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Neural networks

� Neural networks

– nonlinear processing elements
– highly plastic
– capable of learning
– universal approximation

� Learning strategies

– supervised     (e.g. backpropagation)
– unsupervised (e.g. self-organizing maps)
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Neural networks

� Learning methods

– parametric learning (e.g. gradient-based)
– structural learning (e.g. genetic algorithms)

� Highly distributed processing

� Black box nature

� Encode a description of data

– difficult to interpret

– lack of transparency

Pedrycz and Gomide, FSE 2007



Fuzzy neurons and networks

� Highly distributed processing

� Adds transparency

� Uses and and or generic logic operations

� Encode a collection of logic statements (rules)



12.2 Main categories of fuzzy
neurons
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Aggregative neurons
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and neuron
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Standard neurons
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Reference neurons
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DOM(x, a) 

SIM(x, a) = INCL(x, a) t DOM(x, a)

INCL(x, a) ≡ x⇒ a

DOM(x, a) ≡ a⇒ x
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Characteristics of the reference neurons

Inclusion Dominance Similarity

t-norm: product                               w1 = 0.1,   w2 = 0.7
s-norm: probabilistic sum t1 = 0.5,    t2 = 0.5



12.3 Uninorm-based
fuzzy neurons
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Main classes of unineurons

� and  unineurons
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and Unineurons
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� Processing at the level of individual inputs: and neuron
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t-norm: product,   s-norm: probabilistic sum
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12.4 Architectures of
logic networks
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Logic processor: A canonical realization
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Examples
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g1 g2 net
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Fuzzy neural networks with feedback loops
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11.5 The development
mechanisms of the fuzzy
neural networks

Pedrycz and Gomide, FSE 2007



Development facets
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� Structural learning

– architecture (topology)
– t norms
– s norms

� Parametric learning

– numeric values of connections
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Key design phases

Accuracy
Interpretability

Stability

Structure
(topology)

Domain
knowledge

Parameters
(connections)

Validation

Data



Pedrycz and Gomide, FSE 2007

Gradient-based learning schemes
for the networks

� Training data: input/output pairs  { x(k), target(k)}, k = 1,2,….., N

� x(k) ∈ [0, 1]n

� target(k) ∈ [0, 1]m

� Q is a performance index

connection(iter + 1) = connection(iter) –α∇connection(iter)Q Basic scheme
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Development modes
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� Successive expansions

– increase the size of the network

� Successive reductions

– prune “weakest” connections



12.6 Interpretation of fuzzy
neural networks
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� or neurons

– weighted or combination of the inputs
– high value of the connection ⇒ higher influence of the corresponding input

� andneurons 

– weighted and combination of the inputs
– low value of the connection ⇒ higher influence of the corresponding input 

� Rule generation

– Step 1: start with highest value of the or connection
– Step 2: translate andneuron into and combination of the inputs
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Retention of the most significant connections

� Reducing weakest connections to 0 or 1

– define a threshold mapping φθ: [0,1] → [θ , 1] ∪ {0}
– thresholds  λ and µ

� or neurons θ = λ

� andneurons θ = µ
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Conversion of the fuzzy network to the 
Boolean version

� or neurons φλ : [0,1] → {0, 1}

� andneurons φµ : [0,1] → {0, 1}
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12.7 From fuzzy logic networks
to Boolean functions and
their minimization through
learning
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� and and or neurons generalize (subsume) andand or logic gates

� Logic functions are encoded by fuzzy logic networks

� Logic functions may involve complements of the original variables

� After reducing connections to Boolean versions

– simplification of Boolean functions usually with Karnaugh maps

– networks simplifies using learning instead
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12.8 Interfacing the fuzzy
neural network
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Geometry of rules supported by fuzzy neural nets

if (A4 and B2) or (A2 and B1) or (A1 and B3) then C

B1 B2 B3
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and
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12.9 Interpretation aspects:
A refinement of induced
rule-based system
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� Transformation of fuzzy set A of interface through wi

– leads to Ã

– higher values of wi make Ã close to one

x
A

wi

xi = A(x)

and

Ã(x) = xi s wi = A(x) s wi
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Example of augmented fuzzy neural network
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The underlying geometry 
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12.10 Reconciliation of perception
of information granules and
granular mappings

Pedrycz and Gomide, FSE 2007



� Information granules

– can be perceived in different ways

– perception depends on the context

� Modeling perception

– logic oriented transformation of fuzzy sets

– mechanism of reconciliation

� Reconciliation of various perceptions viewed as an optimization



Reconciliation of perception of information granule
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The optimization process
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An application of the perception mechanism 
to fuzzy rule-based systems

If
{[(A 1 or 0.7) and (B1 or 0.33)] and0.9}
or
{[(A 2 or 0.2) and (B2 or 0.50)] and0.7}
or
{[(A 3 or 0.1) and (B3 or 0.20)] and1.0}
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Reconciliation of granular mappings

� Problem

– Ri: X → Y, i = 1,….,c are given

– Ri are relational mappings

– determine R such that it forms a reconciliation with Ri´s

� Reconciliation involves a family of fuzzy sets A1, A2,….,AN
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R
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{ Ai}

Reconciliation of fuzzy models with granular 
probes { Ai}
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