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4.1 Semantics of fuzzy sets:
General observations
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Semantics of fuzzy sets

Pedrycz and Gomide, FSE 2007

� Generic constructs/building conceptual blocks to describe systems
in a meaningful way

� Each fuzzy set comes with a well-delineated semantics (meaning)

– Example: small – medium – large error

� Limited number of fuzzy sets

– “magic” number of 7 +/- 2 (Miller, 1956)
(short–term memory)



� Fuzzy sets require calibration

– determination of their membership functions

� Two main approaches to the problem:

– Expert –driven (designer, user, decision-maker…)

– Data driven (from data to fuzzy sets) 
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4.2 Fuzzy sets as a descriptor
of feasible solutions
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Fuzzy sets as descriptor of feasible solutions (1)

  Consider  some function f(x) defined in ΩΩΩΩ,  
 

f: ΩΩΩΩ → R. where ΩΩΩΩ ⊂  R 
 
  Determine its maximum  
 

xopt = arg maxx f(x). 
 
  Fuzzy set A of optimal solutions  ≡ a collection of feasible 
  solutions that could be labeled as optimal with some degrees  
  of membership.  
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Fuzzy sets as descriptor of feasible solutions (2)

  Consider  some function f(x) defined in ΩΩΩΩ,  
 

f: ΩΩΩΩ → R. where ΩΩΩΩ ⊂  R 
 
  Determine its minimum  
 

xopt = arg maxx f(x). 
 
  Fuzzy set A of optimal solutions  ≡ a collection of  
  feasible solutions that could be labeled as optimal with 
  some degrees of membership.  
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Fuzzy sets as descriptors of feasible solutions
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Linearization error 
 
  Linearize function y = g(x) = exp(-x) around x0=1 and assess the quality 
  of this linearization in the range [−1, 7].  
 
  Linearization formula:     y − y0 =g’(x0)(x − x0)  
 
  y0 = g(x0) and g’(x0) is the derivative of g(x) at x0.  
 
 Linearized version of the function   exp(−1)(2 − x).  
 
 Quality of linearization   f(x) = |g(x) − exp(−1)(2 − x)|.  

fmax = f(7) = 1.84 and fmin = 0.0 

Pedrycz and Gomide, FSE 2007

Example
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4.3 Fuzzy sets as a descriptor
of the notion of typicality
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Fuzzy sets as notions of typicality 

� Fuzzy set as collection of elements of varying degrees
of typicality

� Geometric figures : squares, circles…. 
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4.4 Membership functions in
the visualization of
preferences solutions
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Fuzzy sets in visualization of preferences of 
solutions

 

E 

R 

r 

+ 
− 

R
rR

E
RiP

2
2










+
==

5
0

0.5

11.05

0

PP x( )

R 

m
em

b
e

rs
h

ip 

Pedrycz and Gomide, FSE 2007



4.5 Nonlinear transformations
of fuzzy sets
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� Experimental data 

x1 — µ1(1), µ2(1),...,µc(1)
x2 — µ1(2), µ2(2),...,µc(2)
............

x1 — µ1(N), µ2(N),...,µc(N)
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4.6 Vertical and horizontal
schemes of membership
estimation



Horizontal scheme of membership  estimation

� Finite elements of the universe of discourse X 

� Question of the form

-does x belong to concept A?

� Accepted are binary answers (yes-no)

� “n” experts – count of positive (yes) answers:   p/n

Pedrycz and Gomide, FSE 2007



Horizontal scheme of membership estimation

 

p/n 

X 

A(x) 

� Binary replies follow binomial distribution

� We can determine confidence interval
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Vertical scheme of membership estimation

� Estimation of membership function by determining α-cuts
and aggregating them (see representation theorem)

� What are the elements of X which belong to fuzzy set A at 
degree not lower than α?

 

α1 

αp 

X 

A(x) 
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Horizontal and vertical schemes of 
membership estimation

� Simple and intuitively appealing

� Reflective of domain knowledge

� Lack of continuity – elements of X considered independently

Pedrycz and Gomide, FSE 2007



4.7 Saaty´s priority method
of pairwise membership
function estimation



Saaty’s priority method of  pairwise comparison

� Collection of elements x1, x2, …, xn

� Membership degrees are given A(x1), A(x2)…. A(xn)

� Reciprocal matrix R
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Saaty’s priority method of  pairwise comparison

� Reciprocal matrix R – main properties:
(a) reflexivity
(b) reciprocality
(c) transitivity 

Pedrycz and Gomide, FSE 2007
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Saaty’s priority method of  pairwise
comparison: computing

i-th row of R
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Saaty’s priority method of  pairwise comparison

� Estimation of reciprocal matrix:

� Scale (typically 1-7 range, could be larger, 1-9)
– strong preference: high values on the scale (7-9)
– preference: 4-7
– weak preference or no preference 1-3

� Solving the eigenvalue problem for R, max eigenvalue,  λmax

Pedrycz and Gomide, FSE 2007



Saaty’s priority method : consistency of results

� ν = (λmax – n)/(n – 1)

� lack of consistency ν > 0.1

Pedrycz and Gomide, FSE 2007



Saaty’s priority method : Example

high temperature

Universe of discourse: 10, 20, 30, 40, 45

Scale 1-5
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R

max eigenvalue = 4.114  
eigenvector [0.122 0.195  0.438  0.869]
after normalization  [0.14  0.22  0.50  1.00]. 
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4.8 Fuzzy sets as granular
representatives of
granular data            



Fuzzy sets as granular representation of numeric data

� The principle of justifiable granularity

� Experiment-driven and intuitively appealing rationale: 

(a) we expect that A reflects (or matches) the available 
experimental data to the highest extent, and

(b) second, the fuzzy set is kept specific enough so 
that it comes with a well-defined semantics. 

Pedrycz and Gomide, FSE 2007



The principle of justifiable granularity

(a) we expect that A reflects (or matches) the available 
experimental data to the highest extent, and

(b) second, the fuzzy set is kept specific enough so 
that it comes with a well-defined semantics. 

Maximize “coverage” of data

Minimize spread of fuzzy set

Pedrycz and Gomide, FSE 2007



The principle of justifiable granularity: 
unimodal fuzzy set

� Numeric data x1, x2, …, xn

� Determine its “modified” median

� Consider separately data to the left and right from the median  
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Principle of justifiable granularity: examples

Distance of point from geometric figure
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Distance between two geometric figures A and B
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Principle of justifiable granularity: examples



Clustering: Fuzzy C-Means (FCM)
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� Given a n-dimensional data set { xk}, k = 1, ..., N

� Determine a structure with c clusters
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Fuzzy clustering: structure representation

Partition matrix  U

Prototypes v1, v2, …, vc
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FCM – optimization procedure

Optimization with respect to 

� partition matrix  U

� prototypes v1, v2, …, vc

Pedrycz and Gomide, FSE 2007



Optimization: partition matrix

� Use of Lagrange multipliers
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Optimization: partition matrix

λ dmu
u

V
st

m
st

st
+=

∂
∂ − 21

 d
m

λ
u m-

st
m-

st
1

2
1

1








−= ∑
=

−− =






−
c

j

m
jt

m d
m

λ

1

1
2

1
1

1

∑
=

−

− =






−
c

j

m
jt

m

d
m

λ

1

1
2

1
1

1

∑
=

−















=

c

j

m

jt

st

st

d

d

u

1

1
1

2

2

1

Pedrycz and Gomide, FSE 2007



Optimization: prototypes
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FCM: Overview of the algorithm 

Pedrycz and Gomide, FSE 2007

procedure FCM-CLUSTERING (x) returns prototypes and partition matrix
input :  data x = {x1, x2, ...,xk}
local: fuzzification parameter: m

threshold: ε
norm: ||.||

INITIALIZE-PARTITION-MATRIX
t ← 0

repeat
for i =1:c do

compute prototypes

for i = 1:c do
for k = 1:N do

update partition matrix

t ← t + 1
until ||U(t+1)-U(t)|| ≤ ε
return U, V
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FCM and its parameters 

� Number of clusters (c)

� Objective function Q

� Distance function ||.||

� Fuzzification coefficient  (m)

� Termination criterion
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Geometry of clusters and fuzzification coefficient
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Cluster sharing: a separation measure  
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� Data fully belongs to a single cluster (1- 0)

� Data belongs to all clusters at the same level (1/c)

Pedrycz and Gomide, FSE 2007



Hierarchical format of FCM: Successive 
refinements of clusters  
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X(io) = {xk ∈ X | uiok = max uik}



4.10 Fuzzy equalization



Fuzzy equalization  

Construct triangular fuzzy sets A1, A2, …, Ac defined in R such that they 
come with the same level of experimental  evidence (support) 

 
A1 A2 A3 

Ac 

a1                  a2        a3                               ac-1      ac 

)1(2
)(

1
1 −

=∑
= c

N
xA k

N

k

)1(
)(

1
2 −

=∑
= c

N
xA k

N

k

)1(
)(

1
1 −

=∑
= c

N
xA k

N

k
c-

)12(
)(

1 −
=∑

= c

N
xA k

N

k
c

Pedrycz and Gomide, FSE 2007



4.11 Linguistic approximation



Linguistic approximation  

� Given is a family of reference fuzzy sets { Ai} defined in some space X

� We have at disposal is a family of linguistic modifiers τj, say 
more or less (dilution), 
very (concentration)

� Represent (approximate) B in X with the use of reference fuzzy
sets and linguistic modifiers == linguistic approximation

Pedrycz and Gomide, FSE 2007



Linguistic approximation: optimization

 B 

{ Ai} 

τj 
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B ≈ τi (Aj)



4.12 Design guidelines for
the construction of
fuzzy sets



Construction of fuzzy sets: Design guidelines (1)

Pedrycz and Gomide, FSE 2007

� Strive for highly visible and well-defined semantics of information granules

� Keep number of information granules low ( 7 ± 2 fuzzy sets)

� There are several views at fuzzy sets and, depending on them, consider
the use of various estimation techniques

� Fuzzy sets are context-sensitive constructs and require careful calibration

� Calibration mechanisms are reflective of human-centric fuzzy sets



Construction of fuzzy sets: Design guidelines (2)

Pedrycz and Gomide, FSE 2007

� Major categories of approaches to design of membership
functions are data-driven and expert(user)-driven

� User-driven membership estimation uses statistics of data implicitly

� Granular term-fuzzy sets exists once there is experimental evidence behind

� Development of fuzzy sets can be carried out in a stepwise manner


