
Comparative Analysis Between Gazebo and V-REP
Robotic Simulators

Lucas Nogueira
School of Electrical and
Computer Engineering

Universidade de Campinas
Email: lucas afonso@hotmail.com

Abstract—Robotic simulators are normally used in the design
and testing of control algorithms for different platforms. But
they can also be seen in a more broad context of Artificial
Creatures. This a natural development of the cognitive paradigm
proposed by Brooks. Related to this, in recent years the Robot
Operating System (ROS) has emerged as a de facto standard
for robot software architecture. I selected two of the best-known
simulators and performed a comparison between them, evaluating
the strengths and weaknesses for each one, and how well to these
simulators interact with ROS, based on an experiment with a
Pioneer 2DX robot.

Keywords—robotic simulators, ROS, Gazebo, V-REP, cognitive
science

I. INTRODUCTION

Rodney Brooks proposed in his article 1990 ”Elephants
don’t play chess” [1] that the ”world is its best model” and that
cognition should be studied in an embodied context, where the
creature had temporal interactions with the world. This led to
the development of cognitive robotics, where cognitive science
theories are tested and validated on robotic platforms. More
specifically, Brooks created the subsumption architecture that,
in his words, resulted in ”Intelligence without Representation”
[2]- the title of another article of his.

It is in this context of robotics as an tool for cognitive
science that I try to introduce two robotics simulators and
a robotic framework that can be used together in order to
develop, test and validate different approaches to cognition
and it components, such as perception, memory, behavior and
etc. The two simulators chosen for the comparison are Gazebo,
an open-source solution maintained by Open Source Robotics
Foundation, and V-REP and commercial - with an free educa-
tional version - solution provided by Coppelia Robotics. These
two were chosen based on the result described in [3], where
the authors did a survey on the use of robotic simulators by
the community. They found that Gazebo was the most-known
simulator and that V-REP was the best rated.

Robotic simulator build the bridge between artificial crea-
tures theory and robotics. They provide an additional guarantee
that the cognitive framework developed can be applied to real
robots, with minor adjustments needed. This is can be very
useful to the cognitive scientist that wants to put away the
criticism of dealing with toy problems [1]. This paper aims
to introduce the two simulators so that the prospective reader
might choose among them the one the better suits his needs.
In Section II, I present why is the Robot Operating System
(ROS) of great importance in the evaluation of this simulators.
In Section III, some details of both simulators are presented.

In Section IV, I describe the experiment that was used to
compare the simulators. In Section V, I write the results of such
comparison. Finally, in Section VI, I present my conclusions.

II. ROS AS A COGNITIVE ARCHITECTURE

In this paper, I compare two simulators with the goal of
introducing to the cognitive scientist these tools that might,
and should, be used in the process of testing and validating
cognitive theories, mainly within the Situated and Embodied
Cognition and Dynamicist cognitive paradigms. I also argue
here that the Robot Operating System (ROS), is another tool
that should go hand-in-hand with the robotic simulators. ROS
has many of the features that have been said to define a
cognitive architecture. In this section, I point out these features.

Fig.1 shows an example of how ROS modules might
be deployed in a simulation scenario. There are five robots
running in parallel, represented by the ”pioneer” boxes. In each
of these boxes, it is possible to observe the sensor data (scan)
entering the node that performs the control using an multi-layer
perceptron, and the actuator commands (cmd vel), that are
produced by the MLP nodes. In this graph, it is also possible to
see the Gazebo node, which provides the sensor readings and
receives the commanded velocity. It is not difficult to recognize
here an typical dynamicist cognitive cycle. Even more so
because in dynamicism, the environment is considered a part
of the cognition process, and in a ROS/Gazebo simulation, the
environment is exactly another software component.

It is also possible to use Fig.1 to analyse Sun’s definition
of cognitive architectures, as can be found on his Desiderata
[4]. In this work, he says:

“A cognitive architecture provides a concrete frame-
work for more detailed modeling of cognitive phe-
nomena, through specifying essential structures, di-
visions of modules, relations between modules.”

This definition highlights the importance of the modular con-
struction of the overall structure of the cognitive phenomena.
Indeed, ROS was designed by its creators to be ”modular
at a fine-grained scale” [5]. This can be observed in the
figure, which shows, how different models interact together.
In ROS, these modules are called nodes, and are able to
function independently of each other. This allow for a modular
construction of complex systems - much more complex than
the ones showed in this paper. This complex systems can show
all the standard modules in cognitive architecture, like learning,
action selection and perception.



Fig. 1. ROS Nodes and Topics graph for the genetic algorithm assignment

In a sense, one can say that ROS is the cognitive archi-
tecture for the dynamicist cognitive scientist. It is a concrete
framework that allows for the implementation of cognitive
phenomena in robots. Also, when it comes to how it deal
with crucial dichotomies like the ones proposed by [4], it will
generally take the side of the dynamicist view. For example,
ROS uses mostly subsymbolic processing - numeric but typed
messages. Also, there is usually little formal definition of
the modules in a high-level concept - like learning or action
selection. There is not to say that these concepts are not
present. It is just that they will usually be an emergent and/or
implicit property of the system.

For these reasons, and the fact that ROS is quickly becom-
ing a standard in robotics research and industry, I consider ROS
integration one of the key criterion to use when comparing
Gazebo and V-REP simulators. ROS is already proving itself in
the robotics field - which is implicitly about artificial cognition
- but the point that is being made here is that it can also be
used for more explicit work in classical cognitive science.

III. THE SIMULATORS

A. V-REP
V-REP is a robotic simulators developed by Coppelia

Robotics [6], which are based on Zurich, Switzerland. It is
a commercial software, that can be obtained for free in its
educational version. V-REP has support for Windows, Linux
and Mac operating systems. It is possible to use 7 different
programming languages with V-REP, the default language
being Lua.

It also provides a lot more features, the following being a
non-exhaustive list:

• Mesh editing.
• Interaction with the virtual environment during simula-

tion.
• Physics Engines: ODE, Bullet and Vortex.

B. Gazebo
As stated in its website, Gazebo started as a project

in the University of Southern California. Later on, it was
integrated into ROS framework by John Hsu, who was a senior
researcher at Willow Garage, ROS original maintainer. Since
then, Gazebo has been maintained by Open Source Robotics
Foundation, which is a Willow Garage spin-off, and the same
maintainer that takes care of ROS. Gazebo is a completely
open-source project, available to anyone under the Apache 2.0
license. Gazebo only runs on Linux, but support for Windows
is planned to happen in next versions. A short list of features
is presented:

• Cloud Simulation, the possibility to run the simulation on
an online server.

• Physics Engines: ODE, Bullet, Simbody and Dart.

IV. THE EXPERIMENT

Fig. 2. Gazebo Simulation Interface

Fig. 3. V-REP Simulation Interface

In order to compare Gazebo and V-REP, I implemented the
same experiment in both of them. The experiment was taken
from an assignment of an Artificial Intelligence class taught
by Professor Fernando Von Zuben [7]. In this assignment, the



student is asked to create an robot controller using both fuzzy
logic and a multi-layer perceptron. In the original assignment,
one has to actually design not only the control algorithms, but
also the environment simulation. For this, the robot should be
treated as a point in space moving in a labyrinth composed by
walls in a 2d plane. The robot has three distance sensors - one
facing forward, and the other two forming a 45 degree angle
with the central sensor on each size. The forward velocity of
the robot should remain constant in the simulation, and the
control algorithms has to determine the best angular velocity
for the robot, at each moment.

Instead of creating both the control system and the sim-
ulated world, I integrated ROS with V-REP and Gazebo,
replacing the idea of a theoretical point robot with a virtual 3D
robot model. The model chosen was the Pioneer 2DX, as it is
a well-known robot and it was already in the model database
of both simulators.

In the fuzzy logic part of the experiment, the control system
has a fuzzy rule set made up of 36 propositions. Each rule is
made of 3 antecedents - one for each proximity sensor - and
one consequent - relating to the angular velocity. The central
proximity sensor range is divided in 4 fuzzy granules, and the
ones on the side have 3 granules each, thus making up for 36
possible combinations. The consequent has 4 granules. The
purpose of the simulation is to determine the best consequent
for each rule.

For the second part of the experiment, the control system
used an Multi-Layer Perceptron, with 3 nodes in the middle-
layer. The task was to find the best weights using and genetic
algorithm. This was fundamentally different from the first part
because it required multiple runs of the simulation using differ-
ent set of weights. This implied in some level of programmatic
control over the simulation environment, which was used as
one of the criteria for the comparison - see next section.

As suggested in the assignment text, I used a population
of 5 robots. Each one of them was positioned in a way that
it tested a different movement challenge – namely hard/soft
turn right/left, and going straight. These robots were controlled
with different control systems running in parallel, but using the
same set of weight at each time. These set of weights were
used as the genotype in my genetic algorithms. The fitness
used was the number of robots that hit the wall in each 10
second simulation run. So, if the fitness was 0, it meant that
no robot had hit the wall, and that the weight set was successful
in controlling the robots.

Both parts of the experiment were implemented in both
simulators, thus allowing for a comparison between their
features. They were performed on a Ubuntu 14.04 operating
system, with ROS Indigo, Gazebo 2.2, and V-REP 3.1.3 PRO
EDU, which is free for educational purposes. Even tough
there’s already a 4.0 version of Gazebo, the 2.2 is the one
recommended to use alongside ROS Indigo. The comparison
criteria chosen was the following:
ROS Integration

How easy it was to use the existing ROS framework with
the simulator.

World Modelling
How easy it was to create world models like the labyrinth.

Robot Model Modifications
How easy it was to modify the robot model to add sensors
and plugins.

Programmatic Control
How easy it was to control the simulation environmental
using programming languages.

CPU Use
How much CPU power does the simulator needs.

V. COMPARISON

A. ROS Integration

Gazebo is the default simulator used in ROS framework.
Although they’re separated projects, there is a package for
Gazebo in ROS official repository (ros-indigo-gazebo-ros [8]).
This is a package kept by Gazebo maintainers themselves, the
Open Source Robotics Foundation. It contains plugins that
interface ROS and Gazebo. These plugins can be attached
to objects in the simulator scene, and provide easy ROS
communication methods, such as topics - both published and
subscribed by Gazebo - and services. Packaging Gazebo as an
ROS node also allows for it to be easily integrated into ROS
default method for running large and complex systems, called
launchfiles.

In the experiment, the Pioneer robot used a Differential
Drive plugin, which listened for cmd vel ROS messages
and used it to apply appropriate commands to the robot’s
motors. Another plugin used was the one attached to the
Hokuyo 2d laser scan model. It was used to publish a sen-
sor msgs/LaserScan message that contained the readings from
the simulated sensor. This messages were then used by the
control node.

V-REP doesn’t have a native ROS node for it. This means
that it is not yet possible to run it as a part of a ROS system in
a single launchfile, but instead alongside it, in another Linux
terminal. This is not much of a problem. On the other hand,
V-REP does offer a default ROS plugin that can be used in V-
REP Lua scripts for creating ROS publishers and subscribers.
More useful than that, however, is the package created by the
research group Lagadic from INRIA institute in France. This
package, found in [9], tries to replicate the features of the
gazebo ros package. Likewise, it also provides a Differential
Drive functionality on its manipulator handler plugin. For the
proximity sensors, however, it was necessary to use V-REP
Lua scripts to create publishers to transmit the sensor readings
onto a ROS topic.

Gazebo and ROS have a strong relationship, being both
open-source they can profit from each other developer’s com-
munity. Therefore, in this criterion Gazebo has a clear advan-
tage, mainly because even tough they are separate projects,
they have a history in common, and Gazebo development cycle
is planned from the start thinking about integration with ROS
versions. Despite this proximity, V-REP isn’t far behind. They
offer an extensive API to access all of its functionality from
any code, and they have integrated some ROS specific features
like services and topics subscribing and publishing.

The key in this comparison is to realize that Gazebo
and ROS already have a large base of community-developed
plugins and code. V-REP, on the other hand, does provide the
same capabilities, but doesn’t have the same amount of ready-
to-use components. For this reason, Gazebo is one step ahead
on the matter of ROS integration.



B. World Modelling
In this criterion, I take into account how easy it is to create

a world - that is, an environment scene in which the robots
will move - from scratch on each simulator. The easiest way
considered here is that of dragging and dropping - i.e, visual
editing. Easy visualization of the scene graph and objects
properties is also important.

V-REP offers all of the above natively. It comes with a
lot of models that can be easily inserted in the scene. These
models range from infrastructure objects like walls and doors,
to furniture, and even terrain models. There’s also an easy-to-
use scene graph visualization, where all objects in the scene
can be accessed and have all of its properties inspected and
modified.

In this point, Gazebo is far behind. It does not offer
many world modelling features out-of-the-box. It does provide
a building editor which is very practical to design mazes
and basic infrastructure. It also offers three simple geometric
shapes to be inserted in the scene - a sphere, a cube and a
cylinder. Lastly, Gazebo provides access to an online model
database consisting of community developed models. This
is one of its strong points, but this database is somewhat
unorganized.

Editing models, however, is not possible inside Gazebo, for
this, one has to use external 3d-modeling tools like Blender or
Google Sketchup to draw the models, and then import them
to Gazebo format. Gazebo uses a XML-based format called
SDF. In order to use Gazebo in its full capacities, it is highly
recommended that the user learns how does SDF works, and
its relation to ROS URDF, which is a similar format used by
ROS. V-REP has an URDF import tool bundled-in.

What I found in this criterion is that V-REP offers more
user-friendly features for world modelling, that doesn’t require
any deep knowledge of XML. This is great for quick prototyp-
ing of simulations setups and even more complex use cases.
If instead, one uses Gazebo, it will be necessary to dig deeper
into SDF specifications in order to build any non-basic setup.
After the learning curve has been mastered, however, it will
be possible to create very complex simulations.

C. Robot Model Modifications
Much of the same analysis in the previous section also

applies here. The reason for this is that there isn’t much to
tell a environment model - like a chair - from a robot model,
except for the fact that the robot model will have actuators on
some of its parts, and possibly sensors. So what we are really
evaluating in this part is how easy it is to add sensors and
actuators to a robot model.

As discussed before, in order to modify a model in Gazebo,
it is necessary to use the SDF files. In my experiment, There
was a need to integrate proximity sensors to a robot. I used
Pioneer 2DX model available in Gazebo online database as a
starting point. I also used a Hokuyo laser scan model from the
same database. Even tough both models are already available,
there is no way of combining them into a single model from
inside Gazebo. This had to be done by editing the appropriate
SDF files, which wasn’t a trivial task at first.

In the sensing part, the Hokuyo model came with a ROS
plugin that published the readings onto a ROS topic. This
plugin - and Gazebo/ROS plugins in general - is quite practical.

Due to the nature of the assignment, I had to read only three
distances, spaced 45 degree between them. This options were
easily available inside the SDF definition of the plugin. In
the actuation part, the Pioneer model came with a Differential
Drive plugin. This plugin reads ROS cmd vel topics - the
default topic for commanded velocities - and calculates how
much torque needs to be applied to the robots wheels.

In V-REP, there is no need to use XML-based files,
although there are tools to import such models. I also used
an existing model of a Pioneer 2dx that is available by default
on V-REP local model database. V-REP provides a variety of
different sensors to be readily inserted in any existing model.
One of them, the proximity sensor, was used here. Three of
them were placed on top of the Pioneer robot, according to
assignment specifications. All of this was done from inside V-
REP. Later, the associated Lua scripts were modified to add
ROS publishers that published the sensor’s readings to ROS
topics. This only took two lines of code. For the actuators,
the vrep ros bridge ROS package was used. This package
searches the scene graph for a set of objects that can be
controlled, and creates the ROS plugins needed to control
them. In this case, the plugin created controls the Robots
wheels, in much the same way as the Differential Drive plugin
for Gazebo does.

Again, the advantage of V-REP is it user-friendly features.
To be able to modify an model from inside the simulator is
very useful and practical. It is true that one of the tools used,
the vrep ros bridge, is not maintained by Coppelia Robotics
itself. But still, that is exactly what should happen more
in V-REP. Gazebo, on the other hand, does not provide an
simple graphical way of editing model, and one has to edit
text files. And most of its sensors are solutions that were
developed by the developer’s community, like the Hokuyo
model. This results in a lot of very useful plugins readily
available, something that V-REP somewhat lacks.

D. Programmatic Control
On the second part of the experiment, the simulation was a

part of a genetic algorithm, and was used to assess the fitness
of each set of weights in a neural network. For this, it was
necessary to be able to control the state of the simulation
from another piece of code. The access and control over the
simulation environments as a usable code library is what is
considered here the criterion of programmatic control.

On both Gazebo and V-REP, all of the programmatic
control that was needed for the experiment was available as
ROS services provided by the ROS nodes associated with each
simulator. This services were: start and stop the simulation,
get the pose of the robot models in the scene and set the pose
of the models. In Gazebo there was a need for getting and
setting the pose of the robots because there was a problem with
the service that reset the simulation, in which the differential
drive plugins stopped working. So instead I used the services
that stopped and start the physics, and reset the position of
the robots in each fitness assessment. This was not needed in
V-REP because the reset simulation service also resetted the
position of the robots.

ROS Services are easily called via a ROS node code. The
library used is part of ROS, and doesn’t belong to any of the
simulators specifically. This show that ROS can be used to
abstract low-level implementation details, thus facilitating the



work of the user. However, if needed, both Gazebo and V-
REP do offer an code API capable of completely controlling
its internal simulation variables. The documentation pertaining
to each can be found in [10] and [11]. Therefore, it is fair to
say that in this criterion there is nothing to distinguish between
Gazebo and V-REP.

E. CPU usage
In this section we compare how much CPU power does

each simulator requires. The computer used in this experiment
was a P Pavilion dv6 Notebook PC with an 8GB RAM memory
and a Quad-Core AMD A8-3510MX APU with Radeon HD
Graphics. I used the second part of the assignment, where
there are multiple simulation iterations, with 5 robots in each,
to compare V-REP and Gazebo. It was chosen because it was
the most hardware-demanding setup available. Each simulation
setup consisted of a ROS master node process, 5 ROS control
nodes processes for each robot, one ROS node process for the
genetic algorithm node, and 1 process for the simulator. The
system monitoring tool glances was used.

On the V-REP simulation, all the process except for the
simulator maintained a constant CPU usage. Each ROS control
node used 6,3% of one CPU. The genetic algorithm node took
only 0.7% and the ROS Master node used 130% - consider
here that 100% corresponds to one CPU core, the computer
used has 4 cores. The simulator process varied its CPU usage
due to the fact that it was regularly having its simulation beign
switched on and off. When the simulation was off, the CPU
usage was about 32%, and when the simulation was on this
number became approximately 105%.

The existing process in the Gazebo simulation are all the
same, except for Gazebo itself, which is divided between an
server process and a client. In this configuration, there was an
increase in the CPU usage of the ROS control nodes to 12.8%.
The ROS Master kept a constant level of 90% - smaller than
in the previous scenario. The genetic algorithm process also
took about 10% of CPU, which is considerably more than with
V-REP. But the biggest difference was with Gazebo itself. The
server part consumed 120% of CPU power, constantly, while
the client part - which is the user interface, consumed around
27%.

From this, we gather that, in total, the V-REP simulation
configuration used about 267% of CPU power, in its most
demanding stage. The Gazebo setup took 311% of CPU
power constantly. This shows that Gazebo is more hardware
demanding. This result is in accordance with what is stated in
[?]. It also interesting to point out that while V-REP simulation
was divided between active and non-active stages, the Gazebo
simulation was constantly active. This is probably due to the
fact that Gazebo responds faster to the ROS services used
to control the simulation. So, this might account for Gazebo
higher values of CPU usage.

VI. CONCLUSION

In this paper, I tried to introduce to the prospective cogni-
tive scientist tools that are currently being used in the robotics
industry that could have a place in cognitive research. This
claim is build upon the dynamicist paradigm of cognition, as
it is only natural for robotics.

I argued that ROS, a software framework and middleware
for developing robotic applications can be seen as a cognitive

architecture because it is a concrete framework that implements
cognitive phenomena, and has a structure composed of differ-
ent modules that may implement different mental functions
such as learning, memory, perception and action selection.
However, most of this functions are implemented in an implicit
and distributed fashion using subsymbolic (numeric) represen-
tations, which is in accordance to the dynamicist point-of-view.

I also compared V-REP and Gazebo robotic simulators
using a basic experiment in robot control using fuzzy logic
and evolutionary robotics. However basic, these experiments
allowed for a comparison of the features offered by both
simulators. The conclusion reached was that V-REP is a more
intuitive and user-friendly simulator, and packs more features.
Gazebo is more integrated into ROS framework and is an open-
source solution which means it allows for complete control
over the simulator. But it needs a number of external tools to
match up with V-REP functionalities. Also, Gazebo is more
hardware-demanding than V-REP. So, the cognitive scientist
should have a better chance of implementing and validating
their cognitive theories using V-REP than Gazebo, specially if
he - or she - does not have an strong background in robotics.

REFERENCES
[1] R. A. Brooks, “Elephants don’t play chess,” Robotics and Autonomous

Systems, vol. 6, pp. 3–15, 1990.
[2] R. Brooks, “Intelligence without representation,” Artificial Intelligence,

vol. 47, pp. 139–159, 1991.
[3] S. Ivaldi, V. Padois, and F. Nori, “Tools for dynamics simulation of

robots: a survey based on user feedback,” CoRR, vol. abs/1402.7050,
2014. [Online]. Available: http://arxiv.org/abs/1402.7050

[4] R. Sun, “Desiderata for cognitive architectures,” Philosophical Psychol-
ogy, vol. 17, pp. 341–373, 2004.

[5] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[6] C. Robotics. (2014) V-rep - virtual robot experimentation platform.
[Online]. Available: http://www.coppeliarobotics.com/

[7] F. J. Von Zuben. (2014) Ea072 - exercicios conceituais e computacionais
2 (ecc2). [Online]. Available: http://tinyurl.com/vonzubenecc2

[8] N. C. D. Hsu, John; Koenig. (2014) gazebo ros pkgs - ros wiki.
[Online]. Available: http://wiki.ros.org/gazebo ros pkgs

[9] G. Spica, Riccardo ; Claudio. (2014) vrep ros bridge - ros wiki.
[Online]. Available: http://wiki.ros.org/vrep ros bridge

[10] C. Robotics. (2014) Remote api functions (c/c++). [Online]. Available:
http://tinyurl.com/vrepApi

[11] O. S. R. Foundation. (2014) Gazebo apis. [Online]. Available:
http://gazebosim.org/api.html


