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Abstract. This paper presents Relations Graph – GR a methodology to auto-
mate the generation of coordination mechanisms in computational environ-
ments. GR explores encapsulation and compacting capabilities of Colored Petri 
Nets to generate temporal coordination mechanisms, although the use of the GR 
methodology does not depend on the knowledge of PN formalism. GR supports 
alternative temporal behaviors and alternative activities changing the temporal 
relations among activities in processing time. An algorithm to identify and 
model coordination mechanisms linear to the number of activities and its appli-
cation to an illustrative collaborative authoring environment will be presented. 
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1   Introduction 

Activities represent well-defined fragments within the general functioning of a proc-
ess and involve in our context interdependency relations. A collaborative system may 
be viewed as a group of processes that are defined by a group of logically related ac-
tivities. The execution of activities in collaborative environments may present con-
flicting requirements and interests that must be anticipated and solved in order to 
reach the desired goals. The effort aiming to foresee and solve the conflicts derived 
from dependencies among activities is defined as coordination [8] and it establishes 
the mechanisms that guarantee the (temporal, spatial, causal, etc.) behaviors defined 
by these interdependencies. 

Our approach deals with dependencies considering both activities that are directly 
related and those indirectly related, facilitating the work of designers, which  
otherwise should identify and verify all the relationships – direct and indirect – for 
consistency. 

Providing a solution for this issue is the motivation for this new methodology that 
enables the analytical and graphical representation of interdependency relations 
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among activities in a computational environment. This methodology then generates 
coordination mechanisms that also model the global behavior, i.e., mechanisms that 
ensure the execution of all the interdependencies defined for the group of activities. 

This way, the GR (Relation Graph) methodology considers the global and the local 
aspects of a coordination problem. The global approach is responsible for coordinat-
ing the necessary conditions to authorize the beginning of an activity. The local  
approach coordinates the execution of two authorized activities, complying with the 
kind of relation defined for them. Furthermore, this methodology does not restrict the 
quantity of relations in which an activity may be involved.  

The coordination mechanisms are generated by an algorithm of complexity O(n), n 
being the number of activities. This algorithm automates the identification and mod-
eling of temporal restrictions among activities resulting in a coordination mechanism 
with the following characteristics: 

1. Adherence to restrictions: the execution of an activity never violates any temporal 
restriction. 

2. Behavior selection: it is possible to select different behaviors (activity interdepend-
encies) for the same subset of activities. 

3. Activity selection: it is possible to define whether a subset of activities will be  
executed or not. 

The GR methodology does not gear a specific application. Its goal is to obtain  
coordination mechanisms considering the concepts of activity and interdependency.  

Section 2 presents a discussion about coordination in computational environments. 
Section 3 introduces the GR methodology. Section 4 presents a case study. Conclu-
sions are presented in Section 5. 

2   Overview 

The issue of activity coordination in collaborative environments has been the subject 
of varied scientific research [4], [6], [8], [10], [13] and has attracted the interest of 
experts in search for tools that help to coordinate computational environments. 

This section briefly presents situations to illustrate the need for coordination mod-
els to couple with local and global aspects of computational environments. 

A set of coordination mechanisms to manage temporal dependencies and resource 
dependencies among the participants of a collaborative environment was presented in 
[12]. For each participant, a Petri Net is designed, modeling the participant’s activities 
and the dependencies among them. Then, possible dependencies among different par-
ticipants are defined, concluding the first abstraction level, called by the author work-
flow level. Once the workflow level has been designed, the system’s model is obtained 
automatically; in a second abstraction level, called coordination level, the activities, 
represented by transitions, are expanded according to a predefined model. The coordi-
nation mechanisms that correspond to the dependencies are added (they are also  
predefined), and the model of the collaborative system is obtained. 

The separation between activities and dependencies, and the use of predefined  
coordination mechanisms provide the advantage of automatically generating the  
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system’s model based on the workflow level. The designer can focus only on specify-
ing the system at the workflow level. The coordination mechanisms presented by [12] 
to temporal dependencies allow relating the activities two-by-two, thus ensuring the 
observance of temporal restrictions derived from this dependency. A global analysis 
and a verification of temporal inconsistencies (temporal behaviors that cannot be exe-
cuted) must be made by the system designer.  

In workflow applications, the cooperation among the different actors (human, 
computer, organization, etc.) in charge of executing the activities that define the proc-
esses must be promoted. A powerful coordination component is required by the  
dependency relation the activities usually present [1]. Dealing with possible conflicts 
among activities becomes more complex when the workflow involves multiple or-
ganizations [12]. An activity-based model using high-level Petri Nets (colored,  
temporized and hierarchical) to model both the workflow and the workflow’s coordi-
nation system is proposed in [15]. Some of the difficulties found in the coordination 
and development of multi-organizational workflows are exposed in [16], which  
introduced a tool based on analysis techniques for Petri Nets to inspect multi-
organizational workflows. The processes are specified in an XML-based language 
that is subsequently transformed into a specific Petri Net to verify if the workflow is 
correct.  

In a multi-agent environment, the execution of tasks might affect or be affected by 
other tasks, which characterizes a dependency relationship among them. If the tasks 
refer to different agents, then the relationships among them represent a nature here 
called non-local dependency. This configuration restricts the agent’s ability to select 
adequate actions, because the agent is not aware of restrictions derived from non-local 
dependencies [3], which motivates the use of coordination mechanisms for this pur-
pose. Methodologies based on high-level Petri Nets, particularly colored ones, used  
in the problem of coordinating the behaviors of agents, have been presented by [9] 
and [17]. 

The dependency class (causal, resource, simultaneity, prerequisite, producer-
consumer, etc.) among activities varies according to the context of the problem to be 
modeled, but a common denominator among these classes seems to be the time factor. 
Thus, temporal models are essential to express dependencies among activities in order 
to support applications in different research fields [18], [19]. 

The following section introduces a new methodology to model coordination me-
chanisms. The concept of coordination will be further developed, because apart from 
(identification/association) specification, a linear-cost algorithm will be introduced for 
the automatic generation of coordination mechanisms based on the specification of 
temporal behaviors.  

3   Methodology 

The GR methodology consists in generating coordination mechanisms based on the 
temporal behaviors specified for the activities executed in the environment. These 
behaviors correspond to temporal dependency relations among the activities.  

Three abstraction levels are defined (Fig. 1a). The specification level establishes a 
temporal order among the activities through an expression. At the coordination level, 
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the coordination mechanism is built after modeling all dependencies among the activi-
ties described in the previous level. At the execution level, a program called coordina-
tor will implement the coordination mechanism obtained in the coordination level. 
This coordinator interacts with the set of activities, obeying the specification made at 
the specification level.  

         

                          (a)                                                     (b) 

Fig. 1. (a) Abstraction levels. (b) Graph of temporal behaviors of an application 

At the more abstract level temporal behaviors are specified by an activity-based 
model; it has as essential element non-null intervals. These intervals contain the ac-
tivities executed in the system, which on their turn may establish relationships among 
themselves through temporal primitives [7], [19]. The set of temporal primitives in-
troduced by [2] was adopted as the possible temporal relationships among activities. 

Table 1 presents seven temporal primitives relations between two activities a and 
b, occurring in time intervals x = [ai, af) and y = [bi, bf), with ai and af, bi and bf being 
the beginning and the end of a and b, respectively, and the relations according to the 
temporal primitives of the set D = {e, s, d, f, o, m, b},  

Table 1. Temporal primitive relations between activities a and b 

e(a, b): equal ↔ ai = bi and af = bf  - a is executed in the same time interval as b. 
s(a, b): start ↔ ai = bi and af < bf - a and b begin together, but a ends before b. 
d(a, b): during ↔ ai > bi and af < bf - a begins after b and ends before b. 
f(a, b): finish ↔ ai > bi and af = bf - a begins after b, but a and b end together. 
o(a, b): overlap ↔ ai < bi and bi < af and af < bf - a begins before b, which begins be-

fore a is over. a ends before b. 
m(a, b): meet ↔ af = bi - b is executed immediately after the end of a. 
b(a, b): before ↔ af < bi - a must be executed before b. 

In the GR model, temporal behaviors are represented by a labeled oriented graph 
whose vertices correspond to system activities and edges correspond to the depend-
ency relations among them. Fig. 1b illustrates a hypothetical example with 7 activi-
ties. The direction of the edges indicates the order in which the activities are related, 
and their labels state the type of dependency among them. For example, the label of 
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edge a2,a4 – {b} – specifies that activity a2 must be executed before activity a4. The 
label in edge a4,a5 specifies alternative dependency relations, which means that any 
one of the alternatives may take place each time these activities are activated by the 
application. The selection of one relation instead of the other is made in execution 
time, according to environment requirements. 

Still at specification level, alternative activities can be anticipated; for instance, the 
label of activity a4 indicates that one of the activities a6 or a7 must be selected to be 
related with a4. This selection occurs each time activity a4 is activated through events 
fired by the application, and any of the activities in its label can be selected. 

The specification of a system S is stated by an expression E(A,R,F), an oriented 
and labeled1 graph, with an acyclic subjacent2 graph, where: 

• A is a set of vertices representing the activities,  
• R ⊂ A × A is a set of edges representing the relations,  
• F is a function F : R →℘(D) where ℘(D) is the set of D parts, called edge 

(relation) labeling function – D={e, s, d, f, o, m, b}, and 
• G is a function G : A →℘(A) where ℘(A) is the set of A parts, called vertex 

(activity) labeling function, which satisfies the following properties: 

1. If b ∈ G(a), then the edge defined by a and b belongs to R; 
2. If b ∈ G(a), then a ∉ G(b); 
3. If b ∈ G(a), then ∃ c ∈G(a) | c ≠ b. 

Applying the above definitions to the example in Fig. 1b, the following qualified 
expression (E, G)3 is obtained: 

A={a1, a2, a3, a4, a5, a6, a7}; 
R={(a1,a2), (a2,a3), (a2,a4), (a4,a6), (a7,a4), (a4,a5)}; 

The edge labeling function F is given by F(a1,a2)={e}, F(a2,a3)={o}, F(a2,a4)={b}, 
F(a4,a6)={s}, F(a7,a4)={f}, and F(a4,a5)={d, o}, and the vertex labeling function G is 
given by: 

G(a4)={a6,a7} and G(a1)= G(a2)= G(a3)= G(a5)= G(a6)= G(a7)=∅ 

Once the temporal ordering among the activities is known, construction of the co-
ordination mechanism begins. This process corresponds to modeling the temporal 
constraints derived from the dependency relations among the activities. 

3.1   Abstract Levels and Coordination Mechanisms 

Fig. 2a shows the diagram – a colored Petri Net – of an activity a at coordination 
level.  

                                                           
1  A graph is called node-(or edge-) labeled when to each vertex (or edge) there is an associated 

set, called label [14]. In this text, we consider node- and edge-labeled graphs, which we call 
simply labeled graphs. 

2 The subjacent graph is the one obtained from the oriented graph by removing the directions of 
the edges [14]. 

3 A qualified expression is a pair (E,G) where E is an expression E(A,R,F) and G is the function 
defined above. 



132 A.A. Cruz et al. 

       

                                              (a)                                                                        (b) 

Fig. 2. (a) Diagram of an activity at coordination level. (b) Colored Petri Net of r(a,b). 

The beginning of activity a is authorized by the event generated by firing transition 
tIa; firing transition tFa generates the end of execution of activity a. The MCL - Local 
Coordination Mechanism - commands the beginning of a and waits for the end of a’s 
execution. The ordered triple <x , y , z> represents the colored token so that (y,z) ∈ R 
and x ∈ F(y,z), where R is the set of edges of an expression and F is the edge labeling 
function.  

The diagram in Fig. 2b details the MCL for the relation between activities a and b; 
activity a is related to activity b through relation r ∈ D – r(a,b). Firing transition t1 
(t3) corresponds to the event that authorizes the beginning of execution of activity a 
(b), while firing transition t2 (t4) corresponds to the event that authorizes the end of  
 

  

(a) MC of relation before: b(a, b) (b) MC of relation during: d(a, b) 

Fig. 3. Examples of basic MCs 
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execution of activity a (b). The time spent in the execution of an activity is repre-
sented using the concept of transition with token reservation [11]. In this type of tran-
sition, the firing takes place in two moments. Firstly the tokens are removed from the 
input place when the transition is active; secondly the tokens are sent to the output 
place after a given time span. 

Fig. 3 illustrates the relations before(a,b), or b(a,b), and during(a,b), or d(a,b),  
derived from Fig. 2b. 

The GR methodology also allows the specification of alternative temporal behav-
iors and the anticipation of alternative activities. 

Fig. 4 shows the case in which alternative temporal relations must be anticipated, 
at specification level, between the activity pairs that define such behaviors. The selec-
tion of one behavior instead of another is made in execution time, according to envi-
ronment requirements. This mechanism, called basic MC – Coordination Mechanism 
– models all relations anticipated for activities a and b and allows only one of them to 
be selected at a time. 

 

Fig. 4. Basic MC for alternative behaviors – relations 

Fig. 5 presents the basic mechanism that allows the anticipation of alternative ac-
tivities in the specification of a temporal behavior. The alternative activities that take 
part in a given behavior are selected at execution time.  This basic MC allows the 
selection of any one of the activities to be related with activity a. Such selection is 
made according to the token color at places Ia and Ibi (i={1, 2, ... m}). 

Following, the construction of coordination mechanisms of an expression with 
more than one dependency relation will be derived from the basics MCs. The con-
struction procedure is based on the connection of pairs of coordination mechanisms 
(MC1, MC2) with a common activity, i.e. the same activity modeled both in MC1 and 
in MC2. Figs. 6 (a) and (b) illustrate the mechanisms corresponding to before and 
during relations, respectively, b being the common activity. 
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Fig. 5. Basic MC for alternative behaviors – activities 

Transitions t2 and t5 (t4 and t7) in Figs. 6 (a) and 6 (b), respectively, are associated 
to the beginning (end) of b’s execution. Input arcs to these transitions correspond to 
the temporal restrictions involving b; firing t2 (t4) in MC1 and t5 (t7) in MC2 indicates 
that all temporal restrictions involving b were satisfied, resulting in the events that 
authorize the beginning (end) of their execution in the respective mechanisms. To 
keep the synchronization condition regarding the beginning of b’s execution, in the 
mechanism resulting from the connection between MC1 and MC2 this event must be 
generated by a single transition. This synchronization condition can be satisfied by 
merging transitions t2 and t5 (t4 and t7), generating a single transition that receives all 
temporal restrictions involving the beginning (end) of b. Fig. 6 (c) illustrates the MC 
resulting from the connection operation between MC1 and MC2. 

   

(a) (b) (c) 

Fig. 6. (a) MC1: relation before b(a,b); (b) MC2: relation during d(b,c); (c) MC resulting from 
the connection operation between MC1 and MC2 

The merging of two transitions t’ and t” is executed by transferring to one of them 
all the input and output arcs of the other. 

The extension of basic MCs for alternative behaviors consists in inserting a  
feature, here called connection feature. Fig. 7 presents the basic MC for alternative 
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dependency relations with the connection feature for activity a. This extension, identi-
fied by traced arcs, splits the transitions (see definition below) t2, t6, 

… , tq-3 from Fig. 
5 into the transitions t2’ and t2”, t6’ and t6”, … ,  tq-3’ and tq-3” in Fig. 7, respectively, 
and adds places P4 and P5 and transition tN. The temporal restrictions derived from 
relations r1, r2, 

…, rm that must be imposed on activity a correspond to the input arcs 
of transitions t2’, t6’, 

… , tq-3’ (Fig. 7). These restrictions are not represented here be-
cause relations r1, r2 

…
 , rm are generic.  

Splitting transition t into transitions t’ and t” consists in attributing all input arcs of 
t to t’ and all output arcs of t to t”. 

 

Fig. 7. Basic MC with connection features for alternative relations 

The extension of the coordination mechanism from one dependency to two or more 
dependencies can be reached performing connections between MCs as follows. 

Considering Fig. 7, to perform the connection operation between the basic MC for 
alternative dependency relations and another MC, a merge must be made between 
transition tN and a transition from the other MC that generates the authorization event 
to begin activity a, as well as a merge between transition t10 and a transition from the 
other MC that generates the authorization event to end activity a, considering a as the 
common activity to these mechanisms. 

The extension of basic MCs for alternative activities is completely analogous to 
that of basic MCs for alternative relations. Fig. 8 presents this basic MC with the con-
nection feature to activity a. The temporal restrictions derived from relations r1, r2, 

… , 
rm that must be imposed on activity a correspond to the input arcs of transitions t2’, t7’ 
… , tq-3’. Firing one of the transitions indicates that the temporal restrictions derived 
from one of the alternative relations was fulfilled, which allows transition t2” whose 
firing generates the authorization event to begin execution of activity a.  
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Fig. 8. Basic MC with connection features for alternative behaviors – activities 

3.2   Algorithm for the Coordination Mechanism 

Now that the basic mechanisms have been introduced, we can construct the coordina-
tion mechanism of an expression through connection operations among them. A pos-
sible approach is to build the mechanisms corresponding to each edge and each vertex 
of the relation graph according to their labels and then make the connections accord-
ing to the graph’s adjacencies. The steps of the algorithm are listed below. 

Given an expression ε4 
Obtain Partition of A: P(A) = {I0, I1, …, Iu} 
For k ← 1 step 1 until (number of elements of P(A)) do 
  Step 1. Select set Ik of activities ai; 
  Step 2. Identify and model the list of direct re-
strictions for each ai-star, ai ∈ Ik; 
  Step 3. Connect the MC of ai-stars, ai ∈ Ik with the 
proper MC of aj-stars, aj ∈ Ik-1; 
End for 
If center Iu from ε has two activities ap and aq 
  then connect MCap with MCaq; 
End algorithm 

In step 1 of the algorithm, the selection of set Ik of the current iteration is made 
based on the definition of sub expressions of ε and the partition of set A. Although the 
identification process can be initiated by any set of activities, it is interesting to define 
an activity selection order. This provides advantages to the identification process of 
global conditions, because the fact that an activity ai is a leaf (an activity with only 

                                                           
4 ε denotes the expressions E(A, R, F) and (E, G). 
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one dependency relation ∂(ai)
5 = 1) or is internal (an activity with more than one de-

pendency relation ∂(ai) > 1) can be known beforehand and used to simplify the mod-
eling process. 

To determine this order, given an expression ε, a partition of activity set A is ob-
tained, denoted by P(A). The subsets that determine P(A) are established through a 
sequence of expressions {εi}, i = 0,1,2,...,u, obtained from the original expression ε, 
according to the  formation rule in Table 2.  

Table 2. Formation Rule 

εi  Formation Rule 

ε0 is the original expression ε; 
ε1 Expression derived from ε0, eliminating the activities with degree 1 from ε0; 
ε2 Expression derived from ε1, eliminating the activities with degree 1 from ε1; 

M                                              M  

εu 
Expression derived from εu-1, eliminating the activities with degree 1 from εu-1. 

Sequence {εi} has maximum size u+1, smaller than or equal to half the number of 
activities n involved in an expression ε, i.e. u ≤ n/2 – 1. The largest value of u occurs 
in linear expressions.  

A partition P of activity set A of an expression ε is given by P(A) = {I0, I1,...,Iu}, 
where u ≤ n/2 – 1 , n being the number of activities and 

1})(a|ε{aI

1})(a|ε{aI

1})(a|ε{aI

1})(a|ε{aI

iuiu

i2i2

i1i1

i0i0

=∂∈=

=∂∈=
=∂∈=
=∂∈=

M

 

The purpose of sequence {εi} is to formalize the partition criterion for A. In fact, it 
is neither necessary nor convenient to effectively create {εi}. Computing a list con-
taining the degree of all activities is sufficient. Thus, I0 is determined by selecting the 
ai activities in the list such that ∂(ai) = 1. To determine I1, the list must be updated. 
For each activity ai from I0 : i) remove ai from the list; ii) subtract one unit from the 
degree of activity aj related to ai. Then I1 is determined by all aj activities, j ≠ i such 
that ∂(aj) = 1. This procedure ends with a list that has only one or two activities, i.e. 
the center of the expression, which corresponds to set Iu. 

Once the partition criterion has been established, without losing generality an out-
side-in selection order is determined, i.e. from external activities (set I1) towards in-
ternal ones (I2 , I3 ,..., Iu). An advantage of this selection order is to begin by I1 rather 

                                                           
5 ∂(ai) denotes activity degree, i.e., the number of activities aj (j ≠ i) related to ai. 
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than by I0. I0’s temporal restrictions can be determined when I1’s activities are  
processed. 

Step 2 of the algorithm determines for each ai the list of direct restrictions. This  
requires knowing the activity set aj related to it. 

An ai-star is a sub-expression determined by ai, by the activity set aj related to ai 
and by its respective relations. 

Analyzing an ai-star means determining the set of direct restrictions activity ai 
must satisfy, called ai’s direct restriction list. To do this, consider A and B as two sets 
of temporal restrictions and the following conventions: 

1. A .and. B is the set formed by all temporal restrictions of A and B, read as A con-
junction B; 

2. A .or. B is the set formed by all temporal restrictions of exclusively A or B, read as 
A disjunction B. 

The direct restrictions of the ai-star are the temporal restrictions derived from all 
relations involving ai and formed by the conjunction of C1, C2 and C3, where: 

C1 is the conjunction of the restriction sets derived from the relations between ai 
and the aj activities that satisfy the following properties: 

1. aj ∉ G(ai); 
2. the label of the edge defined by ai and aj is unitary (has one primitive). 

C2 is the disjunction of the restriction sets derived from the relations between ai 
and the aj activities such that: 

1. aj ∈ G(ai). 

C3 is the conjunction of Cij’s where each Cij is the disjunction of the restriction sets 
derived from the relations of the edge’s label, defined by ai and aj provided that aj 
satisfies the following properties: 

1. aj ∉G(ai); 
2. the label of the edge defined by ai and aj is not unitary. 

Illustrating the algorithm using the example in Fig. 1b, we have: 

1. Considering the expression presented in Fig. 1b: a1, a3, a5, a6, a7 are degree 1  
activities.  

2. Following the outside-in order, first the basic MCs must be built for the labels of 
edges (a1, a2) and (a2, a3), and the connection operation between these two basic 
MCs must be executed.  

3. Then the basic MC for edge (a4, a5) and the basic MC for the label of activity a4 are 
built, and the connection operation between these two basic MCs is executed.  

4. To determine the next basic MCs to be built, degree 1 activities are removed from 
the graph; the resulting graph will display new degree 1 activities.  

5. Basic MCs must be built for these edges involving degree 1 activities, and connec-
tion operations must be executed according to the graph’s adjacencies.  

In the next section the GR methodology will be explored in a case study. 
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4   Case Study 

In this section, we present a case approaching the use of the methodology presented in 
the previous section. The case study illustrates a situation involving a collaborative 
authoring environment. 

The authoring tool allows an author to write and/or to review a paper’s section. In 
this example, there are three authors (A, B and C). Each author writes one section. 
The section 2 is reviewed by author A and the section 3 is reviewed by either author B 
or author A. The temporal dependencies between the activities are showed in Fig. 9.  

 

Fig. 9. Relation graph of the case study 

The relation graph showed in Fig. 9 is formally specified in the expression E(A, R, 
F) and in functions G, provided as follows. 

 
A = {a1, a2, a3, a4, a5, a6} 
R = {(a1, a2), (a2, a4), (a2, a3), (a3, a5), (a3, a6)} 
F(a1, a2) = {b}, F(a2, a4) = {b}, F(a2, a3) = {d}, F(a3, a5) = {b}, F(a3, a6) = {b} 
G(a3) = {a5, a6}, others G(ai) =  ∅. 
 
Now we construct the coordination mechanism using the algorithm described in 

section 3. The partition P of activity set A of the expression E is given by P(A) = {I0, 
I1}, where I0 = {a1, a4, a5, a6} and I1 = {a2, a3}. According to the algorithm, we begin 
the construction of the coordination mechanism selecting the activities of set I1. 

 

Fig. 10. Connecting MC of relations b(a1, a2) and b(a2, a4) 
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Fig. 10 illustrates the connection of MC of relations (a1, a2) and (a2, a4), which 
share a common activity (a2), through merging the transitions tIa2 and tFa2. 

The same operation is done with the a3 activity’s relations. Finally, we connect the 
MC of relation (a2, a3) with the MC of activities a2 and a3. Fig. 11 presents the final 
coordination mechanism. 

Fig. 11. Final Coordination Mechanism 

The selection of relation (a3, a5) or (a3, a6) is done putting the appropriate token in 
the place P5. If the token is <b, a3, a5> then the relation (a3, a5) will be selected. On the 
other hand, if the token is <b, a3, a6> then the relation (a3, a6) will be selected. 

5   Conclusion   

This work has presented a methodology to describe and coordinate interdependencies 
among a set of activities performed in a computer environment. An algorithm was 
also presented to automate the generation of a Coordination Mechanism (MC) free 
from temporal inconsistencies, with a time linear to the number of activities. 

The GR methodology allows automating the generation process of coordination 
mechanisms by means of modeling tools and of the algorithm to identify and model 
global conditions. Apart from reducing designers’ work, automation eliminates errors 
in the determination of such conditions and standardizes the process of modeling 
global conditions. 

The coordination policy adopted in GR explores the advantages of both global and 
local coordination. At the local level, the MCL explores the concept of modulariza-
tion, which allows modifying local mechanisms without interfering with the global 
MC. This coordination policy enhances the use of the methodology presented herein 
in collaborative environments, because generating coordination mechanisms that op-
erate at the global level and at the local level simultaneously is one of the difficulties 
found in the coordination of collaborative activities [5]. 
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Inserting one coordination level allowed a distinction between task coordination 
and how this task is performed. The GR methodology does not determine how the 
task is carried out, but what must be done and when. Another advantage of the ab-
straction-level approach is to make the use of the GR methodology independent from 
previous knowledge of the formalism used to model the MCs (in this case, Petri 
Nets). 
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