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2.1 Sets and fuzzy sets:
A departure from the principle 

of dichotomy
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Dichotomy
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Set and the principle
of dichotomy

Relaxation of complete 
inclusion and exclusion



Inherent problems of  dichotomization

“One seed does not constitute a pile nor two or three. From 
the other side, everybody will agree that 100 million seeds 
constitutes a pile. What is therefore the appropriate limit?”

E. Borel, 1950
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Sets
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x1 x2 

S = {x ∈X | 0 ≤ x ≤ 1.8 }

T = {x ∈X | 1.8 < x ≤ 3.0 }

Threshold τ = 1.8

x1 ∈ S ,   x1 ∉ T

x2 ∈ T ,   x2 ∉ S

Dichotomy
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Characteristic function
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Fuzzy set: Membership function
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A : X → [0,1]
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X 1 

1.0 

A(x) 

2 3 4 5 6 0 8 9 10 7 

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A = {0/0, 0/1, 0/2, 0.2/3, 0.5/4, 1.0/5, 0.5/6, 0.2/7, 0/8, 0/9, 0/10}

A = [0, 0, 0, 0.2, 0.5, 1.0, 0.5, 0.2, 0, 0, 0]

Fuzzy sets in discrete universes

A

A = {(A(x),x)}



Pedrycz and Gomide, FSE 2007

2.2 Interpretation of fuzzy sets



Fuzziness ≠ Probability

John is tall
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Height of people

Head or tail ?
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Fuzziness

A : X → [0,1]

X: universe (set)

A: membership function

Probability

P(A) : F → [0,1]

P: probability (set) function

A: set

X: universe (set)

F: σ-algebra, a set of subsets of X



Membership grades: semantics

� Similarity: degree of compatibility
(data analysis and processing)

� Uncertainty: possibility
(reasoning under uncertainty)

� Preference: degree of satisfaction
(decision-making, optimization)
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2.3 Membership functions and
their motivation



Choosing membership functions
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Criteria should reflect:

� Nature of the problem at hand

� Perception of the concept to represent

� Level of details to be captured

� Context of application

� Suitability for design and optimization



Triangular membership function
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Γ-membership function
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S-membership function
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Gaussian membership function
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Exponential-like membership function
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2.4 Fuzzy numbers and intervals
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A is a fuzzy number B is not a fuzzy number
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2.5 

A2.5 

A[2.2, 3.0] 

Aabout 

Aaround 

R R 

R R 3.0



Pedrycz and Gomide, FSE 2007

2.5 Linguistic variables



Linguistic variables

� A certain variable (attribute) can be quantified in terms of 
a small number of information granules

– temperature is {low, high}

– speed is { low, medium, high, very high}

� Each information granule comes with a well-defined meaning
(semantics)
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Linguistic variables: A definition

〈X, T(X), X, G, M 〉

X : is the name of the variable

T(X): is term set of X; elements of T are labels L of linguistic
values of X

X : universe

G :  grammar that generates the names of X

M : semantic rule that assigns to each label L ∈ T(X) a
meaning whose realization is a fuzzy set on X with
base variable x
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〈X, T(X), X, G, M 〉

X : temperature

X : [0, 40]

T(X): {cold, comfortable, warm}

G :  only terminal symbols, the terms of T(X)

M (cold) → C
M (comfortable) → F
M (warm) → W

C, F and W are fuzzy sets in [0, 40]

Example

Pedrycz and Gomide, FSE 2007
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