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Abstract 
 
 

The coordination of interdependencies between tasks 
in collaborative environments is a very important and 
difficult endeavor. The separation between tasks and 
interdependencies allows for the use of different 
coordination policies in the same collaborative 
environment by changing only the coordination 
mechanisms that control the interdependencies. This 
paper presents a framework for the definition of 
interdependencies that frequently occur in collaborative 
activities. By means of a clear characterization of 
interdependencies, it is possible to identify coordination 
mechanisms to manage them, opening the way toward a 
powerful coordination tool capable of encompassing a 
wide range of collaborative applications. An 
implementation of the coordination model of a 
collaborative virtual environment based on the proposed 
framework is given as example. 
 
 
1. Introduction 
 

A definition for collaborative work that is frequently 
cited in the literature [21] is that of Karl Marx, written in 
1867. According to Marx, collaborative work is defined 
as “multiple individuals working together in a planned 
way in the same production process or in different but 
connected production processes.” In the kernel of this 
definition is the notion of planning, which ensures that the 
collective activity results from individual tasks.   

The notion of planning is realized in CSCW 
(Computer Supported Cooperative Work) by what has 
been called articulation work, defined as “a set of 
activities required to manage the distributed nature of 
cooperative work” [21]. The articulation work is the 

additional effort required to obtain the actual 
collaboration from the sum of individual tasks. Among 
the activities of articulation work that can be mentioned 
are the identification of the objectives of the group work, 
the mapping of these objectives into tasks, the 
participants’ selection, the distribution of tasks among 
them, and the coordination of tasks execution. 

An important aspect of collaborative work is the notion 
of task interdependency. This interdependency is always 
positive, in the sense that each participant wants the 
works of others to succeed. However, it is not always 
harmonious. It is necessary for coordination between 
tasks to exist in order to guarantee the efficiency of the 
collaboration. Without coordination, there is the risk that 
participants would get involved in conflicting or repetitive 
tasks. Coordination, in this context, is defined as “the act 
of managing interdependencies between activities 
performed to achieve a goal” [11]. It is the most important 
of the articulation work’s activities because it represents 
the dynamic aspect of articulation, demanding to be 
“renegotiated” almost continuously during a collaborative 
effort. The other activities of the articulation work are 
concluded before the beginning of the collaboration and 
seldom need to be altered.     

The great challenge in proposing coordination 
mechanisms to control collaborative activities is to 
achieve the flexibility demanded by the dynamism of the 
interaction between partners. A step toward this flexibility 
is achieved by means of a clear separation between 
“articulation work, i.e., the work devoted to activity 
coordination and coordinated work, i.e., the work devoted 
to their articulated execution in the target domain” [23]. 

One of the advantages of this approach is the 
possibility of altering coordination policies by simply 
altering the coordination mechanisms for the 
interdependencies, without the necessity of altering the 
core of the collaborative system. Additionally, 
interdependencies and their coordination mechanisms 
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may be reused. It is possible to characterize different 
kinds of interdependencies and identify the coordination 
mechanisms to manage them, creating a set of 
interdependencies and respective coordination 
mechanisms capable of encompassing a wide range of 
collaborative applications [12]. 

In this context, the present paper introduces a 
framework for the definition of generic interdependencies 
that occur between tasks in collaborative activities. In the 
following section related works are discussed. The 
interdependencies are studied in Section 3, where the 
framework is presented. Section 4 exemplifies the 
proposed model by means of the implementation of a 
collaborative virtual environment. The paper resumes 
with conclusions and suggestions for future research.   
 
2. Related work 
 

Collaborative systems with some kinds of coordination 
mechanisms only started to appear in the second half of 
the 1980s. However, they were restricted to specific 
scenarios, because coordination protocols were rigidly 
defined, restraining dynamic modifications. Collaborative 
systems containing such characteristics have what has 
been called coordination models of first generation. A 
coordination protocol, however, may not encompass all 
possible situations. Therefore, the user will eventually be 
in a situation that requires a deviation from the protocol. 
For that reason, in the 1990s systems were constructed 
with more flexible and easily modifiable coordination 
mechanisms (coordination models of second generation). 

The second generation of coordination models has 
three main characteristics: accessibility to application 
designers and end users, interoperability and flexibility. In 
general, it is possible to say that, in regard to 
coordination, current collaborative systems are developed 
to achieve at least one of these functionalities. 

Oval (Objects, Views, Agents and Links) is an 
example of a tool for the construction of collaborative 
applications in which the concerns about the accessibility 
of the coordination mechanisms to end users prevail [13]. 
Another system sharing the same concerns is Ariadne, 
which is a generic notation aiming to facilitate the 
construction of coordination mechanisms in any 
application involving collaborative work and, at the same 
time, enabling application designers and users to build 
and alter these mechanisms [22].  

Interoperability is a generic term encompassing from 
the integration of the heterogeneous communication 
infrastructures of different organizations to the integration 
of business processes [10]. From the coordination point of 
view, interoperability imposes an even more challenging 
problem, because it deals with the support for inter-group 
collaboration, and not only intra-group (i.e., inside a well-
established group, with some predefined conventions). 

Reconciler, for example, is a system whose main 
objective is to manage the interoperability between 
groups at the semantic level, conciliating their visions by 
means of the treatment of terminology and unity conflicts, 
among others [23].  

The evidence that collaborative systems should not 
impose rigid work or communication patterns led to the 
development of systems that allow dynamic redefinitions 
and temporary modifications in the coordination model 
(flexibility in coordination). Intermezzo is an example of a 
system with these characteristics that uses the notions of 
policies and roles for the coordination of collaborative 
activities [6]. Coordination policies are defined by means 
of access control to data objects, which are assigned to 
group of users with a certain role. Roles are assigned not 
only before the collaboration, but they also change 
dynamically during the collaboration.  

Coordination languages, initially devoted to the 
implementation of parallel applications [9], have also 
been developed for the construction of collaborative 
applications. The idea behind these languages is that it is 
possible to construct a complete programming model by 
separating the computation model from the coordination 
model. The computation model is accomplished by 
conventional programming languages and allows for the 
construction of isolated activities. The coordination model 
is what connects these isolated activities, establishing the 
threads execution control and the communication among 
them. DCWPL (Describing Collaborative Work 
Programming Language) is an example of coordination 
language for the implementation of collaborative 
applications [5]. This language separates the description 
of computational entities from the interaction rules 
followed by workgroups. These rules may be altered at 
runtime. In the present work, a similar separation is made 
between tasks (computation) and interdependencies 
(coordination).  

 
2.1. Task interdependencies 
 

The idea of creating a set of tasks interdependencies 
and respective coordination mechanisms was proposed in 
the coordination theory of Malone and Crowston [11]. 
They defined three types of elementary resource-based 
dependencies (flow, fit and sharing) and worked with the 
hypothesis that all other dependencies could be defined as 
combinations or specializations of these basic types [14]. 
A flow dependency occurs when a task produces 
resource(s) that will be used by another task. A fit 
dependency arises when two or more tasks collectively 
produce the same resource. A sharing dependency occurs 
when two or more tasks use the same resource. In 
addition to these three elementary types, three subtypes 
were defined, namely, prerequisite, accessibility and 
usability. Prerequisite is related to time and means that a 



resource must be produced before it may be used. 
Accessibility is related to place and implies having the 
resource in the right place for use. Usability is related to 
the resource itself, meaning that it should be “usable” for 
the task that needs it. Summarizing, an “available 
resource” means “the right thing, in the right place, at the 
right time.”  

The coordination theory was the inspiration of the 
genres coordination proposal, which stresses the 
coordination in relation to resources, place and time [25]. 
Resources, in particular, are treated according to three 
characteristics, divisibility, concurrency and reusability. 
Divisibility is related to how a resource is divided into 
smaller parts without loosing its usability. Concurrency 
refers to the simultaneous use of the complete resource 
(i.e., without being divided). For example, if two users 
want to eat the same chocolate, it should be divided; if 
they want to view the same Web page, it is a case of 
concurrency. The third characteristic of the resource, 
reusability, means that the same resource may be 
available several times (e.g., the Web page, but not the 
chocolate). Aspects related to time and place are very 
similar to that of the original coordination theory (“in the 
right place, at the right time”). 

Another work that should be mentioned uses the 
interdependencies among activities to workflow 
management [3]. In this case, interdependencies are 
defined as “constraints on the occurrence and temporal 
order of events” and are controlled by coordination 
mechanisms defined as finite state automata, which 
guarantee that they are not violated. The objective is to 
create a global scheduler that satisfies all dependencies 
defined for the workflow. A limitation of this work is that 
it is restricted to temporal interdependencies and is 
specific to workflow applications. 

The present work starts with some of the ideas of these 
previous works, and is refined by defining a larger set of 
basic interdependencies and new dimensions for them.         
 
3. Task interdependencies: A framework 
 

Before presenting the framework, it is necessary to 
clarify the definition of task as used in this work. In this 
context, tasks are the “building blocks” of a collaborative 
activity, which is defined as a coordinated set of tasks 
realized by multiple actors to achieve a common goal. 
Tasks may be atomic or composed of subtasks and are 
connected to one another through interdependencies. The 
granularity of a task is defined by the interdependencies it 
has with other tasks. A group of subtasks with no external 
interdependencies (i.e., interdependencies with another 
task that does not belong to this group) can be considered 
a task. For example, in the collaborative activity of 
writing a book by several authors, the writing of a chapter 
may be considered a high level task if it is a book of 

readings. In this case, the subtasks associated to the 
writing of a chapter have no relationship to those 
associated to another chapter. On the other hand, if it is a 
“regular” book (i.e., not divided into authored chapters), it 
is possible that only more granular operations (such as the 
writing of a section or a paragraph) may be considered 
tasks, depending on the authors’ method of work. 

Using this definition of task, it is possible to model a 
collaborative activity in several abstraction levels, which 
improves both the understandability and the feasibility of 
the interacting rules that characterizes the whole process. 
Collaborative activities, therefore, assume a more 
manageable perspective, facilitating the identification of 
coordination mechanisms for the interdependencies. The 
term “coordination mechanism” means a “specialized 
software device, which interacts with a specific software 
application so as to support articulation work with respect 
to the field of work as represented by the data structures 
and functionalities of that application” [22]. 

The proposed framework is composed of two parts. 
Initially (Section 3.1) a set of basic interdependencies that 
occurs among tasks is defined. Then, some dimensions for 
the interdependencies are defined (Section 3.2), which 
may be viewed as additional characteristics or 
specializations of them that will guide the identification of 
adequate coordination mechanisms. 

 
3.1. Basic interdependencies 
 

Interdependencies in the proposed framework are 
divided into two types, temporal and resource 
management. Temporal interdependencies establish the 
execution order of tasks. Resource management 
dependencies are complementary to and independent of 
temporal ones and deal with resource distribution among 
tasks. 

This separation between temporal and resource 
management dependencies agrees with the coordination 
model proposed by Ellis and Wainer [7]. According to 
this model, the coordination in collaborative systems 
could occur on two levels, the activity level and the object 
level. At the activity level, the coordination model refers 
to temporal dependencies, describing “the sequencing of 
activities [tasks] that make up a procedure [collaborative 
activity].” At the object level, the coordination model 
refers to resource management dependencies, describing 
“how the system deals with multiple participants’ 
sequential or simultaneous access to some set of objects.” 

 
3.1.1. Temporal interdependencies.  Temporal 
dependencies establish an execution order for the tasks. 
An example of such kind of dependency occurs in e-
commerce, in which a consumer order may only be 
canceled before the product is delivered [17].  



The set of temporal interdependencies of the 
framework is based on temporal relations defined by 
Allen [2]. According to him, there is a set of primitive and 
mutually exclusive relations that could be applied over 
time intervals (and not over time instants). This 
characteristic made these relations suited for task 
coordination purposes, because tasks are generally non-
instantaneous operations. Allen’s interval algebra is based 
on seven basic relations, as illustrated in Figure 1. 

 Based on the relations of Figure 1, a set of axioms is 
defined to create the temporal logic. For example, there 
are axioms to prove the mutual exclusion and the 
exhaustivity of the basic relations and others to define 
transitivity relations (e.g., if X during Y and Y before Z, 
then it is inferred that X before Z) [1]. 

The temporal logic of Allen is defined in a context 
where it is essential to have properties such as the 
definition of a minimal set of basic relations, the mutual 
exclusion among these relations and the possibility to 
make inferences over them. Temporal interdependencies 
between collaborative tasks, on the other hand, are 
inserted in a different context. For this reason, it was 
necessary to make some adaptations to Allen’s basic 
relations, adding a couple of new relations and creating 
some variations of those originally proposed. The main 
difference in the context of collaborative activities is that 
it is possible to relax some restrictions imposed by the 
original relations. This introduces a degree of redundancy 
from temporal logic’s point of view, but makes the 
coordination model more understandable and manageable. 
The result of the adaptation of Allen’s relations for the 
context of collaborative activities is the set of 13 temporal 
interdependencies presented below. 

Consider two tasks T1 and T2 that occur, respectively, 
in time intervals [t1i, t1f) and [t2i, t2f).   

T1 equals T2 (t1i = t2i and t1f = t2f): This dependency 
establishes that two tasks must occur simultaneously. It 
is the same relation originally proposed by Allen. 

T1 starts T2: This relation has been divided into two. 
T1 startsA T2 (t1i = t2i and t1f < t2f): Both tasks must 

start together and the first must finish first. It is the 
original relation.  

T1 startsB T2 (t1i = t2i): Variation of the original 
relation, relaxing the obligation that the first task 
must finish first. This variation makes sense 
because in some situations it is required that both 
tasks start together, but it does not matter when they 
will finish.  

T1 finishes T2: Similarly to the previous one, it is possible 
to define two relations based on it. 
T1 finishesA T2 (t1i > t2i and t1f = t2f): Both tasks 

finish together, but the first must start after the 
second. It is the original relation.  

T1 finishesB T2 (t1f = t2f): Similarly to startsB, this 
dependency is obtained from the original, relaxing 
the restriction that T1 must start after T2. This 
dependency is important for situations in which it 
does not matter when tasks have begun, but they 
must finish simultaneously. 

T1 before T2: This relation clearly illustrates the 
difference between Allen’s temporal logic and task 
interdependencies. It can be divided into three distinct 
interdependencies. 
T2 afterA T1 (t1f,n < t2i,n, ∀ n > 0, where n means the 

nth execution of the task): T2 may only be executed 
if T1 has already finished (the restriction occurs in 
the execution of T2; T1 can be freely executed). 
This dependency is the prerequisite relation, which 
is very common in collaborative applications. In 
this case, T2 may be executed only once after each 
execution of T1. 

X starts Y

X finishes Y

X before Y 

X meets Y 

X overlaps Y 

X during Y 

time 

X equals Y 

X
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Y

X 
 
Y
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Y 

X 
 
Y 

X 
 
Y 

Figure 1. Allen’s primitive relations between time intervals X and Y. 



T2 afterB T1 (t1f,1 < t2i,n, ∀ n > 0): Variation of the 
previous dependency, in which T2 may be executed 
several times after a single execution of T1. 

T1 beforeA T2 (t1f < t2i): From a temporal logic point 
of view, this relation is the opposite of after (the 
formal definition is the same). However, they 
generate totally different coordination mechanisms. 
Essentially, the difference is that in this case the 
restriction occurs in the execution of T1, which may 
not be executed anymore if T2 has already started 
its execution. There is no restriction on the 
execution of T2 (T2 does not have to wait for the 
execution of T1, as would happen with the 
dependency T2 afterA T1). 

T1 meets T2 (t1f = t2i): T2 must start immediately after 
the end of T1. It is the original relation. 

T1 overlaps T2: This relation is divided into two types. 
T1 overlapsA T2 (t1i < t2i < t1f < t2f): T1 starts before 

T2 and T2 must start before the end of T1, which 
must finish before T2. It is the original relation.  

T1 overlapsB T2 (t1i < t2i < t1f): Variation of the 
original relation, in which it does not matter which 
task finishes first. The only obligations are that T1 
starts before T2 and T2 starts before the end of T1.  

T1 during T2: This relation is also adapted to generate 
two new interdependencies. 
T1 duringA T2 (t1i,n > t2i,n and t1f,n < t2f,n, ∀ n > 0): T1 

must be totally executed during the execution of T2. 
In this case, a single execution of T1 is allowed 
during an execution of T2. 

T1 duringB T2 (t1i,n > t2i,m and t1f,n < t2f,m, ∀ m > 0 and 
∀ (n ≥ m) ): Variation of the previous dependency, 
in which T1 may be executed more than once 
during a single execution of T2.    

A consequence of the included redundancies is that 
there is not a unique way to represent interdependencies 
among tasks, but these redundancies give a more 
manageable and understandable perspective to the model. 

 
3.1.2. Resource management interdependencies. It has 
been shown that combinations of Allen’s basic relations 
could also represent resource-related interdependencies 
[24]. For example, if two tasks, T1 and T2, may not use 
the same resource simultaneously, it is possible to define 
a “not parallel” dependency as the following statement: 
T1 afterA T2 or T1 meets T2 or T2 afterA T1 or T2 meets 
T1. However, it is important to reinforce the point that the 
context of interest is that of collaborative activities, in 
which the notion of resource is very strong. Therefore, it 
is not reasonable to ignore this notion and treat the 
problem of task interdependencies as a temporal logic 
problem. Moreover, considering resource management 
dependencies independently of temporal ones, a more 

flexible model is created, allowing the designer to work 
with each kind of dependency separately. 

Resource management interdependencies in the 
presented framework are complementary to temporal ones 
and may be used in parallel to them. This kind of 
interdependency deals with the distribution of resources 
among the tasks. An example is when two or more users 
simultaneously want to alter the same part of a document 
in a collaborative authoring system [18]. Three basic 
resource management dependencies are defined. 

Sharing: A limited number of resources must be shared 
among several tasks. It represents a common situation 
that occurs, for example, when several users want to 
edit a document. This dependency includes the notions 
of divisibility and concurrency of the genres 
coordination proposal previously discussed [25].  

Simultaneity: A resource is available only if a certain 
number of tasks request it simultaneously. It 
represents, for instance, a machine that may only be 
used with more than one operator. 

Volatility: Indicates whether, after the use, the resource is 
available again. For example, a printer is a non-volatile 
resource, while a sheet of paper is volatile. 

From the basic interdependencies discussed above, it is 
possible to define composite interdependencies. 

Sharing M + simultaneity N: Represents the situation in 
which up to M groups of N tasks may share a resource. 

Sharing M + volatility N: Situation in which up to M tasks 
may share the resource, which can be used N times. 

Simultaneity M + volatility N: The resource is assigned to 
groups of M tasks simultaneously. This may be done N 
times. 

Sharing M + simultaneity N + volatility Q: Up to M 
groups of N tasks may share a resource. This can be 
done Q times. 

Different than temporal dependencies, resource 
management dependencies are not binary relations. It is 
possible, for example, that more than two tasks share a 
resource. Moreover, each of the above interdependencies 
requires parameters indicating the number of resources to 
be shared, the number of tasks that must request a 
resource simultaneously and/or the number of times a 
resource may be used (volatility). 
 
3.2. Dimensions of interdependencies 
 

There is no claim here that the set of interdependency 
types presented above is complete. Such affirmation could 
only be made if it was possible to express with this model 
all existent collaborative scenarios for all possible 
contexts. Once it is impossible to enumerate all scenarios, 
it must be learned from experience, using the model in 
several collaborative scenarios in order to extend the 



framework. One of the improvements brought about by 
the use of the framework is the inclusion of what has been 
called “dimensions” of interdependencies. 

During the creation of coordination mechanisms 
associated with the described interdependencies, the 
necessity to treat some specific situations that were 
common to all interdependencies was perceived. These 
specific situations have been organized in the framework 
as the referred dimensions, which are additional 
characteristics of the basic interdependencies that 
constitute guidelines for the identification of adequate 
coordination mechanisms. Currently, two dimensions 
have been identified, activeness/passiveness and 
imprecision. 

 
3.2.1. Activeness/passiveness. The same set of 
interdependencies may generate completely different sets 
of coordination mechanisms if they are considered active 
or passive interdependencies. This is especially true for 
temporal interdependencies and simultaneity (resource 
management dependency). 

In the active situation, a task “forces” the execution of 
its interdependent tasks in order to achieve the desired 
behavior. Here, the notion of prerequisite (i.e., a task 
being ready) is not so strong as the order given by 
interdependent tasks. In other words, it is the execution of 
a task that determines the execution of others. An 
example is when a user makes a change in a WYSIWIS 
application, which must be immediately propagated to all 
other users sharing this application. In this case, tasks are 
related by the startsB interdependency, indicating that the 
execution of one enacts the execution of others. A similar 
situation could happen for simultaneity interdependency. 
If a task wants to use a resource, it may start the execution 
of other(s) that also use(s) the same resource in order to 
reach the number of tasks needed to make use of the 
resource. 

It is possible to say that, for the active situation, 
coordination mechanisms are built for guaranteeing that 
tasks will be executed guided by their interdependencies. 
Conversely, for the passive situation, coordination 
mechanisms are built for guaranteeing that 
interdependencies will not be violated, but they do not 
guarantee that all tasks will be executed. 

In the passive situation, a task does not force the 
execution of interdependent tasks. When a task becomes 
ready to execute but there is an interdependent task that 
does not enable the validation of the interdependency, it 
simply waits until the other also gets ready. For example, 
in the startsB interdependency, if the first task is ready, 
but not the other, they will only be executed when the 
second gets ready. Here, the notion of prerequisite in 
relation to the execution of tasks prevails. 

The use of passive coordination mechanisms has 
shown that there could be a number of situations subject 

to deadlocks, especially if the task belongs to complex 
activities. For example, in relation T1 equals T2, the agent 
responsible for the execution of T2 (i.e., who realizes the 
task – a human user, a software agent, etc.) could have an 
alternative path that does not execute T2. In this case, the 
agent responsible for the execution of T1 could be 
blocked, waiting indefinitely for T2. To minimize this 
kind of problem the use of timeouts in the coordination 
mechanisms is proposed [19]. Two kinds of timeouts are 
defined, which may be used in coordination mechanisms 
for all interdependencies previously presented. In the first 
kind (called timeoutA), an alternative task is executed 
after a certain waiting period if the original task has not 
yet been executed. This kind of timeout can be thought as 
an “emergency procedure” to avoid that other tasks be 
blocked. The second kind of timeout (timeoutB) sends 
tasks back to their initial states after a certain waiting 
period instead of executing an alternative task. The return 
to the task initial state makes sense because, before 
starting its execution, a task could have a resource 
assigned to it. Therefore, it is necessary to release this 
resource. TimeoutB is less “aggressive” than timeoutA, in 
the sense that it does not overpass the interdependency, 
but it only works when the agent responsible for the 
execution of the blocked task has an alternative path that 
does not execute that task. 

Another possible consequence of passive coordination 
mechanisms is that the non-execution of an expected task 
may invalidate previous tasks. An example occurs in 
relation T2 afterA T1. T1 may be executed without 
restrictions, but in some cases it expects the execution of 
T2 to be “validated.” A passive coordination mechanism, 
however, does not guarantee that T2 will ever be 
executed. For this reason, after a certain waiting period 
the coordination mechanism should be able to warn the 
agent responsible for executing T1 that its execution was 
invalidated. This situation occurs, for example, in e-
commerce, where the processing of an order must be 
followed by the payment. If the payment is not realized, 
after a certain period the order should be canceled. 
 
3.2.2. Imprecision. The use of the presented coordination 
model has shown that it is sometimes very difficult to 
completely define the interdependencies underlying 
collaborative activities. This happens because these 
relationships already may embed in their essence a not so 
well defined (or fuzzy) semantics. This occurs, for 
instance, when a second task wants to start its execution 
when a first task is “almost finishing.” This scenario is 
not accepted by conventional temporal interdependencies, 
since tasks may only be synchronized by their starting or 
finishing times. Such modeling imprecision is important 
because it offers application designers a degree of 
flexibility through which they may focus on their 



customized version of the interdependency in a manner 
more closely related to subjective human reasoning. 

The fuzzy sets theory offers adequate resources to 
implement coordination mechanisms with such degree of 
imprecision. In particular, a fuzzy Petri net-based 
approach has been used for this purpose [20]. 

Taking into account temporal interdependencies, the 
use of fuzzy coordination mechanisms may enhance the 
degree of parallelism in the execution of tasks. At one 
side, this happens because a task that would have to wait 
for another to get ready may now start its execution when 
the other is not completely ready. At the other side, it is 
possible to define synchronization points before the actual 
end of the tasks (i.e., if a first task is a prerequisite for a 
second one, the latter can be able to start before the actual 
end of the former). To realize these situations, consider a 
hypothetical toy manufacturing system. In order to 
assemble a doll, its legs and arms must be produced at the 
same time by different machines. Therefore, it may be 
said that both tasks have the equals interdependency. 
However, if the production of legs takes a little longer, 
this task could be started a bit before the production of 
arms. Consider now a third task, the assembly of the doll, 
which requires the arms and legs resulting from the 
previous tasks. In the conventional situation, this task 
may start only after the end of the first two tasks. 
However, if there is an initial phase of this task that does 
not require the legs and arms (e.g., the setup of the 
assembly machine) it may be started when those pieces 
are, say, 80% ready. 

Another aspect of fuzzy coordination mechanisms is 
that they significantly reduce the number of deadlock 
situations, because a task not completely ready may 
enable the execution of another. 

For all these reasons, the use of fuzzy coordination 
mechanisms may bring a higher degree of flexibility and 
manageability to CSCW that should be explored.  

 
3.3. Global vision 
  

Figure 2 summarizes the framework presented in this 
section. On a more abstract level, the interdependencies 
among tasks are defined, separated into temporal and 
resource management dependencies. On the middle level, 
additional characteristics (dimensions) of the 
interdependencies are identified for each situation. Then, 
based on the interdependencies and their dimensions, it is 
possible to build (or reuse) adequate coordination 
mechanisms. 

A set of coordination mechanisms based on this 
framework, that uses Petri Nets (PNs) [16] as a modeling 
tool has been presented elsewhere [17], [19]. The next 
section shows a case study that uses some of these 
coordination mechanisms for the implementation of a 
collaborative videogame.   

 
4. Case study 
 

In Collaborative Virtual Environments (CVEs), users 
are simultaneously present and may interact with objects 
and other users. Currently, the development of CVEs has 
been dominated by leisure activities, basically enabling 
navigation through virtual scenarios and communication 
with remote users [8]. This kind of activity is well 
coordinated by the “social protocol,” that is characterized 
by the absence of any coordination mechanism, trusting 
the participants’ abilities to mediate interactions. 
Therefore, there are a growing number of studies focusing 
on interactions in CVEs (e.g., [15]). However, activities 
related to cooperative work also require sophisticated 
coordination mechanisms to be efficiently realized in this 
kind of system. For this reason, CVEs are potential targets 
for the proposed coordination model.    

In this section a case study of a CVE where a user 
interacts with an autonomous agent that represents a 
second user is presented. The example implements a kind 
of videogame based on the second “task” (activity) of 
Heracles, from the Greek mythology. According to the 
legend, Heracles had to kill the Hydra of Lerna, a monster 
with nine heads that are regenerated after being severed. 
In order to achieve his goal, Heracles needs the 
collaboration of his nephew Iolaus, who cauterizes the 
monster’s wounds after Heracles cuts off each head. 
However, the last head  cannot be severed by any weapon. 
The solution is to bury the monster in a deep hole and 
cover it with a huge stone. 

Figure 3 illustrates an abstract PN-like model of the 
videogame (open rectangles indicate interdependent 
tasks). There are two identical nets, one representing the 
user’s and the other representing the agent’s sequence of 
tasks. Each net has two alternative paths, indicating that 

Figure 2. Illustrative representation of the proposed
framework.  



each “actor” (user or agent) may assume either role 
(Heracles or Iolaus). The upper part of the nets represents 
Heracles’ sequence of tasks. He must get the sword, sever 
eight of the Hydra’s heads, throw the beast into the hole 
and cover it with a stone. The lower part of the nets 
represents Iolaus’ sequence of tasks. He must get the 
torch, cauterize the wounds after Heracles has severed the 
heads and dig the hole. 

The definition of which actor will assume which role is 
given by the interdependencies volatility 1 between the 
tasks get_sword and get_torch. Since there are only one 
sword and one torch available, the weapon’s choice 
determines that each actor will assume a different role. 
There is also an equals interdependency between 
get_sword and get_torch of different actors. This 
interdependency requires an active coordination 
mechanism in order to force the agent to choose the other 
weapon when the user chooses his/her weapon. 

The interdependency sharing 1 among the tasks 
get_sword, cut_head and cauterize is the “core” of the 
game. When Heracles gets the sword, he is also assigned 
eight resources that may be thought of as “abstract 
authorizations” to cut Hydra’s heads. After he has severed 

each head, a resource is released, indicating to Iolaus that 
he may cauterize that wound. This dependency requires a 
passive coordination mechanism, because it is not 
necessary to force Iolaus to cauterize each head after it 
has been severed. However, if the head wound is not 
cauterized within a certain period after it has occurred, 
this task returns to its initial state (timeoutB) and also 
reassigns the resource to Heracles, indicating that he must 
once again sever that head (the head is regenerated). 

There is also an interdependency afterA, indicating that 
Heracles may only throw the monster in the hole if Iolaus 
already has dug it. For this dependency, a passive 
coordination mechanism was used.  

The coordination mechanisms for the above 
interdependencies were implemented using PNs. This 
choice was made because, besides being easy to 
understand, PNs offer a strong theoretical support for the 
analysis of an environment’s behavior and supplementary 
simulation techniques. Using the PN-based model, it is 
possible to anticipate and test the behavior of 
collaborative environments before their implementation. 
A detailed description of the implemented coordination 
mechanisms and the modeling and analysis of the game 

Figure 3. Model of Heracles videogame. 



has been presented elsewhere [19]. This example used 
only precise coordination mechanisms, modeled by 
“conventional” or high-level PNs, but imprecise ones 
could be used by means of fuzzy PNs. 

The videogame was implemented using the blaxxun 
Contact [4], a client for multimedia communication that 
provides resources for VRML (Virtual Reality Modeling 
Language) visualization. The interaction with the user 
occurs by means of buttons defined in a Java applet that 
interacts with the VRML world via EAI (External 
Authoring Interface), an interface that enables external 
programs to interact with objects of a VRML scene. By 
clicking on the applet’s buttons, the user orders the 
execution of a task in the virtual world. Therefore, the 
coordination mechanisms act on the interface’s buttons, 
enabling or disabling them if their respective tasks are 
enabled or not. In order to make the game more dynamic, 
the agent’s behavior is aleatory, taking a variable amount 
of time to begin the execution of the tasks imputed to it. 
For example, when the user assumes the role of Heracles, 
the agent (Iolaus) may not cauterize a head severed by 
Heracles before it is regenerated. Figure 4 shows some 
frames of the videogame (the nine heads of Hydra are 
represented by nine monsters). Frames a and b show 
Heracles’ interface, while frame c shows Iolaus’ interface. 

The implementation of the videogame demonstrated 
that, in order to be potentially reusable, coordination 
mechanisms require a standard interface with the system 
responsible for the execution of interdependent tasks. The 
definition of such an interface is one of the next steps of 
this work, as discussed in the following section.      

 
5. Conclusions 
 

This paper introduced a framework for the definition 
of interdependencies among tasks in collaborative 
activities. The framework also defines additional 
characteristics for the interdependencies (the dimensions) 
that show that it is possible to have several coordination 
mechanisms for the same basic task interdependency. The 
interdependencies and their dimensions provide 
guidelines for the identification of the most appropriate 
coordination mechanism in each situation. 

The coordination model suggested by the presented 
framework fits within the second generation because it 
offers a degree of flexibility through separation of tasks 
and interdependencies and is adequate for dealing with 
interoperability aspects. This is so in the sense that the 
interdependencies are generic (i.e., may be applied in a 
wide range of collaborative applications) and the 
implementation of coordination mechanisms may be 
realized by any tool. Although the use of PN-based 
coordination mechanisms has been stressed in the 
example and in the cited references, the framework 
clearly separates interdependencies from their 

coordination mechanisms, enabling the use of different 
implementation tools for the coordination mechanisms. 

The set of interdependencies presented in the 
framework does not claim to be complete, since it would 
be very difficult to establish a framework with all possible 
interdependencies between tasks. However, the 
framework is extensible, in the sense that new 
interdependencies and dimensions may be added to it, 
enlarging the set of situations it encompasses. 

A next step of this work is the implementation of 
software components to implement the coordination 
mechanisms. The component model will standardize an 
event-based interaction between tasks and associated 
coordination mechanisms in an implementation 
independent manner. The implemented PN-based 

a

b

c

Figure 4. Frames of the Heracles videogame.



mechanisms [19] may be one of the possible kernels of 
these components. 

The proposed framework will also constitute the basis 
of an educational tool that plans to use CVEs as 
experimental learning mechanisms. 

Finally, it is important to reinforce that the 
coordination of interdependent tasks in collaborative 
activities is a problem that should be addressed to ensure 
the effectiveness of the collaboration. The separation 
between tasks and interdependencies, and a further 
association between interdependencies and adequate 
coordination mechanisms are important goals in this 
direction. The framework presented here is a contribution 
towards these goals.       
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