the system by specifying the relations among activities. In the
second level (coordination level – L2), a coordination mechanism (CM) is constructed.
Coordination Mechanisms are artifacts used to guarantee the dynamic behavior
according to the specification of system established in the L1 level. Finally, in the level

L3 (execution level) a program called coordinator implements the CM constructed in
the L2 level.

Figure 1. The seven primitive mutual-exclusion relationships between two intervals.

The type of behaviors specified in initial version of GR methodology was the

temporal one. The behavior of a system is described in terms of temporal relations
among activities, or more specifically, temporal intervals. According to J. Allen [14],
there are seven primitive mutual-exclusion relationships between two time intervals.
These relationships form the set D = {e, s, d, f, o, m, b}.

The letters e, s, d, f, o, m and b indicate, respectively, the relations equal, start,
during, finish, overlap, meet and before (Figure 1). Letters i and f respectively represent
the instant points of beginning and end of an interval.

2.1. Specification Level

The temporal relationships are expressed through a direct labeled graph, called graph of
relations (GR). One activity is represented by a vertex and the relation between two
activities is represented by an edge. The edges of the graph have a label that defines the
type of interdependence. In order to avoid timed inconsistencies, the graph must not
have cycles with vertices which represent activities. A formal proof is presented in PhD
thesis of Cruz [15].

The extended GR methodology allows specifying resources [16]. The resources
also are represented by vertices. The resource vertices have a label (t, n) where t
indicates the type of the resource (volatile or non-volatile) and n indicates the number
of available instances.

A resource is volatile (v) if its number of instances decrease after an activity use it
and it is not-volatile (nv) otherwise. The direction of edges indicates if the activity uses
the resource (resource → activity) or if the activity produces the resource (activity →
resource). The edges have a numerical value that indicates how many instances of the
resource are produced or consumed by the activity.

Formally, the graph of relations is defined by expression E(A, R, F, G, S, P, w, u)
where:

A is a set of vertices representing the activities;

R ⊂ A × A, is a set of edges representing the relations;
F:R → D is a function, called edge labeling function that associates a non-empty subset

of D with each edge.
D = {e, s, f, d, o, m, b} is the set of primitive temporal relations;
G:A → A is a function that associates a subset of A with each element of A.;
S is a set of vertices representing the resources;
P ⊂ (A × S ∪ S × A) is a set of edges associating a resource with one or more activity

and vice-versa;
w:P → ℕ is a function that sets a integer value for each edge of set P;
u:S → T × ℕ is a function that associates a ordered pair (t, n) with each element of set

S where t ∈ Τ = {nv, v} and n ∈ ℕ.

The function G indicates alternative relationships for one given activity, i.e., the

activity in question relates with only one activity of the label defined by G. Figure 2
shows the graphical representation of expression E1(A, R, F, G, S, P, w, u) defined
below. To facilitate the understanding of the graph, the vertices of set S (resources) are
represented by squares while the vertices of set A (activities) are represented by circles.

A = {a1, a2, a3, a4, a5, a6, a7}
R = {(a2, a3), (a2, a4), (a1, a5), (a5, a6), (a7, a6)}
F(a2, a3) = F(a2, a4) = {e}, F(a1, a5) = {b}, F(a5, a6) = {e, s}, F(a7, a6) = {f}
G(a2) = {a3, a4}, G(a1) = G(a3) = G(a4) = G(a5) = G(a6) = G(a7)= ∅
S = {s1, s2}
P = {(a1, s1), (s1, a2), (s2, a5), (s2, a7)}
w(a1, s1) = w(s2 ,a5) = 2, w(s2 ,a7) = w(s1, a2) = 1
u(s1) = (nv, 2), u(s2) = (v, 5)

2.2. Coordination Level

In the coordination level, Petri Nets (PN) are used to model the behavior of activities.
Each activity is represented by a pair of transitions, tIa and tFa, and three places, Ia, Ea
and Fa (Figure 3). The fire of transitions tIa and tFa indicates the beginning and the end
of the execution of the activity, respectively. One token in the place Ia represents a
request to start the activity. One token in the place Ea indicates that the activity is
running and one token in the place Fa indicates that the activity is finished.

Figure 2. Graph of the expression E1.

Figure 3. Petri Net-based model of activities and resources.

A resource is represented by one place and the number of tokens in this place

indicates the amount of available instances. Figure 3 illustrates Petri Net-based models
of activities and resources.

The representation of the temporal relationships in Petri Nets is constructed
inserting constraints on the fire of transitions tIa and tFa. A timed constraint is defined
by equalities and inequalities involving the initial and final instants of activity (Figure
1). These equalities or inequalities are translated into PN model according to rules 1
and 2.

Rule 1. Inequalities x < y or x > y, where x and y represent the initial or final
moments in the execution of the activities involved, are translated into PN by adding an
arc from the transition that corresponds to the least-value variable to place PZ, z ∈ ℕ,
and an arc from PZ to the transition that represents the largest value. For example, in
relation a1 before a2, we have fa1 < ia2, which means including an arc from tFa1 (which
represents fa1) to place P2 and an arc from P2 to tIa2, which represents ia2 (Figure 4-b).

Rule 2. Adding an equality to the Petri Net consists in performing a merge
operation of the transitions associated to the equation variables (Figure 4-a).

The Petri net model is constructed using an algorithm described in [13].

Figure 4. Petri Net model of temporal relations.

2.3. Execution Level – the Coordinator

The construction of the coordinator is done translating the model of coordination
mechanism to a software component which is capable to communicate with activities
of the application. This communication is done through an interface that defines the
operations which an activity must satisfy to communicate with the Coordinator (Figure
5). The separation between the coordination mechanism and activities allow modifying
the execution of activities without having to change the coordination mechanism. We
can also modify the dependences among activities modifying the coordination
mechanism without having to modify the activities. This separation makes the
coordinator independent of the type of application. The activities are interdependent
units of execution in an application that need authorization of the Coordinator to be
executed.

The Coordinator controls the execution of the activities, authorizing or not their
beginning or end, based on the Petri Net model. Each activity has one transition that
authorizes its beginning or end, as seen previously. If this transition is enabled, then the
activity is authorized to start or finish. Otherwise, the activity will have to wait for an
authorization.

Figure 5. High Abstraction Level of coordination.

3. Workflow Systems

In this section, we will introduce the use of extended GR methodology to design
workflow systems. The GR methodology is not a complete model of specification of
workflow, because it does not describe all workflow patterns [17]. However, some of
these patterns can be implemented through the GR methodology. Figure 6 shows some
examples.

Figure 6. Some workflow patterns.

Considering the Reference Model of the Workflow Management Coalition [18],

the use of level L1 of GR methodology corresponds to the definition process. That is,
the graph of relations describes the logic of the business process in a high abstraction
level of notation. The levels L2 and L3 correspond to the execution level of workflow,
they are responsible for the administration of the process, distribution and invocation of
the activities. Based on these concepts, we can use the extended GR methodology to
coordinate a workflow system, for example, web services-based workflows.

The Petri net model (Figure 3) indicates that the workflow stops if the available
resources are not enough for the execution of one or more activities. In this case, it is
necessary to allocate more instances of the resource, if it is possible. The exception
handling in workflow system is not aimed by this work, but we can refer the work of
Kumar and Wainer [19] which deals with this issue.

4. Conclusion

In workflow processes, we have activities which compete for resources or that produce
resources which will be used by other activities. We also have temporal relationships.
In such situations, it is necessary to have a coordination mechanism which manages the
use of resources and the order of executions. We have presented an extension for the
GR methodology and its application in workflow systems. This extension allows the
GR methodology to lead with dependence of resource. Although the extended GR

methodology is not a complete model of specification of workflow, it can deals with
the most common workflow patterns.

The specification of temporal relations and resources, which is used and/or
produced by activities, is done through a direct labeled graph (graph of relations).
Based on this graph, we construct a PN model of coordination which can be used by
the coordinator (a software component). The coordinator verifies in the model if an
activity can be executed. This communication is done through signals that are sent
between the activities and the coordinator.

One of the justifications to use Petri Nets-based models is the possibility to
simulate and to analyze the system. With the analyses, the system designer can evaluate
if the activities will be executed according to imposed restrictions.

References

[1] T. W. Malone and K. Crowston. The Interdisciplinary Study of Coordination. ACM Computing Surveys
26(1), (1994), 87–119.

[2] M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Directions. Proceedings

of the Fourth International Conference on Web Information Systems Engineering (WISE’03), (2003).
[3] K. Schimidt and C. Simone. Coordination Mechanisms: Towards a conceptual foundation of CSCW

systems design. Computer Supported Cooperative Work: The Journal of Collaborative Computing 5(2-
3), (1996), 155–200.

[4] A. B. Raposo, A. J. A. da Cruz, C. M. Adriano and L. P. Magalhães. Coordination Components for
Collaborative Virtual Environments. Computers & Graphics 25(6), (2001) 1025-1039.

[5] P. Hsu, Y. Chang and Y. Cheg. STRPN: A Petri-Net Approach for Modeling Spatial-Temporal
Relations between Moving Multimedia Objects. IEEE Transc. on Software Engineering 29, (2003).

[6] T. Gonsalves, K. Itoh and R. Kawabata. Use of Petri Nets in the Performance Design and Improvement
of Collaborative Engineering Systems. Integrated Design and Process Technology, IDPT, (2004).

[7] T. Murata. Petri Nets: properties, analysis and applications, Proceedings. of the IEEE 77(4), (1989),
542–580.

[8] M. Cortes. A Coordination Language for Building Collaborative Applications. Computer Supported

Cooperative Work, Kluwer Academic Publishers, (2000).
[9] G. Ciobanu and D. Lucanu. A Specification Language for Coordinated Objects. Proc. of the 2005

conference on Specification and verification of component-based systems, ACM Press, (2005).
[10] S. Dustdar and W. Schreiner. A Survey on Web Services Composition. Int. J. Web and Grid Services,

1(1), (2005).
[11] W. M. P van der Aalst, M. Dumas and A. H. M ter Hofstede. Web Service Composition Languages:

Old Wine in New Bottles? Proc. of the 29th EUROMICRO Conf. on New Waves in System

Architecture, Los Alamitos, CA, (2003).
[12] S. K. Prasad and J. Balasooriya. Fundamental Capabilities of Web Coordination Bonds: Modeling Petri

Nets and Expressing Workflow and Communication Patterns over Web Services. Proc. of the 38th

Hawaii International Conference on System Sciences, (2005).
[13] A. J. Cruz, L. P. Magalhães, A. B. Raposo, R. S. Mendes and D. G. Pelluzi. Coordinating Multi-task

Environments Through the Methodology of Relations Graph. Proc. of the 13th International Workshop

on Groupware (CRIWG 2007), Lecture Notes in Computer Science 4715, Springer, (2007), 127-142.
[14] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Communications of the ACM 26(11),

(1983), 832-843.
[15] A. J. Cruz. Grafo de Relações : Uma Metodologia Para Coordenar Dependências entre Atividades em

Ambientes Computacionais. Phd thesis, FEEC, University of Campinas, Brazil, (2004).
[16] D. G. Pelluzi. Modelagem e Construção de Mecanismos de Coordenação em Ambientes

Computacionais. MS. Dissertation, FEEC, State University of Campinas, Brazil, (2007).
[17] W. M. P van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros. Workflow Patterns.

QUT Technical report, FIT-TR-2002-02, Queensland University of Technology, Brisbane, (2002).
[18] Workflow Management Coalition (WfMC) The Workflow Reference Model – TC00 – 1003 v1.1.

http://www.wfmc.org/standards/referencemodel.htm, (1995).
[19] A. Kumar and J. Wainer. Meta Workflows as a Control and Coordination Mechanism for Exception

Handling in Workflow Systems. Decision Support Systems 40, (2004), 89–105.

