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1 Introduction 

• Cellular automata are idealizations of physical systems where time and space are 

discrete and the physical quantities, or cellular states, can assume a finite set of 

values. 

• The transition rules can be seen as an expression of a microscopic dynamics that 

leads to a desired macroscopic behavior (FRISCH et al., 1986). 

• The existence of a regular lattice, a well-defined neighborhood, a transition rule 

and an initial state for the cells in the lattice, taken from a finite set of possible 

states, gives rise to the cellular automata mathematical model. 

• The transition rule is a function that depends on the states of the neighboring cells 

and which leads each cell to the next state at each time step, synchronously or 

asynchronously (SCHÖNFISCH & DE ROOS, 1999) with the other ones in the lattice. 

So, each cell state is a fixed function of its previous state and of the previous state 

of the neighboring cells. 
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• The dimension of the lattice will certainly depend on the spatial dimension of the 

physical phenomenon under investigation. In the literature, we can find one-

dimensional (TOMASSINI & PERRENOUD, 2001), two-dimensional (RABINO & 

LAGHI, 2002), and three-dimensional (BASANTA et al., 2004) lattices. 

• The neighborhood of each cell is previously defined and is generally assumed to 

have the same shape for each cell in the lattice, even in the case of non-uniform 

cellular automata. Three usually adopted two-dimensional configurations for the 

neighborhood are illustrated in Figure 1. 

 

 

 

 

 

Figure 1 – Examples of neighborhoods for a two-dimensional lattice: (a) Moore; (b) von 

Neumann; and (c) Hexagonal. 

(a) (c) (b) 
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• The simplest version of cellular automata is the binary-state one-dimensional one, 

in which each cell can only assume the values 0 or 1. Examples of the 

neighborhood of this CA are presented in Figure 2. 

 

 

 

 

 

Figure 2 – One-dimensional lattice: (a) Neighborhood with radius 1; and (b) Neighborhood 

with radius 2. 

 

• In the one-dimensional lattice, the number of cells involved in the updating of the 

state of a given cell is 2*Radius+1. For the binary-state one-dimensional cellular 

automata, the neighborhood can assume 
1*22 Radius
 possible configurations, and 

(a) Radius 1 (b) Radius 2 
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the number of transition rules for a given cell is 
1*222

Radius

. This is the size of the 

search space for the simplest cellular automata that can be conceived, supposing 

that each cell will obey the same transition rule. 

• For the non-uniform case, the cardinality of the set of all possible transition rules 

is given by  nRadius 1*222


, where n is the number of cells in the one-dimensional 

lattice. 

2 Non-uniform cellular automata 

• Non-uniform (NunCA) or inhomogeneous cellular automata (SIPPER, 1994) are 

spatio-temporal models for dynamical systems in which space and time are 

discrete, and there is a distinct transition rule for each cell, with a finite number of 

states. The cells are in a regular lattice and the transition from one state to another 

is performed synchronously. 
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• The next state of a given cell will then be provided by a local and fixed transition 

rule that associates its current state and the current state of the neighbouring cells 

with the next state. 

• The neighbourhood could also be specific for each cell, but here will be 

considered the same, except for the cells at the frontiers of the regular lattice. So, 

the only distinct feature between NunCA and the traditional uniform cellular 

automata (CA) (TOFFOLI & MARGOLUS, 1987, VON NEUMANN, 1961) is the 

adoption of a specific transition rule for each cell instead of a single transition rule 

for all the cells in the lattice. 

• Both CA and NunCA have been applied to a wide variety of scenarios, including 

(but not restricted to): 

✓ CA: physical systems modeling (CHOPARD, 1998; NAGEL & HERRMANN, 

1993), ecological studies (COLLASANTI & GRIME, 1993; JAI, 1999), 

computational applications (TOFFOLI & MARGOLUS, 1987; WOLFRAM, 1994); 
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✓ NunCA: VLSI circuit design (KAGARIS & TRAGOUDAS, 2001; TSALIDES, 

1990), computational applications (SIPPER, 1994; TOMASSINI & PERRENOUD, 

2001; TOMASSINI et al., 1999; VASSILEV et al., 1999). 

• NunCA has one predominant advantage over CA, i.e. the greater flexibility to 

define the transition rules, which can be explored to produce dynamic behaviors 

not (easily) obtainable by means of a single rule. 

• So, the possibility of updating the state of each cell following local and distinct 

rules can be explored to conceive synthetic universes from simple rules, with the 

emergence of complex spatio-temporal structures. 

• Instead of investigating and/or exploring the computational power of NunCA, the 

purpose here is to provide a systematic procedure to achieve a mathematical 

model for the NunCA framework capable of reproducing a sequence of 

spatio-temporal behaviors. Two scenarios will be considered: 
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1. For one-dimensional lattices: given a desired sequence of state transitions, 

the aim is to determine one of the possibly multiple set of fixed, though 

distinct, rules that is capable of driving the sequential transition of states 

according to the desired profile. This has already been performed in the case 

of uniform CA (MITCHELL et al., 1993), and the main purpose here is to 

indicate that some profiles cannot be achieved when a single transition rule 

is defined for all cells in the lattice. In such a case, only the NunCA 

framework can fulfill the task. 

2. For two-dimensional lattices: given the initial and final states of each cell, 

the aim is to determine one of the possibly multiple set of fixed, though 

distinct, rules that is capable of driving the sequential transition of states 

from the initial to the final one, with the final state as a stationary 

configuration. The trajectory between the initial and final states, denoted 

transitory phase, can be of interest or not. A case study will be considered in 
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which the transitory phase is left unrestricted, and another case study will 

impose some restrictive conditions to the intermediary states. 

• The great challenge of such a formulation is the necessity of defining the whole 

set of transition rules, one rule for each cell in the regular lattice. The necessity of 

as many rules as cells has precluded a wider dissemination of similar approaches. 

In what follows, we will present the necessary steps toward the synthesis of an 

evolutionary design of these transition rules. 

• After a successful determination of an appropriate set of transition rules, the 

interpretation of the resulting NunCA may take place, even though the obtained 

set of rules is generally just one of the possible solutions. 

• The interpretation is easier in the case of one-dimensional lattices, because the 

states are binary, but relevant information can be extracted from the resulting two-

dimensional lattices too, where multivalued states are considered. 
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• The use of multivalued states can be interpreted as a quantization of the 

continuous state case, where the NunCA would then be equivalent to a non-

uniform coupled map lattice (KANEKO, 1993) and a discrete-time cellular neural 

network (CHUA & YANG, 1988). 

3 The motivation for non-uniform lattices 

• Every dynamical event whose description involves the evolution of variables in 

time and space is called a spatio-temporal phenomenon. Examples of these 

dynamics include dispersion, expansion, contraction, and local interrelation of 

groups of elements, and can be associated with living and other physical 

phenomena in nature (CAMAZINE et al., 2001; CHOPARD, 1998; NICOLIS & 

PRIGOGINE, 1977). 

• Most of these spatio-temporal systems are continuous in space and time. However, 

a computational model will necessarily require the quantization of space, in the 
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form of regular lattices, and the use of a discrete-time dynamics to update the state 

of the cells in the lattice, denoted a transition rule. 

• The use of cellular automata models is generally associated with one of two 

purposes: 

1. Classification of the spatio-temporal behavior; 

2. Reproduction of a predefined behavior from the simplest transition rule 

that can be defined. 

• The second approach is the one of interest here and has been explored in the 

literature in distinct ways, as: 

✓ An architecture for fast and universal computation (WOLFRAM, 1994); 

✓ An alternative paradigm for the investigation of computational complexity 

(WOLFRAM, 1994); 

✓ Pattern recognition tools (MAJI et al., 2002); 

✓ Modeling devices (GREGORIO & SERRA, 1999). 
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• Our primary concern here is the last item: cellular automata as powerful models 

of actual physical phenomena. The main motivation is the possibility of 

reproducing specific behaviors in space and time, always based on simple 

transition rules. 

• GUTOWITZ & LANGTON (1988) have pointed out that lattices with interesting 

behavior are the ones that achieve a tradeoff between high-level and low-level of 

dependence among neighboring cells. 

• With distinct transition rules for each cell, the level of inter-cell dependence may 

be established with more flexibility, when compared with the existence of a single 

transition rule to be followed by every cell. In fact, a uniform CA can be 

interpreted as a particular case of a non-uniform CA, here denoted NunCA. 

• To achieve a proper tradeoff capable of reproducing the desired spatio-temporal 

behavior, powerful search devices should be conceived to determine a proper set 

of transition rules. 
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• Evolutionary computation has already been demonstrated to provide effective 

procedures to optimize parameters of a single transition rule in uniform and 

binary-state cellular automata (Mitchell et al., 1993). 

• That is why we are going to extend the already proposed evolutionary approaches 

to search for an optimal set of parameters for each transition rule in the non-

uniform case. 

• As a transition rule of a given cell will represent a local binding to the neighboring 

cells, multiple equivalent transition rules can be capable of reproducing the same 

global behavior, so that we will be interested in finding just one of them. 

4 Formalism for non-uniform bidimensional cellular automata 

• In the case of a two-dimensional nm lattice, only von Neumann neighborhoods 

will be implemented, with multivalued states. Only non-uniform cellular automata 
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will be considered, and the definition of the transition rule is based on the notation 

of Figure 3. 

 

(i,j) (i,j1) (i,j+1) 

(i1,j) 

(i+1,j) 

a(i,j)(i,j+1) 

a(i1,j)(i,j) a(i,j)(i1,j) 

a(i,j+1)(i,j) 

a(i+1,j)(i,j) a(i,j)(i+1,j) 

a(i,j)(i,j1) 

a(i,j1)(i,j) 

 

Figure 3 – Parameters of the transition rules. 
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• The spatio-temporal behavior will be associated with the flux of some material 

from cell to cell, according to the von Neumann neighborhood. The state of each 

cell is the concentration of that material and the set of four parameter values 

            jijijijijijijiji aaaa ,1,1,,,1,1,, ,,,   defines the amount that will be 

transferred from cell (i,j) to cell (k,p), where the indices k and p are defined 

according to the corresponding neighbor cell. 

• Being interpreted as rate of flux, the following restrictions are imposed: 

✓             0;0;0;0 ,1,1,,,1,1,,   jijijijijijijiji aaaa ; 

✓             1,1,1,,,1,1,,   jijijijijijijiji aaaa ; 

✓    0,, pkjia  when (k,p) is an absent neighbor, motivated by the fact that 

(i,j) is a cell at the frontier of the lattice. 

• When dealing with uniform cellular automata, the following additional restrictions 

are necessary: 



IA013 – Profs. Fernando J. Von Zuben & Levy Boccato 

DCA/FEEC/Unicamp 

Tópico 6 (Parte 2) – Uniform and Non-uniform Cellular Automata 16 

✓      jijijiji aa ,1,1,,   ; 

✓      jijijiji aa ,,1,1,   ; 

✓      jijijiji aa ,1,1,,   ; 

✓      jijijiji aa ,,1,1,   . 

• So, given that )(),( tc ji  is the concentration of material at cell (i,j) in the instant t, 

the transition rule for cell (i,j) is given by: 

 

            

                    )()()()(

)(1)1(

,1,,11,,1,,1,,11,,1,

),(,1,1,,,1,1,,),(

tcatcatcatca

tcaaaatc

jijijijijijijijijijijiji

jijijijijijijijijiji








 

 

where i  {1,...,n} and j  {1,...,m}. Notice that n can be taken equal to m in a square 

lattice. When a non-toroidal neighborhood is considered, every time that i=1 and/or 

j=1, the terms involving indices i1 and j1 are null, and the same happens with the 

terms involving i+1 and j+1 when i=n and/or j=m. 
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5 Methodology for the evolutionary design 

5.1 Genetic algorithms for one-dimensional and binary-state cellular automata 

• Genetic algorithms (GAs) (GOLBERG, 1989) have been successfully applied to the 

synthesis of uniform cellular automata (MITCHELL et al., 1996; OLIVEIRA et al., 

2001). 

• Inspired by the process of natural selection, a GA maintains a population of 

candidate solutions in a genotypic representation, and mutation and recombination 

operators (GOLBERG, 1989) are then conceived to promote a proper exploration of 

the search space in a population-based mechanism. 

• Selection is performed to implement the principle of the survival of the fittest, and 

individuals with higher fitness values have a high probability of being selected to 

spread their genetic material to the next generation of individuals. 
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• The recursive application, generation after generation, of selection and genetic 

operations, together with local search procedures when available, tends to promote 

an increase in the average fitness of the population, at least in the fitness of the 

best individual at each generation. 

• Better fitness means a candidate solution with better quality. Every problem will 

have its own fitness function. 

• In one-dimensional lattices composed of n cells, each individual will be a binary 

vector describing the single transition rule, in uniform cellular automata, and the 

whole set of transition rules, in non-uniform cellular automata. In fact, the 

codification will interpret each possible configuration of the neighborhood (given 

by a sequence of 2*Radius+1 bits, where Radius is the order of the neighborhood) 

as an integer index, and this index will indicate the position of its corresponding 

next state in the transition rule. 
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Table 1 – An example of transition rule (3rd column) for a neighborhood of Radius = 1 

Configuration Index Next State 

000 0 0 

001 1 1 

010 2 1 

011 3 0 

100 4 1 

101 5 0 

110 6 0 

111 7 1 

 

• As an example, taking Radius = 1, Table 1 presents in the third column a possible 

transition rule, so that every configuration of neighborhood has an indication of 

next state, e.g. when the neighborhood achieve 100 then the next state of the cell 

under analysis will suffer a transition from 0 to 1, and for a neighborhood 010, the 

state remains the same (equal to 1). 
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• In the non-uniform case, the genetic codification of a transition rule will be given 

by a binary vector whose size is n times the size of the binary vector in the 

uniform case, because each cell can have a distinct next state for each 

configuration of the neighborhood. 

• The fitness function will be simply given by the inverse of 1 plus the Hamming 

distance between the observed evolution of states in time and the desired one. 

• When a given transition rule is capable of exactly reproducing the spatio-temporal 

behavior, then the Hamming distance will be zero and the fitness will achieve the 

maximum value. The highest the Hamming distance, the smallest the fitness value, 

so that the fitness is restricted to fit in the range (0,1]. 

• The initial condition of the automata is arbitrarily defined and is considered fixed. 

• The flowchart in Figure 4 depicts the main steps of the adopted GA. A local 

search is also applied every time a new individual is obtained. This local search 
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consists in definitely changing one of the next states suggested by the transition 

rule if this change turns to improve the overall performance of the cellular 

automata. 

Random initial population

Selection
- evaluation by fitness function

- select individuals for mating

Crossover
two parents  two offspring

Mutation

repeat
N

generations

Random initial population

Selection
- evaluation by fitness function

- select individuals for mating

Crossover
two parents  two offspring

Mutation

repeat
N

generations

 

Figure 4 – Flowchart of a Simple GA 
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5.2 Evolution strategy for two-dimensional and multivalued-state cellular 

automata: the non-uniform case 

• Evolution Strategies (ESs) (BÄCK et al., 1991; SCHWEFEL, 1981) have primarily 

been proposed to serve as a searching device for the optimization of continuous-

valued parameters in a wide variety of applications. 

• The mutation operator is the basic genetic operator and the next generation is 

obtained from the current population by means of one of two strategies: (,) or 

(+). 

• In the (,) conception, the population is composed of  individuals and  new 

individuals are generated from each one of the  ancestors. Then  individuals are 

selected solely from the offspring. 

• On the other hand, in the (+) framework, the same happens except for the way 

the  individuals are selected to compose the next generation: the ancestors and 
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the  offspring are candidates to the next generation, and the  individuals with 

the highest fitness are then selected. 

• The (1+1) is the simplest version of evolution strategy, where one parent creates 

one single offspring via Gaussian mutation. 

• Parameters of the Gaussian distribution may be evolved together with the 

individuals, incorporated into the genetic code. The recombination may be 

implemented as done in genetic algorithms, as here we have adopted uniform 

crossover (GOLDBERG, 1989). 

• In the flowchart in Figure 5, describing the basic steps of the algorithm, the 

individuals are formed by the attributes of the solution candidate and the variance 

to be used by the Gaussian mutation operator (BEYER & SCHWEFEL, 2002). Every 

time that the search space is composed of feasible and unfeasible candidate 

solutions, additional procedures should be incorporated to deal with feasibility 

issues. 
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Random initial population of  

individuals. 
(Attributes & Variances) 

Feasible 

Recombination 
of Attributes & Variances 
Creation of  individuals 

Mutation 
of Attributes & Variances 

Selection 
of new  individuals 

Evaluation  
of ’s (fitness function) 

repeat 
N 

generations 

Feasible 

Feasible 

 

Figure 5 – Flowchart for the Evolution Strategy 
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• In terms of codification of the attributes, Figure 3 indicates that, in a two-

dimensional nm lattice, each cell (i,j), i=1,...,n and j=1,...,m, will require four 

parameters in the genetic codification. So, in the NunCA framework, the size of 

the chromosome will be 4*n*m. 

• The fitness will be given by the inverse of one plus the sum of the squared 

difference between the desired final state of each cell and the obtained final state. 

When intermediary states are of concern, additional terms will be included in the 

fitness function. As in the one-dimensional lattice, here the initial condition of the 

automata is arbitrarily defined and is considered fixed. 

6 Related approaches and possible extensions 

• SIPPER (1994) proposes an evolutionary-like and local procedure to update 

transition rules for binary states, including the possibility that one cell changes the 

state of a neighbor cell and copies itself onto that neighbor cell. 



IA013 – Profs. Fernando J. Von Zuben & Levy Boccato 

DCA/FEEC/Unicamp 

Tópico 6 (Parte 2) – Uniform and Non-uniform Cellular Automata 26 

• Vacant cells, i.e. cells without a transition rule, are also accepted. However, the 

applicability was restricted to binary NunCA and requires specific operators to 

evaluate the fitness of individual rules, according to its local success, when 

applied to updating the state of its corresponding cell. Such methodology can 

hardly be directly extended to deal with global description of the intended spatio-

temporal behavior. 

• VASSILEV et al. (1999) proposed a co-evolutionary procedure to deal with 

transition rules for binary states, and the spatio-temporal event under investigation 

was global synchronization. 

• LI (1991) investigated partially and totally wiring (non-local CAs) and pointed out 

that the connection profile is decisive in the emergence of certain dynamical 

behaviors, like edge of chaos and attractors of convergent dynamics. 
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• Structurally dynamic cellular automata (SDCA) are generalizations of uniform 

and non-uniform CA such that the lattice itself is part of the optimization process 

(HILLMAN, 1995; ILACHINSKI & HALPERN, 1987). 

7 Experimental results 

• Our experiments aim to show the flexibility of the NunCA approach when 

compared to the conventional uniform CA. We are going to consider two 

scenarios: a one-dimensional lattice with binary-state cells, and a two-dimensional 

lattice with multivalued-state cells. 

• In the former case, the purpose is to reproduce a sequence of state transitions in 

time, and in the latter case the intent is to obtain a non-uniform cellular automata 

capable of converging to a predefined final state, starting from an initial state and 

having the intermediary states submitted to some restrictive conditions or not. In 

both cases, the initial condition was set arbitrarily. 
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• In the two-dimensional lattice, the transition rules admit an interpretation in terms 

of a local pattern of dispersion of a given material. This is one of the possible 

physical interpretations of the spatio-temporal dynamical model. 

• The set of binary rules for each cell in the one-dimensional CA was obtained via 

GA with a binary code (see Fig. 4), and the real values of the rules for each cell in 

the two-dimensional CA were provided by an evolution strategy (see Fig. 5). 

• The individuals in the population are transition rules, and to evaluate each 

individual the corresponding cellular automata should be implemented and 

executed along time. Every discrete instant of time is relevant in the one-

dimensional lattice, but in the two-dimensional lattice the final state may be the 

only relevant information or it may be considered together with the intermediary 

states. With the restrictions imposed to the parameter values of cell (i,j), presented 

in section 4, the dynamic of the two-dimensional non-uniform cellular automata is 

guaranteed to be convergent. 
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• The fitness function for the one-dimensional case will be given by: 

),(1

1

obtdesHamm SSSSd
F


  

where dHamm(,) is the Hamming distance between matrices SSdes and SSobt, which 

contain respectively the desired and obtained sequence of states of the one-

dimensional cellular automata. The number of columns equals the number of cells 

in the lattice, and the number of rows equals the number of state transitions along 

time. 

• Though you will see two-dimensional pictures in Figures 6, 7, 8 and 9, they are 

just the representation of matrices SSdes and SSobt, with the time evolution being 

represented by the sequence of rows. The gray (green) represents state 0 and the 

black (dark blue) corresponds to state 1. 

 

 



IA013 – Profs. Fernando J. Von Zuben & Levy Boccato 

DCA/FEEC/Unicamp 

Tópico 6 (Parte 2) – Uniform and Non-uniform Cellular Automata 30 

• On the other hand, in the two-dimensional lattice the fitness has two alternative 

expressions. When the final state is the only relevant information, the fitness 

function is expressed as follows: 
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where 
end

jic ),(  and 
end

jic ),(ˆ  are respectively the desired and the obtained final states of 

cell (i,j) in the lattice, with the state being associated with the concentration of a 

given material. 

• When intermediary states are also relevant, one possibility is to express the fitness 

function in the form: 
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where 
k

jic ),(  and 
k

jic ),(ˆ  are respectively the desired and the obtained states of cell 

(i,j) in the lattice, at instant k, and N is the number of intermediary states under 

consideration. 

• In the experiments to be presented in what follows, we will adopt an alternative 

fitness function that emphasizes the necessity of a symmetrical dispersion, so that 

cells in opposite sides of a two-dimensional lattice should have similar 

concentrations along time. The expression is given by: 
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7.1 One-dimensional lattice 

• All the results in this subsection have been obtained with a genetic algorithm. 
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7.1.1 Experiment 1: One-dimensional CA – “synchronization” 

• In the synchronization task, the objective is to alternate the one-dimensional lattice 

between states 1 and 0, so that every cell in the lattice share the same state at a 

given instant, and simultaneously change to the complementary state in the next 

instant. As already emphasized along the text, the initial configuration of states is 

arbitrary, though fixed. The Radius of the neighborhood is 1. 

• Figure 6(a) presents the results obtained with the NunCA approach, with 

Figure 6(b) depicting the set of rules for each cell in the lattice. The set of 

transition rules for each cell is represented in each column of Figure 6(b). Given 

that the neighborhood is 1, we have eight possible configurations for the binary 

states of neighbor cells, and the transition rules should indicate the next state to 

every possible configuration. Figure 7 presents the best result obtained with a 

uniform CA. Figure 7(b) shows the unique transition rule for the uniform CA, and 

Figure 7(a) indicates that the uniform CA was incapable of solving the task. 
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Figure 6 – Results for Experiment 1 using NunCA 
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• Returning to Figure 6(b), which represents a successful implementation of the 

synchronization effect, we can see that no pair of cells shares the same transition 

rule, indicating that non-uniformity is a necessity here. Notice that this set of non-

uniform transition rules may not be the only one capable of reproducing the 

desired behavior. 

7.1.2 Experiment 2: One-dimensional CA – “waves” 

• Experiment 2 consists in reproducing the temporal pattern that resembles the 

behavior of sinusoidal waves. Again, Figure 8 shows a successful performance of 

NunCA, and Figure 9 indicates that uniform CA fails to achieve the desired 

spatio-temporal behavior, because the best obtained behavior is far from the 

desired one. 

• Figure 8(b) shows that each cell is associated with a distinct transition rule, again 

a strong indication of the complexity of the task and of the flexibility inherent to 

the NunCA framework. 



IA013 – Profs. Fernando J. Von Zuben & Levy Boccato 

DCA/FEEC/Unicamp 

Tópico 6 (Parte 2) – Uniform and Non-uniform Cellular Automata 35 

 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 0 0 

? 

0 0 1 

? 

0 1 0 

? 

0 1 1 

? 

1 0 0 

? 

1 0 1 

? 

1 1 0 

? 

1 1 1 

? 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 9 10 11 12 13 

 

Figure 8 – Results for Experiment 2 using NunCA 

 
 

 

Figure 9 – Results for Experiment 2 using uniform CA 
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• In Experiment 2, using a neighborhood with Radius=2, a uniform CA gains 

enough representation power to accomplish the task that was successfully 

executed by a NunCA with Radius=1. 

7.2 Two-dimensional lattice 

• Now we will analyze some experiments involving two-dimensional lattices and 

multivalued states. The synthesis of the desired spatio-temporal behavior will now 

be implemented by an evolution strategy. 

• The motivation for such experiments is the possibility of emulating dispersion 

phenomena in a great range of applications. In Experiments 3 and 4 we adopted a 

toroidal neighborhood, i.e. right-most cell is a neighbor of the left-most one, in the 

same row, and the up-most cell is a neighbor of the bottom-most one, in the same 

column. However, in Experiments 5 and 6 cells at the frontier of the lattice can not 

promote dispersion to the outside world, so that the dispersion is restricted to 

happen in a compact two-dimensional space. 
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7.2.1 Experiment 3: Two-dimensional CA – “homogeneous distribution” 

• Experiment 3 is illustrated in Figure 10 and the purpose is to start with a 

maximum concentration of material at the cell in the centre of the lattice. The final 

convergent state will be a homogeneous distribution of concentration along the 

cells. So, if we start with 100 in the central cell of the lattice (see Figure 10(a)), 

and the lattice has a 55 dimension, the desired final concentration per cell will be 

4. 

• Here, each candidate NunCA should be put in operation and the convergence of 

the dynamics is measured by means of a threshold. When the sum of the square 

distance between two consecutive states (each term in the summation corresponds 

to a cell in the lattice) is below a predefined threshold, the convergence is detected 

and the fitness of that proposal is then evaluated. The best NunCA, obtained by 

the evolutionary search procedure based on an evolution strategy, produces the 

behavior illustrated in Figure 10 when put in operation. 
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Figure 10 – Convergence of the dynamic for Experiment 3, produced by the best evolved 

NunCA. 
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• Figure 14(a) shows the gradient of the dispersion for this experiment, extracted 

from the interpretation of the resulting set of parameters for each transition rule. 

As expected, there is no preferential direction of dispersion. Even with an 

unbalanced profile for the obtained gradient of dispersion, we have the emergence 

of a homogeneous equilibrium. 

 

7.2.2 Experiment 4: Two-dimensional CA – “contour” 

• Experiment 4 is illustrated in Figure 11. In this experiment, the objective was to 

equally distribute all the initial mass at the frontier of the lattice, so dividing the 

initial mass by 16. As a consequence, starting with 100 at the central cell, we want 

to obtain 6,25 in each of the sixteen cells at the frontier. Figure 11(d) presents the 

convergent state, indicating the ability of the best evolved NunCA to reproduce 

the desired spatio-temporal behavior. 
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Figure 11 – Convergence of the dynamic for Experiment 4, produced by the best evolved 

NunCA. 
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• Figure 14(b) shows the gradient of dispersion for this experiment. We can see that 

there is a preferential direction of dispersion pointing from the centre to the 

borders of the lattice. 

 

7.2.3 Experiment 5: Two-dimensional CA – “barrier” 

• Experiments 5 and 6 are the most complex to be considered here, and Experiment 

5 is illustrated in Figure 12. In this experiment, the purpose was to move all the 

initial mass in cell (1,1), the one at the top-left corner, to cell (5,5), the one at the 

bottom-right corner. However, there is a barrier at cells (4,2), (3,3) and (2,4), so 

that the gradual transfer of mass must be accomplished avoiding the obstacle at 

the centre of the lattice. 

• Notice that cells (4,2), (3,3) and (2,4) has no transition rule and can not receive or 

deliver any amount of mass. Figure 12 shows the result and Figure 14(c) shows 

the gradient of dispersion for this experiment. 
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Figure 12 – Convergence of the dynamic for Experiment 5, produced by the best evolved 

NunCA. 

Barrier Cells 
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• It can be inferred from Figure 14(c) that the obtained solution forces the 

dispersion to follow the path through the top-right corner only. Of course, the 

bottom-left corner could have been considered as well, and Experiment 6 will 

impose an additional restriction requiring that the dispersion be symmetrical 

between both corners. 

 

7.2.4 Experiment 6: Two-dimensional CA – “barrier with symmetrical dispersion” 

• Experiment 6 involves the same scenario already presented in Experiment 5, with 

the additional restriction of having a symmetrical dispersion along both sides of 

the barrier. Figure 13 indicates that the best evolved NunCA was capable of 

producing the intended spatio-temporal behavior, and Figure 14(d) shows the 

gradient of dispersion for this experiment. 
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Figure 13 – Convergence of the dynamic for Experiment 6, produced by the best evolved 

NunCA. 

Barrier Cells 
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Figure 14 – The gradient of dispersion throughout the lattice. (a) Experiment 3; (b) 

Experiment 4; (c) Experiment 5; and (d) Experiment 6. 
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8 Concluding Remarks 

• Non-uniform cellular automata (NunCA) have been proposed here as 

mathematical models capable of reproducing desired spatio-temporal behaviors. 

The necessity of defining one transition rule per cell in the regular lattice 

motivated the application of evolutionary algorithms, due to the impossibility of 

performing an exhaustive search. 

• Evolutionary algorithms have already been proposed to design uniform and non-

uniform cellular automata. However, none of these previous applications were 

devoted to spatio-temporal modelling using NunCA. When the purpose was the 

same, the cellular automata were taken to be uniform (MITCHELL et al., 1993). 

When the cellular automata were non-uniform, other purposes were involved in 

the evolutionary design, as the straight classification of the obtained transition 

rules according to the qualitative nature of the spatio-temporal behavior produced 

by the cells in the regular lattice (SIPPER, 1994). 
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• When the transition rules involve a binary codification, a genetic algorithm has 

been designed to properly search for a feasible solution. In this scenario, the 

cellular automata are restricted to be one-dimensional lattices, and the purpose is 

to reproduce some specific and periodic profiles along time. The increment in 

flexibility provided by the NunCA framework was demonstrated to be essential to 

allow the reproduction of the intended spatio-temporal behavior. Very simple 

profiles have been defined, and even under these favorable circumstances 

(including a fixed initial condition for the cells in the lattice) there is no uniform 

CA capable of accomplishing the task, while multiple equivalent solutions have 

been obtained with NunCA. 

• A more challenging scenario is characterized by two-dimensional lattices with 

transition rules that implement dispersion of a given material, where the state of 

each cell is associated with the concentration of material at that position in space 

and at a given instant of time. 
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• Here, the cellular automata is characterized by transition rules each one obeying a 

difference equation with 4 parameters to be independently determined, once a set 

of physical restrictions is not violated. Due to the continuous nature of the 

parameters to be optimized, an evolution strategy has been conceived. Four 

distinct experiments have been implemented, and the last two ones incorporate 

spatial restrictions to the dispersion process. The spatial restrictions may be 

interpreted as a physical barrier to the flux of material. The single objective in the 

first three experiments was to design a two-dimensional NunCA capable of 

achieving a predefined final state from a predefined initial state, no matter the 

transitory behavior between the two configurations. 

• The fourth experiment incorporates a temporal restriction associated with 

symmetrical flux, and here the intermediary states do matter, besides the initial 

and final states. 
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• The NunCA framework represents a significant increment in the computational 

demand of the design phase. However, the additional flexibility in implementing a 

distinct transition rule per cell in the regular lattice opens the possibility of 

multiple solutions and gives rise to an additional step in the investigation of means 

to reproduce spatio-temporal phenomena: the obtained transition rules for the 

NunCA can be interpreted and can be used to raise hypothetical explanations for 

complex spatio-temporal events in nature. 
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