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9.1 Fuzzy sets and its family
of αααα–cuts

Pedrycz and Gomide, FSE 2007



From fuzzy set to a family of sets 

Pedrycz and Gomide, FSE 2007

� Representation theorem offers an important insight into links
between a given fuzzy set and its α-cuts

� Any fuzzy set can be represented as an infinite family of α-cuts
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From fuzzy set to a family of sets:
An optimization  

Pedrycz and Gomide, FSE 2007

� Is there an optimal level a that optimizes a single α-cut 
of A so that Aa approximates A to the highest extent?

� Performance index  
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Triangular fuzzy sets optimization  

Pedrycz and Gomide, FSE 2007
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Set-based approximation of fuzzy sets   

Pedrycz and Gomide, FSE 2007

By approximating fuzzy sets by a finite family of sets we can directly 
exploit well-developed techniques of  interval analysis and combine
the partial results into  a single fuzzy set (result).
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9.2 Fuzzy sets and their
interfacing with the
external world 

Pedrycz and Gomide, FSE 2007



Fuzzy sets and interfaces

Pedrycz and Gomide, FSE 2007

� Fuzzy sets do not exist in real-world (sets do not as well)

� To interact with the world one has to construct interfaces
(encoders and decoders)
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Fuzzy sets and interfaces

Pedrycz and Gomide, FSE 2007

� Need for building interfaces exists in case of sets (interval analysis)

� Here we encounter well-known constructs of analog-to-digital (AD)
and digital-to-analog (DA) converters.
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Fuzzy sets and interfaces

Pedrycz and Gomide, FSE 2007

� Two functional modules:

– Encoders The objective is to translate input data into some internal
format acceptable for processing at level of fuzzy sets

– Decoders The objective is to convert the results of processing of fuzzy
sets into some format acceptable by the external world (typically in the
form of some numeric quantities)

� For encoding and decoding we engage a collection of fuzzy sets –
information granules 



Encoding mechanisms

Pedrycz and Gomide, FSE 2007

� Given is a collection of fuzzy sets A1, A2, …, Ac; express some numeric
input x in R in terms of these fuzzy sets

x → [ A1(x)   A2(x)… Ac(x)]

� Nonlinear mapping from R to c-dimensional unit hypercube
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Decoding mechanisms

� Decoding completed on a basis of a single fuzzy set)

� Decoding realized on a basis of a certain finite family
of fuzzy sets and levels of their activation



Decoding process: a single fuzzy set

Pedrycz and Gomide, FSE 2007

Single fuzzy set B → develop a single numeric representative
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Single fuzzy set decoding: centre of gravity

Pedrycz and Gomide, FSE 2007

� Solution to the following optimization problem 
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Single fuzzy set decoding: augmented strategies

Pedrycz and Gomide, FSE 2007

� Augmented centre of gravity
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Single fuzzy set decoding: general requirements

Pedrycz and Gomide, FSE 2007

� Requirements implied by :

– monotonicity with respect to changeable membership functions

– graphically motivated requirements (symmetry, translation, scaling…)

– use of logic operations and logic modifiers



9.3 Encoding and decoding
as an optimization problem
of vector quantization 

Pedrycz and Gomide, FSE 2007



Fuzzy scalar optimization

Pedrycz and Gomide, FSE 2007
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� One-dimensional case

� Multivariable case

� Decoding: a collection of fuzzy sets



Decoding: one-dimensional (scalar) case

Pedrycz and Gomide, FSE 2007

Codeboook – a finite family of fuzzy sets  { A1, A2, …, Ac}
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Proposition

Pedrycz and Gomide, FSE 2007

a) { Ai} i = 1,..., c forms a partition
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Forming mechanisms of fuzzy quantization

Pedrycz and Gomide, FSE 2007
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Fuzzy vector quantization

Pedrycz and Gomide, FSE 2007

� Codebook formed through fuzzy clustering (FCM) producing 
a finite collection of prototypes v1, v2, …, vc

� Given any new input x we realize its encoding and decoding

� Recall 

–– encodingencoding: representation of x in terms of the prototypes

–– decodingdecoding: development of external representation of the result of 
processing realized at the level of information granules



Coding and decoding with fuzzy codebooks

Pedrycz and Gomide, FSE 2007

Encoding: optimization problem

2

1
||||u i

c

i

m
i vx −∑

=
Minimize w.r.t. ui subject to 

∑
=

=∈
c

i
ii uu

1
1)(   [0,1],)( xx

∑
−















−
−

=

1
2

1
)(

m

j

i

i

||||

||||

u

vx
vx

x



Pedrycz and Gomide, FSE 2007

� Reconstruct original mutidimensional input  x
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Fuzzy vector quantization: decoding error

Pedrycz and Gomide, FSE 2007

m = 1.2 m = 2.0 m = 3.5



9.4 Decoding of a fuzzy set
through a family of fuzzy
sets

Pedrycz and Gomide, FSE 2007



Fuzzy  encoding and decoding with 
possibility  and necessity measures

Pedrycz and Gomide, FSE 2007

� Consider a family of fuzzy sets A1, A2, …, Ac

� Input datum X either a fuzzy set or a numeric quantity

Necessity

Possibility 

))](1()([inf),(Nec

)]()([sup),(Poss

xAsxXXA

xAtxXXA

i
x

i

i
x

i

−=

=

∈

∈

X

X



Possibility and necessity

Pedrycz and Gomide, FSE 2007
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Possibility and necessity encoding: example 

Pedrycz and Gomide, FSE 2007

X = [0.0 0.2 0.8 1.0 0.9 0.5 0.1 0.0]

Ai = [0.6 0.5 0.4 0.5 0.6 0.9 1.0 1.0]

Poss (Ai, X) = max (0.0, 0.5, 0.4, 0.5, 0.6, 0.5, 0.1, 0.0 ) = 0.6

Nec (Ai, X) = min (0.4, 0.5, 0.8, 1.0, 0.9, 0.5, 0.1, 0.0 )  = 0.0



Encoding and decoding: an overview

Pedrycz and Gomide, FSE 2007
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Design of the decoder of fuzzy data 

Pedrycz and Gomide, FSE 2007

� Given the nature of encoding (possibility and necessity measures),
the decoding is regarded as a certain “inverse” problem in terms
of fuzzy relational equations:

– Possibility measure:  sup-t composition

– Necessity measure:  inf-s composition 



Decoding –possibility measure

Pedrycz and Gomide, FSE 2007

Possibility measure: sup-t composition
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Decoding –necessity measure

Pedrycz and Gomide, FSE 2007

Necessity measure: inf-s composition
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Decoding: example

Pedrycz and Gomide, FSE 2007
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Decoding: example

Pedrycz and Gomide, FSE 2007
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Decoding example

Pedrycz and Gomide, FSE 2007

� Bounds of possibility and  necessity measure
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Taxonomy of data in structure description 
with shadowed sets

Pedrycz and Gomide, FSE 2007

� Core structure

� Shadowed data structure

� Uncertain data structure
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� Core data structure

– patterns that belong to a core of at least one shadowed sets

– core data structure = { x | ∃i x ∈ Core(Ai) }
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� Shadowed data structure

– patterns that do not belong to a core of any shadowed set

– core fall within the shadow of one ofr more shadowed sets

– shadowed data structure = { x | ∃i x ∈ Shadow(Ai)  and ∀x ∉Core (Ai)}
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� Uncertain data structure

– patterns that left out from all shadows

– uncertain data structure = { x | ∃i x ∉ Shadow(Ai)  and ∀x ∉Core (Ai)}



Three-valued characterization of data 
structure with shadowed sets

Pedrycz and Gomide, FSE 2007
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Three-valued characterization of data 
structure: Example

Pedrycz and Gomide, FSE 2007
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Three-valued characterization of data 
structure: example

Pedrycz and Gomide, FSE 2007
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