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Abstract—This paper presents a proposal of a particular 

agent-oriented language, called TARDIS1. Actually, the TARDIS 

is an extension of a functional language Scheme by including 

primitives for creating and manipulating agents. Our approach is 

motivated by a desire to bridge the gap between functional and 

agent-oriented paradigm. The syntax and semantic we developed 

was intended to be useful for justifying programs transformations 

for real languages, and for formalizing intuitive arguments and 

properties used by programmers. 

 

Index Terms—Agent-Oriented Programming, Scheme 

Functional Language, Agent Programming Language, Mobile 

Agents,  Distributed computing. 

 

I. INTRODUCTION 

 

he concept of an agent, in the context of this paper, can be 

traced back to the early days of research into Distributed 

Artificial Intelligence (DAI) in the 1970s – indeed, to Carl 

Hewitt’s concurrent Actor model [1][2]. In this model, Hewitt 

proposed the concept of a self-contained, interactive and 

concurrently-executing object which he termed ‘actor’. This 

object had some encapsulated internal state and could respond 

to messages from other similar objects: an actor “is a 

computational agent which has a mail address and a behavior. 

Actors communicate by message-passing and carry out their 

actions concurrently” (Hewitt, C. [1]). 

 

The meaning of the term has evolved over time in the work 

of Hewitt and associates. Hewitt used the term actor to 

describe active entities which, unlike functions, went around 

looking for patterns to match in order to trigger activity. This 

concept was later developed into the scientific community 

metaphor where sprites examined facts and added to them in a 

monotonically growing knowledge base (Kornfeld and Hewitt, 

cited in [2]). In Hewitt et al., the notion of actors was closer to 

that of an agent in Distributed Artificial Intelligence (DAI): 
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1 The TARDIS (Time And Relative Dimension(s) In Space) is a time 

machine and spacecraft in the British science fiction television programme 

Doctor Who. 

actors have intentions, resources, contain message monitors 

and a scheduler. Irene Greif (cited in [2]) developed an 

abstract model of actors in terms of event diagrams which 

recorded local events at each actor and the causal relations 

between events. 

 

Baker and Hewitt (cited in [2]) then formalized a set of 

axioms for concurrent computation which stated properties 

that events in actor systems must obey in order to prevent 

causality violations. The work in Hewitt contains the insight 

that the usual control structures could be represented as 

patterns of message passing between simple actors which had a 

conditional construct but no local state. It demonstrated the use 

of continuation passing style in actor programs, which was 

carried over into Scheme [3] [4] [5]. 

  

There have been a number of languages developed using the 

approach we follow in this paper – combining concurrency 

primitives with a functional language. These languages include 

Amber (Cardelli, 1986), Facile (Giacalone et al., 1989; Prasad 

et al., 1990; Thomsen et al., 1992), Concurrent ML (Reppy, 

1991), Erlang (Armstrong et al., 1993), Obliq (Cardelli, 1994) 

and Pict (Pierce and Turner, 1994). Erlang [11] and Obliq [10] 

are object based languages (Erlang is essentially an actor 

language) while Facile, CML and Pict have process algebra 

concurrency primitives. Except for Facile, and to a small 

extent Obliq, these efforts have focused on language design, 

and type systems, with less attention given to semantics and 

equivalences. 

 

On  the  other  hand, some Agent  specific  languages,  such as 

3APL [13], April [6], and  Go! [14], even if rich of agent-

specific constructs, lack many general-purpose statements and 

libraries, thus needing the integration of other environments to 

build a complete software system. 

 

II. THE TARDIS LANGUAGE 

 

A. Definition Stage 

Researchers in object-oriented programming have been 

extending the original notion of objects by incorporating one 

or more of the features that we have associated with agents. As 

a result, one has a proliferation of various extensions to objects 

that make them active, concurrent, distributed, reflexive, 
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persistent, and real-time. However, there is no single object-

oriented language that encapsulates all the above mentioned 

features. 

 

Scheme is nearly an object-oriented language. This should 

come as no surprise, since Scheme was originally inspired by 

Actors, Hewitt’s message-passing model of computation. 

Steele has described the relationship between Scheme and 

Actors at length [3]. We take advantage of this relationship and 

we try not to duplicate functionality that Scheme already 

provides to add full support for agent-oriented programming. 

Our extensions are in keeping with the spirit of Scheme: “It 

was designed to have an exceptionally clear and simple 

semantics and few different ways to form expressions”. 

 

The primary aim of our work is to abstract the essential 

aspects of agents and design language aspects of agents (as 

well as various extensions to objects currently being 

attempted) within a unified framework. This paper presents an 

initial attempt in this direction by design of a concurrent agent-

oriented language on top of Scheme. 

 

 TARDIS provides a mechanism for specifying the creation 

and manipulation of agents. An individual agent represents the 

smallest unit of coordination in the model. They are mapped as 

lightweight processes, that means there could be hundreds of 

thousands of them in a running system. Since they are an 

important abstraction in the language, the programmer should 

not consider their creation as costly. She should use them 

freely to model the problems at hand. An agent's behavior is 

described by a lambda abstraction which embodies the code to 

be executed when messages are received or environment 

changes. That is, agents are reactive as well as proactive 

towards the environment. The statement below creates an 

agent with its initial behavior. 
 

 (define <agent-name>  

 (make-agent  <behavior> )) 

 

On the creation of agent a unique system generated handle 

will be created to access the agent anywhere in the network. 

 
 (let <agent-identifier>  

 (spawn <agent-name>  

     <initial-attributes> )) 

 

 This implies that no two agents of the same agency (see 

below), created at the same location will have the same name 

(a similar feature of accessing named process across anywhere 

in the network is available in Agent Process Interaction 

Language – APRIL [6]). 

 

TARDIS  agents are self-contained, concurrently interacting 

entities of a computing system that communicate via message 

passing which is asynchronous and fair. They can be 

dynamically created and the topology of agents systems can 

change dynamically. The agent model supports encapsulation 

and sharing, and provides a natural extension of both 

functional programming and object style data abstraction to 

concurrent open systems. 

 

At TARDIS language, programmers can model distributed 

autonomous agents situated in dynamic environment that are 

reactive as well proactive towards the environment. For 

instance, agents may be organized into agencies offering 

certain services to other agents (these services may be realized 

through the execution of an associated plan, see B. Plans and 

Services): 

 

 (agency  <agency-name> 

   (export <export-spec> ) 

   (import <import-spec> ) 

   <agency-body> ) 

 

The benefits of modularization within conventional 

languages are well known. In the model above, Agencies act 

like Modules, disciplining name spaces with explicit names 

exposure, hiding or renaming. They also offer qualified 

naming. These name spaces may cover services or functions, 

objects, agents, etc. Just as components, agencies may explicit 

their dependences, that is, the other agencies they require in 

order to work properly. Building a complete executable is 

done via agency fusion (like modules linking or module 

synthesis in case of higher-order modules). In a distributed 

environment this fusion takes place at execution time. During 

the compilation process, the compiler produces a specification 

file that will be shared with other Agencies. At execution time, 

the agency connects itself to a communication door and 

informs this to the service directory. In this manner, will be 

possible establish communication agency-agency. 
 

The export subform specifies a list of exports, which name 

a subset of the bindings defined within or imported into the 

agency. An  <export-spec>  names  a  set  of  imported  

and locally defined  bindings to  be  exported.   In   an    

<export-spec>, an <identifier> names a single binding 

defined within or imported into the agency, where the external 

name for the export is the same as the name of the binding 

within the agency. 

 

The import subform specifies the imported bindings as a 

list of import dependencies, where each dependency specifies 

the subset of the agency’s exports to make available within the 

importing agency, and the local names to use within the 

importing agency for each of the agency’s exports. 

 

The <agency body> consisting of a sequence of 

definitions (e.g. agents, plans, services, messages) followed by 

a sequence of expressions. The definitions may be both for 

local (unexported) and exported bindings, and the expressions 

are initialization expressions to be evaluated for their effects. 
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B. Communication Stage 

 

Agents communicate with each other by sending messages. 

For instance, the following expression creates a new message 

with receiver <agent-identifier> and contents 

<message> and puts the message into the message delivery 

system: 

  
(send <agent-identifier> <message> ) 

 

In TARDIS, a message can be any serializable first class 

value. It can be an atomic value such as a number or a symbol, 

or a compound value such as a list, record, or procedures, as 

long as it contains only serializable values. 

 

 By default, message passing in TARDIS is asynchronous. 

In others words, an agent can send a message whenever it 

likes; irrespective of the state of receiving agent.  At creation 

time each agent is associated with a private mailbox. Then, the 

messages are placed in the receivers’ mailbox. Synchronous 

and mixed mode messages can be supported also. 

 

In addition to the agent-to-agent message passing as 

described above, TARDIS language supports agent-to-agency 

message passing. The latter will allow agents to request 

services on an agency basis, without having to specify a 

particular agent. In this case messages are routed through 

message-spaces, each one of which is linked to a particular 

agency. Message spaces will be scanned by the respective 

agent processes. 

 

Although communication through message-spaces would be 

the preferred mode of implementation, either broadcasting or 

unicasting can also be implemented. In the case of 

broadcasting it will be necessary for a receive function in the 

receiving agent to filter the messages that are due to them. 

 

When a message is sent by an agent to another agent or 

agency it is given a unique <message-identifier> and the 

identity of the agent which sent the message. This message is 

then received by the agent or agency at the other end where the 

message is decoded. The message is then processed by 

receiving agent and appropriate actions are taken. 

 

An agent at any point in time can be in any of the following 

three states: active when it is executing a plan instance (see 

C. Plans and Services); idle when agent was suspended by 

any time-supervision expression or waiting when is waiting 

for a message from internal or external environment. To hold 

on this states, TARDIS introduced the time-supervision 

expressions, a fundamental way to deal with unreliable 

message delivery. In the following code fragment, the Agent 

uses the cycle expression to check your mailbox at cycles of 

elapsed time of 500 ms. When a message is arrived to mailbox 

the message? predicate becomes true and the message is 

retrieve by msg value as well as the identity of the sender is 

binding to from value: 

 
(define sleep-time 500) 

 … 

(cycle sleep-time 

 … 

  (if (message? #t) 

   (receive from msg)) 

  … 

 ) 

 

While the receive procedure retrieves the next available 

message in the agent’ mailbox, sometimes it can be useful to 

be able to choose the message to retrieve based on a certain 

criteria. The selective message retrieval procedure: 

 
 (receive-case from 

 (predicate-1 msg-1) 

 (predicate-2 msg-2) 

 … 

 (after 10 (raise ‘timeout))) 

  

retrieves the first message in the mailbox which satisfies one of 

the predicates. If none of the messages in the mailbox satisfy 

the predicates, then it waits until one arrives that does or until 

the timeout is hit. Procedure receive-case specify the 

maximum amount of time to wait for the reception of a 

message as well as a value to return if this timeout is reached. 

In the example above, the timeout symbol will be raised as an 

exception. If no timeout is specified, the operation will wait 

forever.  

 

The receive procedure can also specify such a timeout, 

with an after clause which will be selected after no message 

matched any of the other clauses for the given amount of time. 

 
(receive from msg 

(after 10 (raise ’timeout))) 

 

C. Plans and Services  

 

An agent is deemed to exist for the purpose of accomplishing 

its own desires and offer certain services to other agents.  

Services can be defined in the scope of an agency suggesting 

whether is public, by the export subform, or private 

corresponding to internal goals of agents in the agency.  

 
(define <service-name>  

(make-service  <service-body> )) 

 

A service could also be pre-instantiated in expectation of a 

deferred invocation using the start-service function: 

 
(let <service-instance> 

  (start-service <service-name> 

<list-of-arguments> )) 
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Private services instances correspond to internal goals of an 

agent while public services instances correspond to messages 

from other agents requesting to agency. 

 

Plans are the means of performing services. A plan is 

identified by its <plan-name>. It specifies the <service-

name> and the context in which a plan might be applicable. If 

the plan is applicable the goal statements are performed. 

 

 
(plan <plan-name> 

   (invoke <service-name> 

      (with-context <context> )) 

   (perform  <list-of-goal-statements> ) 

 (finalize <context> ))  

 

The agent responds to the message by first selecting plans 

whose invocation service statement matches the service 

instance of the message. The invocation binding and the 

context binding are used to create plan instances. The agent 

will select one of these plan instances and start performing the 

goal statements. Such a selected plan instance is called an 

intention. At any particular instance, there can be many 

intentions active. Each intention is an independent thread in 

itself. Thus the agent as a whole is multi-threaded. 

 

Unlike object-oriented systems the plan of an agent need not 

be performed sequentially from the first goal statement to the 

last goal statement. Any service statement in the performance 

of the plan results in a service instance which is sent to the 

agent’s mail box. This process goes on till all the goal 

statements of the original plan are performed. 

 

D. Mobility Stage 

 

 According to [10], mobile agents are autonomous software 

entities which can decide to move and relocate themselves in 

the network, carrying both their code and execution state. They 

perform tasks on behalf of a user, mobile or not. Ideally, any 

application using mobile agents could be programmed without 

them. The main interest in the use of mobile agents is to 

replace remote interactions with servers by local ones, in order 

to reduce communication costs. We think also that using 

mobile agents can increase expressiveness in distributed 

programming. 

 

 Languages and platforms for mobile agents must provide 

mechanisms and abstractions for: 

 

� Concurrency and synchronization. 

� Agent migration (with code, data and state) in a 

heterogeneous context. 

� Network-level identification and localization. 

� Point to point asynchronous communication. 

� Security (of both agents and hosts). 

 

Objects are good candidates for the implementation of 

agents, and existing mobile agents platforms are, in many 

cases, based on concurrent objects enhanced with mobility 

mechanisms (see ObjectSpace Voyager [9]). But introducing 

mobility in the object model is not transparent and has effects 

on mechanisms like synchronization and method invocation. 

For example, mobility is weak in Java because it is impossible 

to access to thread stack values and to serialize threads. The 

problem of mobility degree is mainly a problem of 

expressiveness. 

 

Here, we argue for actors, rather than standard objects, for 

mobile agent programming. When processing a message, an 

actor can create other actors (dynamically), communicate by 

asynchronous point-to-point message passing with other actors 

that it knows, and change its own behavior (defining the 

behavior for the processing of the next message). Behavior 

changing may be useful for agents because it provides a way 

for evolution and learning.  

 

Thus, actors can be seen as active objects with the ability of 

changing their interface. In applications, actors as agents can 

be both clients and servers. Thanks to autonomy, asynchronous 

message passing and behavior changing, they are naturally 

mobile units: 

 

� _ Autonomy is an important property that agents must have 

for mobility self-decision. The encapsulation of data and 

methods in the actor’s private behavior (a closure) 

conceptually guarantees privacy and integrity. Actors 

encapsulate not only programs and data, but also activity. 

Actor systems are multi-threaded, but synchronization 

problems are hidden from the programmer. 

 
_  

� Asynchronous message passing is another important 

feature for mobile agents, because synchronous 

communications are expensive and hard to maintain in 

the context of wide-area or wireless networks (standard 

call/return is un-adapted because of latency and failures). 

 

� _ Actor’s behavior includes all its data and code. At 

behavior changing time, actor’s state is fully contained in 

the behavior (and in the mailbox), and so, easily 

capturable and transferable. At this transitional moment, 

there is nothing more in the execution state. Movement is 

so delayed (only) to the end of the current message 

processing. Actor’s mobility is based on a remote 

creation of an actor from the behavior intended to 

process the next message. Consequently, the actor moves 

carrying both acquired knowledge and experience. Thus, 

actors move but behaviors, during their execution, don’t 

move. 

 

 Localization of moving agents is possible using a 

forwarding system. In TARDIS, each agent has a unique 

reference (like a postal address) and localization is natural by 
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means of a chain of forwarders. Every time the agent moves, 

the local agent remains after the remote creation and becomes 

a proxy for the agent: it receives messages for the agent and 

forwards them to the remote reference. Such a method allows 

also messages, stored in the mailbox before moving, to reach 

the agent after it has moved. The mobile agent reference 

remains valid even if moving is in progress or if the agent is 

remote. So, mobility is transparent for communications (code 

of sender agents hasn’t to be modified whether the target agent 

is mobile or not). However, this basic protocol is known to be 

few efficient and fault sensitive, because of the multiple relays: 

several kinds of optimization can be provided. In conclusion, 

we can assert that enhancing agents with mobility does not 

involve semantics changes. 

 

 Programming mobile agents TARDIS mainly consists in 

defining behaviors. This is done by extending the primitives 

already defined and creates new ones specific to movement. In 

a way, the mobility mechanism (tied with behavior changing) 

provides strong mobility in TARDIS, since mobile agents 

resume remotely at the execution point where they stopped. A 

moved behavior contains references to agents which, in our 

system, do not have to be transformed. Like Obliq [10], 

TARDIS relies on a mechanism of network-wide lexical 

scoping: the main advantage is the preservation of the 

semantics of moved agents and the independence between 

computation and locality. This allows to reason upon the 

programs independently from the location of activities. 

Moving is also more efficient because referenced agents do not 

have to be serialized. 

 

A place in TARDIS represents a virtual machine running 

in a physical or logical site. It can be seen as an agent server 

providing environment and resources for agent execution. A 

set of places (which can dynamically change) constitutes a 

domain on which applications run.  If needed, it is possible to 

simulate distribution by creating several places on a single 

physical site. It is not necessary to change the code to 

distribute an application; the same program can be used in a 

local environment or in a distributed one. 

 

 To create an agent in a specific place in the network, 

TARDIS extends the spawn procedure to indicate the virtual 

machine where the agent will run. The variable this-place 

(binding normally to “//localhost:”) can be used to 

indicate the current place. 

 
 (let <agent-identifier>  

  (spawn <place> | this-place 

       <agent-name> 

         <initial-values> )) 

  

 TARDIS also defines a new procedure move! used to move 

agents from their current place to a new one. We can make use 

of the procedure self that is binding to <agent-

identifier> for a self move of the current agent.  

 

 

 (move! <place> 

     <agent-identifier> | self      

      (with-context <context> )) 

 

III. EXAMPLE 

 We consider the traditional example of producers and 

consumers sharing a global buffer [15]. In the implementation 

below, we have simplified the example assuming agents know 

each other identities. The shared resource is accessed via the 

services get and put. According to standard multi-threading 

programming, when an agent is notified in the function get, it 

still has to check the availability of the resource. After a 

notification, only one agent consumes the resource. No 

competition is needed between agents. 

 
 (define producer (make-agent 

     (lambda (count) 

           (let loop ((n count) ) 

             (exec-plan put n ) 

             (yield) 

             (loop (+ 1 n)))))) 

 

 (define prod-id 

     (spawn this-place producer 1)) 

 

 (plan put (invoke (buffer-put! val) 

    (with-context (not (full? buffer)))) 

   (perform 

      (if (not (empty? buffer)) 

          (send cons-id 'resource-available)))) 

 

 (define buffer-put! (make-service 

     (lambda (val) 

         (if (empty? buffer) 

            (set! buffer (list val)) 

            (set-cdr!(last-pair buffer) 

            (list val)))))) 

 

 (define consumer (make-agent 

     (lambda ( ) 

        (let loop ( ) 

           (exec-plan get) 

           (yield) 

           (loop))))) 

 

 (define cons-id 

     (spawn this-place consumer)) 

 

 (plan get (invoke (buffer-fetch) 

    (with-context 

    (not (empty? buffer)))) 

   (perform 

      (receive-case prod-id 

         (eq? msg 'resource-available)))) 
 

 (define buffer-fetch (make-service 

      (lambda ( ) 

          (let ((r (car buffer))) 

              (set! buffer (cdr buffer)) 
           r)))) 
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IV. CONCLUSION 

We describe a small set of additions to Scheme to support 

agent-oriented programming, including a form of mobile 

agent. The extensions proposed are in keeping with the spirit 

of the Scheme language. Our extensions mesh neatly with the 

underlying Scheme system. The core of this design comprises 

the thread and object systems used in Scheme. An important 

objective was that it should be flexible enough to allow the 

programmer to easily build and experiment this new paradigm 

providing higher-level primitives and a framework, so that we 

can share and reuse more of the design and implementation of 

agent-oriented programming. Another important objective was 

that the basic communication model should have sufficiently 

clean semantic properties to make it possible to write simple 

yet robust code on top of it. Only by attaining those two 

objectives can we hope to build higher layers of abstractions 

that are themselves clean, maintainable, and reliable.  
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