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Computational intelligence

� Data processing systems with capabilities of (Bezdek, 1992/1994)

– pattern recognition
– adaptive
– fault tolerance
– performance approximates human performance
– no use of explicit knowledge 

� Framework to design and analyze intelligent systems (Duch, 2007)

– autonomy
– learning
– reasoning
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� Computing systems able to (Eberhart, 1996)

– learn
– deal with new situations using

• reasoning
• generalization
• association
• abstraction
• discovering 

� Computational intelligence

– largely human-centered
– forms of artificial and synthetic intelligence
– collaboration man-machine



Computational 
intelligence

Machine 
learning

Artificial 
intelligence

Intelligent Systems

Systems 
science

Control 
theory

Cognitive
sciences

Data analysis 
recognition

Operations
research

Pedrycz and Gomide, FSE 2007



13.2 Recurrent neurofuzzy
systems
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� Globally recurrent

– full feedback connections

� Partially recurrent

– partial feedback connections
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Recurrent neural fuzzy network model
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Recurrent and fuzzy neuron

zj = AND(aj;wj)
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� Ni number of fuzzy sets that granulate the ith input

� j indexes and neurons; given ki , j is found using

� x1, ..., xi,..., xn inputs

�
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�wji weight between ith input and jth and neuron

� zj output of the jth and neuron

� vkj weight jth input of the kth output neuron

� rjl feedback connection of the lth input of the jth and neuron

� yk = ψ(uk) output kth neuron of the output layer
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Learning algorithm

procedure NET-LEARNING (x, y) returns a network

input:data x, y
local: fuzzy sets

t, s: triangular norms
ε: threshold

GENERATE-MEMBERSHIP-FUNCTIONS
INITIALIZE-NETWORK-WEIGHTS

until stop criteria ≤ ε do
choose and input-output pair x and y of the data set
ACTIVE-AND-NEURONS
ENCODING
UPDATE-WEIGHTS

return a network
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Example

Chaotic NH3 laser time series data

• first 1000 samples for learning
• predict next 100 steps 
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−−−  Actual 
-----    NFN 

100 steps ahead prediction
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Normalized squared forecasting errors 
(NSE) NH3 laser time series 

100 steps ahead

FIR 0.0230 0.0551

NFN 0.0139 0.0306

Model 1 step ahead
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13.3 Genetic fuzzy systems
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Genetic fuzzy systems

� GFS is an approach to design fuzzy models and systems

� GFS = fuzzy system + learning using genetic algorithm

� Learning of models structure and parameters

– rule base
– fuzzy rules
– membership functions
– operators
– inference procedures
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Genetic Fuzzy Systems
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13.4 Coevolutionary hierarchical
genetic fuzzy system
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Coevolution

� Considers interactions between population members

� Populations hierarchically structured

� Hierarchy levels associated with partial solutions of the problem

– individuals of different populations keep collaborative relations
– collaboration depends on the fitness of the individuals
– hierarchical levels:

• I  : membership functions
• II : fuzzy rules
• III: rule bases
• IV: fuzzy systems (models)
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Coevolutionary GFS approach
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13.5 Hierarchical collaborative
relations
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(a) 

Collaboration between species
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(b) 

Collaboration between individuals

Rj: If x1 is A1
j and ...and xn is An

j then y = g(wj,x)
Pedrycz and Gomide, FSE 2007



Fitness evaluation in hierarchical 
collaborative evolution
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Example: function approximation

Rj: If x1 is A1
j and ...and xn is An

j then y = g(wj,x)

and = t-norm
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pt : obtained by coevolution

g(wj,x) : least squares + pruning
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Original function Training data
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Result
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RME for function approximation example

Approach Training RME Test RME
Number of 

Rules

CoevolGFS 0.25 0.13 8

ANFIS 0.32 0.21 9
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Example:  classification

� Intertwined spirals
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Approach Cycles Misclassification
Number of 

Rules

CoevolGFS 529 18 9

ANFIS 1000 0.21 9

Classification performance: Intertwined spirals
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13.6 Evolving fuzzy systems



Evolving fuzzy systems

� Evolving systems: an approach to develop adaptive fuzzy models

� Evolving modeling targets nonstationary process and systems

� Main properties

– inherit new knowledge
– gradual changes
– life-long learning
– self organization of the system structure
– complements GFS approach
– may act online
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Rule base evolution
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Recursive clustering
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Participatory learning

(Details in Chapter 14)
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Functional fuzzy models

Pedrycz and Gomide, FSE 2007
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procedure EVOLVE-PARTICPATORY- LEARNING (x,y) returns an output
input : data x,y
local:    antecedent parameters

consequent parameters

INITIALIZE-RULES-PARAMETERS
do forever

read x
PL-CLUSTERING
UPDATE-RULE-BASE
RUN-LEAST-SQUARES(x,y)
COMUTE-RULE-ACTIVATION
COMPUTE-OUTPUT

return y

Evolving participatory learning algorithm



Example

Time series forecasting
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Average weekly inflows of a power plant
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Estimated partial correlation
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Result
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Error
Models

ePL eTS

RMSE (m3/s) 378.71 545.28

MAD (%) 240.55 356.85

MRE (%) 12.54 18.42

REmax (%) 75.51 111.22

ρ 0.95 0.89

Number of rules 2 2

Forecasting performance average weekly inflow


