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Principal component analysis (PCA) is a mainstay of modern data analysis - a black box that is widely used
but (sometimes) poorly understood. The goal of this paper is to dispel the magic behind this black box. This
manuscript focuses on building a solid intuition for how and why principal component analysis works. This
manuscript crystallizes this knowledge by deriving from simple intuitions, the mathematics behind PCA. This
tutorial does not shy away from explaining the ideas informally, nor does it shy away from the mathematics. The
hope is that by addressing both aspects, readers of all levels will be able to gain a better understanding of PCA as
well as the when, the how and the why of applying this technique.

I. INTRODUCTION

Principal component analysis (PCA) is a standard tool in mod-
ern data analysis - in diverse fields from neuroscience to com-
puter graphics - because it is a simple, non-parametric method
for extracting relevant information from confusing data sets.
With minimal effort PCA provides a roadmap for how to re-
duce a complex data set to a lower dimension to reveal the
sometimes hidden, simplified structures that often underlie it.

The goal of this tutorial is to provide both an intuitive feel for
PCA, and a thorough discussion of this topic. We will begin
with a simple example and provide an intuitive explanation
of the goal of PCA. We will continue by adding mathemati-
cal rigor to place it within the framework of linear algebra to
provide an explicit solution. We will see how and why PCA
is intimately related to the mathematical technique of singular
value decomposition (SVD). This understanding will lead us
to a prescription for how to apply PCA in the real world and an
appreciation for the underlying assumptions. My hope is that
a thorough understanding of PCA provides a foundation for
approaching the fields of machine learning and dimensional
reduction.

The discussion and explanations in this paper are informal in
the spirit of a tutorial. The goal of this paper is to educate.
Occasionally, rigorous mathematical proofs are necessary al-
though relegated to the Appendix. Although not as vital to the
tutorial, the proofs are presented for the adventurous reader
who desires a more complete understanding of the math. My
only assumption is that the reader has a working knowledge
of linear algebra. My goal is to provide a thorough discussion
by largely building on ideas from linear algebra and avoiding
challenging topics in statistics and optimization theory (but
see Discussion). Please feel free to contact me with any sug-
gestions, corrections or comments.

⇤Electronic address: shlens@salk.edu

II. MOTIVATION: A TOY EXAMPLE

Here is the perspective: we are an experimenter. We are trying
to understand some phenomenon by measuring various quan-
tities (e.g. spectra, voltages, velocities, etc.) in our system.
Unfortunately, we can not figure out what is happening be-
cause the data appears clouded, unclear and even redundant.
This is not a trivial problem, but rather a fundamental obstacle
in empirical science. Examples abound from complex sys-
tems such as neuroscience, web indexing, meteorology and
oceanography - the number of variables to measure can be
unwieldy and at times even deceptive, because the underlying
relationships can often be quite simple.

Take for example a simple toy problem from physics dia-
grammed in Figure 1. Pretend we are studying the motion
of the physicist’s ideal spring. This system consists of a ball
of mass m attached to a massless, frictionless spring. The ball
is released a small distance away from equilibrium (i.e. the
spring is stretched). Because the spring is ideal, it oscillates
indefinitely along the x-axis about its equilibrium at a set fre-
quency.

This is a standard problem in physics in which the motion
along the x direction is solved by an explicit function of time.
In other words, the underlying dynamics can be expressed as
a function of a single variable x.

However, being ignorant experimenters we do not know any
of this. We do not know which, let alone how many, axes
and dimensions are important to measure. Thus, we decide to
measure the ball’s position in a three-dimensional space (since
we live in a three dimensional world). Specifically, we place
three movie cameras around our system of interest. At 120 Hz
each movie camera records an image indicating a two dimen-
sional position of the ball (a projection). Unfortunately, be-
cause of our ignorance, we do not even know what are the real
x, y and z axes, so we choose three camera positions~a,~b and~

c

at some arbitrary angles with respect to the system. The angles
between our measurements might not even be 90o! Now, we
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camera A camera B camera C

FIG. 1 A toy example. The position of a ball attached to an oscillat-
ing spring is recorded using three cameras A, B and C. The position
of the ball tracked by each camera is depicted in each panel below.

record with the cameras for several minutes. The big question
remains: how do we get from this data set to a simple equation

of x?

We know a-priori that if we were smart experimenters, we
would have just measured the position along the x-axis with
one camera. But this is not what happens in the real world.
We often do not know which measurements best reflect the
dynamics of our system in question. Furthermore, we some-
times record more dimensions than we actually need.

Also, we have to deal with that pesky, real-world problem of
noise. In the toy example this means that we need to deal
with air, imperfect cameras or even friction in a less-than-ideal
spring. Noise contaminates our data set only serving to obfus-
cate the dynamics further. This toy example is the challenge

experimenters face everyday. Keep this example in mind as
we delve further into abstract concepts. Hopefully, by the end
of this paper we will have a good understanding of how to
systematically extract x using principal component analysis.

III. FRAMEWORK: CHANGE OF BASIS

The goal of principal component analysis is to identify the
most meaningful basis to re-express a data set. The hope is
that this new basis will filter out the noise and reveal hidden
structure. In the example of the spring, the explicit goal of
PCA is to determine: “the dynamics are along the x-axis.” In
other words, the goal of PCA is to determine that x̂, i.e. the
unit basis vector along the x-axis, is the important dimension.

Determining this fact allows an experimenter to discern which
dynamics are important, redundant or noise.

A. A Naive Basis

With a more precise definition of our goal, we need a more
precise definition of our data as well. We treat every time
sample (or experimental trial) as an individual sample in our
data set. At each time sample we record a set of data consist-
ing of multiple measurements (e.g. voltage, position, etc.). In
our data set, at one point in time, camera A records a corre-
sponding ball position (x

A

,y
A

). One sample or trial can then
be expressed as a 6 dimensional column vector

~
X =

2

666664

x

A

y

A

x

B

y

B

x

C

y

C

3

777775

where each camera contributes a 2-dimensional projection of
the ball’s position to the entire vector ~

X . If we record the ball’s
position for 10 minutes at 120 Hz, then we have recorded 10⇥
60⇥120 = 72000 of these vectors.

With this concrete example, let us recast this problem in ab-
stract terms. Each sample ~

X is an m-dimensional vector,
where m is the number of measurement types. Equivalently,
every sample is a vector that lies in an m-dimensional vec-
tor space spanned by some orthonormal basis. From linear
algebra we know that all measurement vectors form a linear
combination of this set of unit length basis vectors. What is
this orthonormal basis?

This question is usually a tacit assumption often overlooked.
Pretend we gathered our toy example data above, but only
looked at camera A. What is an orthonormal basis for (x

A

,y
A

)?
A naive choice would be {(1,0),(0,1)}, but why select this
basis over {(

p
2

2 ,
p

2
2 ),(�

p
2

2 , �
p

2
2 )} or any other arbitrary rota-

tion? The reason is that the naive basis reflects the method we

gathered the data. Pretend we record the position (2,2). We
did not record 2

p
2 in the (

p
2

2 ,
p

2
2 ) direction and 0 in the per-

pendicular direction. Rather, we recorded the position (2,2)
on our camera meaning 2 units up and 2 units to the left in our
camera window. Thus our original basis reflects the method
we measured our data.

How do we express this naive basis in linear algebra? In the
two dimensional case, {(1,0),(0,1)} can be recast as individ-
ual row vectors. A matrix constructed out of these row vectors
is the 2⇥2 identity matrix I. We can generalize this to the m-
dimensional case by constructing an m⇥m identity matrix

B =

2

664

b

1

b

2

...
b

m

3

775 =

2

664

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

3

775 = I
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where each row is an orthornormal basis vector b

i

with m

components. We can consider our naive basis as the effective
starting point. All of our data has been recorded in this basis
and thus it can be trivially expressed as a linear combination
of {b

i

}.

B. Change of Basis

With this rigor we may now state more precisely what PCA
asks: Is there another basis, which is a linear combination of

the original basis, that best re-expresses our data set?

A close reader might have noticed the conspicuous addition of
the word linear. Indeed, PCA makes one stringent but power-
ful assumption: linearity. Linearity vastly simplifies the prob-
lem by restricting the set of potential bases. With this assump-
tion PCA is now limited to re-expressing the data as a linear

combination of its basis vectors.

Let X be the original data set, where each column is a single
sample (or moment in time) of our data set (i.e. ~

X). In the toy
example X is an m⇥ n matrix where m = 6 and n = 72000.
Let Y be another m⇥ n matrix related by a linear transfor-
mation P. X is the original recorded data set and Y is a new
representation of that data set.

PX = Y (1)

Also let us define the following quantities.1

• p

i

are the rows of P

• x

i

are the columns of X (or individual ~
X).

• y

i

are the columns of Y.

Equation 1 represents a change of basis and thus can have
many interpretations.

1. P is a matrix that transforms X into Y.

2. Geometrically, P is a rotation and a stretch which again
transforms X into Y.

3. The rows of P, {p

1

, . . . ,p
m

}, are a set of new basis vec-
tors for expressing the columns of X.

The latter interpretation is not obvious but can be seen by writ-

1 In this section x

i

and y

i

are column vectors, but be forewarned. In all other
sections x

i

and y

i

are row vectors.

ing out the explicit dot products of PX.

PX =

2

64
p

1

...
p

m

3

75
⇥

x

1

· · · x

n

⇤

Y =

2

64
p

1

·x
1

· · · p

1

·x
n

...
. . .

...
p

m

·x
1

· · · p

m

·x
n

3

75

We can note the form of each column of Y.

y

i

=

2

64
p

1

·x
i

...
p

m

·x
i

3

75

We recognize that each coefficient of y

i

is a dot-product of
x

i

with the corresponding row in P. In other words, the j

th

coefficient of y

i

is a projection on to the j

th row of P. This is
in fact the very form of an equation where y

i

is a projection
on to the basis of {p

1

, . . . ,p
m

}. Therefore, the rows of P are a
new set of basis vectors for representing of columns of X.

C. Questions Remaining

By assuming linearity the problem reduces to finding the ap-
propriate change of basis. The row vectors {p

1

, . . . ,p
m

} in
this transformation will become the principal components of
X. Several questions now arise.

• What is the best way to re-express X?

• What is a good choice of basis P?

These questions must be answered by next asking ourselves
what features we would like Y to exhibit. Evidently, addi-
tional assumptions beyond linearity are required to arrive at
a reasonable result. The selection of these assumptions is the
subject of the next section.

IV. VARIANCE AND THE GOAL

Now comes the most important question: what does best ex-

press the data mean? This section will build up an intuitive
answer to this question and along the way tack on additional
assumptions.

A. Noise and Rotation

Measurement noise in any data set must be low or else, no
matter the analysis technique, no information about a signal
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FIG. 2 Simulated data of (x,y) for camera A. The signal and noise
variances s2

signal

and s2
noise

are graphically represented by the two
lines subtending the cloud of data. Note that the largest direction
of variance does not lie along the basis of the recording (x

A

,y
A

) but
rather along the best-fit line.

can be extracted. There exists no absolute scale for noise but
rather all noise is quantified relative to the signal strength. A
common measure is the signal-to-noise ratio (SNR), or a ratio
of variances s2,

SNR =
s2

signal

s2
noise

.

A high SNR (� 1) indicates a high precision measurement,
while a low SNR indicates very noisy data.

Let’s take a closer examination of the data from camera
A in Figure 2. Remembering that the spring travels in a
straight line, every individual camera should record motion in
a straight line as well. Therefore, any spread deviating from
straight-line motion is noise. The variance due to the signal
and noise are indicated by each line in the diagram. The ratio
of the two lengths measures how skinny the cloud is: possibil-
ities include a thin line (SNR� 1), a circle (SNR = 1) or even
worse. By positing reasonably good measurements, quantita-
tively we assume that directions with largest variances in our
measurement space contain the dynamics of interest. In Fig-
ure 2 the direction with the largest variance is not x̂

A

= (1,0)
nor ŷ

A

= (0,1), but the direction along the long axis of the
cloud. Thus, by assumption the dynamics of interest exist
along directions with largest variance and presumably high-
est SNR.

Our assumption suggests that the basis for which we are
searching is not the naive basis because these directions (i.e.
(x

A

,y
A

)) do not correspond to the directions of largest vari-
ance. Maximizing the variance (and by assumption the SNR)
corresponds to finding the appropriate rotation of the naive
basis. This intuition corresponds to finding the direction indi-
cated by the line s2

signal

in Figure 2. In the 2-dimensional case
of Figure 2 the direction of largest variance corresponds to the
best-fit line for the data cloud. Thus, rotating the naive basis
to lie parallel to the best-fit line would reveal the direction of
motion of the spring for the 2-D case. How do we generalize
this notion to an arbitrary number of dimensions? Before we
approach this question we need to examine this issue from a
second perspective.

low redundancy high redundancy

r1

r2

r1

r2

r1

r2

FIG. 3 A spectrum of possible redundancies in data from the two
separate measurements r1 and r2. The two measurements on the
left are uncorrelated because one can not predict one from the other.
Conversely, the two measurements on the right are highly correlated
indicating highly redundant measurements.

B. Redundancy

Figure 2 hints at an additional confounding factor in our data
- redundancy. This issue is particularly evident in the example
of the spring. In this case multiple sensors record the same
dynamic information. Reexamine Figure 2 and ask whether
it was really necessary to record 2 variables. Figure 3 might
reflect a range of possibile plots between two arbitrary mea-
surement types r1 and r2. The left-hand panel depicts two
recordings with no apparent relationship. Because one can not
predict r1 from r2, one says that r1 and r2 are uncorrelated.

On the other extreme, the right-hand panel of Figure 3 de-
picts highly correlated recordings. This extremity might be
achieved by several means:

• A plot of (x
A

,x
B

) if cameras A and B are very nearby.

• A plot of (x
A

, x̃
A

) where x

A

is in meters and x̃

A

is in
inches.

Clearly in the right panel of Figure 3 it would be more mean-
ingful to just have recorded a single variable, not both. Why?
Because one can calculate r1 from r2 (or vice versa) using the
best-fit line. Recording solely one response would express the
data more concisely and reduce the number of sensor record-
ings (2! 1 variables). Indeed, this is the central idea behind
dimensional reduction.

C. Covariance Matrix

In a 2 variable case it is simple to identify redundant cases by
finding the slope of the best-fit line and judging the quality of
the fit. How do we quantify and generalize these notions to
arbitrarily higher dimensions? Consider two sets of measure-
ments with zero means

A = {a1,a2, . . . ,an

} , B = {b1,b2, . . . ,bn

}



5

where the subscript denotes the sample number. The variance
of A and B are individually defined as,

s2
A

=
1
n

Â
i

a

2
i

, s2
B

=
1
n

Â
i

b

2
i

The covariance between A and B is a straight-forward gener-
alization.

covariance o f A and B⌘ s2
AB

=
1
n

Â
i

a

i

b

i

The covariance measures the degree of the linear relationship
between two variables. A large positive value indicates pos-
itively correlated data. Likewise, a large negative value de-
notes negatively correlated data. The absolute magnitude of
the covariance measures the degree of redundancy. Some ad-
ditional facts about the covariance.

• s
AB

is zero if and only if A and B are uncorrelated (e.g.
Figure 2, left panel).

• s2
AB

= s2
A

if A = B.

We can equivalently convert A and B into corresponding row
vectors.

a = [a1 a2 . . . a

n

]
b = [b1 b2 . . . b

n

]

so that we may express the covariance as a dot product matrix
computation.2

s2
ab

⌘ 1
n

ab

T (2)

Finally, we can generalize from two vectors to an arbitrary
number. Rename the row vectors a and b as x

1

and x

2

, respec-
tively, and consider additional indexed row vectors x

3

, . . . ,x
m

.
Define a new m⇥n matrix X.

X =

2

64
x

1

...
x

m

3

75

One interpretation of X is the following. Each row of X corre-
sponds to all measurements of a particular type. Each column

of X corresponds to a set of measurements from one particular
trial (this is ~

X from section 3.1). We now arrive at a definition
for the covariance matrix C

X

.

C

X

⌘ 1
n

XX

T .

2 Note that in practice, the covariance s2
AB

is calculated as 1
n�1 Â

i

a

i

b

i

. The
slight change in normalization constant arises from estimation theory, but
that is beyond the scope of this tutorial.

Consider the matrix C

X

= 1
n

XX

T . The i j

th element of C

X

is the dot product between the vector of the i

th measurement
type with the vector of the j

th measurement type. We can
summarize several properties of C

X

:

• C

X

is a square symmetric m⇥m matrix (Theorem 2 of
Appendix A)

• The diagonal terms of C

X

are the variance of particular
measurement types.

• The off-diagonal terms of C

X

are the covariance be-
tween measurement types.

C

X

captures the covariance between all possible pairs of mea-
surements. The covariance values reflect the noise and redun-
dancy in our measurements.

• In the diagonal terms, by assumption, large values cor-
respond to interesting structure.

• In the off-diagonal terms large magnitudes correspond
to high redundancy.

Pretend we have the option of manipulating C

X

. We will sug-
gestively define our manipulated covariance matrix C

Y

. What
features do we want to optimize in C

Y

?

D. Diagonalize the Covariance Matrix

We can summarize the last two sections by stating that our
goals are (1) to minimize redundancy, measured by the mag-
nitude of the covariance, and (2) maximize the signal, mea-
sured by the variance. What would the optimized covariance
matrix C

Y

look like?

• All off-diagonal terms in C

Y

should be zero. Thus, C

Y

must be a diagonal matrix. Or, said another way, Y is
decorrelated.

• Each successive dimension in Y should be rank-ordered
according to variance.

There are many methods for diagonalizing C

Y

. It is curious to
note that PCA arguably selects the easiest method: PCA as-
sumes that all basis vectors {p

1

, . . . ,p
m

} are orthonormal, i.e.
P is an orthonormal matrix. Why is this assumption easiest?

Envision how PCA works. In our simple example in Figure 2,
P acts as a generalized rotation to align a basis with the axis
of maximal variance. In multiple dimensions this could be
performed by a simple algorithm:

1. Select a normalized direction in m-dimensional space
along which the variance in X is maximized. Save this
vector as p

1

.
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2. Find another direction along which variance is maxi-
mized, however, because of the orthonormality condi-
tion, restrict the search to all directions orthogonal to
all previous selected directions. Save this vector as p

i

3. Repeat this procedure until m vectors are selected.

The resulting ordered set of p’s are the principal components.

In principle this simple algorithm works, however that would
bely the true reason why the orthonormality assumption is ju-
dicious. The true benefit to this assumption is that there exists
an efficient, analytical solution to this problem. We will dis-
cuss two solutions in the following sections.

Notice what we gained with the stipulation of rank-ordered
variance. We have a method for judging the importance of
the principal direction. Namely, the variances associated with
each direction p

i

quantify how “principal” each direction is
by rank-ordering each basis vector p

i

according to the corre-
sponding variances.We will now pause to review the implica-
tions of all the assumptions made to arrive at this mathemati-
cal goal.

E. Summary of Assumptions

This section provides a summary of the assumptions be-
hind PCA and hint at when these assumptions might perform
poorly.

I. Linearity

Linearity frames the problem as a change of ba-
sis. Several areas of research have explored how
extending these notions to nonlinear regimes (see
Discussion).

II. Large variances have important structure.

This assumption also encompasses the belief that
the data has a high SNR. Hence, principal compo-
nents with larger associated variances represent
interesting structure, while those with lower vari-
ances represent noise. Note that this is a strong,
and sometimes, incorrect assumption (see Dis-
cussion).

III. The principal components are orthogonal.

This assumption provides an intuitive simplifica-
tion that makes PCA soluble with linear algebra
decomposition techniques. These techniques are
highlighted in the two following sections.

We have discussed all aspects of deriving PCA - what remain
are the linear algebra solutions. The first solution is some-
what straightforward while the second solution involves un-
derstanding an important algebraic decomposition.

V. SOLVING PCA USING EIGENVECTOR DECOMPOSITION

We derive our first algebraic solution to PCA based on an im-
portant property of eigenvector decomposition. Once again,
the data set is X, an m⇥ n matrix, where m is the number of
measurement types and n is the number of samples. The goal
is summarized as follows.

Find some orthonormal matrix P in Y = PX such
that C

Y

⌘ 1
n

YY

T is a diagonal matrix. The rows
of P are the principal components of X.

We begin by rewriting C

Y

in terms of the unknown variable.

C

Y

=
1
n

YY

T

=
1
n

(PX)(PX)T

=
1
n

PXX

T

P

T

= P(
1
n

XX

T )PT

C

Y

= PC

X

P

T

Note that we have identified the covariance matrix of X in the
last line.

Our plan is to recognize that any symmetric matrix A is diag-
onalized by an orthogonal matrix of its eigenvectors (by The-
orems 3 and 4 from Appendix A). For a symmetric matrix A

Theorem 4 provides A = EDE

T , where D is a diagonal matrix
and E is a matrix of eigenvectors of A arranged as columns.3

Now comes the trick. We select the matrix P to be a matrix

where each row p

i

is an eigenvector of

1
n

XX

T

. By this selec-
tion, P⌘ E

T. With this relation and Theorem 1 of Appendix
A (P�1 = P

T ) we can finish evaluating C

Y

.

C

Y

= PC

X

P

T

= P(ET

DE)PT

= P(PT

DP)PT

= (PP

T )D(PP

T )
= (PP

�1)D(PP

�1)
C

Y

= D

It is evident that the choice of P diagonalizes C

Y

. This was
the goal for PCA. We can summarize the results of PCA in the
matrices P and C

Y

.

3 The matrix A might have r  m orthonormal eigenvectors where r is the
rank of the matrix. When the rank of A is less than m, A is degenerate or all
data occupy a subspace of dimension r  m. Maintaining the constraint of
orthogonality, we can remedy this situation by selecting (m� r) additional
orthonormal vectors to “fill up” the matrix E. These additional vectors
do not effect the final solution because the variances associated with these
directions are zero.
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• The principal components of X are the eigenvectors of
C

X

= 1
n

XX

T .

• The i

th diagonal value of C

Y

is the variance of X along
p

i

.

In practice computing PCA of a data set X entails (1) subtract-
ing off the mean of each measurement type and (2) computing
the eigenvectors of C

X

. This solution is demonstrated in Mat-
lab code included in Appendix B.

VI. A MORE GENERAL SOLUTION USING SVD

This section is the most mathematically involved and can be
skipped without much loss of continuity. It is presented solely
for completeness. We derive another algebraic solution for
PCA and in the process, find that PCA is closely related to
singular value decomposition (SVD). In fact, the two are so
intimately related that the names are often used interchange-
ably. What we will see though is that SVD is a more general
method of understanding change of basis.

We begin by quickly deriving the decomposition. In the fol-
lowing section we interpret the decomposition and in the last
section we relate these results to PCA.

A. Singular Value Decomposition

Let X be an arbitrary n⇥m matrix4 and X

T

X be a rank r,
square, symmetric m⇥m matrix. In a seemingly unmotivated
fashion, let us define all of the quantities of interest.

• {ˆv1, ˆv2, . . . , ˆv

r

} is the set of orthonormal m⇥ 1 eigen-
vectors with associated eigenvalues {l1,l2, . . . ,lr

} for
the symmetric matrix X

T

X.

(XT

X)ˆv

i

= l
i

ˆv

i

• s
i

⌘
p

l
i

are positive real and termed the singular val-

ues.

• { ˆu1, ˆu2, . . . , ˆu

r

} is the set of n⇥ 1 vectors defined by
ˆu

i

⌘ 1

s
i

Xˆv

i

.

The final definition includes two new and unexpected proper-
ties.

• ˆu

i

· ˆu

j

=
⇢

1 if i = j

0 otherwise

4 Notice that in this section only we are reversing convention from m⇥n to
n⇥m. The reason for this derivation will become clear in section 6.3.

• kXˆv

i

k= s
i

These properties are both proven in Theorem 5. We now have
all of the pieces to construct the decomposition. The scalar
version of singular value decomposition is just a restatement
of the third definition.

Xˆv

i

= s
i

ˆu

i

(3)

This result says a quite a bit. X multiplied by an eigen-
vector of X

T

X is equal to a scalar times another vector.
The set of eigenvectors {ˆv1, ˆv2, . . . , ˆv

r

} and the set of vec-
tors { ˆu1, ˆu2, . . . , ˆu

r

} are both orthonormal sets or bases in r-
dimensional space.

We can summarize this result for all vectors in one matrix
multiplication by following the prescribed construction in Fig-
ure 4. We start by constructing a new diagonal matrix S.

S⌘

2

666666664

s1̃
. . . 0

s
r̃

0

0 .. .
0

3

777777775

where s1̃ � s2̃ � . . .� s
r̃

are the rank-ordered set of singu-
lar values. Likewise we construct accompanying orthogonal
matrices,

V =
⇥
ˆv

˜

1

ˆv

˜

2

. . . ˆv

˜m

⇤

U =
⇥

ˆu

˜

1

ˆu

˜

2

. . . ˆu

˜n

⇤

where we have appended an additional (m� r) and (n� r) or-
thonormal vectors to “fill up” the matrices for V and U respec-
tively (i.e. to deal with degeneracy issues). Figure 4 provides
a graphical representation of how all of the pieces fit together
to form the matrix version of SVD.

XV = US
where each column of V and U perform the scalar version of
the decomposition (Equation 3). Because V is orthogonal, we
can multiply both sides by V

�1 = V

T to arrive at the final form
of the decomposition.

X = USV

T (4)

Although derived without motivation, this decomposition is
quite powerful. Equation 4 states that any arbitrary matrix X

can be converted to an orthogonal matrix, a diagonal matrix
and another orthogonal matrix (or a rotation, a stretch and a
second rotation). Making sense of Equation 4 is the subject of
the next section.

B. Interpreting SVD

The final form of SVD is a concise but thick statement. In-
stead let us reinterpret Equation 3 as

Xa = kb
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The scalar form of SVD is expressed in equation 3.
Xˆv

i

= s
i

ˆu

i

The mathematical intuition behind the construction of the matrix form is that we want to express all n scalar equations in just one
equation. It is easiest to understand this process graphically. Drawing the matrices of equation 3 looks likes the following.

We can construct three new matrices V, U and S. All singular values are first rank-ordered s1̃ � s2̃ � . . .� s
r̃

, and the corre-
sponding vectors are indexed in the same rank order. Each pair of associated vectors ˆv

i

and ˆu

i

is stacked in the i

th column along
their respective matrices. The corresponding singular value s

i

is placed along the diagonal (the ii

th position) of S. This generates
the equation XV = US, which looks like the following.

The matrices V and U are m⇥m and n⇥ n matrices respectively and S is a diagonal matrix with a few non-zero values (repre-
sented by the checkerboard) along its diagonal. Solving this single matrix equation solves all n “value” form equations.

FIG. 4 Construction of the matrix form of SVD (Equation 4) from the scalar form (Equation 3).

where a and b are column vectors and k is a scalar con-
stant. The set {ˆv

1

, ˆv

2

, . . . , ˆv

m

} is analogous to a and the set
{ ˆu

1

, ˆu

2

, . . . , ˆu

n

} is analogous to b. What is unique though is
that {ˆv

1

, ˆv

2

, . . . , ˆv

m

} and { ˆu

1

, ˆu

2

, . . . , ˆu

n

} are orthonormal sets
of vectors which span an m or n dimensional space, respec-
tively. In particular, loosely speaking these sets appear to span
all possible “inputs” (i.e. a) and “outputs” (i.e. b). Can we
formalize the view that {ˆv

1

, ˆv

2

, . . . , ˆv

n

} and { ˆu

1

, ˆu

2

, . . . , ˆu

n

}
span all possible “inputs” and “outputs”?

We can manipulate Equation 4 to make this fuzzy hypothesis
more precise.

X = USV

T

U

T

X = SV

T

U

T

X = Z

where we have defined Z ⌘ SV

T . Note that the previous
columns { ˆu

1

, ˆu

2

, . . . , ˆu

n

} are now rows in U

T . Comparing this
equation to Equation 1, { ˆu

1

, ˆu

2

, . . . , ˆu

n

} perform the same role
as { ˆ

p

1

, ˆ

p

2

, . . . , ˆ

p

m

}. Hence, U

T is a change of basis from X to
Z. Just as before, we were transforming column vectors, we
can again infer that we are transforming column vectors. The
fact that the orthonormal basis U

T (or P) transforms column
vectors means that U

T is a basis that spans the columns of X.
Bases that span the columns are termed the column space of
X. The column space formalizes the notion of what are the
possible “outputs” of any matrix.

There is a funny symmetry to SVD such that we can define a
similar quantity - the row space.

XV = SU

(XV)T = (SU)T

V

T

X

T = U

T S
V

T

X

T = Z

where we have defined Z⌘ U

TS. Again the rows of V

T (or
the columns of V) are an orthonormal basis for transforming
X

T into Z. Because of the transpose on X, it follows that V

is an orthonormal basis spanning the row space of X. The
row space likewise formalizes the notion of what are possible
“inputs” into an arbitrary matrix.

We are only scratching the surface for understanding the full
implications of SVD. For the purposes of this tutorial though,
we have enough information to understand how PCA will fall
within this framework.

C. SVD and PCA

It is evident that PCA and SVD are intimately related. Let us
return to the original m⇥ n data matrix X. We can define a
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Quick Summary of PCA

1. Organize data as an m⇥n matrix, where m is the number
of measurement types and n is the number of samples.

2. Subtract off the mean for each measurement type.

3. Calculate the SVD or the eigenvectors of the covariance.

FIG. 5 A step-by-step instruction list on how to perform principal
component analysis

new matrix Y as an n⇥m matrix.5

Y⌘ 1p
n

X

T

where each column of Y has zero mean. The choice of Y

becomes clear by analyzing Y

T

Y.

Y

T

Y =
✓

1p
n

X

T

◆
T

✓
1p
n

X

T

◆

=
1
n

XX

T

Y

T

Y = C

X

By construction Y

T

Y equals the covariance matrix of X. From
section 5 we know that the principal components of X are
the eigenvectors of C

X

. If we calculate the SVD of Y, the
columns of matrix V contain the eigenvectors of Y

T

Y = C

X

.
Therefore, the columns of V are the principal components of

X. This second algorithm is encapsulated in Matlab code in-
cluded in Appendix B.

What does this mean? V spans the row space of Y ⌘ 1p
n

X

T .
Therefore, V must also span the column space of 1p

n

X. We
can conclude that finding the principal components amounts
to finding an orthonormal basis that spans the column space

of X.6

VII. DISCUSSION

Principal component analysis (PCA) has widespread applica-
tions because it reveals simple underlying structures in com-
plex data sets using analytical solutions from linear algebra.
Figure 5 provides a brief summary for implementing PCA.

A primary benefit of PCA arises from quantifying the impor-
tance of each dimension for describing the variability of a data
set. In particular, the measurement of the variance along each

5
Y is of the appropriate n⇥m dimensions laid out in the derivation of section
6.1. This is the reason for the “flipping” of dimensions in 6.1 and Figure 4.

6 If the final goal is to find an orthonormal basis for the coulmn space of
X then we can calculate it directly without constructing Y. By symmetry
the columns of U produced by the SVD of 1p

n

X must also be the principal
components.

A B

x

y

x

y

z

θ

FIG. 6 Example of when PCA fails (red lines). (a) Tracking a per-
son on a ferris wheel (black dots). All dynamics can be described
by the phase of the wheel q, a non-linear combination of the naive
basis. (b) In this example data set, non-Gaussian distributed data and
non-orthogonal axes causes PCA to fail. The axes with the largest
variance do not correspond to the appropriate answer.

principle component provides a means for comparing the rel-
ative importance of each dimension. An implicit hope behind
employing this method is that the variance along a small num-
ber of principal components (i.e. less than the number of mea-
surement types) provides a reasonable characterization of the
complete data set. This statement is the precise intuition be-
hind any method of dimensional reduction – a vast arena of
active research. In the example of the spring, PCA identi-
fies that a majority of variation exists along a single dimen-
sion (the direction of motion x̂), eventhough 6 dimensions are
recorded.

Although PCA “works” on a multitude of real world prob-
lems, any diligent scientist or engineer must ask when does

PCA fail? Before we answer this question, let us note a re-
markable feature of this algorithm. PCA is completely non-

parametric: any data set can be plugged in and an answer
comes out, requiring no parameters to tweak and no regard for
how the data was recorded. From one perspective, the fact that
PCA is non-parametric (or plug-and-play) can be considered
a positive feature because the answer is unique and indepen-
dent of the user. From another perspective the fact that PCA
is agnostic to the source of the data is also a weakness. For
instance, consider tracking a person on a ferris wheel in Fig-
ure 6a. The data points can be cleanly described by a single
variable, the precession angle of the wheel q, however PCA
would fail to recover this variable.

A. Limits and Statistics of Dimensional Reduction

A deeper appreciation of the limits of PCA requires some con-
sideration about the underlying assumptions and in tandem,
a more rigorous description of the source of data. Gener-
ally speaking, the primary motivation behind this method is
to decorrelate the data set, i.e. remove second-order depen-
dencies. The manner of approaching this goal is loosely akin
to how one might explore a town in the Western United States:
drive down the longest road running through the town. When
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one sees another big road, turn left or right and drive down
this road, and so forth. In this analogy, PCA requires that each
new road explored must be perpendicular to the previous, but
clearly this requirement is overly stringent and the data (or
town) might be arranged along non-orthogonal axes, such as
Figure 6b. Figure 6 provides two examples of this type of data
where PCA provides unsatisfying results.

To address these problems, we must define what we consider
optimal results. In the context of dimensional reduction, one
measure of success is the degree to which a reduced repre-
sentation can predict the original data. In statistical terms,
we must define an error function (or loss function). It can
be proved that under a common loss function, mean squared
error (i.e. L2 norm), PCA provides the optimal reduced rep-
resentation of the data. This means that selecting orthogonal
directions for principal components is the best solution to pre-
dicting the original data. Given the examples of Figure 6, how
could this statement be true? Our intuitions from Figure 6
suggest that this result is somehow misleading.

The solution to this paradox lies in the goal we selected for the
analysis. The goal of the analysis is to decorrelate the data, or
said in other terms, the goal is to remove second-order depen-
dencies in the data. In the data sets of Figure 6, higher order
dependencies exist between the variables. Therefore, remov-
ing second-order dependencies is insufficient at revealing all
structure in the data.7

Multiple solutions exist for removing higher-order dependen-
cies. For instance, if prior knowledge is known about the
problem, then a nonlinearity (i.e. kernel) might be applied
to the data to transform the data to a more appropriate naive
basis. For instance, in Figure 6a, one might examine the po-
lar coordinate representation of the data. This parametric ap-
proach is often termed kernel PCA.

Another direction is to impose more general statistical defini-
tions of dependency within a data set, e.g. requiring that data
along reduced dimensions be statistically independent. This
class of algorithms, termed, independent component analysis

(ICA), has been demonstrated to succeed in many domains
where PCA fails. ICA has been applied to many areas of sig-
nal and image processing, but suffers from the fact that solu-
tions are (sometimes) difficult to compute.

Writing this paper has been an extremely instructional expe-
rience for me. I hope that this paper helps to demystify the
motivation and results of PCA, and the underlying assump-
tions behind this important analysis technique. Please send
me a note if this has been useful to you as it inspires me to
keep writing!

7 When are second order dependencies sufficient for revealing all dependen-
cies in a data set? This statistical condition is met when the first and second
order statistics are sufficient statistics of the data. This occurs, for instance,
when a data set is Gaussian distributed.

APPENDIX A: Linear Algebra

This section proves a few unapparent theorems in linear
algebra, which are crucial to this paper.

1. The inverse of an orthogonal matrix is its transpose.

Let A be an m⇥n orthogonal matrix where a

i

is the i

th column
vector. The i j

th element of A

T

A is

(AT

A)
i j

= a

i

T

a

j

=
⇢

1 i f i = j

0 otherwise

Therefore, because A

T

A = I, it follows that A

�1 = A

T .

2. For any matrix A, A

T

A and AA

T

are symmetric.

(AA

T )T = A

T T

A

T = AA

T

(AT

A)T = A

T

A

T T = A

T

A

3. A matrix is symmetric if and only if it is orthogonally

diagonalizable.

Because this statement is bi-directional, it requires a two-part
“if-and-only-if” proof. One needs to prove the forward and
the backwards “if-then” cases.

Let us start with the forward case. If A is orthogonally di-
agonalizable, then A is a symmetric matrix. By hypothesis,
orthogonally diagonalizable means that there exists some E

such that A = EDE

T , where D is a diagonal matrix and E is
some special matrix which diagonalizes A. Let us compute
A

T .

A

T = (EDE

T )T = E

T T

D

T

E

T = EDE

T = A

Evidently, if A is orthogonally diagonalizable, it must also be
symmetric.

The reverse case is more involved and less clean so it will be
left to the reader. In lieu of this, hopefully the “forward” case
is suggestive if not somewhat convincing.

4. A symmetric matrix is diagonalized by a matrix of its

orthonormal eigenvectors.

Let A be a square n⇥n symmetric matrix with associated
eigenvectors {e

1

,e
2

, . . . ,e
n

}. Let E = [e
1

e

2

. . . e

n

] where the
i

th column of E is the eigenvector e

i

. This theorem asserts that
there exists a diagonal matrix D such that A = EDE

T .

This proof is in two parts. In the first part, we see that the
any matrix can be orthogonally diagonalized if and only if
it that matrix’s eigenvectors are all linearly independent. In
the second part of the proof, we see that a symmetric matrix
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has the special property that all of its eigenvectors are not just
linearly independent but also orthogonal, thus completing our
proof.

In the first part of the proof, let A be just some matrix, not
necessarily symmetric, and let it have independent eigenvec-
tors (i.e. no degeneracy). Furthermore, let E = [e

1

e

2

. . . e

n

]
be the matrix of eigenvectors placed in the columns. Let D be
a diagonal matrix where the i

th eigenvalue is placed in the ii

th

position.

We will now show that AE = ED. We can examine the
columns of the right-hand and left-hand sides of the equation.

Left hand side : AE = [Ae

1

Ae

2

. . . Ae

n

]
Right hand side : ED = [l1e

1

l2e

2

. . . l
n

e

n

]

Evidently, if AE = ED then Ae

i

= l
i

e

i

for all i. This equa-
tion is the definition of the eigenvalue equation. Therefore,
it must be that AE = ED. A little rearrangement provides
A = EDE

�1, completing the first part the proof.

For the second part of the proof, we show that a symmetric
matrix always has orthogonal eigenvectors. For some sym-
metric matrix, let l1 and l2 be distinct eigenvalues for eigen-
vectors e

1

and e

2

.

l1e

1

· e
2

= (l1e

1

)T

e

2

= (Ae

1

)T

e

2

= e

1

T

A

T

e

2

= e

1

T

Ae

2

= e

1

T (l2e

2

)
l1e

1

· e
2

= l2e

1

· e
2

By the last relation we can equate that (l1�l2)e1

· e
2

= 0.
Since we have conjectured that the eigenvalues are in fact
unique, it must be the case that e

1

· e

2

= 0. Therefore, the
eigenvectors of a symmetric matrix are orthogonal.

Let us back up now to our original postulate that A is a sym-
metric matrix. By the second part of the proof, we know
that the eigenvectors of A are all orthonormal (we choose
the eigenvectors to be normalized). This means that E is an
orthogonal matrix so by theorem 1, E

T = E

�1 and we can
rewrite the final result.

A = EDE

T

. Thus, a symmetric matrix is diagonalized by a matrix of its
eigenvectors.

5. For any arbitrary m⇥ n matrix X, the symmetric

matrix X

T

X has a set of orthonormal eigenvectors

of {ˆv

1

, ˆv

2

, . . . , ˆv

n

} and a set of associated eigenvalues

{l
1

,l
2

, . . . ,l
n

}. The set of vectors {Xˆv

1

,Xˆv

2

, . . . ,Xˆv

n

}
then form an orthogonal basis, where each vector Xˆv

i

is of

length

p
l

i

.

All of these properties arise from the dot product of any two
vectors from this set.

(Xˆv

i

) · (Xˆv

j

) = (Xˆv

i

)T (Xˆv

j

)

= ˆv

T

i

X

T

Xˆv

j

= ˆv

T

i

(l
j

ˆv

j

)
= l

j

ˆv

i

· ˆv

j

(Xˆv

i

) · (Xˆv

j

) = l
j

d
i j

The last relation arises because the set of eigenvectors of X is
orthogonal resulting in the Kronecker delta. In more simpler
terms the last relation states:

(Xˆv

i

) · (Xˆv

j

) =
⇢

l
j

i = j

0 i 6= j

This equation states that any two vectors in the set are orthog-
onal.

The second property arises from the above equation by realiz-
ing that the length squared of each vector is defined as:

kXˆv

i

k2 = (Xˆv

i

) · (Xˆv

i

) = l
i

APPENDIX B: Code

This code is written for Matlab 6.5 (Release 13) from
Mathworks8. The code is not computationally effi-
cient but explanatory (terse comments begin with a %).

This first version follows Section 5 by examining the
covariance of the data set.

function [signals,PC,V] = pca1(data)

% PCA1: Perform PCA using covariance.

% data - MxN matrix of input data

% (M dimensions, N trials)

% signals - MxN matrix of projected data

% PC - each column is a PC

% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension

mn = mean(data,2);

data = data - repmat(mn,1,N);

% calculate the covariance matrix

covariance = 1 / (N-1) * data * data’;

% find the eigenvectors and eigenvalues

8
http://www.mathworks.com
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[PC, V] = eig(covariance);

% extract diagonal of matrix as vector

V = diag(V);

% sort the variances in decreasing order

[junk, rindices] = sort(-1*V);

V = V(rindices);

PC = PC(:,rindices);

% project the original data set

signals = PC’ * data;

This second version follows section 6 computing PCA
through SVD.

function [signals,PC,V] = pca2(data)

% PCA2: Perform PCA using SVD.

% data - MxN matrix of input data

% (M dimensions, N trials)

% signals - MxN matrix of projected data

% PC - each column is a PC

% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension

mn = mean(data,2);

data = data - repmat(mn,1,N);

% construct the matrix Y

Y = data’ / sqrt(N-1);

% SVD does it all

[u,S,PC] = svd(Y);

% calculate the variances

S = diag(S);

V = S .* S;

% project the original data

signals = PC’ * data;


