12 From Logic Expressions to Logic Networks

Fuzzy Systems Engineering Toward Human-Centric Computing

Contents

12.1 Introduction
12.2 Main categories of fuzzy neurons
12.3 Uninorm-based fuzzy neurons
12.4 Architectures of logic networks
112.5 The development mechanisms of the fuzzy neural networks
12.6 Interpretation of the fuzzy neural networks

12.7 From fuzzy logic networks to Boolean functions and their minimization through learning

12.8 Interfacing the fuzzy neural network

12.9 Interpretation aspects – a refinement of induced RBS

12.10 Reconciliation of perception of information granules and granular mappings

12.1 Introduction

Neural networks

Neural networks

- nonlinear processing elements
- highly plastic
- capable of learning
- universal approximation
- Learning strategies
 - supervised (e.g. backpropagation)– unsupervised (e.g. self-organizing maps)

Neural networks

Learning methods

parametric learning (e.g. gradient-based)
structural learning (e.g. genetic algorithms)

- Highly distributed processing
- Black box nature
- Encode a description of data
 - difficult to interpret
 - lack of transparency

Fuzzy neurons and networks

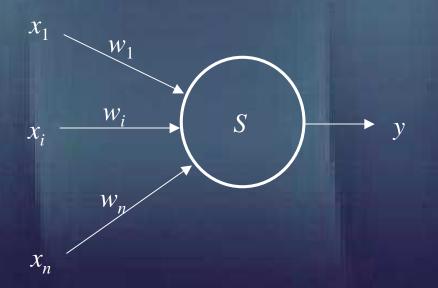
- Highly distributed processing
- Adds transparency
- Uses and and or generic logic operations
- Encode a collection of logic statements (rules)

12.2 Main categories of fuzzy neurons

Aggregative neurons

or neuron

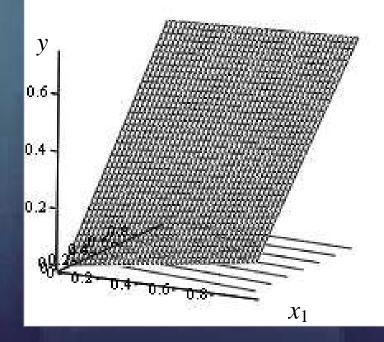
 $S: [0, 1]^n \to [0, 1]$

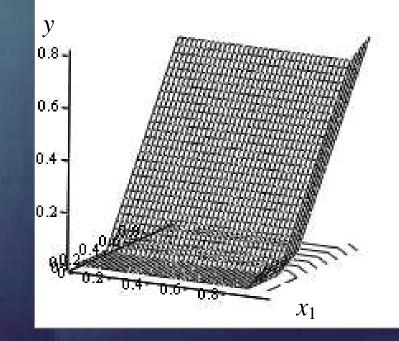


$$y = \mathop{\mathrm{S}}_{i=1}^{n} (x_i t w_i)$$

 $y = OR(\mathbf{x}; \mathbf{w})$

or neuron



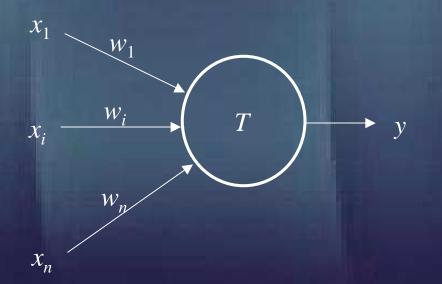


t = product s = probabilistic sumw = [0.1, 0.7] t = Lukasiewicz s = Lukasiewicz w = [0.1, 0.7]

Pedrycz and Gomide, FSE 2007

and neuron

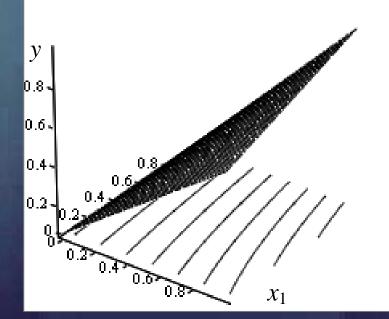
$T: [\overline{0, 1}]^n \to [\overline{0, 1}]$



$$y = \prod_{i=1}^{n} (x_i \, s \, w_i)$$

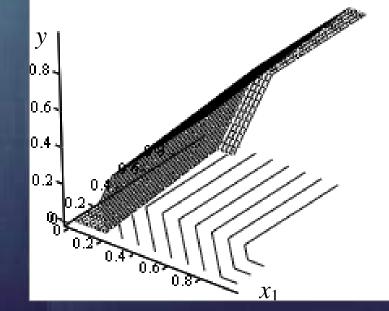
 $y = AND(\mathbf{x}; \mathbf{w})$

and neuron



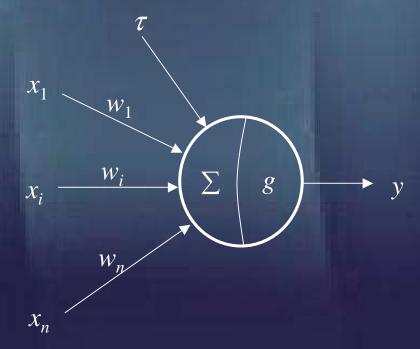
t = products = probabilistic sumw = [0.1, 0.7] t = Lukasiewiczs = Lukasiewiczw = [0.1, 0.7]

Pedrycz and Gomide, FSE 2007



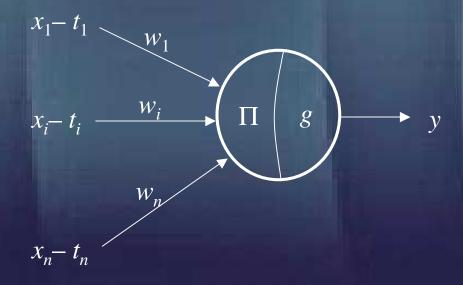
Standard neurons

Σ neuron (additive)



$$y = g[\sum_{i=1}^{n} (x_i w_i + \tau)]$$

Π neuron (multiplicative)

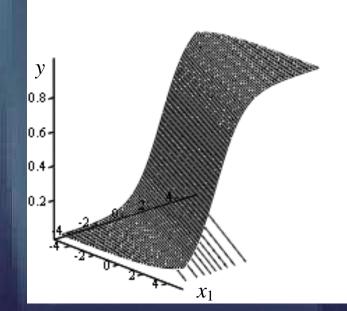


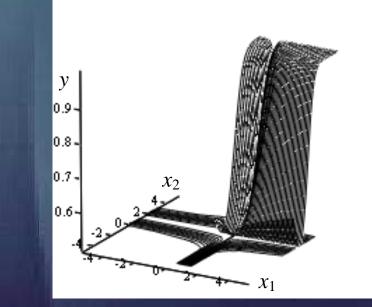
$$y = g(\prod_{i=1}^{n} (x_i - t_i)^{w_i})$$

Characteristics of the standard neurons

Additive

Multiplicative



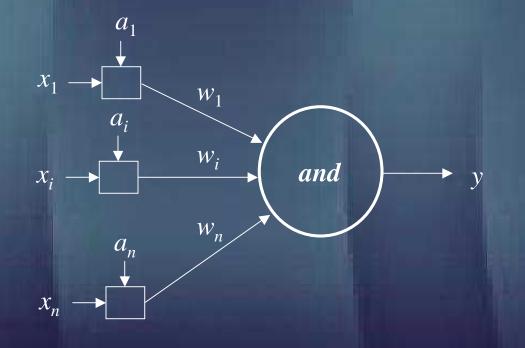


 $\tau = 0.2, w_1 = 1.0, w_2 = 2.0$

 $t_1 = 1.0, t_2 = 0.7, w_1 = 0.5, w_2 = 2.0$

 $g(u) = 1/(1 + \exp(-u))$

Reference neurons



$$y = \prod_{i=1}^{n} (\text{REF}(x_i, a_i) \, s \, w_i)$$

REF

INCL(x, a)

 $\operatorname{REF}(x, a) = \checkmark \operatorname{DOM}(x, a)$

SIM(x, a) = INCL(x, a) t DOM(x, a)

 $INCL(x, a) \equiv x \Rightarrow a$

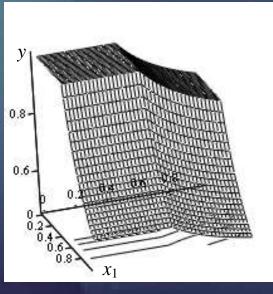
 $DOM(x, a) \equiv a \Rightarrow x$

 $SIM(x, \overline{a}) \equiv (x \Rightarrow a) t (\overline{a \Rightarrow x})$

 $a \Rightarrow b = \sup\{ c \in [0,1] \mid a \ t \ c \le b \} \ a,b \in [0,1]$

Characteristics of the reference neurons

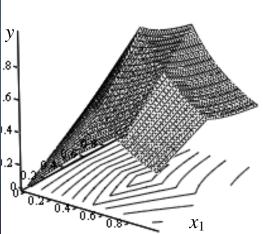
Inclusion



Dominance

Similarity





t-norm: product <u>s-norm: pro</u>babilistic sum

 $w_1 = 0.1, \quad w_2 = 0.7$ $t_1 = 0.5, \quad t_2 = 0.5$

12.3 Uninorm-based fuzzy neurons

Main classes of unineurons

• and unineurons

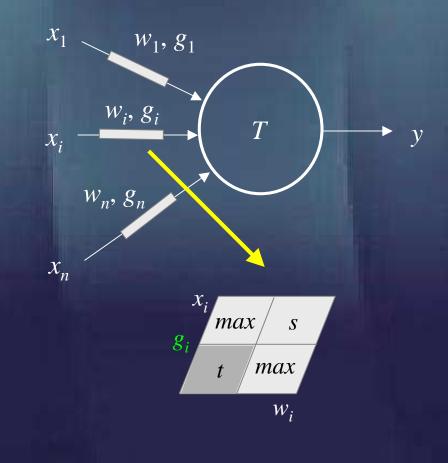
and U

• or unineurons

or_U

and Unineurons

 $y = AND_U(\mathbf{x};\mathbf{w},\mathbf{g})$

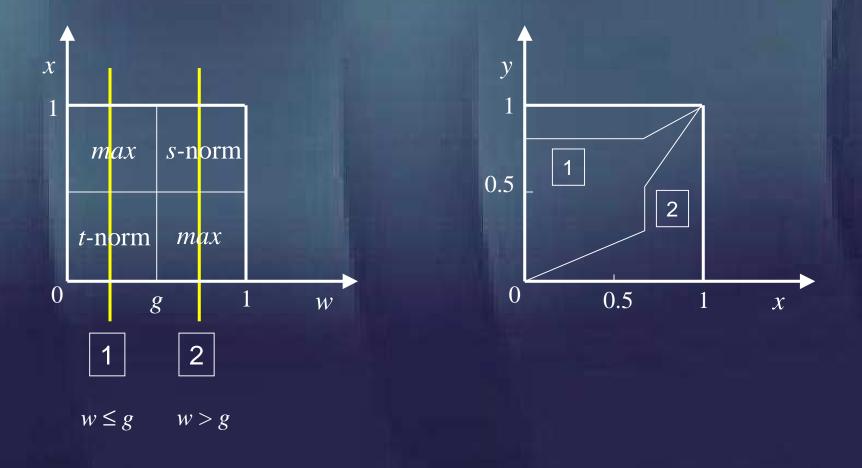


$$y = \prod_{i=1}^{n} (u(x_i, w_i, g_i))$$

Pedrycz and Gomide, FSE 2007

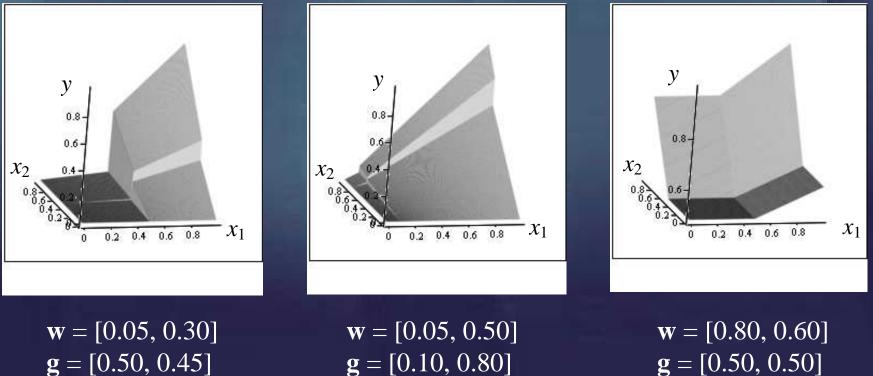
Properties and characteristics of unineurons

Processing at the level of individual inputs: and neuron



I/O characteristics of and unineurons

t-norm: product, s-norm: probabilistic sum

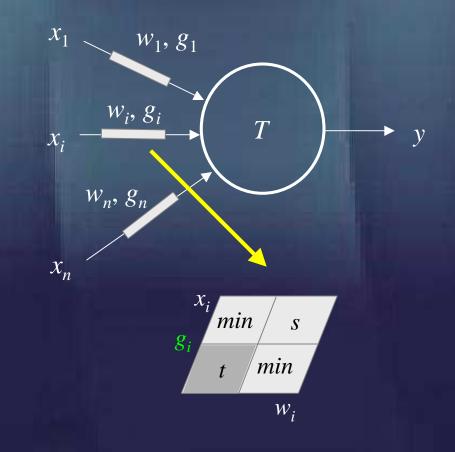


 $\mathbf{g} = [0.10, 0.80]$

 $\mathbf{g} = [0.50, 0.50]$

or Unineurons

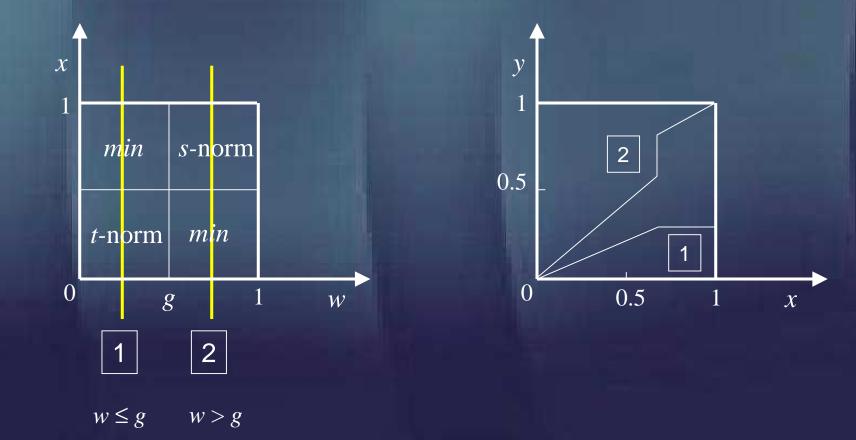
 $y = OR_U(\mathbf{x};\mathbf{w},\mathbf{g})$



$$y = \underset{i=1}{\overset{n}{\text{S}}} (u(x_i, w_i, g_i))$$

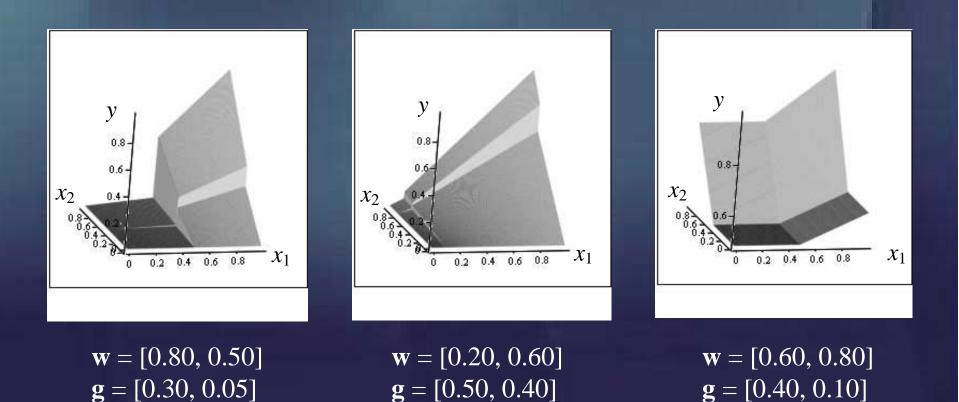
Pedrycz and Gomide, FSE 2007

Processing at the level of individual inputs: or neuron



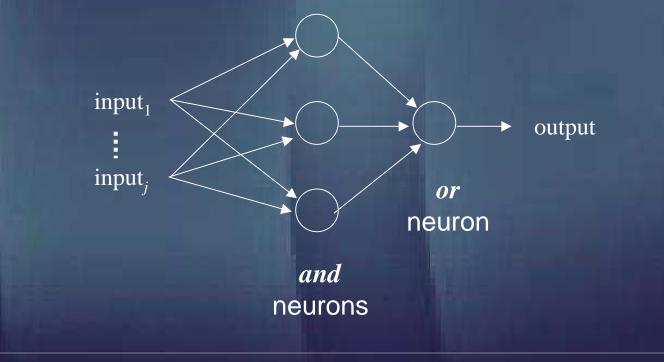
I/O characteristics of or unineurons

t-norm and s-norm: Lukasiewicz



12.4 Architectures of logic networks

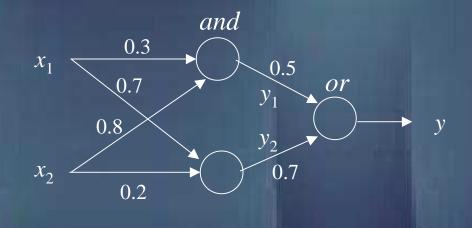
Logic processor: A canonical realization



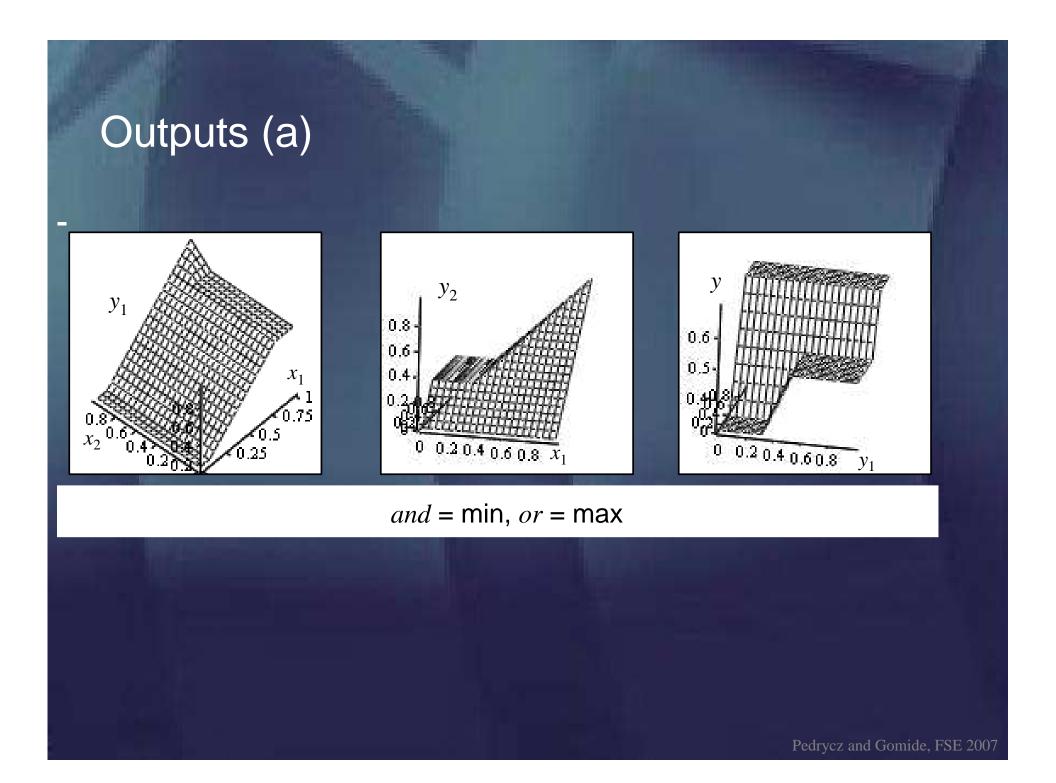
if (input₁ andand input_j) or (input_d andand input_f) **then** output

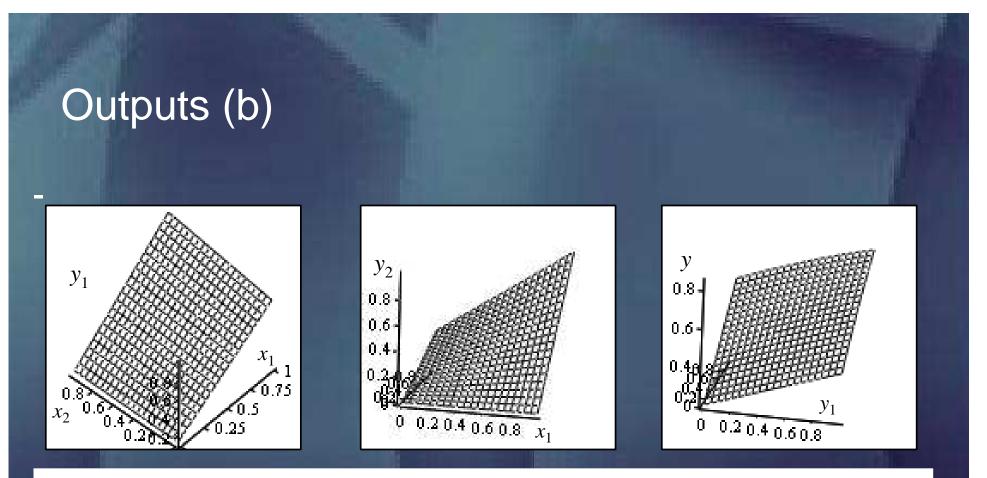
Pedrycz and Gomide, FSE 2007

Examples

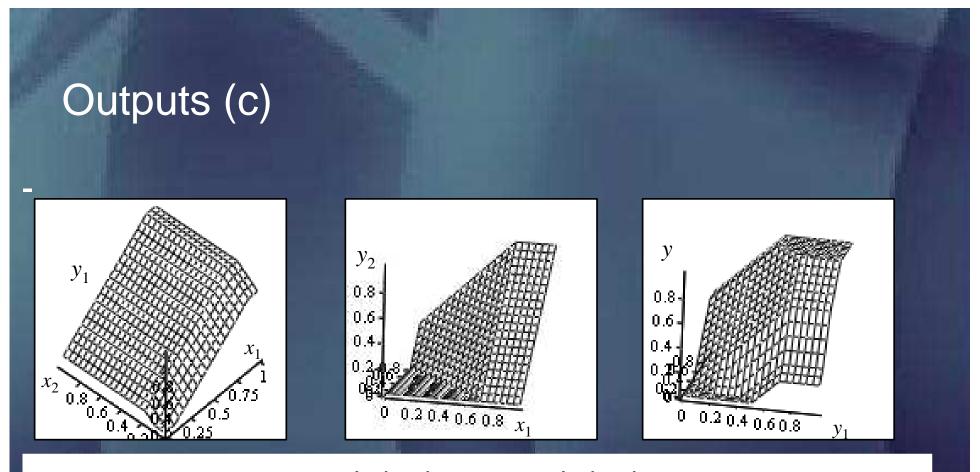


Logic processor



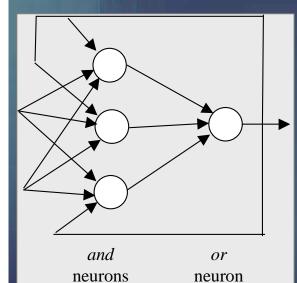


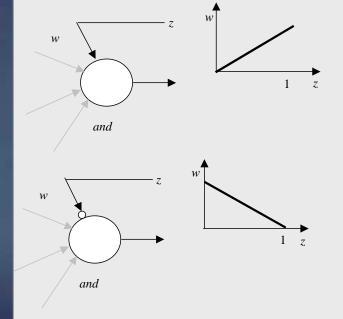
and = product, *or* = probabilistic sum

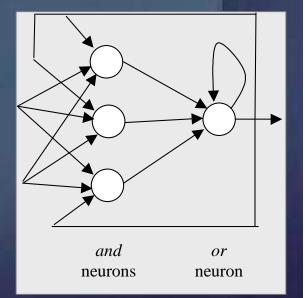


and = Lukasiewcz, *or* = Lukasiewcz

Fuzzy neural networks with feedback loops







Excitatory and inhibitory connections

Example y x and and $\overline{x(k)} = \operatorname{And}(\mathbf{w}, [x(k-1), y(k-1)])$

$$y(k) = \text{And}(v, [y(k-1), y(k-2), \overline{x}(k-1)])$$

$$\overline{x}(k-1) = 1 - x(k-1)$$

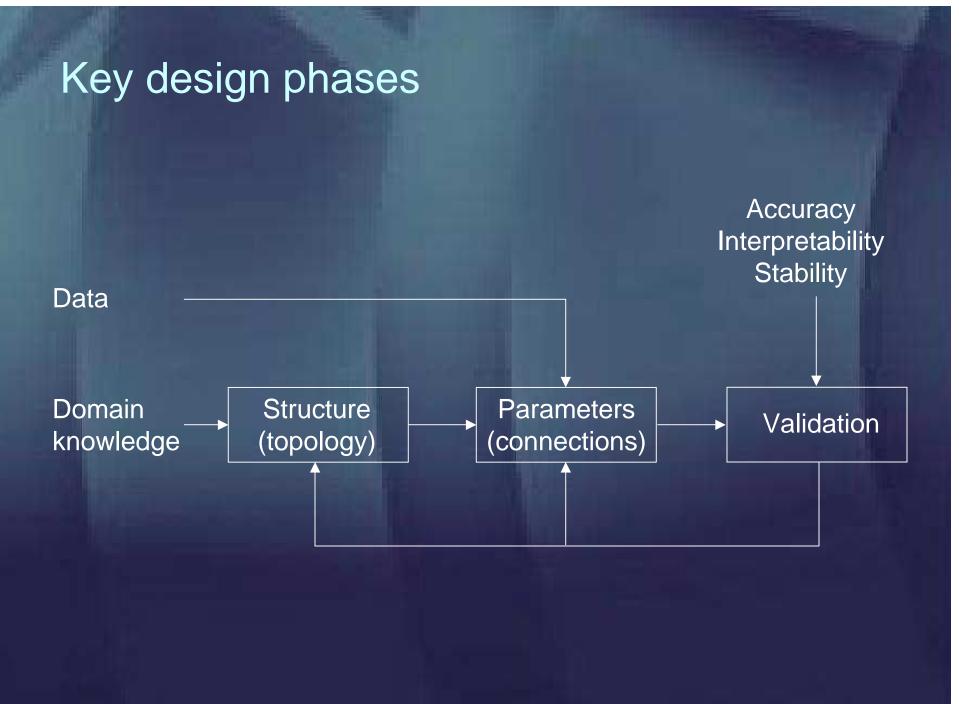
11.5 The development mechanisms of the fuzzy neural networks

Development facets

Structural learning

- architecture (topology)
- t norms
- s norms
- Parametric learning

- numeric values of connections



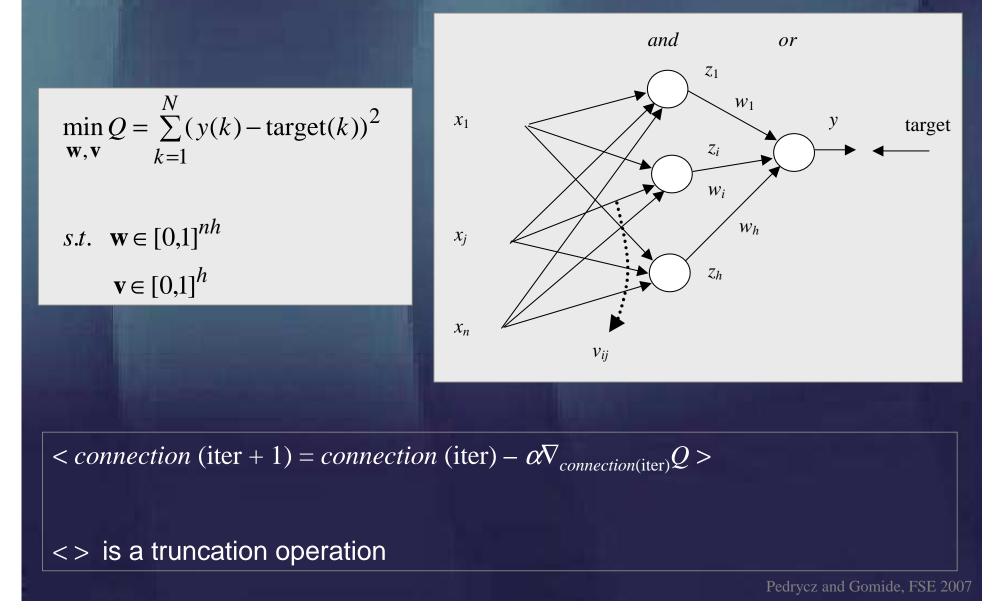
Gradient-based learning schemes for the networks

- Training data: input/output pairs $\{\mathbf{x}(k), target(k)\}, k = 1, 2, ..., N$
- $\mathbf{x}(k) \in [0, 1]^n$
- $target(k) \in [0, 1]^m$
- Q is a performance index

connection (iter + 1) = connection (iter) – $\alpha \nabla_{connection(iter)}Q$

Basic scheme

Learning as an optimization problem



$$\frac{\partial Q}{\partial w_i} = (y - \operatorname{target}) \frac{\partial y}{\partial w_i} \qquad \frac{\partial y}{\partial w_i} = \frac{\partial}{\partial w_i} \begin{pmatrix} h \\ S \\ j=1 \end{pmatrix} = \frac{\partial}{\partial w_i} [A_i s(w_i t z_i)] \qquad A_i = \frac{h}{S} (w_j t z_j) \\ \frac{\partial i f x_i}{j=1} = \frac{h}{j \neq i} \begin{bmatrix} w & if x \leq w \\ x & if x > w \end{bmatrix} \qquad \frac{\partial \min(x, w)}{\partial w} = \begin{cases} 1 & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \text{Particular min/max cases} \\ \frac{\partial \min(x, w)}{\partial w} = \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix} \qquad \frac{h}{2} \begin{bmatrix} w & if x \leq w \\ 0 & if x > w \end{bmatrix}$$

Development modes

Successive expansions

 increase the size of the network

 Successive reductions

- prune "weakest" connections

12.6 Interpretation of fuzzy neural networks

or neurons

- weighted or combination of the inputs
- high value of the connection \Rightarrow higher influence of the corresponding input

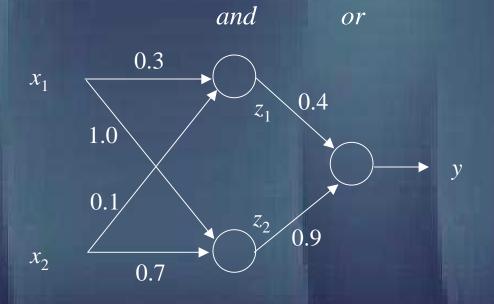
and neurons

- weighted and combination of the inputs
- low value of the connection \Rightarrow higher influence of the corresponding input

Rule generation

- Step 1: start with highest value of the or connection
- Step 2: translate and neuron into and combination of the inputs

Example



Step 1: if $z_{2/0.9}$ or $z_{1/0.4}$ then y

Step 2: if $[x_{2/0.7}]_{0.9}$ or $[x_{2/0.1}$ and $x_{1/0.3}]_{0.4}$ then y

Retention of the most significant connections

Reducing weakest connections to 0 or 1

- define a threshold mapping ϕ_{θ} : $[0,1] \rightarrow [\theta, 1] \cup \{0\}$
- thresholds $~\lambda$ and μ

• or neurons $\theta = \lambda$

$$\phi_{\lambda}(w) = \begin{cases} w & \text{if } w \ge \lambda \\ 0 & \text{if } w < \lambda \end{cases}$$

• *and* neurons $\theta = \mu$

$$\phi_{\mu}(w) = \begin{cases} 1 & \text{if } w > \mu \\ w & \text{if } w \le \mu \end{cases}$$

Conversion of the fuzzy network to the Boolean version

• *or* neurons $\phi_{\lambda} : [0,1] \rightarrow \{0,1\}$

$$\phi_{\lambda}(w) = \begin{cases} 1 & \text{if } w \ge \lambda \\ 0 & \text{if } w < \lambda \end{cases}$$

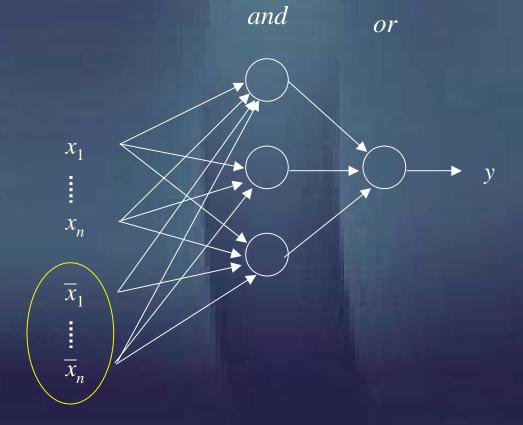
• and neurons $\phi_{\mu} : [0,1] \rightarrow \{0,1\}$

$$\phi_{\mu}(w) = \begin{cases} 1 & \text{if } w > \mu \\ 0 & \text{if } w \le \mu \end{cases}$$

12.7 From fuzzy logic networks to Boolean functions and their minimization through learning

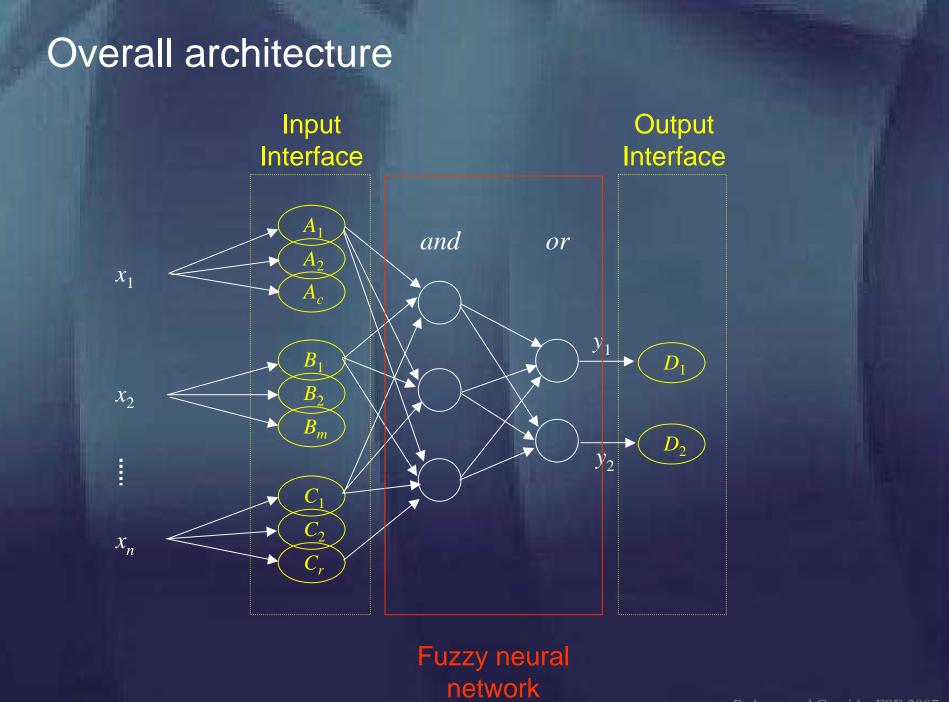
- and and or neurons generalize (subsume) and and or logic gates
- Logic functions are encoded by fuzzy logic networks
- Logic functions may involve complements of the original variables
- After reducing connections to Boolean versions
 - simplification of Boolean functions usually with Karnaugh maps
 - networks simplifies using learning instead

Fuzzy logic networking learning Boolean function



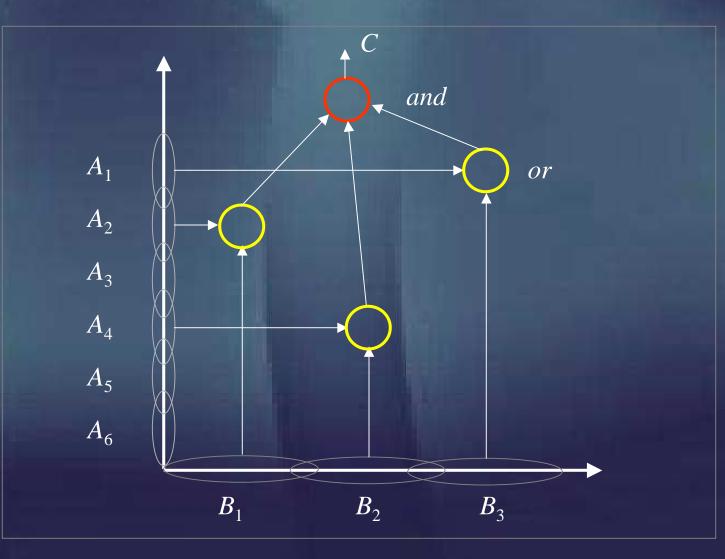
Complemented inputs

12.8 Interfacing the fuzzy neural network



Pedrycz and Gomide, FSE 2007

Geometry of rules supported by fuzzy neural nets

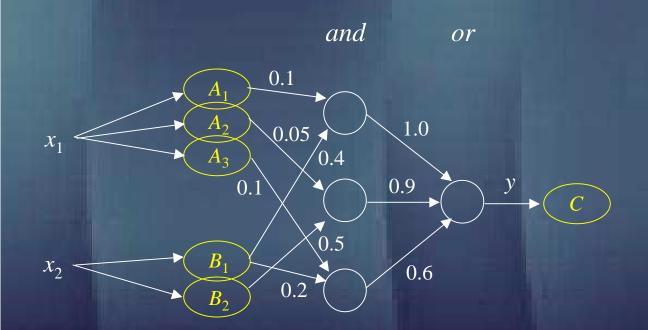


if $(A_4 \text{ and } B_2)$ or $(A_2 \text{ and } B_1)$ or $(A_1 \text{ and } B_3)$ then C

Pedrycz and Gomide, FSE 2007

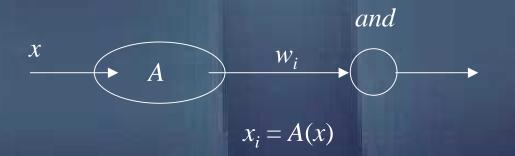
12.9 Interpretation aspects: A refinement of induced rule-based system

Example



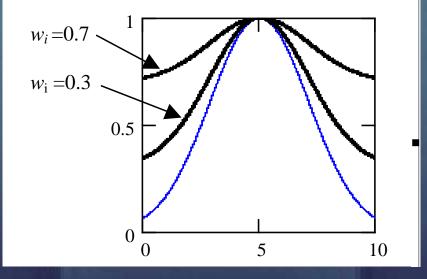
If $[A_{1/0.1} \text{ and } B_{1/0.4}]_{1.0}$ or $[A_{2/0.05} \text{ and } B_{2/0.5}]_{0.9}$ or $[A_{3/0.1} \text{ and } B_{1/0.2}]_{0.6}$ then *C* • Transformation of fuzzy set A of interface through w_i

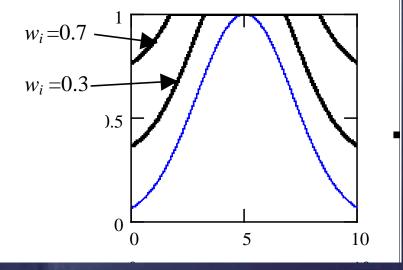
- leads to \tilde{A}
- higher values of w_i make \tilde{A} close to one



 $\tilde{A}(x) = x_i s w_i = A(x) s w_i$

Original fuzzy set of the interface: Gaussian

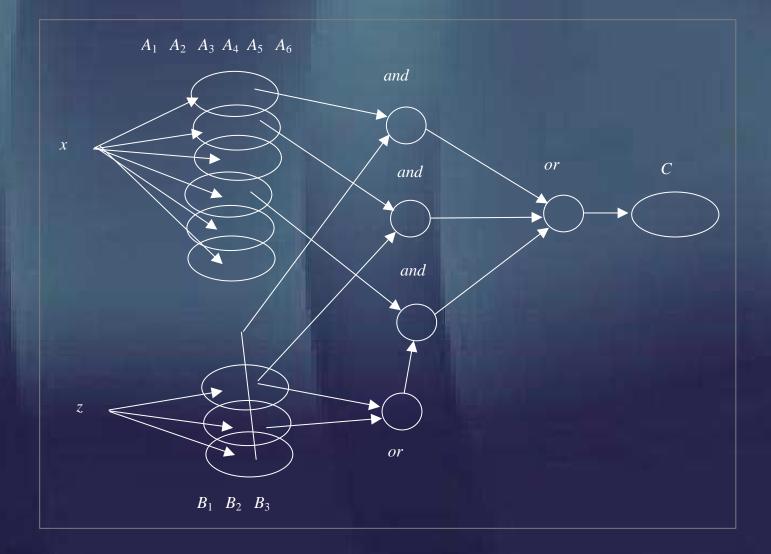




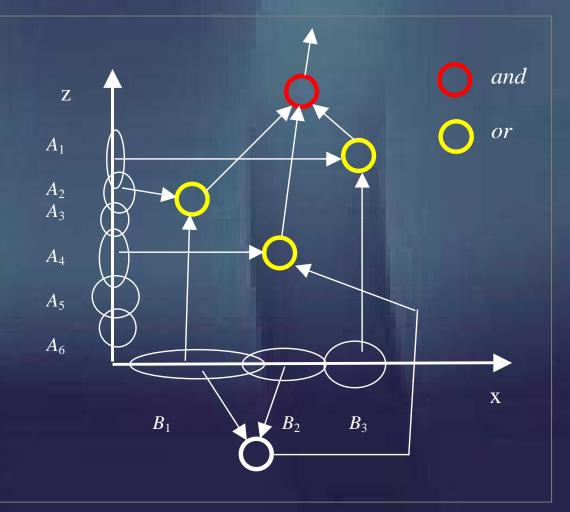
(a) t-conorm: probabilistic sum

(b) t-conorm: Lukasiewicz

Example of augmented fuzzy neural network



The underlying geometry



12.10 Reconciliation of perception of information granules and granular mappings

Information granules

- can be perceived in different ways
- perception depends on the context

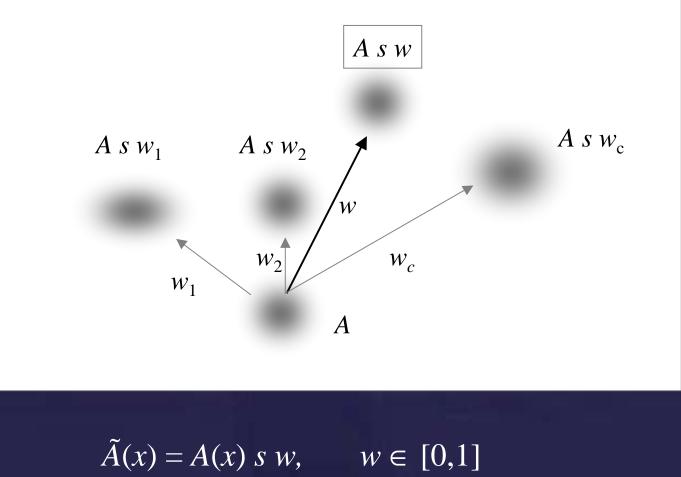
Modeling perception

logic oriented transformation of fuzzy sets

- mechanism of reconciliation

Reconciliation of various perceptions viewed as an optimization

Reconciliation of perception of information granule

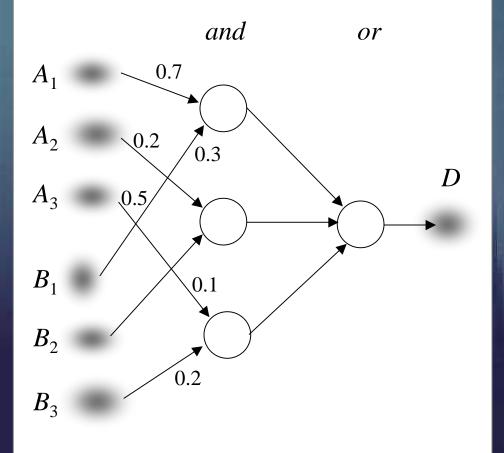


The optimization process

$$\min_{\mathbf{w}} Q = \sum_{i=1}^{c} \int [A(x)sw_i - A(x)sw]^2 dx$$

s.t. $\mathbf{w} \in [0,1]$

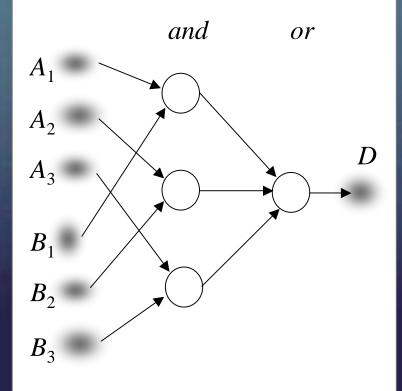
An application of the perception mechanism to fuzzy rule-based systems

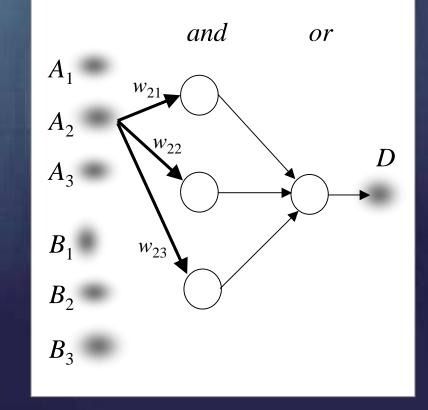


If

{[$(A_1 \text{ or } 0.7)$ and $(B_1 \text{ or } 0.33)$] and 0.9} or {[$(A_2 \text{ or } 0.2)$ and $(B_2 \text{ or } 0.50)$] and 0.7} or {[$(A_3 \text{ or } 0.1)$ and $(B_3 \text{ or } 0.20)$] and 1.0} then D

Reconciliation of impact of the input on individual *and* nodes through optimization

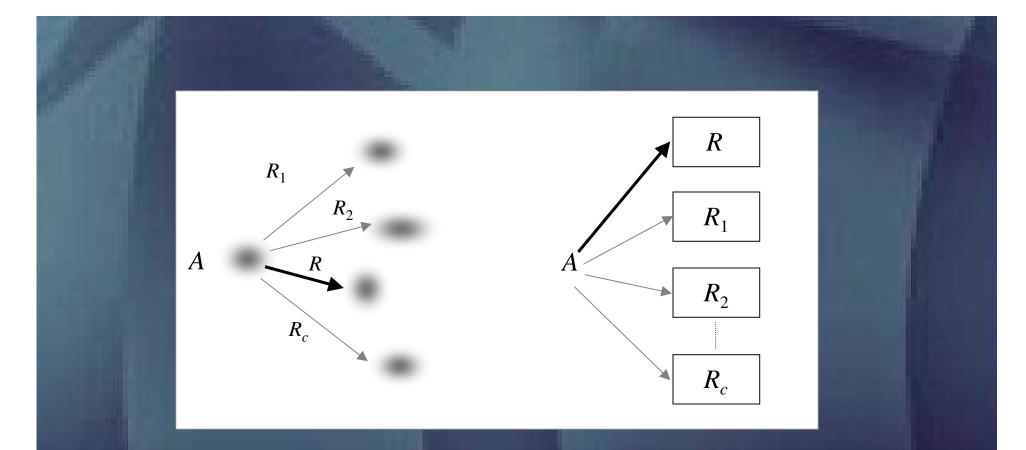




Reconciliation of granular mappings

Problem

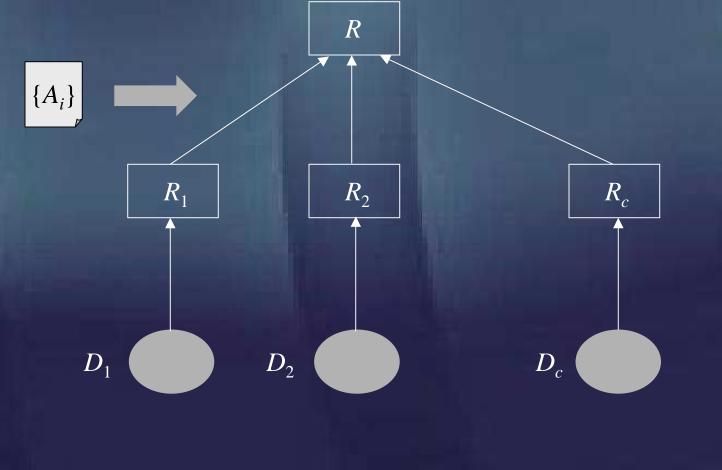
- $-R_i: \mathbf{X} \rightarrow \mathbf{Y}, i = 1, \dots, c$ are given
- $-R_i$ are relational mappings
- determine R such that it forms a reconciliation with R_i 's
- Reconciliation involves a family of fuzzy sets A₁, A₂,...,A_N



$$Q = \sum_{i=1}^{c} ||A \circ R_i - A \circ R||^2$$

$$Q = \sum_{l=1}^{N} \sum_{k=1}^{c} ||A_{l} \circ R_{k} - A_{l} \circ R||^{2}$$

Reconciliation of fuzzy models with granular probes $\{A_i\}$



Pedrycz and Gomide, FSE 2007

$$Q = \sum_{i=1}^{c} \|A \circ R_i - A \circ R\|^2$$

$$=\sum_{l=1}^{N}\sum_{k=1}^{c}\sum_{j=1}^{m}(\sum_{i=1}^{n}(A_{l}(x_{i})tR_{k}(x_{i},x_{j}))-\sum_{i=1}^{n}(A_{l}(x_{i})tR(x_{i},x_{j})))^{2}$$

 $R(\text{iter}+1) = R(\text{iter}) - \alpha \nabla_R Q$