Stereo Vision



The 1inverse perspective (1)
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The 1inverse perspective (2)

//////f X=27
Optical f

ax1s

Optical : .. . :
cEnter The perspective transformation is not invertible,

however, it 1s possible to calculate a vector pointing
in the direction of the ray from the optical center
through that point on the image plane



The 1inverse perspective reference
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The 1nverse perspective in World
Reterence System
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The 1nverse perspective in World
Reterence System (1)

\

camera projection matrix

(x,y) = image coordinates
P(X,Y,Z)= point in WRS
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An image point I 1s associated with
a scene point P by the equation
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The 1nverse perspective in World
Reterence System (2)
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Equations of two planes whose

intersection 1s the line Ocl (expressed
in the WRS)

The direction vector n of this line is
the vector product of normal vector of
the two planes

n=(t,—xt;)x(t,—yt;)
1e.,
n=x(t,xt;)+y(t; xt,)+(t, Xt,)

n=|(t,xt,) (t,xt,) (t, xtz)][);/]
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The 1nverse perspective in World
Reterence System (3)
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The parametric equation of the line Ocl in WRS is: P =0c+2An



Depth information from single
image

e 2D imaging results in depth information loss
* If only one camera is used, the 3-D depth information
can be derived if prior knowledge 1s available

This problem has more than
one solution: ambiguity




Single view ambiguity

e Single views are insufficient to solve geometric
problems computer vision.
It 1s necessary methods of understanding multiple views

eStereo: different cameras,
different viewpoints,
same time

* Motion: same camera,
different viewpoints,
different times

~




Depth information from a pair of
images

P

e Lines L1 and L2: obtained by inverse perspective
e Point P: determined by the intersection of L1 and L.2
(triangulation)
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A simple stereo system (1)

e Image planes of cameras
are parallel

* Focal points are at same
height

e Focal lengths same



A simple stereo system (2)
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A simple stereo system (3)

A Z. can be determined by

Pa equation (8) since:

* the correspondence is
7 established (red dots) and
disparity computed.

-
-

e the transformation between
the left and right camera
reference system is known
(equations 3 and 4)

~_ 1B © X, =X, +B ) eIntrinsic camera parameter

X, — X, 7-7.-7. (f) is known




A general stereo 1maging system

P

Depth recovering depends on:

e determining which points in one image correspond to
points in the other image (Correspondence problem)

e determining the geometric relationships for the cameras
(Camera calibration )



The Correspondence problem

The correspondence problem 1s a search problem:
Given an element 1n the left image, we search for the
Corresponding element in the right image.
This involves two decisions:

 Which image element to match, and

* Which similarity measure to adopt.



Classification of the
correspondence algorithms

*Correlation based methods:

elements to match are Image windows of fixed size and the
similarity criterion 1s a measure of correlation between
windows 1n the two 1mages

*Feature based methods:

Elements to match are set of features extracted from the
Image. They use a measure of distance between feature
Descriptors. Corresponding elements are given by the most
Similar feature pair, the one associated with the minimum
distance



Correlation based methods (1)
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Correlation based methods (2)
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Correlation based methods (3)

Higher cross correlation
coefficient



Feature based methods (1)

Based on measures of similarity and compatibility of
the features (corners, edges, lines, ...)



Feature based methods (2)

For the feature-based approach, the matching features
must have similar attribute values

feature Similarity measured 1n terms of:

corner ¢ surrounding gray values (SSD, Cross-
correlation)
e location
lines eorientation
econtrast
ecoordinates of edge or line’s midpoint
elength of line



Feature based methods (3)

Comparing lines
* ], and l: line lengths

0, and 0.: line orientations

(x,,y) and (X,,y,): midpoints
* ¢, and c.: average contrast along lines

* W MWy W, 0. : weights controlling influence

B 1

- Wl(ll _lr)2 +W6(161 _ler)z +Wm((X1 _Xr)2 _(YI _Yr)2)+wc(cl _Cr)2

larger S — more similar the lines



Correlation x Feature based
methods

Correlation methods
*Are easier to implement
*Provide dense disparity maps
*Need textured images to work well
*Due to foreshortening effects and change in illumination it is inadequate
for matching of pairs taken from different viewpoints
Feature based methods
eSuitable when a priori information is available
*Provide sparse disparity maps
*Relatively insensitive to illumination changes
Occlusions and ambiguities — introduce difficulties for both methods

Constraints — reduces the effects of both phenomena
* EPIPOLAR GEOMETRY



The epipolar
geometry



The epipolar geometry

Epipolar
Line for ¢

epipole Epipolar
Line for p




The Epipolar lines




The epipolar plane

Epipolar Line
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The epipolar geometry
(notation)

P P]:(XlaYpZ])
P =(X,,Y,,Z,)

Refer to the same 3D point (P)

) described in the left and right
Pr camera coordinate frame
T/ NA]‘ P =(X,y,2))
0. o Py
Refer to the projection of (P) in the left
T= (Or - 01) and right camera coordinate frame

f,=z, and f =7z



Relation between camera
reference frames
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The Essential matrix (E)

Given the coplanarity condition
oP (P-T) of the vectors P, T and P-T

P, .
l\ / p P-T)TxP =0 (1)

(tp,—tp, | [ O -t t
TP =tp, —tp,|=|t, 0 —t |P =SP
6Py —tp | [t t, O (2)
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The Epipolar constraint (1)
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The Epipolar line and the image
reference system

u =Ep, = ]E; ¢ Epipolar line on Camera
) Y Reference system

u. and p, are defined on the camera reference system
(E 1s computed based on extrinsic parameters R and
T) but what we measure in the image are 2D pixel
locations

Transformation from camera coordinate system to
image coordinates system 1s obtained considering the
Intrinsic camera parameters



The fundamental matrix (F)

M, and M, intrinsic camera parameters
p, and pr measured 1n pixels

p=M;'p, () p.'Ep,=0 (3)
p.=M.p, (2
M©2)B) =M, p) EM; p)=0
B, M)'EM;'p,=0 — B, FB =0
F=(M.)"EM;' ¢é&= Fundamental matrix

~ Epipolar line on Image
i, =FP, ¥ Reference system

r



Locating the epipoles (1)
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Locating the epipoles (2)
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Computing the Fundamental
Matrix (1)

Given a pair of corresponding
points in the left and right images
equation (1) can be written

x nInfy|p, |=0 )
\ % 5 I 1y _ﬁi_
O,

5:; (fuﬁi + f12§; + f13§;) + 5; (leﬁi + fzzI'S; + f23§;) + 5; (f31§)1< + f32§; + f33§;) =0 (2)

P
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DDy + By Dafiy + B, Pufis + BaPyfor + By Py + DDy f0s + Db, + B, 0,65 + 5,5, =0 (3)



Computing the Fundamental
Matrix (2)

If n> 8 corresponding points are known, a homogeneous system with n
equations and 9 unknowns can be written based on equation (3)

~]~r

Do Dufyy + Dy Pufiy + B Pyf1s + Byby oy + By Pyl + B,0yF05 + Babify + D, D,f5 + 5,0, =0 (3)
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Computing the Fundamental
Matrix (3)

System of equations has a unique solution up to a scaling factor

~1 xr ~1 xr ~1 ~r ~1 xr ~1 =r ~1 =r ~1 xr ~l ~r ] [ 31 =
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Computing the Fundamental
Matrix (4)

e Fundamental matrix is unstable when the scene is close to
planarity

 Fundamental matrix is unstable when the camera motion is
close to pure rotation

e Switching between models can produce discontinuous
estimations

e The estimation of homography matrices 1s always possible



The eight point algorithm

The eight point algorithm (as seen) has the advantage of simplicity of
implementation. However, it is extremely susceptible to noise and hence
virtually useless for most purposes. In the paper:

*“In defense of the eight point algorithm”, Richard I.
Hartley, IEEE Transactions On Pattern Analysis
And Machine Intelligence, Vol. 19, No. 6, June 1997.

It 1s shown that by preceding the algorithm with a very simple
normalization (translation and scaling) of the coordinates of the matched
points, results are obtained comparable with the best iterative algorithms.



Epipolar constraint and the
correspondence problem (1)

Epipolar Constraint Reduces correspondence problem
to 1D search along conjugate epipolar lines




Epipolar constraint and the
correspondence problem (2)

Most conventional stereo
algorithms contain a fixed
limit on the size of the

epipolar search bands.

This constraints 1s usually
applied because the data in
the scene 1s known to exist
over a limited range of

Optical center Pmin Optical center depths.
left camera epipole right camera




The bundle of epipolar lines

General case

Parallel epipolar lines
in one of the i1mages

Parallel epipolar lines
in both 1mages



Correspondence: simplest case

* Image planes of cameras are parallel

e Focal points are at same height

* Focal lengths same

e Then, epipolar lines are horizontal scan lines

It 1s always possible to achieve this geometry
with 1image rectification



Image rectification




Image rectification (1)

Re-project image planes onto
common plane parallel to line
between optical centers to
create a new stereo image pair
such that the epipolar lines are
horizontal and 1dentical for the
2 new 1mages






Image rectification (problem - 1)

Problem: given the camera
models T1 and T2 obtain the
new camera models M and N

considering the constraints:

*The optical centers of M and N are C1 and C2 respectively ( to give a unique
match between points P, and P, respectively before and after rectification)

*The focal plane of M is identified with that of N (to produce parallel lines in
both images)

*For any point P (not in optical plane), the y coordinates of the image points
P,. and P, obtained by M and N respectively are equal (v1=v2)



Image rectification (solution)

(Artificial vision for mobile robots, Nicholas Ayache. MIT Press,
1991 — section 3.6)

[(cxcyxc T 0 [(CxC,)xC,[ 0
M= (CxC,)" 0 N = (CxCy)" 0
(€, -CcyHxECxCH]' |[cxa,)’ [(C,-CHx(CxCH]" |[CxC,|°

Where C, and C, are the optical centers of cameras 1 and 2 respectively.
The optical center Ci 1s determined solving the equation system:

)= [XJ Coordinates of the camera

yCi .
| optical center

O yc1 Z01
01=T ¢ where
() Zci

1

11 t12 t13 t14

T = Camera model

t
t21 t22 t23 t24
t31 t34 t34 t34




The 1inverse perspective reference
system (review-1)

Yw
X =27 n P
f
Y
f %tical
AKIS 7V Xw
vector direction in WRS
Optical t, tn ts ty X X
center ty ty by by n=[(t, xt;) (t;xt,) (t,xt,)]| y [=S|y
o te Ca € 1 1
31 32 33 34

camera projection matrix where t. = [t €t ]T
i~ LYl M2 i3



The 1inverse perspective reference
system (review-2)

i SNS

n-= [(t2 Xty) (t;xt,) (t, th)][

X
=S y
YW 1
(t22t33 o t32t23) (t32t13 o t12t33) (t12t23 o t22t13)
S =
P

yAd Xw (Gt =ty ts) (Gt —tyt5) (605 =t ty)
(t21t32 o t31t22) (t31t12 _ t11t32) (tutzz _ t21t12)

X(’[31'[23 _ t21t33) + y(t11t33 o t31t13) + (t21t13 o t11'[23)

X(t22t33 o t32t23) + y(t32t13 o t12t33) + (t12t23 o t22t13)
n=
X(ty by, —t5,0,) + y(tyt, =t t5,) +(t,ty, —t,t),)

Oc

The parametric equation of the line Ocl in WRS is: P =0c+An



Image rectification (computation)

P,. can be computed determining
the inverse perspective for pl
(fromT1) P=0Oc+Xn

and re-projecting one point in the
line using the new matrix M

p. =M (Oc1+ n) )

\l/ as M(Olc):o — (1) can be written

[(C,xC,)xC,[
(C,xC,)"
[(C,-C)x(,+C)I

P, = (8, xt)) (6, xt) (t,xt,)|(p,)




Image rectification (computation)

. :>Q M
- Pir
Q' ’

[(cxC)xC[
(C,xC,)"
[(Cc,-C,)x(CxC)[

X

Yi
1

p,=Q Q= (1, xt3) (t5xt) (4, xt,)

Rectified coordinates are in general not integers. To obtain integer
coordinates rectification is implemented backwards applying inverse
transformation (Q') and pixels values in the new image computed as
bilinear interpolation of pixels in the old image



Image rectification

(other approaches)

Problem 1 : given the intrinsic parameters of each camera and the
extrinsic parameters of the stereo system (R and T) obtain the transform
for image rectification.

Introductory techniques for 3D Computer Vision, Emanuele Trucco
e Alessandro Verri. Prentice Hall. 1998, section 7.3

Problem 2 : given the Fundamental matrix (F) of the stereo system obtain
the transform for image rectification.

*Zezhi Chen et all., A new image rectification algorithm. Pattern
Recognition Letters 24 (2003) 251-260

*Forster, Carlos Henrique Quartucci, Alinhamento Imagem-Modelo

Baseada na Visao Estéreode Regides Planares Arbitrarias. Tese de
doutorado. FEEC-UNICAMP, 2004



3D
Reconstruction



3D Reconstruction

The 3D reconstruction that can be obtained depends on the
a priori knowledge available on the parameters of the
stereo system.

Three cases are 1dentified:

Intrinsic and extrinsic parameters are known
*Only intrinsic parameters are known
*Neither the intrinsic nor the extrinsic parameters are known



Reconstruction for intrinsically and
extrinsically calibrated cameras

Under assumption that the intrinsic and extrinsic parameters
are known, the point P is computed from its projections on left
and right camera by the intersection of lines L1 and L2

P




Reconstruction by triangulation )

e Vectors L1 and L2 can be computed from the image points Pl
and Pr respectively (intrinsic parameters are known).

e Vectors L1 and L2 are expressed in their respective reference
frames

* To compute the intersection vectors L1 and L2 must be
expressed in the same reference frame




Reconstruction by triangulation ()

* To express L2 into the same reference as L1, L2 must be rotated
by R-! and translated by T (where R and T are the extrinsic
parameters of the stereo system)

0 X P X,
L1" = Y1 L2(2) =y,
f, f,

2

P.=R(P,-T) — L2 =(R'L2")H)+T

aL1-|bR'L2?)+T|=T

Linear system of
_ -1 (2) — )
alL1-bR L2 T < equations



Reconstruction by triangulation g,

* Since parameters and image locations are known only
approximately , the two rays will not actually intersect in the space
*Their intersection can only be estimated as the point of minimum
distance of both rays




Reconstruction by triangulation @

e If vector W i1s assumed to be perpendicular to L1 and L2, the
problem reduces to determining the midpoint of the segment
parallel to vector W that joins L1 and L2

T

w=L1xR™"'L2?
aL1-cW—|bR'L2?)+T|=T ,
Linear system of

aL1-bR™'L2"” —c(LIXxR'L2®) =T — equations



Relations between the parameters
of a stereo system

alLl cW .
LI (y J P bL.2 L2® = {Yi]
f f,
I Pr‘ 2
= n
R1, T1 B R2, T2
WRS
R =RIR2"

T=T1-RI1"T2



Reconstruction for intrinsically
calibrated cameras (1)

Assuming that:
* the intrinsic parameters are known, and
* n point correspondences are given
the Fundamental Matrix (F) can be computed up to an unknown
scaling factor (remember the Eight Point Algorithm results in an
homogeneous linear system)n and the Essential Matrix (E)
obtained by the equation:

F=M)"EM,
Where M, and M, - matrix for the intrinsic camera parameters

As the Essential matrix 1s known up to a scaling factor, 3D points
can not determined unambiguosly.



Reconstruction for intrinsically

calibrated cameras (2)

The matrix E depends on the geometric parameters R and T of the

stereo system and i1s written:

0 -T, T,
whit S=| T, O

E=RS

EE' =[TJRR'[T]" =

-T, T,

T’+T? -T,T, -T,T, |
-TT, T;+T, -T,T,

-T.T, -T,T, TXz+Ty2

— TX

1)

|

Te(EE") = 21Tl

so that dividing the entries of the essential matrix by

N \/Tr(EET)z 3)

1s equivalent to normalizing the length of translation vector to unit

(2)



Reconstruction for intrinsically
calibrated cameras (3)

Using this normalization

EE' =[T,JRR'[T,]" =

T, +T, +T, =1

T’+T? -T,T, -T,T, |
-T.T, T;+T, -TT,
-TT, -T,T, T;+T,

and equation (1) can be rewritten

EE" =

1

A 2 A A A A
T x _Tx y _TXTZ
A A A 2 A A
T.T, 1-T; T,
A A A A 2
Xz _Ty z l_TZ

3)

1)

and components of the
translation vector (T) can be
computed up to sign and
rotation matrix determined

For the complete solution see: Introductory techniques for 3D
Computer Vision, Emanuele Trucco e Alessandro Verri. Prentice Hall.
1998, section 7.4



Reconstruction for intrinsically
calibrated cameras (4)

Optical
fl axis
\ 7
T 1 X
(/% : Z
f Optical
axis




Reconstruction for intrinsically
calibrated cameras (5)

Optical
f, axis

|\~ 2
P

f Optical
axis




Reconstruction for intrinsically
calibrated cameras (6)

Optical
f, axis

= 2

f Optical
axis




Reconstruction for uncalibrated
cameras (1)

Assuming that:

*n point correspondences are given
the Fundamental Matrix (F) can be computed up to an unknown
scaling factor
As the matrices M, and M, for the intrinsic camera parameters are
unknown the matrix E can't recovered from the equation:

F=M)"EM;'

And the points in 3D space can only be determined up to a
projective transformation H



Reconstruction for uncalibrated
cameras (2)

f1 Optical
axis

Z

Optical
(7) , axis



Reconstruction for uncalibrated
cameras (3)

| f1 Optical

Z

Optical
(7) , axis



Reconstruction for uncalibrated
cameras (4)

Projective
transform

Optical
axis




Reconstruction for uncalibrated

cameras (5)

Given a point in space in homogeneous
coordinate (X,y,z,w) and its image under
' ' '

a projective transform (x',y',z',w'), a
projective transform has the following

form: . -

oL

P

/ }T]/VX’ {/vx

_p11

_| Pa

Pa;
| Pai

Pi
P
Pa;

| P

P12
P
P3>
P4

P12
P
P3>
P

Pis
P2
P33
P

P13
P23
P33
P43

Pia
P4
Pa4

Pas |

P14
P24
P34
Pas |




Reconstruction for uncalibrated
cameras (6)

PR N
P K \
\

Actual object
X 1 P2 Pi3 Pus X;
Y |=| P2t P2 Pos P || Y
Z 3t P32 Pas Pas || Z
W 1

Reconstructed

T T oo
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heBselse R
Now

S}

object




Reconstruction for uncalibrated
cameras (/)
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The projective transformation can be
estimated if the coordinates of five 3D
points are known and the object
reconstructed up to a scaling factor
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For the complete solution see: Introductory techniques for 3D
Computer Vision, Emanuele Trucco e Alessandro Verri. Prentice Hall.

1998, section 7.4
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