14 Granular Models and Human-Centric Computing

Fuzzy Systems Engineering
Toward Human-Centric Computing

Contents

- 14.1 Cluster-based representation of the input-output maps
- 14.2 Context-based clustering in the development of granular models
- 14.3 Granular neuron as generic processing element in granular networks
- 14.4 Architecture of granular models based on conditional fuzzy clustering
- 14.5 Refinements of granular models
- 14.6 Incremental granular models
- 14.7 Human-Centric fuzzy clustering
- 14.8 Participatory learning in fuzzy clustering

14.1 Cluster-Based representation of input-output mappings Pedrycz and Gomide, FSE 2007

Human-Centric systems and computing

- Concerns with
 - functionality responsive to human user needs
 - diversity of requirements and user preferences
 - relevance feedback
- Examples
 - system modeling within a context chosen by the user
 - information retrieval depending upon user preferences
 - context-based learning

Cluster-based representation of I/O mapping

- Fuzzy clustering
 - sound basis to construct fuzzy models
 - clustering in the inputxoutput space
 - collection of prototypes → model skeleton/blueprint
 - different ways to use prototypes to develop the model
- Example

 $z_1, z_2,, z_c$ prototypes formed at the output space $\mathbf{v}_1, \mathbf{v}_2,, \mathbf{v}_c$ prototypes formed at the input space $u_1(\mathbf{x}),, u_c(\mathbf{x})$ membership grades

$$y = \sum_{i=1}^{c} z_i u_i(\mathbf{x})$$

$$u_i(x) = \frac{1}{\sum_{i=1}^{c} \left(\frac{\|\mathbf{x} - \mathbf{v}_i\|}{\|\mathbf{x} - \mathbf{v}_i\|}\right)^{2/(m-1)}}$$

Example

$$v_1 = -1$$
 $z_1 = -6$
 $v_2 = 2.5$ $z_2 = -4$
 $v_3 = 6.1$ $z_3 = 2$

Cluster-Based × RBF

$$v_1 = 1$$
 $z_1 = 6$
 $v_2 = 5.2$ $z_2 = -4$
 $v_3 = 5.1$ $z_3 = 8$

$$y = \frac{\sum_{i=1}^{c} z_i G(x; v_i, \sigma)}{\sum_{i=1}^{c} G(x; v_i, \sigma)}$$

14.2 Context-Based clustering in the development of granular models Pedrycz and Gomide, FSE 2007

- W_j is a fuzzy set
- data point (target_k)
- $w_{jk} = W_j(\text{target}_k)$

Context-Based clustering

Partition matrices induced by the jth context

$$U(W_j) = \left\{ u_{ik} \in [0,1] \mid \sum_{i=1}^{c} u_{ik} = w_{ik}, \forall k, 0 < \sum_{k=1}^{N} u_{ik} < N, \forall i \right\}$$

Context-Based clustering algorithm

$$Q = \sum_{i=1}^{c} \sum_{k=1}^{N} u_{ik}^{m} \| \mathbf{x}_{k} - \mathbf{v}_{i} \|^{2}$$

$$u_{ik} = \frac{w_{jk}}{\sum_{j=1}^{c} \left(\frac{\|\mathbf{x} - \mathbf{v}_{j}\|}{\|\mathbf{x} - \mathbf{v}_{j}\|}\right)^{2/(m-1)}}$$

$$\mathbf{v}_{i} = \frac{\sum_{k=1}^{N} u_{ik}^{m} \mathbf{x}_{k}}{\sum_{k=1}^{N} u_{ik}^{m}}$$

14.3 Granular neuron as a generic processing element in granular networks Pedrycz and Gomide, FSE 2007

Granular neuron

$$Y = N(u_1, ..., u_c, W_1, ..., W_c) = \sum_{\oplus} (W_i \otimes u_i)$$

$$W_i = [w_{i-}, w_{i+}]$$

$$W_i \otimes u_i = [w_{i-}u_i, w_{i+}u_i]$$

Interval-valued connections

$$W_i = [w_{i-}, w_{i+}]$$

$$|W_i \otimes u_i = [w_{i-}u_i, w_{i+}u_i]|$$

$$Y = \left[\sum_{i=1}^{c} w_{i-}u_{i}, \sum_{i=1}^{c} w_{i+}u_{i},\right]$$

$$u_1 = \alpha$$
 $W_1 = [0.3, 3]$
 $u_2 = 1-\alpha$ $W_2 = [1.4, 7]$

Example

$$u_1 = \alpha$$
$$u_2 = 1 - \alpha$$

$$W_1 = [0.3, 3]$$

 $W_2 = [1.4, 7]$

Fuzzy set-valued connections

$$W_i \otimes u_i = \sup_{w: y = wu_i} W_i(w) = W_i(y/u_i)$$

$$Y = Z_1 \oplus Z_2 \oplus \cdots \oplus Z_n$$

$$Y(y) = \sup_{y=y_1 + \dots + y_c} \{ \min(Z_1(y_1), \dots, Z_c(y_c)) \}$$

Example

$$W_1 = <0.3, 0.5, 3.0>$$

 $W_2 = <1.4, 1.5, 7.0>$

$$W_1 = <0.3, 2.0, 3.0>$$

 $W_2 = <1.4, 5.0, 7.0>$

14.4 Architecture of granular models based on conditional fuzzy clustering Pedrycz and Gomide, FSE 2007

Overall architecture of granular models

- Development phases of granular models
 - 1– form fuzzy sets of context
 - 2- conditional clustering based on the contexts
- Features of granular models
 - web of associations between information granules
 - inherently granular models (granular outputs for numeric inputs)
 - design using rapid prototyping scheme

14.5 Refinements of granular models Pedrycz and Gomide, FSE 2007

Bias of granular neurons

target_k

 y_{-} , y, y_{+}

$$w_0 = -\frac{1}{N} \sum_{k=1}^{N} (\text{target}_k - y_k)$$

$$\sum_{t=1}^{p} z_t w_{t-} + w_0$$

lower bound

$$\sum_{t=1}^{p} z_t w_t + w_0$$

modal value

$$\sum_{t=1}^{p} z_t w_{t+} + w_0$$

• upper bound

Refinement of contexts

$$\max_{\mathbf{P}} \frac{1}{N} \sum_{k=1}^{N} Y(\mathbf{x}_k) (\text{target}_k) \text{ or } \min_{\mathbf{P}} \frac{1}{N} \sum_{k=1}^{N} (b_k - a_k)$$

The principle of incremental fuzzy models and its design and architecture

General flow of development

Overall flow processing of incremental granular models

Example

$$G(x) = \exp\left(\frac{-(x-m)^2}{2\sigma^2}\right)$$

$$\operatorname{spiky}(x) = \begin{cases} \max(x, G(x)) & 0 \le x \le 1\\ \min(x, -G(x) + 2) & 1 < x \le 2 \end{cases}$$

$$m = 0.5$$
 $\sigma = 0.1$

RMSE values (means and standard deviation) - Training Data

		No. of contexts (<i>p</i>)					
		3	4	5	6		
No. of clusters per context (c)	2	0.148±0.013	0.142 ± 0.018	0.136 ± 0.005	0.106 ± 0.006		
	3	0.141 ± 0.012	0.131 ± 0.008	0.106 ± 0.008	0.087 ± 0.006		
	4	0.143 ± 0.006	0.124 ± 0.007	0.095 ± 0.007	0.078 ± 0.005		
	5	0.131 ± 0.012	0.111 ± 0.007	0.077 ± 0.008	0.073 ± 0.006		
and the same	6	0.126 ± 0.011	0.105 ± 0.005	0.072 ± 0.007	0.061 ± 0.007		

$$RMSE = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (y_k - \text{target}_k)^2}$$

RMSE values (means and standard deviation) – Testing Data

		No. of contexts (p)				
		3	4	5	6	
No. of clusters per context (c)	2	0.142±0.016	0.139 ± 0.028	0.139 ± 0.012	0.114 ± 0.007	
	3	0.131 ± 0.007	0.125 ± 0.017	0.115 ± 0.009	0.096 ± 0.009	
	4	0.129 ± 0.014	0.126 ± 0.014	0.101 ± 0.009	0.085 ± 0.012	
	5	0.123 ± 0.005	0.119 ± 0.016	0.097 ± 0.008	0.082 ± 0.010	
	6	0.119 ± 0.016	0.114 ± 0.015	0.082 ± 0.011	0.069 ± 0.007	

Optimal Values for fuzzification coefficient

	<u> </u>	No. of contexts (p)					
		3	4	5	6		
No. of clusters per context (c)	2	3.5	4.0	3.8	3.1		
	3	3.2	3.9	3.5	3.1		
	4	3.0	2.7	2.6	2.6		
	5	3.1	2.8	2.2	2.4		
	6	3.0	2.5	2.2	2.0		

Training data

Testing data

14.7 Human-Centric fuzzy clustering Pedrycz and Gomide, FSE 2007

Human-Centric clustering

- Human-Centric = knowledge-Based clustering
- Clusters reflect human-driven customization
- Clustering algorithms consider knowledge about data

Example

$$c = 5.0$$

 $p = 5.0$
 $m = 2.2$

- fuzzy clustering with partial supervision
 - human-centric clusters
- proximity-based fuzzy clustering

Fuzzy clustering with partial supervision

- involves a subset of labeled patterns
- subset of labeled patterns comes with class membership

Clustering algorithm

$$Q = \sum_{i=1}^{c} \sum_{k=1}^{N} u_{ik}^{2} d_{ik}^{2} + \alpha \sum_{i=1}^{c} \sum_{k=1}^{N} (u_{ik} - f_{ik} b_{k})^{2} d_{ik}^{2}$$

$$b = (b_1, b_2,..,b_N)$$

 $b_k = 1$ if pattern \mathbf{x}_k is labeled, $b_k = 0$ otherwise

$$F = [f_{ik}] \ i = 1, 2, ..., c; \ k = 1, 2, ..., N$$

F contains membership grades assigned to patterns $\alpha =$ weight factor to capture effect of partial supervision

Development of human-centric clusters

$$V = \sum_{i=1}^{c} \sum_{k=1}^{N} u_{ik}^{2} d_{ik}^{2} + \alpha \sum_{i=1}^{c} \sum_{k=1}^{N} (u_{ik} - f_{ik} b_{k})^{2} d_{ik}^{2} - \lambda (\sum_{i=1}^{c} u_{ik} - 1)$$

$$u_{ik} = \frac{1}{1+\alpha} \left[\frac{1+\alpha \left(1-b_k \sum_{i=1}^{c} f_{ik}\right)}{\sum_{j=1}^{c} \left(\frac{d_{ik}}{d_{jk}}\right)^2} + \alpha f_{ik} b_k \right]$$

$$\mathbf{v}_{s} = \frac{\sum_{k=1}^{N} \Psi_{sk} \mathbf{x}_{k}}{\sum_{k=1}^{N} \Psi_{sk}}$$

$$\left| \psi_{sk} = u_{ik}^2 + (u_{ik} - f_{ik}b_k)^2 \right|$$

Tidbits (hints)

Membership grades

Membership grades of patterns

Proximity-based fuzzy clustering

Proximity between two objects (patterns)

$$-\operatorname{prox}(a, b) = \operatorname{prox}(b, a)$$
 symmetry

$$-\operatorname{prox}(a, a) = 1$$
 reflexivity

■ Collection of patterns: proximity relation (matrix form) P

Proximity- based fuzzy clustering

$$\hat{p}[k_1, k_2] = \sum_{i=1}^{c} \min(u_{ik_1}, u_{ik_2})$$

Patterns:
$$\mathbf{x}_{k1}$$
, \mathbf{x}_{k2}

$$\hat{P} = [\hat{p}[k_1, k_2]]$$

$$k_1, k_2 = 1,, N$$

$$V = \sum_{k_1=1}^{N} \sum_{k_2=1}^{N} (\hat{p}[k_1, k_2] - p[k_1, k_2])^2 b[k_1, k_2] d[k_1, k_2]$$

P-FCM clustering algorithm

procedure P-FCM-CLUSTERING (X) returns cluster centers and partition matrix

input: data set $X=\{x_k, k=1,...,N\}$

local: fuzzification coefficient: *m*

thresholds: δ , ϵ

INITIALIZE-PARTITION-MATRIX

repeat until distance two successive partition matrices $\leq \delta$ run FCM

repeat until values of V over successive iterations $\leq \varepsilon$ minimize V

compute u_{ik} compute \mathbf{v}_{s}

return cluster centers and partition matrix

P-FCM optimization steps

Interaction aspects of sources of information in the P-FCM

- P-FCM augments FCM adding extra optimization using patterns
- P-FCM reconcile structural and domain information
- Computationally, P-FCM does not affect size of original dataset
- P-FCM dwells on the core part of FCM optimization scheme

14.8 Participatory learning fuzzy clustering Pedrycz and Gomide, FSE 2007

Participatory learning

Participatory learning updates

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha(\rho)^{1-a_k} (\mathbf{x}_k - \mathbf{v}_k)$$

$$\rho_k = 1 - d_k \qquad d_k = ||\mathbf{x}_k - \mathbf{v}_k||$$

$$|a_{k+1} = a_k + \beta((1 - \rho_{k+1}) - a_k)|$$

$$\mathbf{x}_k \in [0,1]^n, \ a_k \in [0,1], \ \beta \in [0,1]$$

Distance measure and membership degree assignment

$$d_{ik} = (\mathbf{x}_k - \mathbf{v}_i)^T (\det(f_i)^{1/N} F_i^{-1}) (\mathbf{x}_k - \mathbf{v}_i)$$

$$F_i = \frac{\sum\limits_{k=1}^{N} u_{ik}^m (\mathbf{x}_k - \mathbf{v}_i) (\mathbf{x}_k - \mathbf{v}_i)^T}{\sum\limits_{k=1}^{N} u_{ik}^m}$$

$$u_{ik} = \frac{1}{\sum_{j=1}^{c} (d_{ik} / d_{jk})^{2/m-1}}$$

Mahalanobis distance

PL clustering algorithm (off-line)

```
procedure OFF-LINE-PARTICIPATORY (X) returns cluster centers and partition matrix
input: data set: X = \{x_k, k = 1,...,N\}
local: cluster membership parameter: m
        threshold: τ
        learning rates: \alpha, \beta
        parameters: \varepsilon, l_{\text{max}}
 V=INITIALIZE-CLUSTER-CENTERS(X)
l=1
      until stop = TRUE do
          for k = 1:N
              CLUSTER-LEARNING(\mathbf{x}_k, V)
if ||\Delta V|| \le \epsilon and l \ge l_{max} then update U, set stop = TRUE
      else l = l + 1
return V, U
```

PL clustering algorithm (on-line)

procedure OFF-LINE-PARTICIPATORY (x) returns cluster centers and partition matrix

input: data: x

local: cluster membership parameter: m

threshold: τ

learning rates: α , β

parameters: ϵ , l_{max}

V=INITIALIZE-CLUSTER-CENTERS(\mathbf{x})

do forever

CLUSTER-LEARNING(\mathbf{x}, V)

return V, U

Clustering learning procedure

procedure CLUSTER-LEARNING(x) returns cluster centers and partition matrix

```
input: x_k = x
for i = 1:c
    compute d_{ik}
    compute \rho_{ik}
    compute a<sub>ik</sub>
      if a_{ik} \le \tau for all i = 1,...,c
         then update \mathbf{v}_{s}, compute U
         else create new cluster center
               for i = 1:c
                    for j = (i + 1):c
                         compute \rho_{vi}
                         compute \lambda_{vi}
                         if \lambda_{vi} \leq 0.95 \tau
                           then eliminate \mathbf{v}_i and update U
return V, U
```

 $s = \arg \max_{i} \{ \rho_{ik} \}$

Data

GK

MKFM

PL

Data

18

GK

MKFM

PL