106 ‘ IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

Knowledge Processing in Control Systems

Ricardo R. Gudwin, Fernando A.C. Gomide, Member, IEEE,
Méarcio L. Andrade Netto, and Mauricio F. Magalhées

Abstract—A real time knowledge processing procedure is proposed for rule-based systems in general and control systems
applications in particular. Distinguishing features of the procedure include a mechanism for rule base compression and an inference
scheme based on matrix operators. The procedure is also amenable for schedulability analysis to provide response time warranty
An application concerning supervisory group control of elevators is also included o show the usefulness of the proposed

procedure, -

Index Terms—Atrtificial intelligence, real-time computer systems, computer control, knowledge engineering, real-time rule based

systems, knowledge representation.

1 INTRODUCTION

EAL-TIME knowledge-based or knowledge processing
R systems are playing an increasingly important role in
transportation, manufacturing, control, robotic and aero-
space systems. They are no longer limited to low-level con-
trol functions. Control, supervision, and monitoring of
complex hierarchical systems in dynamic and sometimes

unpredictable or hazardous environments are typical tasks '

of current manmade systems.

Several large real-time applications are required to oper-
ate in environments that are not fully structured. The lack
of information and uncertainty of the environment requires
the use of problem solving techniques [9]. Elevator group
control is one such application [1], [3]. There are many pos-
sible situations comprised: the stateof all elevators; existing
calls in the building; completion of previously scheduled
cars; combining new hall calls with performance criteria.
There are several possible corresponding schedules and as
new hall calls appear, the scheduled cars must be revised
‘frequently. Since entering all the possible responses
(schedules) into the computer is unfeasible, automating the
response construction process will be required. Factory
scheduling is another such application [16].

Current development in real-time artificial intelligence is
driven by a need to make knowledge-based systems work
in real-time [9] and a need to integrate knowledge-based
approaches to handle the complexities of problem-solving
behavior in control systems [2], [8].

Looney [11], [12] proposed a matrix procedure for real-
time knowledge processing considering only production
rules with one antecedent. His procedure however does not
preserve its matrix form when several antecedents are pres-
ent in a rule. Furthermore, when handling multiple antece-
dents, the procedure is difficult to analyze and to predict if

o The authors are with the Department of Computer Engineering and Indus-
trial Automation, Faculty of Electrical Engineering, State University of
Campinas (UNICAMP), Campinas, Sdo Paulo, Brazil.

E-mail: gomide@dca.fee.unicarp.br.

Manuscript received Sept. 8, 1992; revised June 23, 1994.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number K96009.

it could meet deadlines due to the chaining scheme
adopted. This is a critical issue in real-time situations.

Alternate schemes based on a network type of represen-
tation for production rules are the RETE [4] and EUREKA
[5] procedures. However, both procedures lack the predict-
ability property, which is essential in real-time applications.

More recently, Paul et al. [13] developed an approach
which integrates problem-solving methodology and archi-
tectural primitives to reduce the variance at methodology
level and at problem-solving level. Using this approach
they have shown that problem-solving and real-time tasks
coexist within a readily analyzable framework. -

The purpose of this paper is to present a real-time
knowledge processing (RTKP) procedure based on con-
junctive and disjunctive matrices and operators. -

The proposed procedure affords the setting up of the fo-
cus of attention mechanisms and guarantees its response
time. Those are important characteristics that real-time
knowledge-based systems should have. Furthermore, the
procedure structure is such that parallel implementation is
natural. Even with conventional computer architecture the
procedure can be implemented to take advantage of CPU
parallel bit operations, which may be viewed as a pseudo
parallel setting up. Although we focus on the procedure’s
propositional logic viewpoint, its extension to fuzzy logic is
immediate. Certainty factors can also be easily handled.

The proposed procedure, as opposed to [11], preserves
the general structure even when processing rules with mul-
tiple antecedents. It also allows serial, pseudo or fully paral-
lel implementations and its extended version supports
fuzzy and certainty factor reasoning. These features are not
observed in [13]. Furthermore, it differs from both ap-
proaches because the exact number of data operations in
each procedure call can be determined. Therefore, the re-
sponse time can be obtained for each change observed on
the monitored variables. Other distinguishing features are
the “horizontal expansion” and “rule base compression”
mechanisms used to define the tradeoff between memory
size and response time. Moreover, a method is provided to
avoid underutilization of relevant information and compu-

1041-4347/96$05.00 ©1996 IEEE



GUDWIN ET AL.: KNOWLEDGE PROCESSING IN CONTROL SYSTEMS

tations. Actually, the proceclure can be implemented using a
structure that avoids irrelevant information, as far as con-
trol applications are concerned.

The paper is organized as follows. The next section pres-
ents the preliminaries and the general definitions needed.
The procedure and its main features are addressed in Section
3. Methods for knowledge base analysis and manipulation
are presented in Section 4. It is also shown that alternate ver-
sions of the procedure are easily obtained to explore the char-
acteristics of the method. A tutorial example is provided in
Sectioni 5 to illustrate the idea behind the proposed proce-
dure. Section 6 addresses a discussion about real-time knowl-
edge based systems and the associated requirements and
characteristics. It is shown that the procedure developed
agrees with most of them. Next, in Section 7, an application
concerning supervisory group confrol of elevators is de-
scribed to show the usefulness of the proposed approach.
This application is a simplified version of a real world appli-
cation. Finally, Section 8 presents conclusions.

2 PRELIMINARIES AND GENERAL DEFINITIONS

A typical RTKP system acting as a direct digital control sys-
tem is shown in Fig. 1. The RTKP module is connected to
information sources and receivers. Sources may be sensors
connected to a process, human users or even computer pro-
grams in large integrated systems. Receivers can be either
actuators or human users or again computer programs. The
main idea behind this scheme is that RTKP takes informa-
tion from a system, processes this information with the
knowledge stored in it, and then outputs new information
to the system. Outputs are the control decisions. Fig. 2
shows an RTKP systern performing supervisory control
tasks. The knowledge processing task is encapsulated
within a server to guarantee temporal isolation between it
and conventional real time tasks [13], [15], [17].

KNOWLEDGE
BASE

{4

ENGINE PRC

|

Fig. 1. Typical RTKP structure in direct digital control.

PRE oo
PROCESSOR

PROCESS

Internally, RTKP is divided into four basic parts. First is a
preprocessor module responsible for the transformation of
input information into the internal representation model
used. This module is also responsible for any mathematical
treatment that should be necessary to fit the internal repre-
sentation (by making transformation of variables, for ex-
ample), as well as to preprocess task dependent knowledge.
The postprocessor module translates the internal represen-
tation model into output information in a format as re-
quired by the process. Between those two modules, there
are the inference engine and the knowledge base. The last is
the internal knowledge depository, coded in a usable for-

mat. Information provided by the preprocessor module an
knowledge base is processed by the inference engine t
generate the desired outputs.

SUPERVISORY
CONTROL
LEVEL

COMMUNICATION SYSTEM

CONTROL.
LEVEL

! -
e

PROCESS

Fig. 2. RTKP in supervisory control systems.

The RTKP is defined by:

¢ internal representations of information provided b
the preprocessor module and information to be con
verted by the postprocessor module,

¢ aninternal representation of the knowledge base,

* a procedure for the inference engine.

The knowledge base is composed of two parts: rule bas:
and fact base. A fact is the truth value associated to a par
ticular proposition (or a term) used to store knowledge. /
fact base is a set of terms, where each term has a meaning
related to the process (an associated proposition). Proposi
tions are considered within the propositional logic frame
work, although they could also represent fuzzy proposi
tions. In the proposed procedure, the fact base is repre
sented by a fact vector where each component is related to ¢
term and contains its truth value.

The rule base can be viewed in two different representa
tions. The first representation is for purposes of knowledgs
acquisition and analysis (called the virtual representation).
is presented as a collection of rules like: if <antecedent> ther
<consequent>, where <antecedent> represents a conjunctive
association of terms and <consequent> represents a disjunc
tive association of terms. The second representation is ¢
coded version of the knowledge for processing purposes.

It is relevant now to review the main requirements tha
real-time knowledge processing systems should fulfill [9]
integration of numeric/symbolic processing, continuou:
operation, focus of attention mechanisms, interrupt man
ager services, optimum use of environment, response tim
warranty, temporal data processing, truth data mainte
nance, and the fact it dispenses explanatory modules. We
do not, however, fully explore these requirements in thi:
paper. Nevertheless, we show in Section 6 how the scheme
proposed here helps in addressing such important require

“ments, mainly when applications are of primary concern.



108 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

3 PROCEDURE DESCRIPTION

3.1 Fact Base Codification

The real-time inference engine considers two fact bases. The
first, called input fact base, has the truth values of terms
evaluated by the preprocessor module. The second, called
output fact base, contains truth values of the terms after the
inference procedure.

Each fact base will be represented by a vector where each
component is a Boolean variable. This vector has as many
elements as the number of terms used in the rule base.
There is a one to one relation between each term and a vec-
tor component.

DEFINITION 1 (Fact Vector):

Let E be the set of terms which represent the propositional
symbols over a universe of discourse.

E= {e,- I e; propositional symbol, 1< < n}

Let Card denote the cardinality of a set. For the set E:
Card(E)=n

Let x be a vector such that:
x = {xj I x,e{01}, 1)< Card(E)}

Since the terms of a fact base FB are a subset of E, the fact base
can be represented by vector x with its components assuming
the corresponding values:

1, if the truth value of ¢, is true
k=1,..,n
0, if not

The vector x represents the fact base FB and it will be
called a fact vector. The fact bases will be codified as fact
vectors. An input fact base is denoted by xi, called input
fact vector. The output fact base is denoted by xo, called
output fact vector.

3.2 Rule Base Codification

The rule base used by the procedure is a mapping of its vir-
tual representation. It will be represented by two opera-
tional matrices, C (the conjunctive matrix) and D (the dis-
junctive matrix).

The pair of matrices C and D is called the Operational
Rule Base since their structures store rules” information to
be effectively used during inference. The inference proce-
dure is derived from operational matrices, operators and
the fact vector.

DEFINITION 2 (Propositional Rule):
Let E be as in definition 1.

Avrule R is defined by the union of its syntactic and semantic
structures.

The syntactic structure of a rule is defined as a word sequence,
each being a set of characters such as:

if <antecedent> then <consequent>

where <antecedent> relates from 1 up to (n —~ 1) elements of E,
confunctively associated by the Boolean operator a (“ond”),

and <consequent> corresponds to an element of E.

Let A be a subset of E such that the elements of A are members
of the <antecedent> of rule R syntactic structure, that is:

A={a;| 2, € E, 4, being member of (antecedent), 1< i<k k <n}

Let Q be a singleton of E such that its element q is a conse-
quent of rule R syntactic structure:

Q= {q [ q ek, gisa consequent} ‘

The semantic structure of a rule is defined by assoczutmg it to
a propositional logic sentence as below:

/Z_\(ai) =9

where each a, is an element of A, q is an element of Q, “/\" is
the conjunctive logic operator, and “=" is the implication
logic operator from the propositional logic.

DEFINITION 3 (Virtual Rule Base):

A virtual rule base VRB is a set of rules R where 1 <j<m,
and m is the number of rules.

VRB:{R]- ' R;is arule, 1sj£m}

DEFINITION 4 (Semantic Content):
Let E be s in Definition 1.
The semantic content of a rule R_ is defined as a fuhctz‘on [
which maps all possible interpretations for E (Ip) in {false,

true}, considering the logic sentence that corresponds to the
semantic structure of rule R,.

For A;,cEand Q CE, ifthe se;_nantz’c structure of R, is:
(a Al A ajk) =g
then:
(p(R I ) ((a Al A A ajk) = qj) — {false, true}

Definition 4 can be extended to a rule base VRB by mapping
all possible interpretations of E in {false, true}, considering the
logic sentence which corresponds to the union of the semantic
content in each individual rule of VRB:

o(VRB, I) = (R, I;) v Ry, Ig) v..v (R, I}

A pair of matrices C (the conjunctive matrix) and D (the dis-
junctive matrix), as defined below, makes up an operational
rule base which will effectively perform inference.

3.3 Matrix Structure

In matrix C, each row is associated to the list of antecedent
terms of a rule in VRB, with each column representing one
symbol. Thus, the C matrix has dimension m X n, where m is
the number of rules and 7 is the number of symbols in VRB.

DEFINITION 5 (C Matrix Structure):

Leét E be as in Definition 1. Let VRB be a virtual rule base. Let
R, be the ith rule of VRB. Let A, be the set of terms which are
members of rule R, antecedent. :

C matrix structure is defined as:



GUDWIN ET AL.: KNOWLEDGE PROCESSING IN CONTROL SYSTEMS

c={e| ey =flif) 15ism 1< j<n},

.. 1, ife; e A
= i
f )= {O, if not

3.4 Matrix Structure

The ith row of matrix D represents rules which have the
symbol i as a consequent. Therefore, the D matrix has di-
mension # X m, where n is the number of symbols.and m is
the number of rules in the rule base.

DEFINITION 6 (D Matrix Structure):

Let E be as in Definition 1. Let VRB be a virtual rule base. Let
R; be the jth rule of VRB. Let Q, be the set of terms which are
members of rule R; consequent.

The structure of matrix D' is defined by:
D={d; | ;=350 /)15i<n 1<j<m,

1 ife eQ;
$00={5, iren

DEFINITION 7 (Rule Base Coding):

By rule coding it is meant a modification of rule’s syntactic
structure, but maintaining its semantic content. Therefore,
rule base coding is a modification at the rule base representa-
tion, preserving its semantic content and meaning.

Let VRB be a virtual rule base. Let C (m x n) and D (n X m)
be, respectively, the conjunctive and disjunctive matrices. A
rule base VRB codification is defined as a mapping:

Cod(VRB,{C, D}): VRB - {C, D},
o(VRB, I;) = 9({C, D}, I), VI,

Actual implementation of the inference procedure uses
CD matrices’ representation for knowledge processing,
since the semantic content is the same of VRB, that is,
o(VRB, I;) = ¢({C, D}, I), VI;. This equivalence is useful
because at the level of man-machine interface (for kriowl-
edge acquisition and validation, for instance), the virtual
representation is more appropriate. For real-time processing
CD matrices representation provides a much better comput-
ing performance.

Note that, once the rule base is defined, the C and D ma-
trices can be determined off-line.

3.5 Conjunctive Matrix Operator

The conjunctive matrix operator is an operator which does
the disjunction of the rule consequents. Its definition is
similar to the matrix multiplication operator, changing the
algebraic product and sum by the corresponding Boolean
product and sum.

DEFINITION 8 (Conjunctive Matrix Operator):

Let “A" be the conjunctive Boolean scalar operator (“and”).
Let “v* be the disjunctive Boolean scalar operator (“or”). Let
M be a matrix of dimension n x m with Boolean elements m,.
Let x be a Boolean vector of dimension m. Let y be a Boolean
vector of dimension n.

108

The conjunctive matrix operator “ A “ is defined by:

Y= /\(M,x) = M)\x = {y; Y= \/(mlj ij)}
]

where
vV
j
is the Boolean summation, that is

VzZ; =2, V2 V.V Z,.
j

3.6 Disjunctive Matrix Operator

The disjunctive matrix operator does the conjunction of
antecedent terms. It is dual to the conjunctive matrix opera-
tor, i.e. we take the same definition, changing the Boolean
scalar operators “A” to “v“ and vice versa. See also [11] for
similar operators.

DEFINITION 9 (Disjunctive Matrix Operator):

Let “A" be the Boolean scalar conjunctive operator (“and”).
Let “v" be the Boolean scalar disjunctive operator (“or”). Let
M be a matrix of dimension m x n with Boolean elements m,.
Let x be a Boolean vector of dimension n. Let y be a Boolean
vector of dimension m.

We define the disjunctive matrix operator “ v “ as follows:
y=v(M,x)= Mvx= {yilyi = /]\(m,] v x,.)}

where
N\
j
is the Boolean product, that is

/j\zj =L AZALAZ,.

3.7 Inference Step

During inference, it is necessary to define a step where all
rules are applied to a fact base, reassigning its truth values to
the inferred ones. This scheme is defined as an inference step.

DEFINITION 10 (Inference Step):
Let C and D be the conjunctive and disjunctive matrices, re-

spectively, which represents the operational rule base. Let A

and v be the conjunctive and disjunctive matrix operatots.
Let Neg(A) = A be the elementwise operation of Boolean ne-

gation, for matrices. Let x + y be the elementwise Boolean
summation for vectors. Let xi and xo be two fact vectors.

The inference step is defined by the following equation:
x0 = InferenceStep(xi) = xi + D )\(E\}xi)

THEOREM 1 (Inference Step Theorem):
Let VRB be a virtual rule base.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

Let C and D be the codification of VRB into the conjunctive
and disjunctive matrices.

Let A and ~ be the conjunctive and disjunctive matrix
operators.

Let + be the vector Boolean summation. Let Neg(A) = A be
the elementwise operation of Boolean negation for matrices.
Let xi be the input fact vector and xo the output fact vector.

Starting with a generic input fact vector and applying the fol-
lowing formula:

X0 = Xi + DA[Ein)

an output fact vector xo is obtained such that the truth value
of all facts that can be inferred by applying rules of VRB over
the facts represented by xi, including input facts truth values,
are contained in xo.

PROOE The proof of the theorem is divided in two parts. In

the first part, it is proven that the operation (Cvxi)

leads to an intermediary vector y, which holds the truth
value of the antecedent of each rule. In the second part, it
is proven that with the truth value of each rule antece-

dent and by performing the operation D Ay, We get, by

“modus ponens,” the truth value of all entities which are
members of the consequents of rules. Therefore, one ob-
tains all facts that can be inferred when starting with an
input fact vector xi. The Boolean vector summation of this
result with the original input fact vector produces an out-
put fact vector which holds the truth value of all entities
from the universe of discourse, after application of VRB.

Part 1:

By definition of disjunctive matrix operator, we have:

%:?(%V%%
The value of y is the Boolean product:

y= (Eﬂ vxl) A (Eiz V) ALA (Eiin vxﬂ)

y=6{’x:{yi

By the definition of matrix C, we have that ¢; = 1 if entity
¢; belongs to the antecedent of rule R, being 0 if not. If
¢;=0, then T; = 1. In those cases, the term (T v x;) will

always be 1, for any value of x.. Thus, the value of those
terms will not change the result of the Boolean product.

Considering a set KIC , of indices k such that ¢; =1, and

a set Lf of indices 1 that ; = 0, we can split the Boolean
product into two parts.

¥ = (/k\ (Eik v xk)) A (/1\ (Eiz v xz))

where ¢, is always 1Vke K and ¢, is always
ovielf.

Since (T; vx,) is always equal to 1, Vke Kf , we
have that

(/k\ (T v xk)) =1,

and therefore

¥ = (/z\ (G v xl))
On the other hand, since ¢, is always equal to 0,
vl e I;, we have that: ‘

¥i= /Z\xl

We must remember that if ¢; = 0, (c; = 1) then ¢ belongs
to the antecedent of rule R, (by definition), Ve Lz-C
Therefore, the truth value of y, can only be 1 if all values

of x, are 1. Since all entities ¢, belong to the antecedent of

rule R, this means that the conjunction of all x, is
equivalent to the conjunction of the truth value of enti-

ties which are members of the antecedent term of rule R,
Then the value of y, is equivalent to the truth value of the
antecedent of rule R,

Part 2:

From the definition of conjunctive matrix operator:

x0; = \]/ (dz'j A yj)}

From D matrix structure definition, d;; = 1 if ¢; belongs to
the consequent of rule R; and is.0 if not. Considering a

set KiD , of indices k so that d, = 1, and a set L? , of indi-

x0=DAy ={in

ces 1 so that d, = 0, we can split the Boolean summation
in two parts: '

x0; = [\k/ (dy A yk)) v (\l/ (dy A y,))
where 4, is always 1, Vke KiD and 4, is always 0,
Viel!.

If d, is always 0, the term (d; A y)) is always 0, for any
value y;, Vl e L? .

Thus, we have that
\z/ (dil A %) =0
and therefore
x0; = (\k/ (dik A yk))

Since d,, is also always equal to.1, Vk e KiD .

x0; = \k/ Uy 1)



GUDWIN ET AL.: KNOWLEDGE PROCESSING IN CONTROL SYSTEMS

OBS.: Modus Ponens
By “Modus Ponens” rule of inference it is meant:
A, A=B
B P
ie., if we have A, and there exists a relation that A im-
plies B, then we can deduce B.

Remembering that if d, = 1, then Vke K, e € Q

(where Q, keeps the consequent of rule k), which means

that ¢, is the consequent of rule R,.
The semantic content of rule R, can be rewritten as follows:
Ye = &

Here, for Vk e KiD , the expression y, = e, becomes true.
In other words, it is a valid formula.

By “modus ponens”:

ViV =6
€

for all k belonging to KiD . Then ¢, can be deduced from

rulekify, = 1.

Since y, =1, Vk € K7, we have by definition that xo, =1
and therefore

which is equivalent to (1).

This jproves the second part of the theorem and com-
pletes the theorem proof. D

3.8 Inference Cycle

The inference cycle is necessary to provide the chaining
among rules, when it exists. An inference cycle is the suc-
cessive application of inference steps, taking as input to
each step the output of the last step, until it does not change
anymore.

DEEINITION 11 (Inference Cycle):

The inference cycle is defined as a finite number of successive
applications of inference steps over a fact vector, taking as in-
put in each step the output of the last step. Let xi be the input
fact vector, xo the output fact vector, and x an auxiliary fact
vector. Let (:= (a, b) = a := b) be the vector attributive operator,
defined as attributing to each element of the left side parame-
ter, the value of the element with same index from the right
side: al[i] = b[i], Vi. Let (==) be the vector equal operator, de-
fined as :

L e fuwue ifx; =y, ie[ln]
==y =x==y= {false if not
The inference cycle is the following procedure:

procedure INFERENCE_CYCLE (var xi, xo :
FACT_VECTOR)

var x : FACT_VECTOR; {LOCAL VARIABLE}
BEGIN

X0 1= Xi;

REPEAT

1

X 1= XO;
xo0 :=InferenceStep(x);
UNTIL (X0 == X)
END
The inference cycle is the kernel of the inference engine.
After an inference cycle, the output fact vector holds the
result of a complete inference.

THEOREM 2 (Theorem of Inference Cycle):
Let VRB be a virtual rule base.

Let C and D be the codification of VRB through the conjunc-
tive and disjunctive matrices.

Let A and v be the conjunctive and disjunctive matrix
operators.

Let + be the Boolean summation vector operatot.

Let xi be the input fact vector and xo be the output fact vector.
Let P be the operator equivalent to an inference step:

P(xi) = xi+ DA (a xi)

The successive application of P, taking as input of subsequent
applications the last output, will result in the complete infer-
ence from a virtual rule base over a generic interpretation rep-
resented by xi.

PROOE By Theorem 1, the inference step is equivalent to the
application of all rules of a virtual rule base VRB over a
generic fact vector. The successive application of the P op-
erator over a fact vector xi, taking the output of each op-
eration as input to the next one, is equivalent to the suc-
cessive application of all rules from a rule base over a fact
base. If there exists chaining between rules (for example,
forming a chain of g levels), after applying the P operator g
times, all activated rules are in fact fired. Then a complete
inference over such interpretation is derived. O

4 KNOWLEDGE BASE ANALYSIS AND MANIPULATION

Knowledge-based systems structure was conceived so to
separate knowledge from its manipulation.

The knowledge manipulation performance depends
heavily on how the knowledge base is represented for pro-
cessing [14]. For real-time systems this is particularly im-
portant because it will run under time constraints. There-
fore, a methodology for rule base analysis and manipula-
tion is a need. The purpose of this section is to address this
question.

4.1 Rule Base Analysis

The most critical part of knowledge base is the rule base,
because it is the one which has more opportunities for reor-
ganizations to achieve better performance.

1t has been shown that a rule base can be described as
the C D pair. What would be interesting to do is to manipu-
late those matrices as an attempt to get a new pair of matri-
ces, with the same semantic content, but with reduced di-
mensions for increased performance.

One important question to be considered is rule chain-
ing. Rule chaining occurs when an antecedent term of one



12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1998

rule is also a consequent of another rule. Here, the applica-
tion of just one inference step will not provide complete
inference. To have complete inference, several inference
steps are necessary.

Suppose a base with m rules and several chains, at most
m steps of inference will be necessary, which is the case
when all the rules are chained. In general, the number of
inference steps will be less than m and equal to the length of
the longest chain. :

Chaining elimination seems a key for reducing and pre-
dicting processing time.

Another factor that should be considered is the need to
preserve all entities used in the original rule base during all
inference procedure. If we want to preserve the classic logic
structure, this is necessary to maintain the coherence of the
theorems that define the inference. Now, if our goal is to
apply logic for control purposes, where the main issue is
not the manipulation of pure mathematical logic but the
effective use of knowledge for process control, we can relax
the intermediate information, since it will not be relevant to
the final control action. Therefore, the information to be
processed can be reduced, which improves system per-
formance in terms of processing time and memory space
requirements. To deal with this aspect, we propose a
method for rule base compression with deletion of inter-
mediate information.

To address. those issues, we begin by presenting a
method for horizontal expansion and, afterwards, a method
for rule base compression.

4.2 Rule Base Horizontal Expansion

The goal of the rule base horizontal expansion method is to
eliminate chaining from the rule base, to avoid it during the
on-line inference processing. The main idea is to transform
a rule base with chaining into another rule base without
chaining, but with the same semantic content.

The method consists in including additional rules in the
rule base. The added rules are those generated by the
chaining of other rules. Then, instead of applying several
inference steps, only one’is necessary to get the same result
as if all the rules would be applied. Therefore, once we have
a horizontal rule base, only one inference step is enough for
complete inference. See also [11] for related results

Starting with the C and D matrices, the horizontal ex-
pansion method generates two new matrices C’ and D’.

We know that, if there exists chaining it is generated by a
term that is used in the consequent of the rule. First, the
method swaps the rule base to verify the rule’s conse-
quents. Second, it verifies whether or not rule’s consequents
appear as antecedents of any rule. If yes, a new rule is gen-
erated by syllogism, and added to the new rule set.

The C matrix structure is specially interesting for doing

the horizontal expansion, since the swap for a term can be

done by just searching the column relative to that term to
verify if ¢; is equal to 1 or not

DEFINITION 12 (Horizontal Rule Base):

We define a horizontal rule base as a rule base for which an
inference cycle corresponds to just one inference step.

DEFINITION 13 (Horizontal Expansion Procedure):

Let E = {e} be the universé of discourse.

Let VRB be a virtual rie base. Let C and D be the operational
matrices that codify the virtual rule base VRB.

Let C, be the ith row and C,; be the jth column of C matrix.
Let D, be the ith row and D,; be the jth column of D matrix.

Let m be the number or rules of VRB, in other words, the
number of rows of C matrix.

Let m’ be the number of rules of the virtual rule base BR after
(or during) the horizontal expansion method.

We define the horizontal expansion of a rule base by the
following procedure:

procedure HORIZONTAL_EXPANSION(var m :
sion; var C,D : matrices)
VAR
i,j : indices;
m’: auxiliar_var;
BEGIN
m’ := m;
FOR i =1 TO m’
BEGIN
FOR j =
BEGIN
Find k as dgi = 1; . (2)
IF cjk =1 . (3)
BEGIN
C

(m'+1)*

dimen-

1 TOm

=G +C (4)

Cosnk =0 (5)
Dimrsay 1= Dey (6}
m’ :=m’ + 1;

THEOREM 3 (Horizontal Expansion Theorem):

Let VRB be a virtual rule base, codified as its corresponding
operational matrices C and D. Then, the operational matrices
C’ and D’ generated by the horizontal expansion procedure
correspond to a virtual rule base VRB’, which has the same
semantic content of VRB. C’ and D’ are a horizontal rule base.

PROOE The horizontal expansion procedure searches all the
consequents of rules (2), verifying if they are antecedents
of other rules (3). If they are, it adds the antecedent terms

of the rule analyzed with those of the base set (4). In the °

sequel, it takes off the entity which is the consequent of
the rule from this set (5) and put the consequent of the
base-set as the consequent of the new rule. This is
equivalent to the syllogism of the two rules. Each rule
added in the base-set eliminates one possible chaining
that would be necessary for complete inference. This
implies that, after the global search, no new chaining
will be necessary. Therefore, we get a horizontal rule
base. O

It should be noted that the method increases the size of

the rule base, since m’ 2 m. This means increasing storage
space, but since chaining is avoided, the processing time is
predictable. There is a tradeoff between processing time and
storage space to be considered. However, if a compression
procedure is also applied in the horizontal rule base, we
finally get a rule base that may be smaller than the original




GUDWIN ET AL.: KNOWLEDGE PROCESSING IN CONTROL SYSTEMS

rule base. This implies less processing time and memory
requirements.

4.3 Rule Base Compression

In knowledge-based control systems, sensor information is
extracted from the process and translated into facts to be
processed with the rules by the inference procedure. Be-
cause of inference, control decisions are generated and
translated into control signals that drive the process. The
control decisions are due to a control strategy defined by a
relation coded in the rule base. From the input/output
point of view, sensor information is processed by a relation
to generate the control decision. This means that for control
purposes, only the terms associated with the sensor infor-
mation and the control decisions are needed to be explicitly
represented in the rule base. Moreover, it is not necessary to
have in the input fact vector the corresponding terms whose
truth value is not known at the beginning of inference. The
output fact vector does not have to contain the information
that is already included in the input fact vector. Thus, the fact
vector can be partitioned into three subvectors. The first sub-
vector, called input subvector, has as components those terms
associated with the sensor input. The intermediate subvector
has as its components those terms that are neither associated
with sensor input nor associated with control decisions. The
output subvector has as components those terms associated
with the control decisions.

From the discussion above we may conclude that if an
efficient scheme is available to recode and to preserve the
semantic content of a rule base with those characteristics,
not only the size of the rule base would be diminished
(which means less storage space) but also the processing
time would decrease and the predictability increase. The
rule base compression method provides such a recoding
scheme. After horizontal expansion, the rule base compres-
sion method first discards the intermediate terms from the
input and output fact vectors. The corresponding C matrix
columns and D matrix rows are also discarded. Next, the
terms of the output subvector are eliminated from the input
fact vector, and the terms of the input subvector are elimi-
nated from the output fact vector. The C matrix columns
corresponding to the terms of the output subvector and the
D matrix rows corresponding to the terms of the input sub-
vectors are deleted. We then finally get a compressed rule
base, which recodes the original rule base and preserves its
meaning. With this recoding procedure, an inference step

provides complete inference (no cycles are necessary) since

the inference procedure becomes:

X, =D"A (E”(/ x;) @

DEFINITION 14 (Rule Base Compression):

Let VRB be a virtual rule base. Let VRB’ be a horizontal rule
base, generated by horizontal expansion of virtual rule base
VRB. Let C and D be the matrices which codify horizontal vir-
tual rule base VRB'.

Let E be the universe of discourse.

Let A, be the set of entities which are members of the antece-
dent term of rule R;. Let A be the set which is the result of the

113

union of all sets A, i.e., the set of all entities which are used as
antecedent terms. Let Q. be the set of entities which are mem-
bers of the consequent term of rule R.. Let Q be the set gener-
ated by the union of all sets Q, i.e., the set of all entities which
were used as rules consequents.

Let N be the set of input entities, i.e., the set of entities which
are used only as antecedent terms of VRB'.
N={nfneaneQiciscaia-(anQ)} ©

Let I be the set of intermediate entities, i.e., the set of entities
which are both used in antecedent and consequent terms of the
VRB’ rules.

1={ifiea e isk<cmi(ang} @

Let S be the set of output entities, i.e., the set of entities used
as consequent terms of the VRB’ rules.

s={s]sieQ s ea1siscaQ-(anQ)} (o)

Thus E=NUIUS.

Let xi be the input fact vector and xo the output fact vector.

We define the compression procedure by the following:

procedure COMPRESSION (var xi, Xo :
fact_vectors; var C,D : matrices)
BEGIN

Discard all ej € 1 from xi and xo. (11)
Discard from C all rows Ci* as
Ji(ej € I A cij =1 (12)

Discard from D all related columns Dxj (13).
Discard from C all columns Cxj as ej € I.
Discard from D all columns Dx§ as
Jdi(ej € I A djij = 1) (15) .

Discard from C all related rows Cjx. (16)
Discard from D all rows Dix as e; € I (17)
Discard all ex € S from xi. (18)
Discard all ej € N from xo. (19)
Discard from C all columns C*j as ej € S

(20)
Discard from D all rows Di* as ej € N.

(21)

END

(14)

Discarding an element from a fact vector, means the suppression
of its corresponding components from the vector.

Let x be a fact vector:

X = {xl,xz,...,xp_l,xp, xwl,...,xn}

To discard term e, represented by x,, from vector x corresponds
to create a vector

L
X = {xl,xz,...,xp_l,xp+1,...xn}

where the x’ dimension is the dimension of x decreased by 1.

To discard a row or a column from a matrix, corresponds to
Suppress a row or a column.

It must be observed that the compression procedure
changes the indices associated with each term. Therefore, the
related table of symbols must also be modified accordingly.

THEOREM 4 (Compression Theorem):
Let VRB be a virtual rule base.
Let VRB’ be the horizontal expansion of VRB.



114

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

Let C’" and D’ be the operational matrices which codify VRB'.

Let N be the set of input entities, I be the set of intermediate
entities, and S be the set of output entities.

Let xi be the input fact vector.
Let xo be the output fact vector.

Let xi' be the input fact vector modified by compression
(dimension of N). ‘

Let x0’ be the output fact vector modified by compression
(dimension of S).

Let Comp(C’, I, xi, x0, C”, D", xi’, xf") be the compression
procedure which transforms VRB’ into VRB” as in Defini-
tion 14.

Let C” and D" be the operational matrices which codify com-
pressed rule base VRB”.

The truth value held by each element of xo” through the modi-
fied inference procedure, using C” and D”

xo’ = D" A (E” v xi’)
is the same as those that would be assigned to the related terms

of xo, using the procedure based on C-and D matrices and in-
put fact vector xi. ‘

PROOE After analyzing the compression procedure, we see

that in (11), we discard the intermediate entities from op-
erational entities. In (12) and (13), we discard all rules
that had in its antecedent term an intermediate entity. In
(14) we discard from matrix C the dimension related to
the intermediate entities as they will not be necessary
and make the necessary adjustments. In (15) and (16), we
discard the rules that have in its consequent an inter-
mediate entity. In (17) we discard the dimension of ma-
trix D related to the intermediate entities, making the
necessary dimension adjustments.

Those steps are equivalent to the elimination of inter-
mediate entities from fact vectors and matrices. This is
the same as defining a new system, where the universe
of discourse is reduced to (N U S) and the rules are

similar to VRB’, except those that use an intermediate
term. This will be an intermediate compression. Only
those entities which are members of N can be assigned a
value different from 0 (xi’ represents the terms which are
members of N). Since only the rules that use intermedi-
ate entities were removed (and these rules could never
be fired as the truth value of intermediate terms always
starts with 0, by definition), the truth value assigned by
the modified procedure to C’ and D’, will be the same as
the conventional procedure in C and D. In (18) we discard
from input fact vector, the entities of output subvector, and
in (19) we discard from output fact vector, the entities of
input subvector. In (20) we adjust the columns of C and in
(21) we adjust the rows of D for the new representation.

Since the values of xi are equivalent to the corresponding
ones in xi’ and the others are 0, nothing is modified by
the inference process, and the results provided by (7) are
the same as those given by the procedure in Definition 10.

Discarding of input subvector terms from output fact
vector does not modify inference either because they are
not used in xo’.

5 EXAMPLE

A simple example is now provided to illustrate the main
features of the proposed procedure.
Let us consider the following rule base:

ife, and e, then g;; if e; and ¢, then ¢; if ¢, and ¢, then e;;

ife,and e thene,; if e, and ¢, then e,; if e, and ¢, then ¢,

The encoding shown in Table 1 is defined. Then, the re-
sulting C and D matrices are given in Table 2. After execut-
ing the Horizontal Expansion Procedure, the matrices C’
and D’ generated are as in Table 3. Executing the compres-
sion procedure, we get new symbol tables to represent in-
put fact vector and output fact vector. The compressed ma-

trices are shown in Table 4 and the new symbol tables are in
Table 5. ‘

TABLE 1 .
CODING SCHEME FOR RULE BASE EXAMPLE

SYMBOL INDEX ANTEC. CONS. TYPE
e, -1 Y N N
e, 2 Y N N -
e, 3 Y Y |
s, 4 Y N N
e, 5 Y Y i
q, 8 Y N N
e 7 N Y S
e, 8 N Y S

TABLE 2

CD MATRICES FOR EXAMPLE

00 0000Q0
11000000 100 0000
00110000 100000
C—lOOOOIOOD—OOOOOO
101 0001O00O0 1011 0 00
00001100 00 0O0OOTO
01010000 000110
00 0001
TABLE 3
CD MATRICES AFTER HORIZONTAL EXPANSION
(11000000‘
00110000 0000O0O0O0OO0GO0O0
10000100 000000O0O0CO0O
01000100 1000000000
c=|00001 100, (0000000000
01010000 0110001000
11010000 0000000000
00110100 0001100111
10000100 0000010000
1101010 0]
TABLE 4
CD MATRICES AFTER COMPRESSION
0101

- 10| _[1 011
= 01D—[0100]
11

- O
O




GUDWIN ET AL.: KNOWLEDGE PROCESSING IN CONTROL SYSTEMS

TABLE 5
CODING SCHEME AFTER COMPRESSION

INPUT FACT VECTOR

parallel architecture. The mecha

115

nisms for rule base compres-

sion also allow an efficient use of memory.
Response time can be assured because, as the procedure

SYMBOL

INDEX

OUTPUT FACT VECTOR

e

1

SYMBOL

INDEX

e.

1

e
A

s

2

€

2
3
4

Assume that the signals collected from process were pre-

processed, resulting in the data given by Table 6.

is a set of Boolean operations, the time to perform inference
is easily obtained from the time needed to execute a set of
primitive instructions. For instance, assuming that the pro-
cedure uses assignment, addition, comparison and incre-
ment as primitive instructions, and the corresponding exe-
cution time is A, S, C, and I, respectively, with m as the
number of rules and #n’ as the average number of symbols
per rule, procedure implementation could have the follow-

TABLE 6
DATA COLLECTED FROM PROCESS

DATA COLLECTED
PROPOSITION TRUTH VALUE
. FALSE

TRUE
FALSE
TRUE

o o

4

D

5

Then the input fact vector is:
X' =[0101]
The result provided by the inference is:
xo’ =[10]

The control action corresponding to e, can be executed
by post-processing. The decision which corresponds to e,
will not be executed.

6 REAL-TIME REQUIREMENTS ANALYSIS

Recalling the main requirements for real-time knowledge
processing reviewed in the second section, the following
can be stated.

First, an efficient numeric/symbolic processing integra-
tion is required. In the scheme proposed this is achieved by
introducing the preprocessor module. Therefore, the control
engineer and software designers may use any appropriate
algorithm for information processing. The only constraint is
to provide process information coded in the vector format
to configure the fact base to be used for inference.

Regarding the focus of attention, the proposed procedure
can easily consider structured rule bases, which is a
mechanism to fulfill such a requirement. Here, each rule
base can be coded into distinct C and D matrices. A base of
meta-rules, which can be coded and operated by the same
scheme, may be executed periodically to decide which rule
base should be processed, depending on the process state.
Setting up this or similar alternate strategies is quite simple
because to do context switching, only a pointer that refers
to the appropriate matrices should be modified accordingly.
This scheme provides a technique for the proposed proce-
dure to remain effective for systems requiring a very large
number of rules.

As far as the requirement of optimum use of environment
is concerned, due to its structure, the inference procedure
proposed can be implemented by pairwise bit processing,
using standard instructions of programming languages. This
affords pseudoparallel implementation. Full parallel imple-
mentation is also readily achieved if the target machine has a

ing coding scheme [6]:

for (i=0;1i < m;i++)

(A + m.C + m.I)

{y = 1; (a)

a = CL[i]([0]; (S + 2.14)

for (j=1;j <= a&&y == 1;j++) (A + 2.n’.C + n'.I)
{b = x[CL[i](31] (3.5 + 3.a)
Y =Y ADb; (C+a)
}

b =&x£[DV [1]]; (2.8 + A)

*b = *b v y; (C+A)

}

where an account of each code line execution time is in-
cluded on the right. The total execution time is such that

Cf(m,n’) <A+2mC+mI+6.mA+3.m.S

+3mn.C+mn’. I+mn'4dA+mn'3.S
Given that each instruction time can be expressed as an

integer multiple of a period T (for example, the clock rate),
the inequality above may be rewritten as

Cs(m,n') <kLT +k2.m.T +k3.m.n'.T = Cg(m.n)

and the procedure order is O(m, n’), as shown by Fig. 3a
and 3b. Note that Cﬁl(m, ') is an upper bound for Cf(m, n).

WAES x TIME
o AVERAGE # OF SYMBOLS / RULE
rules, 2 -
)
] o
:"
.

[ -

200

e

T TR ] T g te]

Fig. 3a. RTKP procedure time performance: rules x time.

AVERAE MIIER OF SYWBOLS / RLE x TIRE

N* OF RULES

0 20w 000
“r <

By
e

ne

3] E% XIS e )

Fig. 8b. RTKP procedure time performance: symbols x time.



provided by [10].

116 ) . IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

If preprocessing and post-processing execution times are
C,and C,, respectively, RTKP execution time C, is such that

Cmn)<C + Cﬂ(m, )+ Cy = C, (m, )

C_(m, n") being an upper bound for C (m, ).

Typlcal real-time input and output tasks have little to no
variance associated with their execution time because there
are generally no data dependencies which can cause the
execution time to vary. Then, for given m and 7/, the RTKP
procedure is simply processed in a uniform, deterministic
fashion in direct digital control applications, provided that
C,(m, n’) is consistent with process dynamics.

In structured knowledge bases, if C, (m;,1;) is a set as

the upper bound of the execution time for processing the m,
rules with 7 symbols per rule of the ith knowledge base,

the worst-case execution time C (m.n’) is

€.t 1) = ma: {C, (m, )}

The RTKP procedure can also be used in embedded real- |

time supervisory control applications. In these cases, it
must coexist with other real-time tasks on a common com-
puting platform. The server concept introduced by the real-
time scheduling researchers is directly applied here. This
approach has also been used previously [13], but was based
on different grounds. Servers have been developed [15],
[17] to provide highly responsive aperiodic performance
over periodic, hard deadline environments. With this ap-
proach schedulability can be explicitly evaluated, that is,
the level of resource utilization, attainable before a deadline
is missed, can be evaluated and guaranteed.

Generally, the priority assigned to the server depends on
its response time requirements. For instance, in supervisory
control of elevator systems to be addressed in the next sec-
tion, the knowledge processing requirements are periodic,
with a period T, of 0.5s. Since the conventional real-time
tasks are also periodic, the Rate Monotonic Scheduling
Theory [10] can readily be used to evaluate schedulability
of the task set. In essence, this theory ensures that since the
CPU utilization of all tasks lies below a certain bound and
appropriate scheduling algorithms are used, all tasks will
meet their deadlines without the programmer knowing
exactly when any given task will be running. Even if a

" transient overload occurs, a fixed subset of critical tasks will

still meet their deadline since their CPU utilization lie
within the appropriate bounds.

Given a set of independent periodic tasks, the rate mono-
tonic scheduling algorithm gives each task a fixed priority

‘and assigns higher priorities to tasks with shorter periods.

A sufficient worst case condition that characterize schedu-
lability of a task set under the rate monotone algorithm is

C C
B R L

< 24" -
GRS

1) = Un)
where C, and T; are the execution time and period of task z,
respectively, and one task index is assigned to the server.

To check if a set of given tasks with greater utilization
than the bound provided above can meet its deadlines the

critical zone theorem [10] should be considered. The critical
zone theorem states that, for a set of independent periodic
tasks, if each task meets its first deadline when all tasks are
started simultaneously, then the deadlines will always be
met for any combination of start-times. An equivalent
mathematical test which can be calculated by an exact-case
analysis[15] is:

Vi,1<i<n,

where C and T are the execution time and perlod of task 7
respechvely, and

R = {(k,z)[l <k<i 1=1..|T/5 ]

and one task index corresponds to the server:

This theorem provide the basis for an exact schedulabil-
ity test for sets of independent periodic tasks under the rate
monotonic algorithm. The theorem requires checking the
scheduling points for a task. The scheduling points of a task
Tare 7's first deadline and the ends of periods of high prlor—
ity tasks before 7's first deadline.

Summing up, since the worst case execution time of the
RTKP procedure can be easily determined, and assuming
that other task execution times are given, an analytical
treatment to answer whether the server capacity is suffi-
cient to meet the response time requirement is readily pro-
vided by the monotone rate scheduling theory. The rate
monotone algorithm has been proven to be the optimal
fixed-priority scheduling algorithm for periodic tasks.

Temporal data processing, although not natural within
the theoretical framework considered in this paper, may be
handled by either preprocessing or post-processing mod-
ules, since they can include procedures to store current and
past process states or to use models to get state estimations.
Truth data maintenance, although not addressed in this
paper, could eventually be treated by the pre and post proc-
essing modules. Therefore, the procedure proposed here is
in close agreement with the basic requirements that a real-
time knowledge processing system should fulfill.

Beyond the points above, real-time knowledge based
systems are often viewed as computer programs, whose
implementations, inevitably, make tradeoffs between five

sources [16]: processing power, response time, data space, '

inattention and degradation. The properties of the devel-
oped procedure clearly provide guidelines to establish the
desired tradeoffs.

7 AN APPLICATION EXAMPLE: GROUP SUPERVISORY
CONTROL OF ELEVATOR SYSTEMS

In traffic control of elevator systems two different control
problems must be solved by a corresponding two level con-
trol hierarchy. The lower level task is to command each ele-
vator to move up or down, to stop or start, and to open and
close the door. The higher level coordinates the movement
of a group of elevators through a set of logical rules crafted




GUDWIN ET AL.: KNOWLEDGE PRCCESSING IN CONTROL SYSTEMS

to improve the system’s performance. This problem is
solved by means of a group supervisory control system
with the aid of a group supervisory control strategy (the set
of rules defining the control policy).

The main requirements of a group control system in
serving both car and hall calls should be: to provide even
service to every floor in a building; to minimize the time
spent by passengers waiting for service, to minimize the
time spent by passengers to move from one floor to another,
and to serve as many passengers as possible in a given time
[3]. Due to the random nature of call times, call locations
and the destination of passengers, problems are encoun-
tered in attempting to achieve the above requirements.
Therefore, the control strategy must be able to follow
changes in passenger demands, handling different traffic
patterns and adapting itself to the traffic conditions.

A practical method widely used in group supervisory
control systems consists in allocating cars to serve the
building hall calls. Usually only new calls are allocated,
remaining fixed once made. This method is known as call
allocation strategy [3]. In car allocation, however, con-
straints must also be considered. For instance, a car may not
pass a floor at which a passenger wishes to alight, a car
may not reverse its direction of travel while carrying pas-
sengers, a hall call cannot be served by a car going in the
reverse direction.

In what follows, the knowledge processing procedure
developed in this paper is used to implement a knowledge
based group supervisory control of elevator systems. This
knowledge processing approach is particularly useful be-
cause of the following:

¢ call allocation strategies are frequently expressed by a
set of rules provided by elevator designer experts;

o different sets of rules can be easily grouped into a
structured knowledge base to cover such traffic con~
ditions as up-peak, down-peak, heavy sector demand,
heavy floor demand, balanced traffic, off-peak, etc.;

¢ logical constraints can be easily included into the
knowledge base and equally processed;

¢ meta-rules can be easily developed and incorporated
to choose the most suited car allocation rules for a
given traffic pattern;

¢ it predictably responds to system events.

Production rules are particularly appropriate to derive
both, allocation strategies and constraints. The adaptation
of the allocation strategy to the traffic condition is handled
by the focus of attention mechanism, using meta-rules for
traffic pattern characterization and rule base selection. Data
acquisition and vector format information coding functions
are performed by the preprocessor. Actual call allocation
decisions and control signals, generated after inference, are
computed by the post-processor.

The supervisory group control simulation example pre-
sented below, which corresponds to the supervisory control
level of Fig. 2, is a simplified version of a real world system
described in [7]. Table 7 presents the data used for simula-
tion purposes. Examples of car allocation rules can be
found in Table 8.

117

TABLE 7
ELEVATOR SYSTEM CHARACTERISTICS
Number of floors 7
Number of elevators 5
Elevator capacity 6 passengers each
Elevators Velocity 3m/s
Inter-Floor distance 3m
Door operning time 2s
Door holding time 2s
Door closing time 2s

Total simulation time
Traffic conditions
Traffic Patterns

550 s (9 min and 10 s)
up to 34 pass/min (on peak)
off-peak

TABLE 8
EXAMPLES OF CAR ALLOCATION RULES

IF elevator[E}_bas_no_target

IF elevator{E}_bas_direction
AND place[1}_up_in_ficld

‘THEN elevator[E]_bas_target
AND place[f]_up_bas_call

AND call_on_place{[]_up_not_allocated

AND elevator{E] with_allocation_undefined

THEN Aliocate_Call(E);

AND elevator{E]_with_allocation_undefined = FALSE;

IF elevator[ E] . bas_no_direction
THEN elevator[E]_has_no_target

IF clevator[E]_bas_target

AND placef1) in_field

AND placefl]_bas_call

AND call_on_place[I]_hss_same_direction_elevatorf E}
ANDcal)_on_place[l] not_allocated

AND el ih allocati defined

IF elevator[E] _has_no_target
AND placefl]_down_in_field
AND place{l} down_has_call
AND call_on_place[f}_down_not_allocated

JE}] wil ! n
te_Call(E))); - AND elevator| E]_with_allocation_ undefined
IHN?‘Aﬂoujﬂ—wn Hocat defined = FALSE; - THEN Allocate_CalI(EJ)

AND elevator] E}_with_all =FAILSE;

Here, it will be demonstrated how to assign priority to
the server and how to solve for its maximum capacity, con-
sistently with the real-time tasks scheduling requirements.
The example has a structured rule base for which

C,(m,n’)=03s

corresponding to m = 500 (rules) and n” = 20 (average num-
ber of symbols/rule).

The priority assigned to the server is a function of its re-
sponse time requirements. In the group supervisory control
application the server processing requirements are periodic
with a period T, = 0.5 s. Since the conventional real-time
tasks are also periodic with periods summarized in Table 9,
the rate monotone scheduling algorithm is readily applied
to evaluate the schedulability of the task set. A tight bound
can be determined by the exact-case analysis formula,
which yields a maximum C, of 0.35 which corresponds to a
maximum utilization of the server of U, = C /T, = 70%.
Adding this to the utilization of the other real-time tasks, a
total schedulable utilization of 96% is provided.

Therefore, the set of tasks of Table 9 is schedulable be-
cause the runtime of the server is 0.3 s. This can also be
checked noting that, in the example, the sufficient condition

G . G cs; 13 - -
_TT+-T;+73-_0.872(2 ~1) =078 = U(3)

does not hold and then the exact-case analysis must be per-
formed. The scheduling points are 0.5/1.0/1.5/2.0/2.5/3.0,
respectively. For the fourth scheduling point we have:

4C,+C,+C;=12+02+05=19<20
which means that the critical zone theorem holds. The ac-

tual schedulable utilization of 86% is achieved with the
server runtime of 0.3 s.



118

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

‘ TABLE 8
EXECUTION CHARACTERISTICS OF THE RUN-TIME TASK SET
TASK TASK DATA RATE MONOTONIC THEORY
Period T, Run-time C, Utilization U, Priority
Traffic Monitoring 2.0s 02s 0.1 2
User Interface 3.0s 05s 0.16 3
Supetrvisory Control 05s 03s 0.6 1
TOTAL 0.86

Additional results are provided by Figs. 4 and 5, which
show the elevator group space x time diagrams, and the

average passenger waiting time given by the evaluation of
waiting time for each call. '

Fig. 4. Space x time—R.B. strategy.

.”1(‘ o] 'V-H"-f"w,.ﬂ“h i—

1 i
o m' M '»H' i 1

Fig. 5. Wait time x call—R.B. strategy.

Figs. 6 and 7 show the same system under control of a -
conventional, fixed car allocation strategy. As it is shown, the
intelligent group supervisory control provides a very attrac-
tive scheme for car allocation under time varying traffic.

8 CONCLUSIONS

In this paper, a knowledge processing procedure, specially
tailored for a class of real-time knowledge-based control
_ applications, has been developed. Its main characteristics
are in providing a processing scheme that closely agrees

with the basic requirements for real-time knowledge-based
systems. It also includes possibilities for rule base manipu-
lation allowing important tradeoffs between storage space,
processing time and environment utilization which are
fundamental for implementing real-world cases.

An application concerning supervisory, group control of
elevators was also included to illustrate the procedure
potential.

Currently, the approach developed is being extended to
consider its use within the framework of first order predi-
cate logic, fuzzy logic, and threshold reasoning. Important
additional issues such as truth data and knowledge main-
tenance in real time environment are also open questions.
We hope fo address those items in a future paper.

AVERAGE

HL I il

Fig. 7. Wait time x cail—Conventional strategy.




GUDWIN ET AL.: KNOWLEDGE PRCCESSING IN CONTROL SYSTEMS

ACKNOWLEDGMENTS

The authors thanks the reviewers for their helpful sugges-
tions in the revision of this manuscript. The first and second
authors also acknowledge CNPgq, the Brazilian National
Research Council, for a fellowship and grant # 300729/86-3,
respectively

REFERENCES

[1] H. Aoki and K. Sasaki, “Group supervisory control system
assisted by artificial intelligence,” Elevator World, pp. 70-80,
Feb. 1990.

21 KJ. Astron and K.E. Arzen, “Expert control,” Automatica, vol. 22,
pp- 277-286, 1986.

[38] G.C.Barney and 5.M. dos Santos, “Elevator traffic analysis design
and control,” [EE Control Engineering, series 2, second edition.
London: Peter Peregrinus I.td., 1985.

[4] CL. Forgy, “RETE: A fast algorithm for the many pat-
tern/many object pattern match problem,” Artificial Intelligence,
vol. 19, pp. 17-37, 1982.

{5] M. Funabashi and K. Mori, “Knowledge based control systems
and software for building expert systems—EUREKA-II,” Hitachi
Review, vol. 37, no. 4, pp. 267-274, 1988.

[6] R.R. Gudwin, “A kernel for real time knowledge processmg,” MS
thesis, Campinas State Univ. (UNICAMP) (in Portugese).

(71 RR. Gudwin, FA.C. Gomide, M.L. Andrade Netto, “An elevator
supervisory group controller,” Internal Report RT-DCA/92 (in
Portugese)

[8] W. Kohn, “Declarative control architecture,” Comm. ACM, vol. 34,
no. 8, pp. 65-79, Aug. 1991.

[91 TJ. Laffey, PA. Cox, J.L. Schmidt, S.M. Kao, and ].Y. Read,
“Real-time knowledge-based systems,” Al Magazine, pp. 27-45,
Spring 1988.

[10] C.L. Lin and J.W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” J. ACM, vol. 20, no. 1,
pp- 46-61, 1973.

[11} C.G. Looney and A.R. Alfize, “Logical controls via Boolean rule
matrix transformations,” IEEE Trans. Systems, Man, and Cybernet-
ics, vol. 17, no. 6, pp. 1,077-1,082, Nov./Dec. 1987.

[12] C.G. Looney, “Fuzzy Petri nets for rule based decisionmak-
ing,” IEEE Trans. Systems, Man, and Cybernetics, vol. 18, no. 1,
pp- 178-183, Jan./Feb. 1988.

[13] CJ. Paul, A. Acharya, B. Black, and J.K. Strosnider, “Reducing
problem solving variance to improve predictability,” Comm.
ACM, vol. 34, no. 8, pp. 81-93, Aug. 1991.

[14] R. Schalkoff, Artificial Intelligence: An Engineering Approach.
McGraw-Hill, 1991.

[15] L. Sha and J.B. Goodenough, “Real-time scheduling theory and
Ada,” Computer, pp. 53-62, Apr. 1990.

[16] M. Shoppers, “Real-time knowledge based control systems,”
Comm. ACM, vol. 34, no. 8, pp. 27-30, Aug. 1991.

[17] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard real-time systems,” J. Real-Time Systems, vol. 1, no. 1,
pp. 27-60, 1989.

119

Ricardo R. Gudwin is a PhD candidate at the
State University of Campinas (UNICAMP),
Campinas, Sdo Paulo, Brazil. He received the
BS degree in electrical engineering from the
State University of Campinas (UNICAMP), in
1989, and the MS degree in electrical engineer-
ing/automation from the same university in 1992.
His topics of interest include artificial intelli-
gence, fuzzy systems, neural networks, evolutive
systems, and cognitive sciences. He is currently
working in his PhD thesis on methods of
learning for knowledge processing.

Fernando A.C. Gomide (S'80-M'83) received
the BS degree in electrical engineering from the
Polytechnic Institute of the Catholic University of
Minas Gerais, IPUC, Belo Horizonte, Brazil, in
1975, the MS degree in electrical engineer-
ing/automation from the State University of
Campinas (UNICAMP), Campinas, Brazil, in
1977, and the PhD degree from Case Western
Reserve University, Cleveland, Ohio, in 1982. He
. was chairman of the Applied Methodology Divi-

sion of the CTl—the Technological Center for
Informatics, Campmas—untll 1986. Since then, he has been a full-time
professor at the State University of Campinas, Faculty of Electrical
Engineering, Department of Computer Engineering and Industrial
Automation. He was director of SBA, the Brazilian Society for Automa-
tion, the Brazilian NMO of IFAC until 1989, and is currently associate
editor of the SBA journal Controle Automacao. His research Iinterests
include decision and system analysis, optimization and control, and
formal and applied artificial intelligence, fuzzy, neural, and evolutive
systems approaches in these fields. Prof. Gomide is a member of the
IEEE, INNS, BIFSA, SBA, and SBPC.

Marcio L. Andrade Netto received the ME de-
gree in 1970 from the Technological Institute of
Aeronautics (ITA), Brazil, and the MS and Doctor
degrees in electrical engineering from the State
University of Campinas in 1973 and 1976, re-
spectively. He is now with the State University of
Campinas (UNICAMP) in the Department of
Computer Engineering and Industrial Automa-
tion, Faculty of Electrical Engineering. From
1985 to 1986, he was at the Technological Cen-
ter for Informatics, Ministry of Science and
Technology, where he was head of the Manufacturing Automation De-
partment. He has worked on large Brazilian projects such as the S.
Paulo Metro System, and on international cooperative programs with
Germany and, currently, with several Ibero-American countries. He is
currently developing systems based on fuzzy logic and neural net-
works together with Brazilian industry. His research interests include
neural networks and fuzzy systems and their applications to control
and automation. Dr. Andrade is the coauthor of a book on industrial
automation and holds a patent on induction motors. He is a member of
the Brazilian Society for Automation (SBA).

Mauricio F. Magalhées received the BA in elec-
trical engineering from the University of Brasilia,
Brazil, in 1975. He received an MS degree in
automation from University of Campinas
- (UNICAMP), Brazil, in 1979, and the Dr. Engi-
neer degree from the Laboratoire d’Automatique
de Grenoble (LAG)/INPG, France, in 1983. He is
a professor with the Electrical Engineering Fac-
uity at the State University of Campinas
- (UNICAMP), Sao Paulo, Brazil. His research

interest include distributed real-time systems,
hard real-time scheduling algorithms, and synchronization in multime-
dia systems.

R R R R



