J Syst Eng (1994)1:39-55
© 1994 Springer-Verlag London Limited

Journal of
Systems
Engineering

A Real-Time Procedure for Knowledge Processing

Ricardo Gudwin, Fernando Gomide, Marcio Andrade Netto and Mauricio

Magalhaes

UNICAMP-FEE-DCA, CP 6101, 13081-970-Campinas-SP, Brasil

A real-time knowledge processing procedure is pro-
posed for rule-based systems in general and control
systems applications in particular. The procedure
provides mechanisms that address important charac-
teristics for real-time processing, including focus of
attention, integration of symbolic/numeric processing,
optimum use of environment and response time
warranty. It also supports the trade-off needed
in most real-time systems, for example between
processing power, response time, data space and
inattention. An application concerning supervisory
group control of elevators is also included to show
the usefulness of the proposed procedure.

Keywords: Artificial intelligence; Real-time com-
puter systems; Computer control; Knowledge engin-
eering

1. Introduction

Real-time knowledge-based or knowledge-pro-
cessing systems are playing an increasingly important
role in transportation, manufacturing, control,
robotic and aerospace systems. They are no longer
limited to low-level control functions. Control,
supervision and monitoring of complex hierarchical
systems in dynamic and sometimes unpredictable
or hazardous environments, are typical tasks of
current manmade systems.

Several large real-time applications are required
to operate in environments that are not fully
structured. The lack of information and uncertainty

Received 10 September 1992

Correspondence and offprint requests to: F. Gomide,
UNICAMP-FEE-DCA, CP 6101, 13081-970-Campinas-SP,
Brasil.

of the environment requires the use of problem-
solving techniques [1]. Elevator group control is
one such application [2,3]. There are many possible
situations, e.g.: the state of all elevators; existing
calls in the building; completion of previously
scheduled cars; combining new hall calls with
performance criteria. There are several possible
corresponding schedules and as new hall calls
appear, the scheduled cars must be revised fre-
quently. Since entering all the possible responses
(schedules) into the computer is infeasible, auto-
mating the response construction process will be
required. Factory scheduling is another such appli-
cation [4].

Current development in real-time artificial intelli-
gence is driven by a need to make knowledge-based
systems work in real-time [1] and a need to
integrate knowledge-based approaches to handle
the complexities of problem-solving behaviour in
control systems [5,6].

Looney [7,8] proposed a matrix procedure for
real-time knowledge processing considering only
production rules with one antecedent. His pro-
cedure, however, does not preserve its form in
more realistic and usual situations where several
antecedents are present in a rule that prescribes a
nonlinear relationship. Furthermore, when handling
multiple antecedents, the procedure is difficult to
analyse and to predict if it could meet deadlines
due to the chaining scheme adopted. This is a
critical issue in real-time situations.

Alternative schemes based on a network type of
representation for production rules are the RETE
[9] and EUREKA [10] procedures. However, both
procedures lack the predictability property, which
is essential in real-time applications.

More recently, Paul et al. [11] developed an
approach which integrates problem-solving method-

40

ology and architectural primitives to reduce the
variance at methodology level and at problem-
solving level. Using this approach they have shown
that problem-solving and real-time tasks coexist
within a readily analysable framework.

The purpose of this paper is to present a real-
time knowledge processing (RTKP) procedure based
on conjunctive and disjunctive matrices and oper-
ators. The proposed procedure affords the setting
up of the focus of attention mechanisms and
guarantees its response time. These are important
characteristics that real-time knowledge-based sys-
tems should have. Furthermore, the procedure
structure is such that parallel implementation is
natural. Even with conventional computer architec-
ture the procedure can be implemented to take
advantage of CPU parallel bit operations, which
may be viewed as a pseudo-parallel setting up.
Although we focus on the procedure’s propositional
logic viewpoint, its extension to fuzzy logic and
first-order predicate logic is immediate. Certainty
factors can also be easily handled.

The proposed procedure, as opposed to [7],
preserves the general structure even when processing
rules with multiple antecedents. It also allows serial,
pseudo or fully parallel implementations and its
extended version supports fuzzy and certainty factor
reasoning. These features are not observed in
[11]. Furthermore, it differs from both approaches
because the exact number of data operations in
each procedure call can be determined. Therefore,
the response time can be obtained for each change
observed on the monitored variables. Other dis-
tinguishing features are the ‘horizontal expansion’
and ‘rule base compression’ mechanisms used to
define the trade-off between memory size and
response time. Moreover, a method is provided to
avoid underutilisation of relevant information and
computations. Actually, the procedure can be
implemented using a structure that avoids irrelevant
information, as far as control applications are
concerned.

The paper is organised as follows. The next
section presents the preliminaries and the general
definitions needed. The procedure and its main
features are addressed in Section 3. Methods for
knowledge base analysis and manipulation are
presented in Section 4. It is also shown that
alternative versions of the procedure are easily
obtained to explore the characteristics of the
method. A tutorial example is provided in Section 5
to illustrate the idea behind the proposed procedure.
Section 6 addresses a discussion about real-time
knowledge-based systems and the associated require-
ments and characteristics. It is shown that the

R. Gudwin et al.

procedure developed agrees with most of them.
Next, in Section 7, an application concerning
supervisory group control of elevators is described
to show the usefulness of the proposed approach.
This application is a simplified version of a real world
application. Finally, Section 8 presents conclusions.

2. Preliminaries and General Definitions

A typical RTKP system acting as a direct digital
control system is shown in Fig. 1. The RTKP
module is connected to information sources and
receivers. Sources may be sensors connected to a
process, human users or even computer programs
in large integrated systems. Receivers can be
either actuators or human users or again computer
programs. The main idea behind this scheme is that
RTKP takes information from a system, processes
this information with the knowledge stored in it,
and then outputs new information to the system.
The outputs are the control decisions. Figure 2
shows an RTKP system performing supervisory
control task. The knowledge processing task is
encapsulated within a server to guarantee temporal
isolation between it and conventional real time tasks
[11-13].

Internally, RTKP is divided into four basic parts.
First is a preprocessor module responsible for the
transformation of input information into the internal
representation model used. This model is also
responsible for any mathematical treatment that
should be necessary to fit the internal representation
(by making transformation of variables, for
example). The postprocessor module translates the
internal representation model into output infor-
mation in a format as required by the process.
Between these two modules are the inference engine

KNOWLEDGE

BASE :

PRE L. |INFERENCE}| POST

PROCESSOR ENGINE PROCESSOR|
PROCESS |+—oI

Fig. 1. Typical RTKP structure in direct digital control.

A Real-Time Procedure for Knowledge Processing 41
SERVER
()
RB1
REAL TIME
OPERATING RTKP
SYSTEM
SUPERVISORY
RB2 CONTROL
LEVEL
____ J
TASK TASK
£ n
COMMUNICATION SYSTEM
DIRECT
CONTROL
CONTROLLER CONTROLLER CONTROLLER LEVEL
1l e J M
FROCESS p— = PROCESS |+ +—| PROCESS PROCESS
1 —] J a— M

Fig. 2. RTKP in supervisory control systems.

and the knowledge base. The latter is the internal
knowledge depository, coded in a usable format.
Information provided by the preprocessor module
and knowledge base is processed by the inference
engine to generate the desired outputs.

The RTKP is defined by:

® Internal representations of information provided
by the preprocessor module and information to
be converted by the postprocessor module.

® Internal representation of the knowledge base,
® A procedure for the inference engine.

The knowledge base is composed of two parts:
rule base and fact base. A fact is the truth value
associated to a particular proposition (or a term)
used to store knowledge. A fact base is a set of
terms, where each term has a meaning related to
the process (an associated proposition). Propositions
are considered within the propositional logic frame-
work, although they could also represent predicates
or fuzzy propositions. In the proposed procedure,
the fact base is represented by a fact vector where
each component is related to a term and contains
its truth value.

The rule base can be viewed in two different

representations. The first representation is for
purposes of knowledge acquisition and analysis
(called the virtual representation). It is presented
as a collection of rules like: if (antecedent) the
(consequent), where (antecedent) represents a con-
junctive association of terms and (consequent)
represents a disjunctive association of terms. Each
term is the symbolic representation of a proposition,
as in the fact base. A typical rule like

if A and B then C

has a meaning ‘if the proposition A is true and the
proposition B is true, then proposition C should be
true’. It is relevant now to review the main
requirements that real-time knowledge processing
systems should fulfil [1]:

Integration of numeric/symbolic processing
Continuous operation

Focus of attention mechanisms

Interrupt manager services

Optimum use of environment

Response time warranty

Temporal data processing

42

® Truth data maintenance
® Dispensing of explanatory modules

3. Procedure Description
3.1. Fact Base Codification

The real-time inference engine considers two fact
bases. The first, called input fact base, has the truth
values of terms evaluated by the preprocessor
module. The second, called output fact base,
contains truth values of the terms after the inference
procedure.

Each fact base will be represented by a vector
where each component is a boolean variable. This
vector has as many elements as the number of
terms used in the rule base. There is a one-to-one
relation between each term and a vector component.

Definition 1: fact vector. Let E be the set of terms
which represent the propositional symbols over a
universe of discourse:

E = {e, | e; propositional symbol, 1 <i=<n}

Let Card denote the cardinality of a set. For the
set E

Card(E) =n
Let x be a vector such that
x = {x;|x; € {0,1},1 =j = Card (E)}

Since the terms of a fact base (FB) are a subset
of E, the fact base can be represented by vector x
with its components assuming the corresponding
values:

. = 1, if the truth value of e, is true
k70, ifnot

k=1,..,n

The vector x represents the fact base FB and it
will be called a fact vector. The fact bases will be
codified as fact vectors. An input fact base is
denoted by x;, called input fact vector. The output
fact base is denoted by x,, called output fact vector.

3.2. Rule Base Codification

The rule base used by the procedure is a mapping
of its virtual representation. It will be represented
by two operational matrices, C (the conjunctive
matrix) and D (the disjunctive matrix).

The pair of matrices C and D is called the

R. Gudwin et al.

operational rule base since their structures store
rules’ information to be used effectively during
inference. The inference procedure is derived from
operational matrices, operators and the fact vector.

Definition 2: propositional rule. Let E be as in
definition 1. A rule R is defined by the union of
its syntatic and semantic structures. The syntatic
structure of a rule is defined as a word sequence,
each being a set of characters such as:

if (antecedent) then (consequent)

where (antecedent) relates from 1 up to (n—1)
elements of E, conjunctively associated by the
boolean operator /\ (‘and’), and (consequent) corre-
sponds to an element of E.

Example:

LetE = {el, €95 w5 5 610}

Antecedent examples:

e, and e, and es
€ /\ () /\ €5
e; and eg

€3

Consequent examples:

[] ey

® ¢

® ¢,

Complete rule example:

® if ¢; and e, then e,

Let A be a subset of E such that the elements
of A are members of the (antecedent) of rule R
syntactic structure, that is:

A = {a;|a; € E, a; being member of
(antecedent), 1 =i=<k k<n}

Let Q be a singleton of E such that its element ¢
is a consequent of rule R syntactic structure:

Q0 = {q|q € E, qis a consequent}

The semantic sturcture of a rule is defined by
associating it to a propositional logic sentence as
below:

/N(@) =q

where each g; is an element of A, ¢q is an element
of O, /\ is the conjunctive logic operator, and
= is the implication logic operator from the
propositional logic.

This means that the truth of all elements of A

A Real-Time Procedure for Knowledge Processing

(rule antecendent) implies in the truth of g (rule
consequent).

Definition 3: virtual rule base. A virtual rule base
(VRB) is a set of rules R; where 1 = j = m, and
m is the number of rules.

VRB = {R;|R;isarule, 1 <j =m}

Definition 4: semantic content. Let E be as in
definition 1.

The semantic content of a rule R; is defined as a
function ¢ which maps all possible interpretations
for E (Ig) in {false, true}, considering the logic
sentence that corresponds to the semantic structure
of rule R;.

For A; C E and Q, C E, if the semantic structure
of R; is:

(ajl /\ajz/\ /\a]-k) = q]
then:
(P(R],]E) . ((aj'l /\ ajz /\ /\ ajk) = q])
— {false, true}

Definition 4 can be extended to a rule base VRB
by mapping all possible interpretations of E in
{false, true}, considering the logic sentence which
corresponds to the union of the semantic content
in each individual rule of VRB:

¢(VRB,Ig)=¢(Ry,Ig)\/
‘P(RZJE) \/ 2 \/ ‘P(Rm,IE)

A pair of matrices C (the conjunctive matrix)
and D (the disjunctive matrix), as defined below,
makes up an operational rule base which will
effectively perform inference.

3.3. C Matrix Structure

In matrix C, each row is associated to the list of
antecedent terms of a rule in VRB, with each
column representing one symbol. Thus, the C matrix
has dimension m X n, where m is the number of
rules and »n is the number of symbols in VRB.

Definition 5: C matrix structure. Let E be as in
definition 1. Let VRB be a virtual rule base. Let
R; be the ith rule of VRB. Let A; be the set of
terms which are members of rule R; antecedent.
The C matrix structure is defined as:

C = {Cij|C,~,» :f(i’j,)’ 1 SiSm, 1 San}

ife, EA,;
if not

mﬁ=%

43
3.4. D Matrix Structure

The ith row of matrix D represents rules which
have the symbol i as a consequent. Therefore, the
D matrix has dimension n X m, where n is the
number of symbols and m is the number of rules
in the rule base.

Definition 6: D matrix structure. Let E be as in

definition 1. Let VRB be a virtual rule base. Let

R; be the jth rule of VRB. Let Q; be the set of

terms which are members of rule R; consequent.
The structure of matrix D is defined by

D:{dijldifzg(iaj)’lsisrlalsjsm}

wo-fy o
Definition 7: rule base coding. By rule coding it is
meant a modification of rule’s syntactic structure,
but maintaining its semantic content. Therefore,
rule base coding is a modification at the rule base
representation, preserving its semantic content and
meaning.

Let VRB be a virtual rule base. Let C (m X n)
and D (n X m) be, respectively, the conjunctive and
disjunctive matrices. A rule base VRB codification is
defined as a mapping:

Cod(VRB,{C,D}) : VRB—{C,D},
‘P(VRB ’IE) = “P({C aD} aIE) 7VIE

Actual implementation of the inference procedure
uses C and D matrix representation for knowledge
processing, since the semantic content is the same
of VRB, that is, ¢(VRB,Ig)=¢({C,D},Iz),VIE.
This equivalence is useful because at the level of a
man-machine interface (for knowledge acquisition
and validation, for instance), the virtual represen-
tation is more appropriate. For real-time processing,
C and D matrix representation provides much better
computing performance.

Note that, once the rule base is defined, C and
D matrices can be determined off-line.

3.5. Conjunctive Matrix Operator

The conjunctive matrix operator is an operator
which does the disjunction of the rules consequents.
Its definition is similar to the matrix multiplication
operator, changing the algebraic product and sum
by the corresponding boolean product and sum.

Definition 8: conjunctive matrix operator. Let /\ be
the conjunctive boolean scalar operator (‘and’). Let
\/ be the disjunctive boolean scalar operator (‘or’).

4+

Let M be a matrix of dimension n X m with boolean
elements m;. Let x be a boolean vector of dimension
m. Let y be a boolean vector of dimension n.

The conjunctive matrix operator /\ is defined by

y= /\(M’X) = MAx = {ydy: = \J_/(mij/\xj)}

where \/ is the boolean summation, that is
j

Vz; =21\ 22V Zm

j

3.6. Disjunctive Matrix Operator

The disjunctive matrix operator does the conjunction
of antecedent terms. It is dual to the conjunctive
matrix operator, i.e. we take the same definition,
changing the boolean scalar operators /\ to \/ and
vice versa.

Definition 9: disjunctive matrix operator. Let /\ be
the boolean scalar conjunctive operator (‘and’). Let
\/ be the boolean scalar disjunctive operator (‘or’).
Let M be a matrix of dimension m X n with boolean
elements m;;. Let x be a boolean vector of dimension
n. Let y be a boolean vector of dimension m.

We define the disjunctive matrix operator \/ as
follows:

y = V(Mx) = MVx = {yly; = /\ (m;vx;)}
where /\ is the boolean product, that is
J

Nzj=z; Nz, N\ Nz,

j
3.7. Inference Step

During inference, it is necessary to define a step
where all rules are applied to a fact base, reassigning
its truth values to the inferred ones. This scheme
is defined as an inference step.

Definition 10: inference step. Let C and D be the
conjunctive and disjunctive matrices respectively,
which represents the operational rule base. Let /\
and \/ be the conjunctive and disjunctive matrix
operators. Let Neg (A)=A be the elementwise
operation of boolean negation, for matrices. Let x
+y be the elementwise boolean summation for
vectors. Let x; and x, be two fact vectors. The
inference step is defined by the following equation:

x, = InferenceStep(x;) = x; + DA (C\/x;)

Theorem 1: inference step. Let VRB be a virtual
rule base. Let C and D be the codification of VRB
into the conjunctive and disjunctive matrices. Let

R. Gudwin et al.

A and \/ be the conjunctive and disjunctive matrix
operators. Let + be the vector boolean summation.
Let Neg(A)= A be the elementwise operation of
boolean negation for matrices. Let x; be the input
fact vector and x, the output fact vector. Starting
with a generic input fact vector and applying the
following formula:

X, =x; + DA (C\/ xi)
an output fact vector x, is obtained such that the
truth value of all facts that can be inferred by
applying rules of VRB over the facts represented

by x;, including input facts truth values, are contained
in X,.

Proof. The proof of the theorem is divided in two
parts. In the first part, it is proven that the operation
(C \/ x;) leads to an intermediary vector y, which
holds the truth value of the antecedent of each
rule. In the second part, it is proven that with
the truth value of each rule antecedent and by
performing the operation D /\ y, we get, by ‘modus
ponens’, the truth value of all entities which are
members of the consequents of rules. Therefore,
one obtains all facts that can be inferred when
starting with an input fact vector x;. The boolean
vector summation of this result with the original
input fact vector produces an output fact vector
which holds the truth value of all entities from the
universe of discourse, after application of VRB.

Part 1: By definition of disjunctive matrix oper-
ator, we have

y=Cvx={yly;= /j\(cij\/xj)}
The value of y is the boolean product:
Y = (€ VX)) \(€V/X)N. . N(Ein\/X,)
By the definition of matrix C, we have that c; =
1 if entity e; belongs to the antecedent of rule R,
being 0 if not. If ¢; = 0, then ¢; = 1. In those
cases, the term (¢; \/ x;) will always be 1, for any
value of x;. Thus, the value of those terms will
not change the result of the boolean product.
Considering a set K$, of indices k such that ¢; =

1, and a set LS of indices [that ¢; = 0, we can
split the boolean product into two parts:

yi= (/k\(éik\/xk)) N\ (/I\(C-il\/xl))

where ¢, is always 1 \vk € K§ and ¢; is always
0 \yIELS.
Since (i \/ xx) is always equal to 1, \VkEKS,
we have that
(/k\ (i \V x0)) =1

and therefore

A Real-Time Procedure for Knowledge Processing

Yi= (/l\ (€ \/ x1))

On the other hand, since ¢; is always equal 0,
vl € LG, we have that

Yi= /I\xl

We must remember that if ¢;; = 0, (¢; = 1) then
e, belongs to the antecedent of rule R; (by definition),
WVIELS. Therefore, the truth value of y; can only
be 1 if all values of x; are 1. Since all entities e,
belong to the antecedent of rule R;, this means that
the conjunction of all x;, is equivalent to the
conjunction of the truth value of entities which are
members of the antecedent term of rule R;. Then
the value of y, is equivalent to the truth value of
the antecedent of ruleR,.

Part 2: From the definition of conjunctive matrix
operator,

x=DAy= {x0: | X0: = \j/(dij/\yj)}

From D matrix structure definition, d; = 1 if e,
belongs to the consequent of rule R; and 0 if not.
Considering a set K7, of indices k so that d;, = 1,
and a set L2, of indices / so that d; = 0, we can
split the boolean summation in two parts:

Xoi = (\k/ A N\ yi)) (\1/ (du/N\y1)

where d;; is always 1, \vk € K? and dj; is always
0, v/ € LY.

If d; is always 0, the term (d; /\ y,) is always 0,
for any value y,, 'yl € LY.

Thus, we have that

\1/ (duNy)=0
and therefore
Xoi = (\k/ (A N\ yi))
Since d;; is also always equal to 1, \vk € K2:
Xoi = \k/}’k 1)

OBS — modus ponens: By ‘modus ponens’ rule
of inference it is meant that

A,A=B
B

i.e. if we have A, and there exists a relation that
A implies B, then we can deduce B.

Remembering that if d;, = 1, then \vk € K2, ¢,
€ QO (where Q; keeps the consequent of rule k),
which means that e; is the consequent of rule R,.

The semantic content or rule R, can be rewritten
as follows:

45

Y= 6€;

here, for \vk € K®, the expression y, = e; becomes
true, in other words, it is a valid formula.
By ‘modus ponens’:

Yk Y= €
€;

for all k belonging to KP;. Then e; can be deduced
from rule k if y, = 1.

Since y, = 1, Wk € K7, we have by definition
that x; = 1 and therefore

xoiz\/yk
k

which is equivalent to (1).
This proves the second part of the theorem and
completes the theorem proof.

3.8. Inference Cycle

The inference cycle is necessary to provide the
chaining among rules, when it exists. An inference
cycle is the successive application of inference steps,
taking as input to each step the output of the last
step, until it does not change anymore.

Definition 11: inference cycle. The inference cycle
is defined as a finite number of successive appli-
cations of inference steps over a fact vector, taking
as input in each step the output of the last step.
Let x; be the input fact vector, x, the output fact
vector, and x an auxiliary fact vector. Let (:=(a,b)
= a := b) be the vector attributive operator, defined
as attributing to each element of the left side
parameter, the value of the element with same
index from the right side: a[i] = b[i], \i. Let # be
the vector unequal operator, defined as

false ifx;=y;vi€|[l,n]

#(x.y) =x #y = {true if not

The inference cycle is the following procedure:

procedure INFERENCE_CYCLE

BEGIN
X 1= Xj
WHILE (x, # x)
BEGIN
X 1= X,
X, :=InferenceStep(x);
END
END

The inference cycle is the kernel of the inference
engine. After an inference cycle, the output fact
vector holds the result of a complete inference.

46

Theorem 2: theorem of inference cycle. Let VRB
be a virtual rule base. Let C and D be the
codification of VRB through the conjunctive and
disjunctive matrices. Let /\ and \/ be the conjunctive
and disjunctive matrix operators. Let + be the
boolean summation vector operator. Let x; be the
input fact vector and x, be the output fact vector.
Let P be the operator equivalent to an inference
step:

P(x) =x; +DA(C\/x)

The successive application of P, taking as input
of subsequent applications the last output, will
result in the complete inference from a virtual rule
base over a generic interpretation represented by
X;.

Proof: By Theorem 1, the inference step is equival-
ent to the application of all rules of a virtual rule
base VRB over a generic fact vector. The successive
application of the P operator over a fact vector x;,
taking the output of each operation as input to the
next one, is equivalent to the successive application
of all rules from a rule base over a fact base. If
there exists chaining between rules (for example,
forming a chain of g levels), after applying the P
operator g times, all activated rules are in fact fired.
Then a complete inference over such interpretation
is derived.

4. Knowledge Base Analysis and
Manipulation

Knowledge-based systems structure was conceived
to separate knowledge from its manipulation. The
knowledge manipulation performance depends heav-
ily on how the knowledge base is represented
for processing [14]. For real-time systems this is
particularly important, because it will run under
time constraints. Therefore, a methodology for rule
base analysis and manipulation is needed. The
purpose of this section is to address this question.

4.1. Rule Base Analysis

The most critical part of a knowledge base is the
rule base, because it provides the most opportunities
for reorganization to achieve better performance.
It has been shown that a rule base can be described
as the C, D pair. It would be interesting to
manipulate these matrices as an attempt to get a
new pair of matrices, with the same semantic
content, but with reduced dimensions for increased
performance.

R. Gudwin et al.

One important question to be considered is rule
chaining. Rule chaining occurs when an antecedent
term of one rule is also a consequent of another
rule. Here, the application of just one inference
step will not provide complete inference. To have
complete inference, several inference steps are
necessary. Given a base with m rules and several
chains, at most m steps of inference will be
necessary, which is the case when all the rules are
chained.

Chaining elimination seems to be a key to
reducing and predicting processing time.

Another factor that should be considered is the
need to preserve all entities used in the original
rule base throughout the inference procedure. If
we want to preserve the classic logic structure, this
is necessary to maintain the coherence of the
theorems that define the inference. Now, if our
goal is to apply logic for control purposes, where
the main issue is not the manipulation of pure
mathematical logic but the effective use of knowl-
edge for process control, we can relax the intermedi-
ate information, since it will not be relevant to the
final control action. Therefore, the information to
be processed can be reduced, which improves system
performance in terms of processing time and memory
space requirements. To deal with this aspect, we
propose a method for rule base compression with
deletion of intermediate information.

To address these issues, we begin by presenting
a method for horizontal expansion, and then a
method for rule base compression.

4.2. Rule Base Horizontal Expansion

The goal of the rule base horizontal expansion
method is to eliminate chaining from the rule base,
to avoid it during the on-line inference processing.
The main idea is to transform a rule base with
chaining into another rule base without chaining,
but with the same semantic content.

The method consists in including additional rules
in the rule base. The added rules are those generated
by the chaining of other rules. Then, instead of
applying several inference steps, only one is neces-
sary to get the same result as if all the rules would
be applied. Therefore, once we have a horizontal
rule base, only one inference step is enough for
complete inference.

Starting with the C and D matrices, the horizontal
expansion method generates two new matrices C’
and D'.

We know that if chaining exists it is generated
by a term that is used in the consequent of the

A Real-Time Procedure for Knowledge Processing

rule. First, the method swaps the rule base to verify
the rule’s consequents. Second it verifies if the
rule’s consequents appear as antecedents of any
rule. If so, a new rule is generated by syllogism,
and added to the new rule set.

The C matrix structure is specially interesting for
performing the horizontal expansion, since the swap
for a term can be made by just searching the column
relative to that term to verify if ¢; is equal to 1 or
not.

Definition 12: horizontal rule base. We define a
horizontal rule base as a rule base for which an
inference cycle corresponds to just one inference
step.

Definition 13: horizontal expansion procedure. Let
E = {e;} be the universe of discourse. Let VRB
be a virtual rule base. Let C and D be the
operational matrices that codify the virtual rule
base VRB. Let C;» be the ith row and C.; be the
jth column of matrix C. Let D;- be the ith row and
D.; be the jth column of matrix D. Let m be the
number of rules of VRB, in other words, the
number of rows of matrix C. let m’ be the number
of rules of VRB after (or during) the horizontal
expansion procedure.

We define the horizontal expansion of a rule base
by the following procedure:

procedure HORIZONTAL_EXPANSION *

VAR
i,j : indices;
BEGIN
m' :=m;
FORi=1TO m'
BEGIN
FORj=1TO m
BEGIN
Find k as dy; = 1; 2)
IF¢y =1 3)
BEGIN
Com+pyr := Cpr +Cps; 4
C(m’+1)k =05 (5)
D.(pp 11y :=Dxj; (6)
m':=m'+1;
END
END
END
END

Theorem 3: horizontal expansion. Let VRB be a
virtual rule base, codified as its corresponding
operational matrices C and D. Then, the operational
matrices C' and D’ generated by the horizontal
expansion procedure correspond to a virtual rule

47

base VRB', which has the same semantic content
of VRB. C’ and D’ are a horizontal rule base.

Proof: The horizontal expansion procedure searches
all the consequents of rules (2), verifying if they
are antecedents of other rules (3). If they are, it
adds the antecedent terms of the rule analysed with
these of the base set (4). In the sequel, it takes off
the entity which is the consequent of the rule from
this set (5) and places the consequent of the base
set as the consequent of the new rule. This is
equivalent to the syllogism of the two rules. Each
rule added in the base set eliminates one possible
chaining that would be necessary for complete
inference. This implies that, after the global search,
no new chaining will be necessary. Therefore we
get a horizontal rule base.

It should be noted that the method increases the
size of the rule base, since m’ = m. This means
increasing storage space, but since chaining is
avoided, the processing time is predictable. There
is a trade-off between processing time and storage
space to be considered. However, if a compression
procedure is also applied in the horizontal rule
base, we finally get a rule base that may be smaller
than the original rule base. This implies less
processing time and fewer memory requirements.

4.3. Rule Base Compression

In knowledge-based control systems, sensor infor-
mation is extracted from the process and translated
into facts to be processed with the rules by the
inference procedure. Because of inference, control
decisions are generated and translated into control
signals that drive the process. The control decisions
are due to a control strategy defined by a relation
coded in the rule base. From the input/output point
of view, sensor information is processed by a
relation to generate the control decision. This means
that for control purposes, only the terms associated
with the sensor information and the control decisions
are needed to be explicitly represented in the rule
base. Moreover, it is not necessary to have in the
input fact vector the corresponding terms whose
truth value is not known at the beginning of
inference. The output fact vector does not have to
contain the information that is already included in
the input fact vector. Thus, the fact vector can be
partitioned in three sub-vectors. The first sub-
vector, called input sub-vector, has as components
those terms associated with the sensor input. The
intermediate sub-vector has as its components those
terms that are neither associated with sensor input
nor associated with control decisions. The output

48

sub-vector has as components those terms associated
with the control decisions.

From the dicussion above we may conclude that
if an efficient scheme is available to recode and to
preserve the semantic content of a rule base with
those characteristics, not only would the size of the
rule base be diminished (which means less storage
space) but also the processing time would decrease
and the predictability increase. The rule base
compression method provides such a recoding
scheme. After horizontal expansion, the rule base
compression method first discards the intermediate
terms from the input and output fact vectors. The
corresponding C matrix columns and D matrix rows
are also discarded. Next, the terms of the output
sub-vector are eliminated from the input fact vector,
and the terms of the input sub-vector are eliminated
from the output fact vector. The C matrix columns
corresponding to the terms of the output sub-vector
and the D matrix rows corresponding to the terms
of the input sub-vectors are deleted. We then finally
get a compressed rule base, which recodes the
original rule base and preserves its meaning. With
this recoding procedure, an inference step provides
complete inference (no cycles are necessary) since
the inference procedure becomes:

x =D A"/ x) ™)
Definition 14: rule base compression. Let VRB be
a virtual rule base. Let VRB' be a horizontal rule
base, generated by horizontal expansion of virtual
rule base VRB. Let C and D be the matrices which
codify horizontal virtual rule base VRB'. Let E be
the universe of discourse. Let A; be the set of
entities which are members of the antecedent term
of rule R;. Let A be the set which is the result of
the union of all sets A;, i.e. the set of all entities
which are used as antecedent terms. Let Q; be the
set of entities which are members of the consequent
term of rule R;. Let O be the set generated by the
union of all sets Q;, i.e. the set of all entities which
were used as rule consequents.

Let N be the set of input entities, i.e. the set of

entities which are used only as antecedent terms of
VRB':
N= {nilniEA,ni$Q,15i
=Card(A-(ANQ))} (8)

Let I be the set of intermediate entities, i.e. the
set of entities which are both used in antecedent
and consequent terms of the VRB' rules:

I={lk | ik EA, ik EQ, 1=k
=Card(ANQ)} (9)

Let S be the set of output entities, i.e. the set of

R. Gudwin et al.

entities used only as consequent terms of the VRB’
rules:

S={s:/|s,€0,5,€A,1=1
= Card (Q-(ANQ))} (10)

Thus E=NUIUS.

Let x; be the input fact vector and x, the output
fact vector.

We define the compression procedure by the
following:

procedure COMPRESSION

BEGIN
Discard all e¢; € I from x; and x,,. (11)
Discard from C all rows C;- as
Jjle; € I N\ ¢c; = 1). (12)

Discard from D all related columns D-; (13)
Discard from C all columns C.; as e; € 1. (14)
Discard from D all columns D-.; as

Ji(e; € I\ d; = 1) (15)
Discard from C all related rows C;-. (16)
Discard from D all rows D;« as ¢; € [17)
Discard all ¢, € S from x;. (18)
Discard all ¢, € N from x,,. 19)

Discard from C all columns C.; as ¢; € S (20)
Discard from D all rows D;- as e¢; € N. (21)
END

Discarding an element from a fact vector means
the suppression of its corresponding components
from the vector. Let x be a fact vector:

%= [y, Bty « s Xops Bl o+ 55500

To discard term e,, represented by x,, from vector
x corresponds to create a vector

r—
X = [x1,x2’ "~’xp—17xp+17 "'axn]

where the x’' dimension is the dimension of x
decreased by 1.

To discard a row or a column from a matrix,
corresponds to suppressing a row or a column.

It must be observed that the compression pro-
cedure changes the indices associated with each
term. Therefore, the related table of symbols must
also be modified accordingly.

Theorem 4: compression. Let VRB be a virtual rule
base. Let VRB' be the horizontal expansion of
VRB. Let C' and D’ be the operational matrices
which codify VRB'. Let N be the set of input
entities, I be the set of intermediate entities and S
be the set of output entities. Let x; be the input
fact vector. Let x, be the output fact vector. Let
x; be the input fact vector modified by compression
(dimension of N). Let x/, be the output fact vector
modified by compression (dimension of §). Let

A Real-Time Procedure for Knowledge Processing

Comp(C’,D’ x;,%,,C",D" xi,x;) be the compression
procedure which transforms VRB' into VRB” as in
definition 14.

Let C" and D" be the operational matrices which
codify compressed rule base VRB".

The truth value held by each element of x/
through the modified inference procedure, using C”
and D"

X(', — D"/\ (Cn\'/ X;)

is the same as those that would be assigned to the
related terms of x,, using the procedure based on
C and D matrices and input fact vector x;.

Proof: After analysing the compression procedure,
we see that in (11), we discard the intermediate
entities from operational entities. In (12) and (13),
we discard all rules that had in its antecedent term
an intermediate entity. In (14) we discard from
matrix C the dimension related to the intermediate
entities as they will not be necessary and make the
necessary adjustments. In (15) and (16), we discard
the rules that have in its consequent an intermediate
entity. In (17) we discard the dimension of matrix
D related to the intermediate entities, making the
necessary dimension adjustments.

Those steps are equivalent to the elimination of
intermediate entities from fact vectors and matrices.
This is the same as defining a new system, where
the universe of discourse is reduced to (N U S§)
and the rules are similar to VRB', except those
that use an intermediate term. This will be an
intermediate compression. Only those entities which
are members of N can be assigned a value different
from O (x] represents the terms which are members
of N). Since only the rules that use intermediate
entities were removed (and these rules could never
be fired as the truth value of intermediate terms
always starts with 0, by definition), the truth value
assigned by the modified procedure to C' and D’,
will be the same as the conventional procedure in
C and D. In (18) we discard from input fact vector,
the entities of output sub-vector, and in (19) we

Table 1.

Symbol Index Antecedent Consequent Type
e 1 Yes No N
e 2 Yes No N
e; 3 Yes Yes 1
ey 4 Yes No N
es 5 Yes Yes 1
€ 6 Yes No N
e, 7 No Yes S
eg 8 No Yes S

49

discard from output fact vector, the entities of input
sub-vector. In (20) we adjust the columns of C and
in (21) we adjust the rows of D for the new
representation.

Since the values of x; are equivalent to the
corresponding ones in x{ and the others are 0,
nothing is modified by the inference process, and
the results provided by (7) are the same as those
given by the procedure in definition 10. Discarding
of input sub-vector terms from output fact vector
does not modify inference either because they are
not used in x,.

5. Example

A simple example is now provided to illustrate the
main features of the proposed procedure.
Let us consider the following rule base:

if e; and e, then e;
if e; and e, then es
if e; and e, then es
if e, and e, then e,
if es and e, then e,
if e, and e, then eg
An encoding is defined (Table 1). Then the

resulting C and D matrices are as follows:
r

1 10000 0 0
00110000
co | 10000100
01000100
0000 T1T100
01010000
0000 0 0]
0000 00
100000
p_ | 00000 0
0110 00
0000 00
000110
0000 01

After executing the horizontal expansion pro-
cedure, the matrices C’' and D generated are

110000 0 0
00110000
1000010 0
01000100
c— | 00001100
01010000
11010000
0011010 0
1000010 0
11010100

50

foo 00000000
000 0 0O0O0O0TUO0 0
1000 00O0O0UO0 O
p -0 000000000
0110001000
0000 0O0O0O0TUO0 0
000 110011 1
0000 010000

Executing the compression procedure, we get a
new symbol table to represent input fact vector and
output fact vector (Table 2), and the corresponding
compressed matrices are

01 0 1
o1t 1ol 1011
C‘1001D‘[0100}
1111

Assume that the signals collected from process were
preprocessed, resulting in the data of Table 3.
Then the input fact vector is

x;=[0101]
The result provided by the inference is
X, =[10]

The control action corresponding to e; can be
executed by post-processing. The decision which
corresponds to eg will not be executed.

Table 2.

Symbol Index

Input fact vector
€1
€2
€4
€6

LS SR

Output fact vector
€7

i|
€g 2

Table 3. Data collected

Proposition Truth value
e, False
e True
ey False
s True

R. Gudwin et al.
6. Real-Time Requirements Analysis

Recalling the main requirements for real-time knowl-
edge processing reviewed in the Section 2, the
following can be stated. First, an efficient numeric/
symbolic processing integration is required. In the
scheme proposed this is achieved by introducing of
the preprocessor module. Therefore, the control
engineer and software designers may use any
appropriate algorithm for information processing.
The only constraint is to provide process information
coded in the vector format to configure the fact
base to be used for inference.

Regarding the focus of attention, the proposed
procedure can easily consider structured rule bases,
which is a mechanism to fulfil such a requirement.
Here, each rule base can be coded into distinct C
and D matrices. A base of meta-rules, which can
be coded and operated by the same scheme, may
be executed periodically to decide which rule base
should be processed, depending on the process
state. Setting up this or similar alternative strategies
is quite simple because in order to perform context
switching, only a pointer that refers to the appropri-
ate matrices needs to be modified accordingly.

As far as the requirement of optimum use of
environment is concerned, due to its structure, the
inference procedure proposed can be implemented
by pairwise bit processing, using standard instruc-
tions of programming languages. This affords
pseudo-parallel implementation. Full parallel
implementation is also readily achieved if the target
machine has a parallel architecture. The mechanisms
for rule base compression also allow an efficient
use of memory.

Response time can be assured because, as the
procedure is a set of boolean operations, the time
to perform inference is easily obtained from the
time needed to execute a set of primitive instructions.
For instance, assuming that the procedure uses
assignment, addition, comparison and increment
as primitive instructions, and the corresponding
execution time is A, S, C and [respectively, with
m as the number of rules and n' as the average
number of symbols per rule, procedure implemen-
tation could have the following coding scheme [15]:

for (i=0;i<m;i++) (A+mC+ml)

{r=1 (A)

a=CL[i][0]; (§+2A4)

for

(j=1lj<=a&&y==1;j++) (A+2n'C+n'l)
{b=x[CL[i][{]] (35+3A)
y=y/\b; (C+A)

}

A Real-Time Procedure for Knowledge Processing

b=&xf[DV|[i]]; (25+A)
*b=*b\/y; (C+A)
}

where an account of each code line execution time
is included on the right. The total execution time
is such that

Cim,n") = A+2mC+mI+6mA+3msS
+3mn'C+mn'l+mn'4A+mn'3S

Given that each instruction time can be expressed
as an integer multiple of a period T (for example,
the clock rate), the inequality above may be
rewritten as

Cf(m,n')Skl T+ kzm. T+ k3mn, T= Cfu(m ,n,)

and the procedure order is O(m,n’), as shown
by Fig. 3(a), (b). Note that Ci,(m,n’) is an upper
bound for Ci(m,n').

If pre-processing and post-processing execution
times are C; and C,, respectively, RTKP execution
time C; is such that

Cs(m7n')sci+ Cfu(m,n,)+ C0: Csu(m’n,)

Csu(m,n') being an upper bound for C, (m,n’).

Typical real-time input and output tasks have
little to no variance associated with their execution
time because there are generally no data dependenc-
ies which can cause the execution time to vary.
Then, for given m and n', the RTKP procedure is
simply processed in a uniform, deterministic fashion
in direct digital control applications, provided that
C,(m,n") is consistent with process dynamics.

In structured knowledge bases, if C,(m;,n;) is set
as the upper bound of the execution time for
processing the m; rules with n} symbols per rule of
the ith knowledge base, the worst-case execution
time Cy(m,n’) is

Ci(m,n') = max {Cs(m;,n})}

51

The RTKP procedure can also be used in
embedded real-time supervisory control appli-
cations. In these cases, it must coexist with other
real-time tasks on a common computing platform.
The server concept introduced by the real-time
scheduling researchers is directly applied here. This
approach has also been used previously [11], but
was based on different grounds. Servers have been
developed [12,13] to provide highly responsive
aperiodic performance over periodic, hard deadline
environments. With this approach schedulability can
be explicitly evaluated, that is, the level of resource
utilisation, attainable before a deadline is missed,
can be evaluated and guaranteed.

Generally, the priority assigned to the server
depends on its response time requirements. For
instance, in supervisory control of elevator systems
to be addressed in the next section, the knowledge
processing requirements are periodic, with a period
T, of 0.5 s. Since the conventional real-time tasks
are also periodic, the rate monotonic scheduling
theory [15] can readily be used to evaluate schedul-
ability of the task set. In essence, this theory ensures
that since the CPU utilisation of all tasks lies
below a certain bound and appropriate scheduling
algorithms are used, all tasks will meet their
deadlines without the programmer knowing exactly
when any given task will be running. Even if a
transient overload occurs, a fixed subset of critical
tasks will still meet their deadline since their CPU
utilisation lies within the appropriate bounds.

Given a set of independent periodic tasks, the
rate monotonic scheduling algorithm gives each task
a fixed priority and assigns higher priorities to
tasks with shorter periods. A sufficient worst case
condition that characterize schedulability of a task
set under the rate monotone algorithm is provided
by [15]

G

C
” 1/n _ =
T1+ oo+ Tnsn(Z 1) = U(n)

Ne AVERAGE # OF SYMBOLS / RULE
rules .

20 ,/ 30
7600 Lo’

'l

;”

00 ,—"
"‘
3800
1800
. n-] 7] v
G626 %] 1 2 time (s)

Ne N2 OF RULES
[symb.

k0

2.0

Lo

(% 7 Y] T

L time (s)

Fig. 3. Measured RTKP procedure time performance: (a) rules vs time; (b) symbols vs time.

52

where C; and T; are the execution time and period
of task 7;, respectively, and one task index is
assigned to the server.

To check if a set of given tasks with greater
utilisation than the bound provided above can meet
its deadlines the critical zone theorem [16] should
be considered. The critical zone theorem states
that, for a set of independent periodic tasks, if each
task meets its first deadline when all tasks are
started simultaneously, then the deadlines will
always be met for any combination of start-times.
An equivalent mathematical test which can be
calculated by an exact-case analysis [12] is

Vi, l=i=n

T | lrkw
C-—[* =1
(kr,rll;gR.-j; T T;

where C; and T; are the execution time and period
of task 7;, respectively, and

R={kD)|1=k=il=1,..|T/T.]}

and one task index corresponds to the server.

This theorem provides the basis for an exact
schedulability test for sets of independent periodic
tasks under the rate monotonic algorithm. The
theorem requires checking the scheduling points for
a task. The scheduling points of a task 7 are 7’s
first deadline and the ends of periods of high
priority tasks before 7’s first deadline.

Summing up, since the worst-case execution time
of the RTKP procedure can be easily determined,
and assuming that other tasks execution times are
given, an analytical treatment to answer whether
the server capacity is sufficient to meet the response
time requirement is readily provided by the rate
monotonic scheduling theory. The rate monotonic
algorithm has been proven to be the optimal fixed-
priority scheduling algorithm for periodic tasks.

Temporal data processing, although not natural
within the theoretical framework considered in this
paper, may be handled by either preprocessing or
postprocessing modules, since they can include
procedures to store current and past process states
or to use models to get state estimations. Truth
data maintenance can also be treated by the
pre- and postprocessing modules. Therefore, the
procedure proposed here is in close agreement with
the basic requirements that a real-time knowledge
processing system should fulfil.

Beyond the points above, real-time knowledge
based systems are often viewed as computer pro-
grams, whose implementations, inevitably, make
trade-offs between five sources [4]; processing
power, response time, data space, inattention and

R. Gudwin et al.

degradation. The properties of the developed pro-
cedure clearly provide efficient guidelines to estab-
lish the desired trade-offs.

7. An Application Example: Group
Supervisory Control of Elevator
Systems

In traffic control of elevator systems two different
control problems must be solved by a corresponding
two level control hierarchy. The lower level task is
to command each elevator to move up or down, to
stop or start and to open and close the door. The
higher level coordinates the movement of a group
of elevators through a set of logical rules crafted
to improve the system’s performance. This problem
is solved by means of a group supervisory control
system with the aid of a group supervisory control
strategy (the set of rules defining the control policy).

The main requirements of a group control system
in serving both car and hall calls should be: to
provide even service to every floor in a building;
to minimise the time spent by passengers waiting
for service; to minimise the time spent by passengers
to move from one floor to another; to serve as
many passengers as possible in a given time [3].
Due to the random nature of call times, call
locations and the destination of passengers, problems
are encountered in attempting to achieve the above
requirements. Therefore, the control strategy must
be able to follow changes in passenger demands,
handling different traffic patterns and adapting itself
to the traffic conditions.

A practical method widely used in group supervis-
ory control systems consists of allocating cars to
serve the building hall calls. Usually only new calls
are allocated, remaining fixed once made. This
method is known as call allocation strategy [3]. In
car allocation, however, constraints must also be
considered. For instance, a car may not pass a floor
at which a passenger wishes to alight, a car may
not reverse its direction of travel while carrying
passengers, a hall call cannot be served by a car
going in the reverse direction.

In what follows, the knowledge processing pro-
cedure developed in this paper is used to implement
knowledge-based group supervisory control of elev-
ator systems. This knowledge processing approach
is particularly useful because:

® Call allocation strategies are frequently expressed
by a set of rules provided by elevator designer
experts.

e Different sets of rules can be easily grouped into

A Real-Time Procedure for Knowledge Processing

a structured knowledge base to cover such traffic
conditions as up-peak, down-peak, heavy sector
demand, heavy floor demand, balanced traffic,
off-peak, etc.

® [ogical constraints can be easily included in the
knowledge base and processed equally.

® Meta-rules can easily be developed and incorpor-
ated to choose the car allocation rules most
suited to a given traffic pattern.

® Response to system events can be predicted.

Production rules are particularly appropriate to
derive both allocation stratgies and constraints. The
adaptation of the allocation strategy to the traffic
condition is handled by the focus of attention
mechanism, using meta-rules for traffic pattern
characterisation and rule base selection. Data acquis-
tion and vector format information coding functions
are performed by the preprocessor. Actual call
allocation decisions and control signals, generated
after inference, are computed by the postprocessor.

The supervisory group control simulation example
presented below, which corresponds to the supervis-
ory control level of Fig. 2, is a simplified version
of a real world system described in [17]. Table 4
presents the data used for simulation purposes.

Examples of car allocation rules include:

IF elevator[E]_has_direction
THEN elevator[E]_has_target

IF elevator[E]_has_no_direction
THEN elevator[E]_has_no_target

IF elevator[E]_has_target

AND place[I]—in_field

AND place[I]_has_call

AND call_on_place[I]_has_same_direction_
elevator[E]

ANDcall_on_place[I]_not_allocated

THEN Allocate_Call(E,I);

AND elevator[E]_with_allocation_undefined

= FALSE;

Table 4. Elevator system characteristics.

Number of floors 7
Number of elevators 5
Elevator capacity 6 passengers each
Elevator velocity 3 m/s

Inter-floor distance 3m
Door opening time 2s
Door holding time 2s
Door closing time 2s

Total simulation time
Traffic conditions
Traffic patterns

550 s (9 min 10 s)
Up to 34 pass/min (peak)
Off, down and up-peak

53

IF elevator[E]_has_no_target

AND place[I]_up_in_field

AND place[I]—up_has_call

AND call_on_place[I]—up_not_allocated
AND elevator[E]_with_allocation_undefined
THEN Allocate_Call(E,I);

AND elevator[E]_with_allocation_undefined
= FALSE,;

IF elevator[E]_has_no_target

AND place[I]—down_in_field

AND place[I]—down_has_call

AND call_on_place[I]_down_not_allocated
AND elevator[E]_with_allocation_undefined
THEN Allocate_Call(E,I)

AND elevator[E]_with_allocation_undefined
= FALSE;

Here, it will be demonstrated how to assign
priority to the server and how to solve for its
maximum capacity, consistently with the real-time
tasks scheduling requirements. The example has a
structured rule base for which

Ci(m,n')=0.3s

corresponding to m = 500 (rules) and n' = 20
(average number of symbols/rule).

The priority assigned to the server is a function
of its response time requirements. In the group
supervisory control application the server processing
requirements are periodic with a period T, = 0.5 s.
Since the conventional real-time tasks are also
periodic with periods summarised in Table 5,
the rate monotone scheduling algorithm is readily
applied to evaluate the schedulability of the task
set. A tight bound can be determined by the exact-
case analysis formula, which yields a maximum C;
of 0.35, which corresponds to a maximum utilisation
of the server of U; = CJ/T, = 70%. Adding this to
the utilisation of the other real-time tasks, a total
schedulable utilisation of 96% is provided.

Therefore the set of tasks of Table 5 is schedulable
because the run-time of the server is 0.3 s. This
can also be checked, noting that, in the example,
the sufficient condition

G, G G = 13_1) = -

T, + T2+ T3—0.872(2 1) =0.78 = U(3)
does not hold and then the exact-case analysis must
be performed. The scheduling points are 0.5, 1.0,
1.5, 2.0, 2.5 and 3.0, respectively. For the fourth
scheduling point we have

4C,+ G+ C3=12+0.2+0.5=1.9<2.0

which means that the critical zone theorem holds.

54

R. Gudwin et al.

Table 5. Execution characteristics of the run-time task set.

Task task data

Rate monotonic theory

Period T; Run-time C; Utilisation U; Priority

() (s)
Traffic monitoring 2.0 0.2 0.1 2
User interface 3.0 0.5 0.16 3
Supervisory control 0.5 0.3 0.6 1

Total

0.86

Fig. 4. Space vs time — RB strategy.

The actual schedulable utilisation of 86% is achieved
with the server run-time of 0.3 s.

Additional results are provided by Figs 4 and 5,
which show the elevator group space-time diagrams,
and the average passenger waiting time given by
the evaluation of waiting time for each call.

I AVERAGE

b el

AL Ly IR]

Fig. 5. Wait time vs call — RB strategy.

—

Fig. 6. Space vs time — conventional strategy.

Figures 6 and 7 show the same system under
control of a conventional, fixed call allocation
strategy. As it is shown, the intelligent group
supervisory control provides a very attractive scheme
for car allocation under time-varying traffic.

8. Conclusions

In this paper, a knowledge processing procedure,
specially tailored for real-time applications, has

.

Ny,
M} il

AVERAGE T A M

Fig. 7. Wait time vs call — conventional strategy.

A Real-Time Procedure for Knowledge Processing

been developed. Its main characteristics are in
providing a processing scheme that closely agrees
with the basic requirements for real-time knowledge-
based systems. It also includes possibilities for rule
base manipulation allowing important trade-offs
between storage space, processing time and environ-
ment utilisation which are fundamental for
implementing real-world cases.

An application concerning supervisory, group
control of elevators was also included to illustrate
the procedure potential.

Currently, the approach developed is being
extended to consider its use within the framework
of first order predicate logic, fuzzy logic, and
threshold reasoning. We hope to address those
items in a future paper.

Acknowledgements

The first two authors are grateful to CNP, the
Brazilian National Research Council, for a fellow-
ship and grant no. 300729/86-3, respectively.

References

1. Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY.
Real-time knowledge-based systems. Al Mag 1988;
Spring

2. Aoki H, Sasaki K. Group supervisory control system
assisted by artificial intelligence. Elev WId 1990;
February

10.

11.

12.

13.

14.

15.

16.

17:

55

. Barney GC, dos Santos SM. Elevator traffic analysis

design and control. In: IEE Control Engineering
Series 2, 2nd Edn, Peter Peregrinus, London, 1985

. Shoppers M. Real-time knowledge based control

ji'stems. Commun ACM 1991; 34(8)
stron KJ, Arzen KE. Expert control. Automatica
1986; 22: 277-286

. Kohn W. Declarative hierarchical controllers. Proc

workshop on innovation approaches to planning,
scheduling and control, Nov. 1990

. Looney CG, Alfize AR. Logical controls via boolean

rule matrix transformations. IEEE Trans Syst Man
Cybern 1987; 17(6)

. Looney CG. Fuzzy Petri nets for rule based decision

making. IEEE Trans Syst Man Cybern 1988; 18(1)

. Forgy CL. RETE: a fast algorithm for the many

pattern/many object pattern match problem. Artif
Intell 1982; 19: 17-37

Funabashi M, Mori K. Knowledge based control
systems and software for building expert systems —
‘EUREKA-ITI’. Hitachi Rev 1988; 37(4)

Paul CJ, Acharya A, Black B, Strosmider JK.
Reducing problem solving variance to improve pre-
dictability. Commun ACM 1991; 34(8)

Sha L, Goodenough JB. Real-time scheduling theory
and Ada. IEEE Comput 1990; April

Sprint B, Sha L, Lehoczky J. A periodic task
scheduling for hard real-time systems. J Real-Time
Syst 1989; 1(1)

Schalkoff R. Artificial intelligence: an engineering
approach. McGraw-Hill, 1991

Gudwin RR. A kernel for real time knowledge
processing. MsThesis, Campinas State University
UNICAMP (in Portuguese)

Lin CL, Layland JW. Scheduling algorithms for
multiprogramming in a hard real-time environment.
J ACM 1973; 20(1)

Gudwin RR, Gomide FAC, Andrade Netto ML. An
elevator supervisory group controller. Internal report
RT-DCA/92 (in Portuguese)

J Syst Eng (1994)1:56
© 1994 Springer-Verlag London Limited

Book Review

‘An Introduction to Fuzzy Control’ by D. Driankov, H.
Hellendoorn and M. Reinfrank. Springer-Verlag, Berlin, 1993,
316 pp. ISBN 3-540-56362-8

Over the past two decades, fuzzy sets theory has had a number
of successful applications in difficult control problems. A factor
in favour of fuzzy control techniques is that they are effective,
but relatively straightforward to employ as they do not require
accurate mathematical modelling of the plant to be controlled.
This has created a great deal of interest among users and
manufacturers of control systems. Research activities in fuzzy
control have also been intense and many new results have
emerged. These results can be found scattered in many research
articles in specialist journals and conference proceedings. How-
ever, for practising systems engineers wishing to learn about
fuzzy control, there is a lack of good introductory books covering
the subject in a coherent manner. The authors have set out to
produce such a book. In this, they have succeeded, for the book
does indeed provide a lucid introduction to fuzzy control,
concentrating on principles rather than individual applications
or tools.

The book comprises six chapters. Following Chapter 1, which
discusses the general benefits of and issues in fuzzy control and
the cognate technique of knowledge-based control, Chapter 2
summarises useful background material on fuzzy logic, the
mathematical foundation of fuzzy control. Chapter 3 then

Journal of
Systems
Engineering

describes the main components and design parameters of a fuzzy
control system and their effects on the performance of the
system. Chapter 4 treats a fuzzy controller as a non-linear
controller with a view to applying appropriate non-linear control
techniques to its design and analysis. A technique considered in
the chapter is sliding-mode control and its use to implement a
force control system for contour-following is explained. Chapter

" 5 presents self-tuning and self-organizing fuzzy controllers and

approaches to the design of adaptive fuzzy controllers. Chapter
6 is devoted to the analysis of stability and discusses basic
approaches including the state-space, qualitative theory and
input-output approaches. An extensive list of references is
provided at the end of the book.

The book is clearly written and illustrated with many examples
and diagrams (Chapter 2 in particular). To derive the maximum
benefit from the book, the reader should have a good background
in control engineering. A number of features would further
enhance the value of the book as a text, for instance, the
inclusion of end-of-chapter problems and of one or more chapters
detailing some major case studies.

In conclusion, this is a very good introductory book on fuzzy
control theory which can be strongly recommended to control
engineers and postgraduate students in control engineering
interested in learning about this practical and important subject.

D. T. Pham

W. Gander, J. Hi'ebicek (Eds.)

Solving Problems in
Scientific Computing
Using Maple and

MATLAB

1994. Approx. 280 pp. 97 figs. 7 tabs.
Hardcover DM 78,- ISBN 3-540-57329-1

Modern computing tools like Maple
(symbolic computation) and MATLAB

(a numeric computation and visualization
program) make it possible to easily solve
realistic nontrivial problems in scientific
computing.

Prices are subject to change without notice. In EC countries the local VAT is effective.

For information on prices in Austrian schillings and Swiss francs please consult the German book directory

“VLB - Verzeichnis lieferbarer Biicher” or our general catalogue.

In education, traditionally, complicated
problems were avoided, since the amount
of work for obtaining the solutions was not
feasible for the students. This situation has
changed now, and the students can be
taught real-life problems that they can actu-
ally solve using the new powerful software.
Readers will learn by examples and will
also learn how both systems, MATLAB and
MAPLE, may be used to solve problems
interactively in an elegant way.

Springer

d&p.1371.MNTNV/2q

Springer-Verlag (] Heidelberger Platz 3, D-14197 Berlin, F.R. Germany [175 Fifth Ave., New York, NY 10010, USA[J 8 Alexandra Rd., London SW 19 7JZ, England [J 26, rue des Carmes, F-75005 Paris, France [37-3, Hongo 3-chome,
Bunkyo-ku, Tokyo 113, Japan (] Room 701, Mirror Tower, 61 Mody Road, Tsimshatsui, Kowloon, Hong Kong [Avinguda Diagonal, 468-4° C, E-08006 Barcelona, Spain [] Wesselényi u. 28, H-1075 Budapest, Hungary

