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Abstract The paper presents a simple and automatic

procedure to estimate the intrinsic and extrinsic parameters

of a camera, based on the image of a standard calibration

box. Image processing techniques are used to determine the

relevant image points to be used in the calibration proce-

dure. A non-recursive solution scheme is proposed to

estimate the intrinsic and extrinsic camera parameters.

Simulated and real applications are presented to illustrate

the use and performance of the proposed technique.

Keywords Camera calibration � Camera model � Vision

geometry

1 Introduction

Calibration is a necessary operation in photogrammetric

applications. It consists in finding intrinsic and extrinsic

parameters of a pinhole camera model. The extrinsic

parameters are used in the conversion of 2-D projected

images into real 3-D world objects. Extrinsic parameters are

related to the movement of a camera, from the image of a

regular object of known dimensions, with respect to a ref-

erence frame. Such parameters can also be used to determine

the dimension and position of objects in space, with respect

to an arbitrary referential, from their simultaneous images in

a set of two or more cameras. Dimensional information of

objects in space from their camera projections can only be

obtained after the intrinsic parameters of the camera have

been determined. Intrinsic parameters consist of the cam-

era’s focal length, expressed in horizontal and vertical pixel

dimensions, skew parameter of the camera’s sensing element

and the pixel coordinates of the intersection of the camera’s

optical axis with the image plane. Some popular camera

calibration techniques, such as [1, 2], require several images

of planar calibration grids, and user actions to indicate spe-

cial points in the displayed images. The constitutive alge-

braic equations of such applications require the use of

iterative optimization solutions, such as the maximum like-

lihood scheme, to find homographies between the calibration

grid points and its images. The present work proposes a

calibration procedure based on the processing of edge points

of the single image of an ordinary rectangular box of known

dimensions, found in the context of any image processing

laboratory. The method uses the concepts of perspective

projection and vanishing lines, and is a simple and robust tool

to estimate the intrinsic and extrinsic parameters of pinhole

cameras, increasing the comprehension and access of

researches to the field of 3-D image processing. The direct

solution of the non-homographic algebraic problem that

leads to the estimates of the intrinsic parameters, proposed in

this paper, is a novel alternative solution to the camera cal-

ibration problem.

The development of camera calibration methods has

grown steadily since the publication of the first works in

the late 1970’s by El-Aziz and H.M. Abed [3]. It finds
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applications in mobile robot navigation, machine vision,

biomedical vision, visual surveillance, etc. Camera cali-

bration strategies can be classified as ‘‘active’’ and ‘‘pas-

sive’’, according to Li and Zhenzhong [4]. In the first

strategy, some sort of marking or pattern is projected onto

the scene to allow a structured identification of image

points that will be used in the identification scheme. The

former camera calibration strategy processes the simple

image of known geometrical objects or patterns.

Several approaches which make use of vanishing points

and lines have been proposed, using the projective geom-

etry of points in a plane. Reference [5] is an example of

such a technique which determines camera calibration

parameters using homography between points of a line in

space and the projections in a rectification plane. In ref-

erence [6], the intrinsic and extrinsic camera parameters

are calculated from the image of a calibration box, with the

aid of two light points projected onto the box. Lv, Zhao and

Nevatia [7] present a methodology to find the intrinsic and

extrinsic parameters of a camera from a vertical head-to-

feet line segment in the image of a human figure. In this

work, a large number of different images is needed to

minimize the statistical error. Wenhuan, Zhanwei and Tao

[8] present a linear camera calibration procedure, using

homography between calibration template with a special

rectangular planar shape and its projected image. Nedev-

schi et al. [9] develop a real-time calibration system for a

navigation car system which is able to find the extrinsic

parameters from longitudinal lane marks. The work by

Wilczkowiak, Boyer and Sturm [10] displays a non-

homographic calibration technique using parallelepipeds,

which has, in part, the same objective of the present work.

The paper by Wilczkowiak however does not propose a

strategy to process the projected images, nor does it dem-

onstrate the process used to obtain an estimate solution for

the camera’s projection matrix. The present paper deals

with detailed information on both image processing and

analytical solution of the camera calibration problem.

The paper is organized as follows: Sect. 2 presents the

image processing techniques to find six contour vertices of

the image of the box and uses vanishing lines to find the

image location of the two internal vertices. Geometric and

algebraic properties of projected points are reviewed in

Sect. 3. An analytical solution is proposed in Sect. 4, to

assemble and solve the problem of estimation of the

camera’s projection matrix. The section also shows the

calculation of intrinsic and extrinsic parameters from the

camera’s projection matrix. Section 5 shows applications

of the proposed technique. Intrinsic and extrinsic parame-

ters of a virtual camera are extracted, using the proposed

technique. The calibration of a web cam, using a simple

archive box, is also presented to illustrate the practical

usage of the method.

2 Processing the image of a calibration box

The calibration process starts with the image of a solid

calibration box of known dimensions, under sufficient light

conditions and contrast that enable the segmentation of its

visible edges. The image of the box should also be detached

from its background, either through a subtraction of two

environment images, with and without the box, or by means

of a controlled dark background. Convenient techniques to

perform edge segmentation of the box image are the algo-

rithms of Canny [11] and Sobel and Prewitt [12].

The segmentation process is able to highlight the visible

edges and vertices of the box image. Image processing

analysis and linear regression interpolations of the high-

lighted image points determine algebraic expressions for

all visible edge lines. Visible edges and vertices are located

in the external contour, as well as in the interior of the

projected box. The extreme right, left, up and down edge

points describe four external vertices of the perspective

view of the box, represented in Fig. 1, by v1; v2; v3; and; v4:

From such extreme vertices and external contour edges, the

algorithm is able to determine the position of the two

remaining external vertices that are visible in the image.

Once the position of the six external vertices is determined,

the algorithm estimates via perspective projection proper-

ties, the location of the two internal vertices, as well as

their visibility condition. Details of the procedure for the

determination of vertices of the box image are explained

below.

The pixel coordinates of a point of the edge segmented

image is given by a generic vector defined as

E ¼
i

j

� �
ji and j are pixel coordinates of an edge

�

point of the image

)
ð1Þ

Fig. 1 Segmentation and calculated edges and vertices of the box’s

contour
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Four boundary vertices are located among the edge

points, according to the expressions,

v1 ¼
i1

j1

� �
2 Ejj1 ¼ max jð Þ

� �
;

v2 ¼
i2

j2

� �
2 Eji2 ¼ max ið Þ

� �
;

v3 ¼
i3

j3

� �
2 Ejj3 ¼ minðjÞ

� �
and

v4 ¼
i4

j4

� �
2 Eji4 ¼ minðiÞ

� �
ð2Þ

Vectors containing the coefficients of lines joining pairs

of boundary vertices are calculated as,

L1 ¼
a1

b1

� �
; L2 ¼

a2

b2

� �
;L3 ¼

a3

b3

� �
and L4 ¼

a4

b4

� �
ð3Þ

where a1; a2; . . .; a4 and b1; b2; . . .; b4 are respectively the

angular and linear coefficients of the lines passing

through the pair of points ðv1; v2Þ, ðv2; v3Þ v3; v4ð Þ and

v4; v1ð Þ.
Four sets of external boundary edge points between

vertices v1 to v4 are found and defined as,

e1 ¼
(

i

j

� �
2 Eji is max. for any given j; with i1� i� i2

and j2� j� j1

)
;

e2 ¼
(

i

j

� �
2 Eji is max. for any given j; with i3� i� i2

and j3� j� j2

)
;

e3 ¼
(

i

j

� �
2 Eji is min. for any given j; with i4� i� i3

and j3� j� j4

)
;

and

e4 ¼
(

i

j

� �
2 Eji is min. for any given j;with i4� i� i1

and j4� j� j1

)
ð4Þ

Orthogonal distance vectors dk, between the external

edge points (e1 e2 e3 and e4) and the vertices joining lines

(L1, L2, L3, L4), are calculated as

d1 ¼
a1 a1i�jþb1ð Þ

a2
1
þ1

j�a1i�b1

a2
1
þ1

2
4

3
5
������

i
j

� �
2 e1

8<
:

9=
;;

d2 ¼
a2 a2i�jþb2ð Þ

a2
1
þ1

j�a2i�b2

a2
2
þ1

2
4

3
5
������

i
j

� �
2 e2

8<
:

9=
;;

d3 ¼
a3 a3i�jþb3ð Þ

a2
1
þ1

j�a3i�b3

a2
3
þ1

2
4

3
5
������

i
j

� �
2 e3

8<
:

9=
;and

d4 ¼
a4 a4i�jþb4ð Þ

a2
4
þ1

j�a4i�b4

a2
4
þ1

2
4

3
5
������

i
j

� �
2 e4

8<
:

9=
;

ð5Þ

Such distance vectors are used to verify the existence of

additional vertices between the pairs of vertices listed

above, based on the criteria of a minimum average

distance. The existence of an additional vertex between

any of the pairs of extreme contour vertices will yield a

high mean value for the corresponding orthogonal distance

between the vertices joining line and the external edge

points. If no vertices are found between pairs of extreme

contour vertices, then the external edge points will coincide

with the vertices joining line, yielding a low mean value for

the edge-line distances.

Orthogonal linear regressions are made to fit lines to all

edge segment points between each pair of identified

external vertices. A refined estimation for the box’s

external vertices is made by calculating the crossings of

such regression lines.

Figure 1 shows a typical box image with the calculated

edge points and identified entities. Edge points are shown

as black dots. External edge segment sets are indicated in

the figure as e1, e2, e3 and e4. The four boundary vertices

are identified as v1, v2, v3, and v4. Lines between two

adjacent boundary vertices are represented by L1, L2, L3

and L4, and are generally calculated through a linear

regression involving the external edge segments. Whenever

the edge segments do not form a single straight line, this

indicates the existence of an intermediary boundary vertex

of the box. In such cases, additional lines are fit to the

intermediary sets of edge segments. Such lines are repre-

sented in the figure by L12 and L21, between vertices v1 and

v2, and L14 and L41, between vertices v4 and v1. The

crossings of the edge interpolating lines define the six

vertices, q1 to q6 in the contour of the box. The coordinates

of such points are given as,

qk ¼
ik
jk

� �
; k ¼ 1; . . .; 6 ð6Þ

Three perspective vanishing points, calculated from

pairs of vertices joining lines, are used in the process of

finding the internal vertices of the box, as shown in Fig. 2.
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Vanishing point f1 is the intersection of lines q1q2 and q4q5,

vanishing point f3 is the intersection of lines q2q3 and q5q6

and vanishing point f 3 is the intersection of lines q3q4 and

q6q1. Lines f 1q3; f 2q1and f 3q5; as well as lines f 1q6; f 2q4

and f 3q2 meet at one of the two internal box vertices q7 or

q8. In order to determine which lines meet at the front

vertex, q7, or at the rear vertex, q8, it is necessary to count

the number of internal segmented points that coincide with

any one of such lines. The lines that have the largest

number of coinciding segment points join at the front

vertex q7. The intersection of all remaining vanishing point

and external vertices lines define vertex q8. Representation

of the coordinate reference directions X, Y and Z is then

arbitrarily fixed at point q7, and parallel to the box’s edges.

Directions X, Y and Z coincide with lines q7q3, q7q1 and

q7q5 respectively. Vertices q2, q4 and q6 are representations

of the spatial vertices that are in planes XY, XZ and YZ,

respectively. Vertex q8 represents the location of the

camera hidden spatial vertex.

The Box’s dimensions W, H and D are parallel to the

coordinate reference axis X, Y and Z, respectively. The

global coordinates of the box’s vertices, which coincide

with the projected vertices q1 to q8 are

B1 ¼
0

H

0

2
64

3
75; B2 ¼

W

H

0

2
64

3
75; B3 ¼

W

0

0

2
64

3
75; B4 ¼

W

0

D

2
64

3
75;

B5 ¼
0

0

D

2
64

3
75; B6 ¼

0

H

D

2
64

3
75; B7 ¼

0

0

0

2
64
3
75and B8 ¼

W

H

D

2
64

3
75
:

ð7Þ

3 Geometric and algebraic properties of projected

points

3.1 A generic point in space with global coordinates is

defined as

Bk ¼
Xk

Yk

Zk

2
4

3
5 ð8Þ

The same point, seen from a reference frame whose axes

are rotated by a rotation matrix R and whose origin is

translated from the origin of the global coordinates

reference frame by a translation T, is expressed as

Pk �
X0k
Y 0k
Z 0k

2
4

3
5 ¼ RBk þ T: ð9Þ

Point Pk is projected in the image plane of a pinhole

camera, with focal distance f, located at the origin of the

displaced reference frame. The metric coordinates of the

projected point are defined as

pk ¼
x0k
y0k
f

2
4

3
5 ð10Þ

The geometry of the projected point [13, 14] is

represented in Fig. 3.

Point Pk of the displaced reference frame relates to the

coordinates of the projected point pk as

Pk ¼
Z
0
k

f
pk: ð11Þ

The projected image vertex point qk, given in

homogeneous coordinates p̂k is related to its camera

metric coordinates as

Fig. 2 Vanishing points, perspective lines and reference axis

Fig. 3 Geometry of projection of a point
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p̂k ¼
1

f
Apk ð12Þ

where,

A ¼
Sxf 0 u0

0 Syf v0

0 0 1

2
4

3
5: ð13Þ

and

p̂k ¼
qk

1

� �
: ð14Þ

A is the intrinsic calibration matrix that comprises the pixel

density parameters Sx, Sy, given in units of pixel by metric

distance, the focal distance f, u0 and (u0, v0) the pixel

coordinates of the optical center of the image.

The homogeneous pixel coordinates vector can be

expressed directly from the vector of global coordinates of

point Bk, by combining expressions (9), (11) and (12):

Z
0

kp̂k ¼ AðRBk þ TÞ ð15Þ

Next section uses Eq. (15) to establish a non-recursive,

analytical approach to estimate the intrinsic and extrinsic

camera calibration parameters.

3.2 Assembly and solution of the calibration

parameters problem

The homogeneous pixel coordinate vectors of the projec-

tion of three distinct vertices, p̂ka, p̂kb, p̂kc, together with

their corresponding spatial position vectors Bka
, Bkb

, Bkc
,

are manipulated to establish the basic relations of the

parameter estimation problem. Two different weighted

additions of the vectors are made, eliminating T in the

algebraic equation:

P̂kI
k ¼ ARBkI

ð16Þ

and

P̂kII
k ¼ ARBkII

: ð17Þ

where,

k ¼
Z
0

ka

Z
0

kb

Z
0
kc

2
64

3
75; ð18Þ

P̂kI
¼ 0:5p̂ka

�p̂kb
0:5p̂kc

� �
ð19Þ

P̂kII
¼ �p̂ka

0:5p̂kb
0:5p̂kc

� �
ð20Þ

BkI
¼ 0:5Bka

� Bkb
þ 0:5Bkc

ð Þ ð21Þ

and

BkII
¼ �Bka

þ 0:5Bkb
þ 0:5Bkc

ð Þ ð22Þ

Matrices P̂kI
and P̂kII

are non-singular, leading to the

following combination of Eqs. (16) and (17):

ARBkI
� P̂kIII

ARBkII
¼ 0 ð23Þ

where,

P̂kIII
¼ P̂kI

P̂
�1

kII

and

AR ¼ AR: ð24Þ

Expression (23) can be rewritten, using the Kronecker

product, denoted by � and the matrix to vector operator,

denoted by vecðÞ:

BT
kI
� I� BT

kII
� P̂kIII

h i
vec ARð Þ ¼ 0 ð25Þ

Term I of Eq. (25) is the identity matrix of dimension

3 9 3, and the vector operator stacks the columns of matrix

AR, turning it into a vector of dimension 9 9 1.

Equation (25) can be expanded, in the presence of n C 3

different sets of coefficient matrices of the type P̂kIII
, and

vectors of the type BkI
and BkII

, each set made from 3

spatial vectors and their corresponding homogeneous pixel

coordinates, yielding

Pe ¼ 0 ð26Þ

where,

P ¼

BT
1I
� I� BT

1II
� P̂1II

	 

BT

2I
� I� BT

2II
� P̂2III

	 

..
.

BT
nI
� I� BT

n � P̂nIII

	 


2
6666664

3
7777775
: ð27Þ

and e is the representation for vec ARð Þ
Equation (26) is a system of 3n 9 9 homogeneous

equations, which has solutions in the null space of P. In

practical cases, where the image projections of the spatial

points are approximated by discrete pixel positions, matrix

P will not have a null space, and e will be estimated as the

right singular vector of P associated to its smallest singular

value.

The estimation vector is reshaped into a matrix of

dimension 3� 3, which is an approximation for matrix AR,

that is,

�AR ¼ Reshapeð�e; 3� 3Þ ð28Þ
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Matrix AR is also an estimation of the product of the

intrinsic calibration and rotation matrix, according to

Eq. (24). The orthogonal property of the rotation matrix

allows the manipulation of Eq. (24), to yield an estimation of

the self-transpose product of the calibration matrix, that is,

A R RTAT ¼ AAT ’ ~AR
~A

T

R: ð29Þ

Matrix ~AR of Eq. (29) is the normalized version of �AR,

forcing that its third row, third column element is 1, in

order to satisfy the condition of the likewise element of

AAT:

Estimations of the intrinsic parameters of the camera are

derived from the self-transpose product of matrix ~AR,

according to Eqs. (29) and (13):

~u0 ’ element of row 1; column 3 of ~AR
~A

T

R ð30Þ

~v0 ’ element of row 2; column 3 of ~AR
~A

T

R ð31Þ

~sxf ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
element of row 1; column 1 of ~AR

~A
T

R � ~u2
0

q
ð32Þ

~Syf ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
element of row 2; column 2 of ~AR

~A
T

R � ~v2
0

q
:

ð33Þ

A preliminary estimate for the rotation matrix can be

obtained from Eq. (24) as

~R
0 ¼ ~A

�1
AR ð34Þ

where,

~A ¼
~Sxf 0 ~u0

~Syf ~v0

0 0 1

2
4

3
5: ð35Þ

The final estimate for the rotation matrix, ~R, is obtained

by normalizing the singular values of ~R
0
, that is,

~R ¼ URVT
R ð36Þ

where UR and VR are matrices with the left and right

singular vectors of ~R
0
.

The translation vector T can be estimated, together with

a vector of depth projection values, by applying Eq. (15) to

a number n C 2 of pairs of spatial and projected points, via

the least squares solution of a linear system of equations:

p̂1 0 . . . 0 �~A
0 p̂2 . . . 0 �~A

..

. ..
. . .

. ..
.
�~A

0 0 . . . p̂n �~A

2
6664

3
7775

~k
~T

� �
¼

~ARB1
~ARB2

..

.

~ARBn

2
6664

3
7775: ð37Þ

where ~k is the vector of estimated depth projections defined

as

~k ¼

Z
0
1

Z
0

2

..

.

Z
0
n

2
6664

3
7775 ð38Þ

3.3 Simulated and real applications

The complete camera calibration procedure can be applied

in the following sequence:

(a) obtain an image of a box of known dimensions, with

sufficient light conditions and contrast that enable

segmentation of its visible edges.

(b) Find all the edges in the image and calculate four vertices

from extreme edge points, according to Eqs. (1) and (2).

(c) Calculate the linear coefficients of the lines that join

such vertices, according to Eq. (3) and the distance

between the extreme edge points and the vertices

joining lines, according to Eqs. (4) and (5). The norm

of such distance vectors is used to find the two

remaining external vertices, that are located between

some of the four extreme contour vertices.

(d) Find the equations of six lines that best fit the external

boundary edge points of the projected box. With such

lines, calculate the perspective vanishing points and

estimate the coordinates of internal vertices of the box

projection, as shown in Fig. 2.

(e) Associate the dimensions of the box with the vectors

of space position of the vertices, according to Eq. (7).

(f) Build a number n C 3 of different sets of matrices,

each set using the spatial coordinates of coordinates of

three different vertices of the box, and their corre-

sponding homogeneous pixel vectors, according to

Eqs. (19)–(22).

(g) Assemble the homogeneous system problem matrix,

using the sets of coefficient matrices, according to

Eqs. (25) and (27). Solve the system via singular

value decomposition to obtain an estimate of the

camera parameters matrix, according to Eq. (28).

(h) Estimate the intrinsic and extrinsic camera parameters

according to Eqs. (29)–(37).

The image processing and calibration techniques

described above are employed in the identification of the

intrinsic and extrinsic parameters of cameras, from simu-

lated and real images of a solid box.

3.4 Simulation data

A solid box of dimensions 360 9 245 9 135 9 (mm) is

generated in the 3-D modeling program Blender, and ten

poses of the box at different positions and rotations are

acquired by a virtual camera with 800 9 600 pixels, and
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Fig. 4 Blender rendered images: a raw image, b image with identified axis and vertices

Table 1 Information setup in the 3D modeling software

IMAGE BLENDER

Translation

vector (mm)

IDENTIFIED

Translation

vector (mm)

BLENDER

x, y, z rotation

angles (degrees)

IDENTIFIED

x, y, z rotation

angles (degrees)

IDENTIFIED

Intrinsic parameters

sx.f, sy.f, u0, v0)

#01 [-114.19

-166.05

729.26]

[-114.33

-174.29

720.02]

197.6

200.29

-190.55

197.18

200.26

-190.58

[961.36; 961.59; 399.95; 308.41]

#02 [-114.19

-166.05

729.26]

[-107.030

-169.590

729.501]

-203.95

147.89

190.09

-204.04

148.49

190.16

[971.94; 972.21; 390.56; 302.13]

#03 [-51.02

-83.28

637.82]

[-48.94

-78.098

630.97]

-225.6

211.3

-239.7

-225.35

211.9

-239.56

[963.37; 961.57; 397.19; 288.44]

#04 [138.17

-94.37

629.17]

[133.46

-97.657

620.87]

-186.38

151.65

-194.04

-186.49

151.12

-194.02

[963.81; 960.65; 407.67; 302.09]

#05 [58.35

-131.88

592.76]

[59.627

-129.82

590.83]

-199.76

149.84

191.88

-199.31

149.99

191.58

[971.88; 969.38; 397.80; 293.15]

#06 [58.35

-131.88

592.76]

[58.196

-133.5

585.91]

190.37

137.19

-186.41

190.29

137.08

-186.3

[960.71; 962.45; 400.87; 299.28]

#07 [-49.02

-144.44

678.98]

[-46.266

-153.18

673.72]

184.18

201.47

-221.08

183.48

201.25

-221.41

[966.84; 968.38; 396.69; 309.64]

#08 [-98.87

-55.83

697]

[-113.82

-54.965

699.25]

-209.08

211.61

-195.15

-208.49

210.6

-194.9

[974.2; 977.94; 421.00; 295.14]

#09 [34.38

-97.17

447.52]

[31.205

-101.29

438.25]

-194.36

149.43

-184.74

-194.86

148.99

-184.46

[958.71; 957.41; 407.56; 305.38]

#10 [-09.94

-84.67

445.34]

[-09.8313

-86.792

437.12]

-209.73

141.19

204.44

-209.93

141.23

204.54

[961; 961.55; 400.48; 301.07]
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equal horizontal and vertical digital resolutions of

960 pix
mm
�mm:. The ten images are processed to find the

position of the vertices of the box. Figure 4 shows one of

the rendered images of the box with identified vertices.

Table 1 shows a comparison between the exact translation

vectors and rotation angles of the camera, as set up in the

3D modeling program and those identified with the pro-

posed calibration technique. The rotation angles are cal-

culated from the rotation matrices identified in the

calibration procedure, according to Rodrigues Rotation

Formula (RRF). It is seen in Table 1 that the identified

extrinsic and intrinsic parameters agree with the values

provided by the virtual modeling program.

4 Experimental data

Image of a real box, of dimensions 360 9 245 9 135 (mm)

is obtained with a Microsoft VX-1000 LifeCam with

640 9 480 pixels and equal horizontal and vertical digital

resolutions of 800 pix
mm
:mm: The optical axes are located

approximately at the center of the image. Figure 5 shows the

camera image of the box and the identified vertices and axis.

The spatial width, depth and height of the box are asso-

ciated to the positions of the vertices identified in the image,

yielding the calibration results shown in Table 2 below.

5 Conclusions

The work presented the development of a practical tech-

nique to determine the intrinsic and extrinsic parameters of

a camera, using a simple calibration box. Detailed infor-

mation is provided regarding the image processing steps

that enable the determination of the position of the box’s

vertices. The algebraic operations that are used to calculate

the intrinsic and extrinsic parameters are presented in a

simple and direct way, helping the understanding and

application of the camera calibration procedure. The sim-

ulation data example shows that the algorithm is able to

estimate, with a good numerical precision, the original

intrinsic camera parameters and camera movement. The

experimental data example, likewise, yields consistent

quantitative and qualitative results, showing the potential

application of the proposed technique.
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