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The inverse perspective (1)

Optical 
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Optical center and
Camera reference 
system

A point on the image can 
correspond to any 3D location 
on the ray from the optical 
center through that point on the 
image plane.
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The inverse perspective (2)
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Optical 
center The perspective transformation is not invertible, 

however, it is possible to calculate a vector pointing 

in the direction of the ray from the optical center 

through that point on the image plane
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The inverse perspective reference 

system
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The inverse perspective in World 

Reference System
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The inverse perspective in World 

Reference System (1)
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elements of the row i of T

An image point I is associated with 
a scene point P by the equation
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The inverse perspective in World 

Reference System (2)
Equations of two planes whose 
intersection is the line OcI (expressed 
in the WRS)0)()(
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The direction vector n of this line is 
the vector product of normal vector of 
the two planes
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The inverse perspective in World 

Reference System (3)

The parametric equation of the line OcI in WRS is:
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Depth information from  single 

image
• 2D imaging results in depth information loss

• If only one camera is used, the 3-D depth information

can be derived if prior knowledge is available
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f This problem has more than 

one solution: ambiguity



Single view ambiguity

•Stereo: different cameras,

different viewpoints,

same time

• Motion: same camera, 

different viewpoints, 

different times

• Single views are insufficient to solve geometric  

problems computer vision.

• It is necessary methods of understanding multiple views



Depth information from  a pair of  

images
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• Lines L1 and L2: obtained by inverse perspective

• Point P: determined by the intersection of L1 and L2

(triangulation)



A simple stereo system (1)
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• Image planes of cameras
are parallel

• Focal points are at same 
height

• Focal lengths same



A simple stereo system (2)
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A simple stereo system (3)

)3(rr BXX +=

)4(rl ZZZ ==

• the correspondence is 
established (red dots) and 
disparity computed.

• the transformation between
the left and right camera
reference system is known
(equations  3 and 4)

•Intrinsic camera parameter
(f) is known
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A general stereo imaging system
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Depth recovering depends on:

• determining which points in one image  correspond to 

points in the other image (Correspondence problem)

• determining the geometric relationships for the cameras 

(Camera calibration )



The Correspondence problem

The correspondence problem is a search problem:

Given an element in the left image, we search for the

Corresponding element in the right image.

This involves two decisions:

• Which image element to match, and

• Which similarity measure to adopt.



Classification of the 

correspondence algorithms

•Correlation based methods: 

elements to match are Image windows of fixed size and the 

similarity criterion is a measure of correlation between 

windows in the two images 

•Feature based methods:

Elements to match are set of features extracted from the 

Image. They use a measure of distance between feature 

Descriptors. Corresponding elements are given by the most 

Similar feature pair, the one associated with the minimum 

distance



Correlation based methods (1)
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Correlation based methods (2)
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Correlation based methods (3)

Higher cross correlation 

coefficient



Feature based methods (1)

Based  on measures of similarity and compatibility of 

the features (corners, edges, lines, …)



Feature based methods (2)

feature Similarity measured in terms of: 

corner • surrounding gray values (SSD, Cross-

correlation) 

• location

lines •orientation

•contrast

•coordinates of edge or line’s midpoint

•length of line

For the feature-based approach, the matching features 

must have similar attribute values



Feature based methods (3)
Comparing lines

• ll and lr: line lengths 

• θl and θr: line orientations

• (xl,yl) and (xr,yr): midpoints

• cl and cr: average contrast along lines

• ωl ωθ ωm ωc : weights controlling influence

larger S →→→→ more similar the lines
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Correlation x Feature based 

methods
Correlation methods

•Are easier to implement

•Provide dense disparity maps

•Need textured images to work well

•Due to foreshortening effects and change in illumination it is inadequate 

for matching of pairs taken from different viewpoints

Feature based methods 

•Suitable when a priori information is available
•Provide sparse disparity maps

•Relatively insensitive to illumination changes

Occlusions and ambiguities – introduce difficulties for  both methods

Constraints – reduces the effects of both phenomena

• EPIPOLAR GEOMETRY



The epipolarThe epipolar

geometrygeometry
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The Epipolar lines
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The epipolar geometry
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Relation between camera 

reference frames
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The Essential matrix (E)
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The Epipolar constraint (1)
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The Epipolar line and the image 

reference system 
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E lr pu Epipolar line on Camera
Reference system

ur and pl are defined on the camera reference system 
(E is computed based on extrinsic parameters  R and 
T) but what we measure in the image are 2D pixel 
locations

Transformation from camera coordinate system to 
image coordinates system is obtained considering the
intrinsic camera parameters



The fundamental matrix (F)

Ml  and Mr  intrinsic camera parameters 
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Locating the epipoles (1)
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For any point pl equation (1) is valid

Given er belongs to all epipolar lines
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Locating the epipoles (2)

Given that pl and F are not identically

zero, equation (1) holds if and only if
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Computing the Fundamental 

Matrix (1)
P

Ol

prpl

Or

Given a pair of corresponding

points in  the left and right images

equation (1) can be written
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Computing the Fundamental 

Matrix (2)
If n≥ 8 corresponding points are known, a homogeneous system with n 

equations and 9 unknowns can be written based on equation (3)
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Computing the Fundamental 

Matrix (3)
System of equations has a unique solution up to a scaling factor
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Computing the Fundamental 

Matrix (4)

• Fundamental matrix is unstable when the scene is close to 

planarity

• Fundamental matrix is unstable when the camera motion is 

close to pure rotation

• Switching between models can produce discontinuous 

estimations

• The estimation of homography matrices is always possible



The eight point algorithm

•“In defense of the eight point algorithm”, Richard I. 

Hartley, IEEE Transactions On Pattern Analysis 

And Machine Intelligence, Vol. 19, No. 6, June 1997.

It is shown that by preceding the algorithm with a very simple 

normalization (translation and scaling) of the coordinates of the matched 

points, results are obtained comparable with the best iterative algorithms.

The eight point algorithm (as seen) has the advantage of simplicity of 

implementation. However, it is extremely susceptible to noise and hence 

virtually useless for most purposes. In the paper:



Epipolar constraint and the 

correspondence problem (1)

Epipolar Constraint Reduces correspondence problem 

to 1D search along conjugate epipolar lines



Epipolar constraint and the 

correspondence problem (2)

Most conventional stereo 

algorithms contain a fixed 

limit on the size of the 

epipolar search bands. 

ρ∞

ρmin

ρ∞

ρminOptical center
left camera

Optical center
right cameraepipole

This constraints is usually  

applied because the data in 

the scene is known to exist 

over a limited range of 

depths.



The bundle of epipolar lines

General case

Parallel epipolar lines 

in one of the images

Parallel epipolar lines 

in both images



Correspondence: simplest case

• Image planes of cameras are parallel

• Focal points are at same height

• Focal lengths same

• Then, epipolar lines are horizontal scan lines

It is always possible to achieve this geometry 

with image rectification



Image rectification

P
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pl pr



Image rectification (1)

Re-project image planes onto 

common  plane parallel to line 

between optical centers to 

create a new stereo image pair 

such that the epipolar lines are 

horizontal and identical for the 

2 new images
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Image rectification (example)



Image rectification  (problem - 1)

Problem: given the camera 

models T1 and T2 obtain the 

new camera models M and N 

considering the constraints:

•The optical centers of M and N are C1 and C2 respectively ( to give a unique 

match between points Plr and Pl  respectively before and after rectification)

•The focal plane of M is identified with that of N (to produce parallel lines in 

both images)

•For any point P (not in optical plane), the y coordinates of the image points 

Plr and Prr obtained by M and N respectively are equal (v1=v2)
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plr prr

pl pr

M N
T2T1

cl c2

v1 v2



Image rectification  (solution)
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Where C1 and C2 are the optical centers of cameras 1 and 2 respectively. 

The optical center Ci is determined solving the equation system:

(Artificial vision for mobile robots, Nicholas Ayache. MIT Press, 

1991 – section 3.6)
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The inverse perspective reference 

system (review-1)
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The inverse perspective reference 

system (review-2)

The parametric equation of the line OcI in WRS is:
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Image rectification  (computation)
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the inverse perspective for pl 
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and re-projecting one point in the 

line using the new matrix M 
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Image rectification  (computation)

plrpl

MT1

Rectified coordinates are in general not  integers. To obtain integer 

coordinates rectification is implemented backwards applying inverse 

transformation (Q-1) and pixels values in the new image computed as 

bilinear interpolation of pixels in the old image
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Image rectification  
(other approaches)

Problem 1 : given the intrinsic parameters of each camera and the 

extrinsic parameters of the stereo system (R and T)  obtain the transform 

for image rectification.

•Introductory techniques for 3D Computer Vision, Emanuele Trucco 

e Alessandro Verri. Prentice Hall. 1998, section 7.3

Problem 2 : given the Fundamental matrix (F) of the stereo system obtain 

the transform for image rectification.

•Zezhi Chen et all., A new image rectification algorithm. Pattern

Recognition Letters 24 (2003) 251–260

•Forster, Carlos Henrique Quartucci, Alinhamento Imagem-Modelo 

Baseada na Visão Estéreode Regiões Planares Arbitrárias. Tese de 

doutorado. FEEC-UNICAMP, 2004
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3D Reconstruction

The 3D reconstruction that can be obtained depends on the 

a priori knowledge available on the parameters of the 

stereo system.

Three cases are identified:

•Intrinsic and extrinsic parameters are known 

•Only intrinsic parameters are known

•Neither the intrinsic nor the extrinsic parameters are known



Reconstruction for intrinsically and 

extrinsically calibrated cameras

Under assumption that the intrinsic and extrinsic parameters 

are known, the point P is computed from its projections on left 

and right camera by the intersection of lines L1 and L2

P

p
p

L1



Reconstruction by triangulation (1)

• Vectors L1 and L2 can be computed from the image points Pl 

and Pr  respectively (intrinsic parameters are known). 

• Vectors L1 and L2 are expressed in their respective reference 

frames

• To compute the intersection vectors L1 and L2 must be 

expressed in the same reference frame
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Reconstruction by triangulation (2)
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• To express L2 into the same reference as L1, L2 must be rotated 

by R-1 and translated by T (where R and T are the extrinsic 

parameters of the stereo system)



Reconstruction by triangulation (3)

• Since parameters and image locations are known only 

approximately , the two rays will not actually intersect in the space

•Their intersection can only be estimated as the point of minimum

distance of both rays 
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Reconstruction by triangulation (4)

• If vector W is assumed to be perpendicular to L1 and L2, the 

problem reduces to determining the midpoint of the segment 

parallel to vector W that joins L1 and L2
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equations



Relations between the parameters 

of a stereo system 
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Assuming that:

• the intrinsic parameters are known, and  

• n point correspondences are given

the Fundamental  Matrix (F) can be computed up to an unknown 

scaling factor (remember the Eight Point Algorithm results in an

homogeneous linear system)n and the Essential  Matrix (E) 

obtained by the equation:
1

l

T1

r ME)M(F
−−=

As the Essential matrix is known up to a scaling factor, 3D points 
can  not determined unambiguosly.

Where Ml  and Mr   - matrix for the intrinsic camera parameters

Reconstruction for intrinsically 

calibrated cameras (1)
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The matrix E depends on the geometric parameters R and T of the 

stereo system and is written:

whit
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so that dividing the entries of the essential matrix by
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is equivalent to normalizing the length of translation vector to unit

Reconstruction for intrinsically 

calibrated cameras (2)
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Using this normalization

and components of the 

translation vector (T) can be 

computed up to sign and 

rotation matrix determined
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and equation (1) can be rewritten
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For the complete solution see:   Introductory techniques for 3D 
Computer Vision, Emanuele Trucco e Alessandro Verri. Prentice Hall. 
1998, section 7.4

Reconstruction for intrinsically 

calibrated cameras (3)
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Reconstruction for intrinsically 

calibrated cameras (4)
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Reconstruction for intrinsically 

calibrated cameras (5)
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Reconstruction for intrinsically 

calibrated cameras (6)



Assuming that:

•n point correspondences are given

the Fundamental  Matrix (F) can be computed up to an unknown 

scaling factor

As the matrices Ml  and Mr   for the intrinsic camera parameters are 

unknown the matrix E can`t recovered from the equation:

1

l

T1

r ME)M(F
−−=

And the points in 3D space can  only be  determined up to a 

projective transformation H 

Reconstruction for uncalibrated 

cameras (1)



Reconstruction for uncalibrated 

cameras (2)
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Reconstruction for uncalibrated 

cameras (3)



Reconstruction for uncalibrated 

cameras (4)
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Reconstruction for uncalibrated 

cameras (5)
Given a point in space in homogeneous 

coordinate (x,y,z,w) and its image under 

a projective transform (x',y',z',w'), a 

projective transform has the following 

form: 
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Reconstruction for uncalibrated 

cameras (6)
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Reconstruction for uncalibrated 

cameras (7)
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The projective transformation can be 

estimated if the coordinates of five 3D 

points are known and the object 

reconstructed up to a scaling factor

For the complete solution see:   Introductory techniques for 3D 
Computer Vision, Emanuele Trucco e Alessandro Verri. Prentice Hall. 
1998, section 7.4
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