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14.1 Cluster-Based representation

of Input-output mappings




Human-Centric systems and computing

= Concerns with

— functionality responsive to human user needs
— diversity of requirements and user preferences
— relevance feedback

= Examples
— system modeling within a context chosen by the user

— Information retrieval depending upon user preferences
— context-based learning




Cluster-based representation of I/O mapping

» Fuzzy clustering

— sound basis to construct fuzzy models

— clustering in the inputxoutput space

— collection of prototypes — model skeleton/blueprint
— different ways to use prototypes to develop the model

= Example

2, Z, ...., Z, prototypes formed at the output space
Vi, Vy, oo,V prototypes formed at the input space

-y Vi

u,(X), ..., U(X) membership grades
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14.2 Context-Based clustering
In the development of

granular models




= Contexts: W, ...., W,

= W is a fuzzy set

= data point (target)

" w, = W(targey)




Context-Based clustering

Context

fuzzy sets fuzzy sets

Input space




Partition matrices induced by the jth context

C N
U (W;) ={Uik O10A]] 2 uik = |k’Dk’O<kZUik < N’Di}
=1 =1

= Context-Based clustering algorithm

c N
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14.3 Granular neuron as a
generic processing element

In granular networks




Granular neuron

Uy W W) =%(W| vy




Interval-valued connections

WD U =Wy, WU ]




Example




Fuzzy set-valued connections

WOy = sup Wi(w) =W (y/u;)

W, y=WU.,

Y=2,0Z,0---02Z,

Y(y)= sup {min(Z1(y1),...,Zc(Yc))}
y=y,+--tYy,




<0.3,0.5,3.6 <0.3,2.0,3.6
<1.4,1.5,7.6 <1.4,5.0,7.6




14.4 Architecture of granular

models based on conditional
fuzzy clustering




Overall architecture of granular models




* Development phases of granular models

1- form fuzzy sets of context
2— conditional clustering based on the contexts

» Features of granular models

— web of associations between information granules
— Inherently granular models (granular outputs for numeric inputs)
— design using rapid prototyping scheme




14.5 Refinements of granular

models




Bias of granular neurons
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Refinement of contexts

Conditional Context
clustering optimizatior

maxi gY(xk)(target()
P Ny




14.6 Incremental granular models







The principle of incremental fuzzy models and
Its design and architecture

General flow of development

{ xx, target}
Linear regression

¢ Incremental

Residuals > Granular
{ Xk, &t model

Granular model




Overall flow processing of incremental
granular models

Linear
regression
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Context-based

clustering fuzzy numbers

—p (granular information
processed)




Example

max(x, G(x)) O0<x<1
min(x,—G(x)+2) 1<x<2

spiky(X) ={




RMSE values (means and standard deviation) — Training Data

No. of
clusters
per
context

©

RMSE= 1
N

3
0.148:0.013
0.141+ 0.012
0.143+ 0.006
0.131+ 0.012
0.126+ 0.011

N 2
2 (v~ targe)

No. of contextsp)

4
0.142+ 0.018
0.131+ 0.008
0.124+ 0.007
0.111+ 0.007
0.105% 0.005

5
0.136% 0.005
0.106+ 0.008
0.095+ 0.007
0.077+0.008
0.072+ 0.007

6
0.106% 0.006
0.087+ 0.006
0.078+ 0.005
0.073+ 0.006
0.061+ 0.007




RMSE values (means and standard deviation) — Testing Data

No. of
clusters
per
context

©

3

0.142:0.016

0.131+ 0.007

0.129+ 0.014

0.123+ 0.005

0.119+0.016

No. of contextsp)

4

0.139+ 0.028

0.125+ 0.017

0.126+ 0.014

0.119+ 0.016

0.114+ 0.015

5

0.139+ 0.012

0.115+ 0.009

0.101+ 0.009

0.097+ 0.008

0.082+ 0.011

6

0.114+ 0.007

0.096+ 0.009

0.085+ 0.012

0.082+ 0.010

0.069+ 0.007




Optimal Values for fuzzification coefficient

No. of
clusters
per
context

©

No. of contextsp)

4

4.0

3.9

2.7

2.8

2.5

5

3.8

3.5

2.6

2.2

2.2




25 3 . ~E 3
fuzzification factar(m) -

fuzzification factor{m)

. 1. 25 3

25 3 . fuzzification factor(rm)
fuzzification factor(m)

Training data




14.7 Human-Centric fuzzy

clustering




Human-Centric clustering

Fuzzy clustering Human-centrjc Kn(_)wl_edge
Fuzzy clustering tidbits

T T

» Human-Centric = knowledge-Based clustering
= Clusters reflect human-driven customization

= Clustering algorithms consider knowledge about data




Example

output

actual output
Upper output
modal output

- lower output

prototypes

input




Human-Centric clustering approaches

» fuzzy clustering with partial supervision

— human-centric clusters

= proximity-based fuzzy clustering




Fuzzy clustering with partial supervision

Unsupervised Superv_ised
learning learning

Partial
1 supervision !

0 % of labeled patterns 100

» involves a subset of labeled patterns

» subset of labeled patterns comes with class membership




Clustering algorithm

c N c N
Q=Y Yufdik +a Y X (uik — fibi)?dif

1=1k=1 | =1k=1

b = (,, b,..0oy)

b, = 1if pattern x, is labeled, b, = 0 otherwise
F=[f]1=1,2,.6¢ k=1,2,..N

F contains membership grades assigned to patterns
a = weight factor to capture effect of partial supervision




Development of human-centric clusters

c N 5 o c N 5 2 C
V=2 2. uidik +a ) > (Ui — fikbe) “dik _)\(Z,luik 1)

1 =1k=1 | =1k =1




Example

Tidbits (hints)

Membership grades




Membership grades of patterns

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10




Proximity-based fuzzy clustering

= Proximity between two objects (patterns)
= prox(a’ b) = prox @, a) symmetry

— prox(@ a) =1 reflexivity

» Collection of patterns: proximity relation (matrix form) P




Proximity- based fuzzy clustering

C
Pk, ko] = 2> min(U , i ) Patterns: x,, , X,
i=1

N N
V= kz_lkz_ g Plke, ko] — plky, ko) “blky, kold[ky, ko]




P-FCM clustering algorithm

procedure P-FCM-CLUSTERING X) returns cluster centers and partition matrix
input: data setX={x,, k=1,..,N}
local: fuzzification coefficientm

thresholdsd, €

INITIALIZE-PARTITION-MATRIX
repeat until distance two successive partition matrise’s
run FCM
repeat until values ofV over successive iteratiogss
minimizeV

computeu,,
computev,

return cluster centers and partition matrix




P-FCM optimization steps

Proximity
hints

Min V
(gradient-based optimization)




Interaction aspects of sources of information
In the P-FCM

» P-FCM augments FCM adding extra optimization using patterns
= P-FCM reconcile structural and domain information
= Computationally, P-FCM does not affect size of original dataset

» P-FCM dwells on the core part of FCM optimization scheme




14.8 Participatory learning

fuzzy clustering




Participatory learning

Arousal
mechanism

J ‘ Beliefs




Participatory learning updates

— 1-a
Vi+1 = Vi Ta(p)™ ™ (Xk = Vi)

Pk =1-dy  dy =[xk =Vl
Ay +1 = a +B(A-Pk+1) )

x 0[01]", & O[04, BU[0A]




Distance measure and membership degree assignment

di = (xc = vi) T (det(f)Y N ETH(x - vi)

N m T
2 Uik (Xk = Vi) (XK = Vi)
k=1

Mahalanobis distance




PL clustering algorithm (off-line)

procedure OFF-LINE-PARTICIPATORY (X)returns cluster centers and partition matr
input: data set: X=X,k = 1,..,N}
local: cluster membership parameter: m

thresholdt

learning ratesa, 3

parameterse, | .

V=INITIALIZE-CLUSTER-CENTERS(X)
=

until stop = TRUEdO

for k=1:N
CLUSTER-LEARNINGK,,V)

iIf |AV|[<eandl=1__ then updateU, set stop = TRUE

esel=1+1
returnV, U




PL clustering algorithm (on-line)

procedure OFF-LINE-PARTICIPATORY K) returns cluster centers and partition matri
input: data:x
local: cluster membership parameter: m

thresholdt

learning ratesa, 3

parameterse, | .

V=INITIALIZE-CLUSTER-CENTERSK)
do forever
CLUSTER-LEARNINGK, V)

returnV, U




Clustering learning procedure

procedure CLUSTER-LEARNINGK) retur ns cluster centers and partition matrix
Input: x, =X

fori=1c
computed,,
computep;,
compute g
ifa <tforalli=1,..c
then updatev,, , computeJ
else create new cluster center
fori=1c
forj=(+1)c
computep,;
compute\,
if A, <0.951
then eliminatev, and updatéJ
returnV, U
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