13 Fuzzy Systems and Computational Intelligence

Fuzzy Systems Engineering Toward Human-Centric Computing

Contents

13.1 Computational intelligence
13.2 Recurrent neurofuzzy systems
13.3 Genetic fuzzy systems
13.4 Coevolutionary hierarchical genetic fuzzy system
13.5 Hierarchical collaborative relations
13.6 Evolving fuzzy systems

13.1 Computational intelligence

Computational Intelligence

Computational intelligence

Data processing systems with capabilities of (Bezdek, 1992/1994)

- pattern recognition
- adaptive
- fault tolerance
- performance approximates human performance
- no use of explicit knowledge

Framework to design and analyze intelligent systems (Duch, 2007)

- autonomy
- learning
- reasoning

Computing systems able to (Eberhart, 1996)

- learn
- deal with new situations using
 - reasoning
 - generalization
 - association
 - abstraction
 - discovering

Computational intelligence

- largely human-centered
- forms of artificial and synthetic intelligence
- collaboration man-machine

Intelligent Systems

13.2 Recurrent neurofuzzy systems

Globally recurrent

- full feedback connections

Partially recurrent

- partial feedback connections

Recurrent neural fuzzy network model

Recurrent and fuzzy neuron

$$z_j = \prod_{i=1}^{n+M} (w_{ji} \, s \, a_{ji})$$

$$z_j = AND(\mathbf{a}_j; \mathbf{w}_j)$$

- *Ni* number of fuzzy sets that granulate the *i*th input
- *j* indexes *and* neurons; given k_i , *j* is found using

$$j = k_n + \sum_{i=2}^{M} (k_{(n-i+1)} - 1) \left(\prod_{r=1}^{i-1} N_{(n+1-r)}\right)$$

• $x_1, ..., x_i, ..., x_n$ inputs

$$\bullet a_{ji} = A_i^{k_i}(x_i)$$

• w_{ii} weight between *i*th input and *j*th *and* neuron

- z_j output of the *j*th *and* neuron
- v_{ki} weight *j*th input of the *k*th output neuron
- r_{il} feedback connection of the *l*th input of the *j*th *and* neuron
- $y_k = \psi(u_k)$ output *k*th neuron of the output layer

Output layer neuron

 $y = \psi(u_k) = \psi(\sum_{j=1}^M v_{kj} z_j)$

Learning algorithm

procedure NET-LEARNING (x, y) returns a network

input:data x, y
local: fuzzy sets
 t, s: triangular norms
 E: threshold

GENERATE-MEMBERSHIP-FUNCTIONS INITIALIZE-NETWORK-WEIGHTS

until stop criteria $\leq \varepsilon$ **do** choose and input-output pair *x* and *y* of the data set ACTIVE-AND-NEURONS ENCODING UPDATE-WEIGHTS **return** a network

Example

Chaotic NH3 laser time series data

- first 1000 samples for learning
- predict next 100 steps

100 steps ahead prediction

Normalized squared forecasting errors (NSE) NH3 laser time series

Model	1 step ahead	100 steps ahead
FIR	0.0230	0.0551
NFN	0.0139	0.0306

$$NSE = \frac{1}{\sigma^2 N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

13.3 Genetic fuzzy systems

Genetic fuzzy systems

GFS is an approach to design fuzzy models and systems

GFS = fuzzy system + learning using genetic algorithm

Learning of models structure and parameters

- rule base
- fuzzy rules
- membership functions
- operators
- inference procedures

Genetic Fuzzy Systems

13.4 Coevolutionary hierarchical genetic fuzzy system

Coevolution

- Considers interactions between population members
- Populations hierarchically structured
- Hierarchy levels associated with partial solutions of the problem
 - individuals of different populations keep collaborative relations
 - collaboration depends on the fitness of the individuals
 - hierarchical levels:
 - I : membership functions
 - II : fuzzy rules
 - III: rule bases
 - IV: fuzzy systems (models)

Coevolutionary GFS approach

13.5 Hierarchical collaborative relations

Collaboration between species

Collaboration between individuals

 R_j : If x_1 is A_1^{j} and ...and x_n is A_n^{j} then $y = g(w_j, x)$

Fitness evaluation in hierarchical collaborative evolution

Example: function approximation

 R_j : If x_1 is A_1^j and ...and x_n is A_n^j then $y = g(w_j, x)$

and = t-norm

$$atb = \frac{ab}{p_t + (1 - p_t)(a + b - ab)}$$

 p_t : obtained by coevolution $g(w_j, \mathbf{x})$: least squares + pruning $F_1: \Omega \to R$ $F_1(x_1, x_2) = f_1(x_1, x_2) + N(m, \sigma)$ $f_1(x_1, x_2) = 1.9(1.35 + \exp(x_1)\sin[13(x_1 - 0.6)^2 \exp(-x_2)\sin(7x_2)])$ $\Omega = [0,1], m = 0, \sigma = 0.3$

Original function

Training data

Result

Partitions

CoevolGFS

ANFIS

RME for function approximation example

Approach	Training RME	Test RME	Number of Rules
CoevolGFS	0.25	0.13	8
ANFIS	0.32	0.21	9

Example: classification

Intertwined spirals

Classification rules

 $R_{1}: \text{If } x_{1} \text{ is low } and \ x_{2} \text{ is low then } y = -0.31 + 1.6x_{1} - 0.26x_{2} + 0.34x_{1}^{2} + 0.17x_{2}^{2} - 0.1x_{1}x_{2}$ $R_{2}: \text{If } x_{1} \text{ is medium } and \ x_{2} \text{ is low then } y = 15.3 - 1.3x_{1} + 7.7x_{2} - 0.05x_{1}^{2} + 0.84x_{2}^{2} - 0.46x_{1}x_{2}$ $R_{3}: \text{If } x_{1} \text{ is medium } and \ x_{2} \text{ is high then } y = -17.2 - 2.2x_{1} + 7.6x_{2} - 0.08x_{1}^{2} - 0.78x_{2}^{2} + 0.45x_{1}x_{2}$ $R_{2}: \text{If } x_{1} \text{ is high } and \ x_{2} \text{ is high then } y = 1.14 + 2.0x_{1} + 1.24x_{2} - 0.25x_{1}^{2} - 0.28x_{2}^{2} - 0.34x_{1}x_{2}$

Classification performance: Intertwined spirals

Approach	Cycles	Misclassification	Number of Rules
CoevolGFS	529	18	9
ANFIS	1000	0.21	9

13.6 Evolving fuzzy systems

Evolving fuzzy systems

Evolving systems: an approach to develop adaptive fuzzy models

Evolving modeling targets nonstationary process and systems

Main properties

- inherit new knowledge
- gradual changes
- life-long learning
- self organization of the system structure
- complements GFS approach
- may act online

Rule base evolution

Recursive clustering

Participatory learning

(Details in Chapter 14)

Functional fuzzy models

$$R_i$$
: if **x** is A_i then $y_i = a_{i0} + \sum_{j=1}^n a_{ij} x_j$

$$A_{j}^{i}(x_{j}) = \exp[-k_{ij}(x_{j} - v_{ij})^{2}]$$

$$y = \sum_{i=1}^{c} w_i y_i$$
$$w_i(x) = \frac{\lambda_i(x)}{\sum_{i=1}^{c} \lambda_i(x)}$$

$$\lambda_i = A_1^i(x_1) \ t \ A_2^i(x_2) \ t \cdots t \ A_n^i(x_n)$$

Evolving participatory learning algorithm

INITIALIZE-RULES-PARAMETERS do forever read x PL-CLUSTERING UPDATE-RULE-BASE RUN-LEAST-SQUARES(x,y) COMUTE-RULE-ACTIVATION COMPUTE-OUTPUT

return y

Example

Time series forecasting

Average weekly inflows of a power plant

Estimated partial correlation

Performance measures

$$RMSE = \sqrt{\frac{1}{P} \sum_{k=1}^{P} (x^k - x_d^k)^2}$$

$$MRE = \frac{100}{P} \sum_{k=1}^{P} \frac{|x^{k} - x_{d}^{k}|}{x_{d}^{k}}$$

$$MAD = \frac{1}{P} \sum_{k=1}^{P} |x^k - x_d^k|$$

$$RE_{\max} = 100 \max\left(\frac{|x^{k} - x_{d}^{k}|}{x_{d}^{k}}\right)$$
$$\rho = \frac{\sum_{k=1}^{P} (x_{d}^{k} - \overline{x}_{d})(x^{k} - \overline{x})}{\sqrt{\sum_{k=1}^{P} (x_{d}^{k} - \overline{x}_{d})^{2} \sum_{k=1}^{P} (x^{k} - \overline{x})^{2}}}$$

Result

Forecasting performance average weekly inflow

Error	Models		
EIIOI	ePL	eTS	
RMSE (m ³ /s)	378.71	545.28	
MAD (%)	240.55	356.85	
MRE (%)	12.54	18.42	
RE _{max} (%)	75.51	111.22	
ρ	0.95	0.89	
Number of rules	2	2	