11 Fuzzy Rule-Based Models

Fuzzy Systems Engineering Toward Human-Centric Computing

Contents

11.1 Fuzzy rules as a vehicle of knowledge representation
11.2 General categories of fuzzy rules and their semantics
11.3 Syntax of fuzzy rules
11.4 Basic functional modules
11.5 Types of rule-based systems and architectures
11.6 Approximation properties of fuzzy rule-based models
11.7 Development of rule-based systems

11.8 Parameter estimation procedure for functional rule-based systems

11.9 Design of rule-based systems: consistency, completeness and the curse of dimensionality

11.10 Course of dimensionality in rule-based systems

11.11 Development scheme of fuzzy rule-based models

11.1 Fuzzy rules as a vehicle of knowledge representation

$Rule \equiv conditional statement$

If 〈 input variable is A 〉 then 〈 output variable is B 〉
- A and B: descriptors of pieces of knowledge
- rule: expresses a relationship between inputs and outputs
Example
- If 〈 the temperature is *high* 〉 then 〈 the electricity demand is *high* 〉

If and then parts (.....) formed by information granules

- sets
- rough sets
- fuzzy sets

Rule-based system/model (FRBS)

FRBS is a family of rules of the form

If \langle input variable is $A_i \rangle$ then \langle output variable is $B_i \rangle$

i = 1, 2,..., *c*

 A_i and B_i are information granules

More complex rules

If $\langle \text{ input variable}_1 \text{ is } A_i \rangle$ and $\langle \text{ input variable}_2 \text{ is } B_i \rangle$ and then $\langle \text{ output variable is } Z_i \rangle$

- multidimensional input space (Cartesian product of inputs)

- individual inputs aggregated by the and connective
- highly parallel, modular granular model

11.2 General categories of fuzzy rules and their semantics

Multi-input multi-output fuzzy rules

• If X_1 is A_1 and X_2 is A_2 and and X_n is A_n then Y_1 is B_1 and Y_2 is B_2 and and Y_m is B_m

> X_i = variables whose values are fuzzy sets A_i Y_j = variables whose values are fuzzy sets B_j A_i on \mathbf{X}_i , i = 1, 2, ..., n B_j on \mathbf{Y}_j , j = 1, 2, ..., m

No loss of generality if we assume rules of the form

If X is A and Y is B then Z is C

Certainty-qualified rules

If X is A and Y is B then Z is C with certainty μ
 μ∈[0,1]
 μ: degree of certainty of the rule
 μ=1 rule is certain

Gradual rules

• the *more* X is A the *more* Y is B

- relationships between changes in X and Y

- captures tendency between information granules

Examples:

the higher the income, the higher the taxes

the *lower* the temperature, the *higher* energy consumption

Functional fuzzy rules

• If X is Ai then $y = f(x,a_i)$

 $f: \mathbf{X} \to \mathbf{Y}$

 $\mathbf{x} \in \mathbf{R}^n$

Rule: confines the function to the support of granule A_i

f: linear or nonlinear (neural nets, etc..)

Highly modular models

11.3 Syntax of fuzzy rules

Backus-Naur form (BNF)

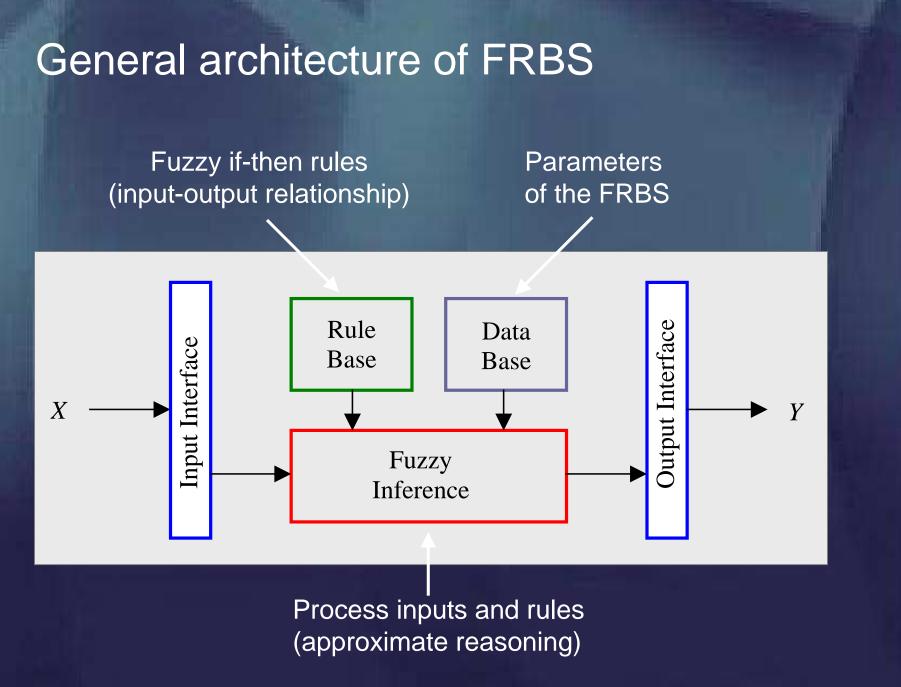
 $\langle \text{ If_then_rule} \rangle ::= \text{ if } \langle \text{antecedent} \rangle \text{ then } \langle \text{consequent} \rangle \{ \langle \text{certainty} \rangle \} \\ \langle \text{gradual_rule} \rangle ::= \langle \text{word} \rangle \langle \text{antecedent} \rangle \langle \text{word} \rangle \langle \text{consequent} \rangle \\ \langle \text{word} \rangle ::= \langle \text{more} \rangle \{ \langle \text{less} \rangle \} \\ \langle \text{antecedent} \rangle ::= \langle \text{expression} \rangle \\ \langle \text{consequent} \rangle ::= \langle \text{expression} \rangle \\ \langle \text{consequent} \rangle ::= \langle \text{disjunction} \rangle \{ \text{and } \langle \text{disjunction} \rangle \} \\ \langle \text{disjunction} \rangle ::= \langle \text{variable} \rangle \{ \text{or} \langle \text{variable} \rangle \} \\ \langle \text{variable} \rangle ::= \langle \text{attribute} \rangle \text{ is } \langle \text{value} \rangle \\ \langle \text{certainty} \rangle ::= \langle \text{none} \rangle \{ \text{certainty } \mu \in [0,1] \}$

Construction of computable representations

Main steps:

- 1. specification of the fuzzy variables to be used
- 2. association of the fuzzy variables using fuzzy sets
- computational formalization of each rule using fuzzy relations and definition of aggregation operator to combine rules together

11.4 Basic functional modules of FRBS



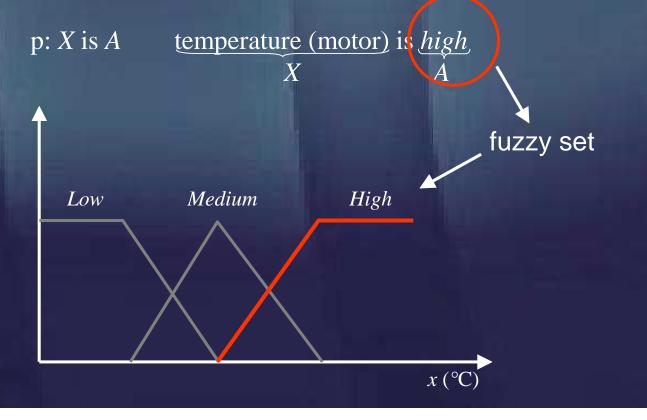
Pedrycz and Gomide, FSE 2007

Input interface

• (attribute) of (input) is (value)

the temperature of the motor is *high*

Canonical (atomic) form



Multiple fuzzy inputs: conjunctive canonical form

p : X_1 is A_1 and X_2 is A_2 and and X_n is A_n conjunctive canonical form X_i are fuzzy (linguistic) variables A_i : fuzzy sets on \mathbf{X}_i

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation P on $X_1 \times X_1 \times ... X_n$

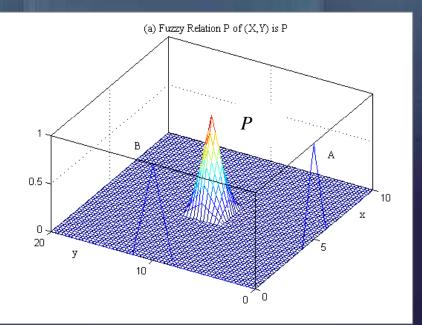
$$P(x_1, x_2, \dots, x_n) = A_1(x_1)tA_2(x_2)t\dots tA_n(x_n) = \prod_{i=1}^n A_i(x_i)$$

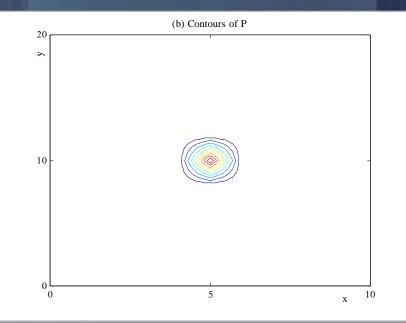
$$p:(X_1, X_2, ..., X_n)$$
 is P

t(T) = t-norm

Example

- Fuzzy relation associated with (X,Y) is P
- Triangular fuzzy sets $A_1(x,4,5,6) = A$, $A_2(y,8,10,12) = B$
- t-norm: algebraic product





Multiple fuzzy inputs: disjunctive canonical form

 $q: X_1 \text{ is } A_1 \text{ or } X_2 \text{ is } A_2 \text{ or } \dots \text{ or } X_n \text{ is } A_n$ X_i are fuzzy (linguistic) variables

 A_i : fuzzy sets on \mathbf{X}_i

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation Q on $X_1 \times X_1 \times \dots \times X_n$

 $Q(x_1, x_2, ..., x_n) = A_1(x_1)sA_2(x_2)s...sA_n(x_n) = S A_i(x_i)$ s (S) = t-conorm

disjunctive canonical form

 $q: (X_1, X_2, ..., X_n)$ is Q

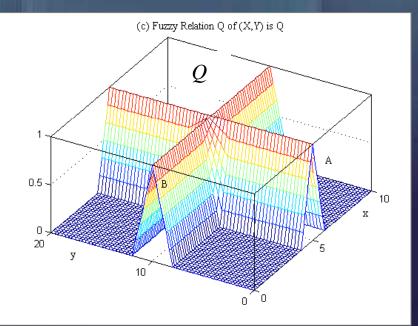
Pedrycz and Gomide, FSE 2007

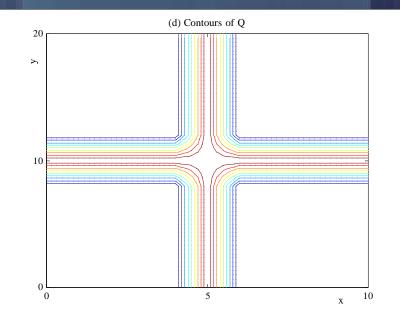
Example

• Fuzzy relation associated with (X,Y) is Q

•Triangular fuzzy sets $A_1(x,4,5,6) = A$, $A_2(y,8,10,12) = B$

t-conorm: probabilistic sum





Rule base

- Fuzzy rule: If X is A then Y is $B \equiv$ relationship between X and Y
- Semantics of the rule is given by a fuzzy relation R on $X \times Y$
- *R* determined by a relational assignment

 $R(x,y) = f(A(x),B(y)) \quad \forall (x, y) \in \mathbf{X} \times \mathbf{Y}$

 $f: [0,1]^2 \to [0,1]$

- In general f can be
 - fuzzy conjunction: f_t
 - fuzzy disjunction: f_s
 - fuzzy implication: f_i

Fuzzy conjunction

Choose a t-norm t and define:

 $R(x,y) \equiv f_t(x,y) = A(x) \ t \ B(y) \quad \forall (x,y) \in \mathbf{X} \times \mathbf{Y}$

Examples:

• $t = \min$

 $R_c(x,y) \equiv f_c(x,y) = \min[A(x) \ t \ B(y)]$

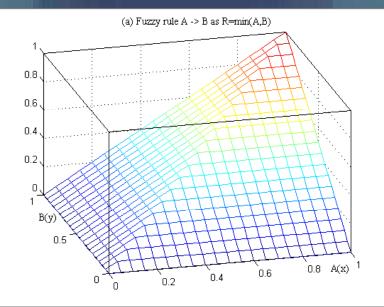
(Mamdani)

• *t* = algebraic product

 $R_p(x,y) \equiv f_p(x,y) = A(x)B(y)$

(Larsen)

Example: $t = \min$



0.8 R 0.6, 0.4, А 0.2 0 10 10 х 8 6 0 4 2 'n

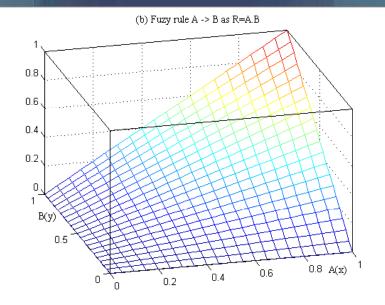
(c) Min and triangular fuzzy sets

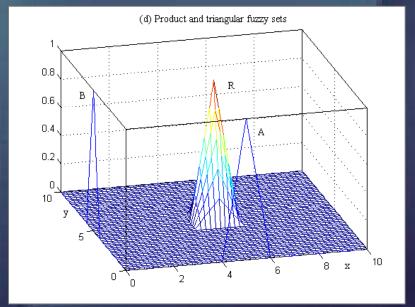
 $R_c(x,y) = \min \{a, b\}$ $\forall (a, b) \in [0,1]^2$

 $R_c(x,y) = \min \{A(x), B(y)\}$ $\forall (A(x), B(y)) \in [0,1]^2$

 $A(x) = A(x,4,5,6), \ B(y) = B(y,4,5,6)$

Example: *t* = algebraic product





 $R_{p}(x,y) = A(x)B(y)$ \$\forall (a, b)\in [0,1]^{2}\$ A(x) = A(x,4,5,6), B(y) = B(y,4,5,6)

 $R_p(x,y) = ab$ $\forall (a, b) \in [0,1]^2$

Pedrycz and Gomide, FSE 2007

Fuzzy disjunction

• Choose a t-conorm *s* and define:

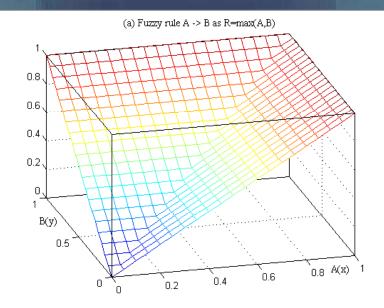
 $R_s(x,y) \equiv f_s(x,y) = A(x) \ s \ B(y) \quad \forall (x,y) \in \mathbf{X} \times \mathbf{Y}$

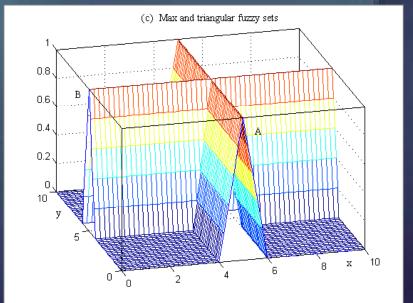
Examples:

- $s = \max$
 - $R_m(x,y) \equiv f_m(x,y) = \max[A(x), B(y)]$
- *s* = Lukasiewicz t-conorm

 $R_{\ell}(x,y) \equiv f_{\ell}(x,y) = \min[1, A(x) + B(y)]$

Example: s = max

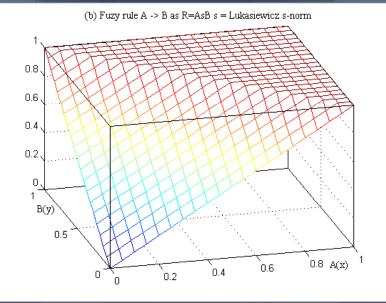




 $R_m(x,y) = \max\{A(x), B(y)\}$ $\forall (A(x), B(y)) \in [0,1]^2$

 $R_m(x,y) = \max \{A(x), B(y)\}$ A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Example: s = Lukasiewicz



 $R_{\ell}(x,y) = \min\{1, A(x) + B(y)\}$ A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

4

2

0

 $R_{\ell}(x,y) = \min\{1, A(x) + B(y)\}$ $\forall (A(x), B(y)) \in [0,1]^2$

(d) Lukasiewicz s-norm and triangular fuzzy sets

0.8

0.6.

0.4,

0.2

0.

10

х

8

6

10

Fuzzy implication

• Choose a fuzzy implication f_i and define:

 $R_i(x,y) \equiv f_i(x,y) \quad \forall (x,y) \in \mathbf{X} \times \mathbf{Y}$

f_i: [0,1]² → [0,1] is a fuzzy implication if:
 1. *B*(*y*₁) ≤ *B*(*y*₂) ⇒ *f_i*(*A*(*x*), *B*(*y*₁)) ≤ *f_i*(*A*(*x*), *B*(*y*₂))
 2. *f_i*(0, *B*(*y*)) = 1
 3. *f_i*(1, *B*(*y*)) = *B*(*y*)

monotonicity 2nd argument dominance of falsity neutrality of truth

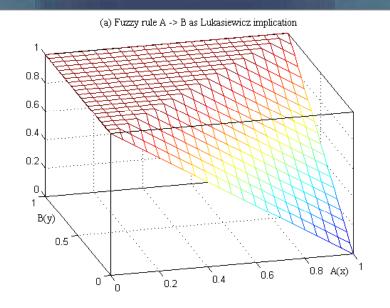
Further requirements may include:

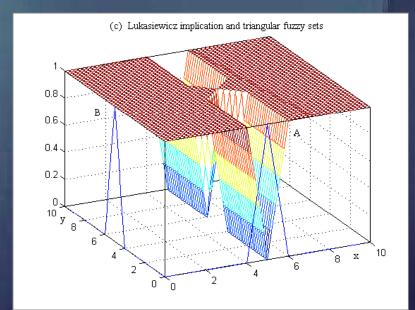
4. $A(x_1) \le A(x_2) \Rightarrow f_i(A(x_1), B(y)) \ge f_i(A(x_2), B(y))$ 5. $f_i(A(x_1), f_i(A(x_2), B(y)) = f_i(A(x_2), f_i(A(x_1), B(y)))$ 6. $f_i(A(x), A(x)) = 1$ 7. $f_i(A(x), B(y)) = 1 \Leftrightarrow A(x) \le B(y)$ 8. f_i is a continuous function monotonicity 1st argument exchange identity boundary condition continuity

Examples of fuzzy implications

Name	Definition	Comment
Lukasiewicz	$f_{\ell}(A(x), B(y)) = \min [1, 1 - A(x) + B(y)]$	
Pseudo-Lukasiewicz	$f_{\lambda}(A(x), B(y)) = \min\left[1, \frac{1 - A(x) + (\lambda + 1)B(y)}{1 + \lambda A(x)}\right]$	λ > -1
Pseudo-Lukasiewicz	$f_w(A(x), B(y)) = \min[1, (1 - A(x)^w + B(y)^w)^{1/w}]$	<i>w</i> > 0
Gaines	$f_a(A(x), B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ 0 & \text{otherwise} \end{cases}$	
Gödel	$f_g(A(x), B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ B(y) & \text{otherwise} \end{cases}$	
Goguen	$f_g(A(x), B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ B(y) & \text{otherwise} \end{cases}$ $f_e(A(x), B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ \frac{B(y)}{A(x)} & \text{otherwise} \end{cases}$	
Kleene	$f_b(A(x), B(y)) = \max [1 - A(x), B(y)]$	
Reichenbach	$f_r(A(x), B(y)) = 1 - A(x) + A(x)B(y)$]	
Zadeh	$f_z(A(x), B(y)) = \max [1 - A(x), \min (A(x), B(y))]$	
Klir-Yuan	$f_k(A(x), B(y)) = 1 - A(x) + A(x)^2 B(y)$	

Example: f_{ℓ} = Lukasiewicz



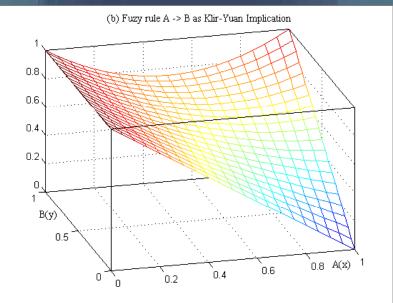


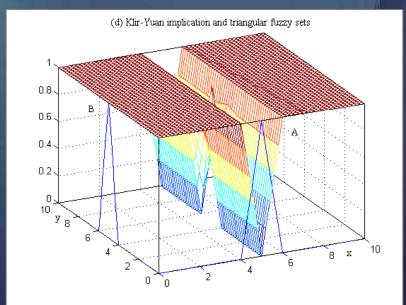
 $R_{\ell}(x,y) = \min\{1, 1 - A(x) + B(y)\}$ $\forall (A(x), B(y)) \in [0,1]^2$

 $R_{\ell}(x,y) = \min\{1, 1 - A(x) + B(y)\}$ A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

Pedrycz and Gomide, FSE 2007

Example: $f_k = \text{Klir}-\text{Yuan}$





 $R_{k}(x,y) = 1 - A(x) + A(x)^{2}B(y)$ A(x) = A(x,4,5,6)B(y) = B(y,4,5,6)

 $R_{k}(x,y) = 1 - A(x) + A(x)^{2}B(y)$ $\forall (A(x), B(y)) \in [0,1]^{2}$

Categories of fuzzy implications:

1. s-implications

 $f_{is}(A(x), B(y)) = \overline{A}(x)sB(y) \quad \forall (x, y) \in \mathbf{X} \times \mathbf{Y}$

 $f_b(A(x), B(y)) = \max[1 - A(x), B(y)]$ Kleene

 $f_g(A(x), B(y)) = \min\{1, 1 - A(x) + B(y)\}$ Lukasiewicz

2. r-implications

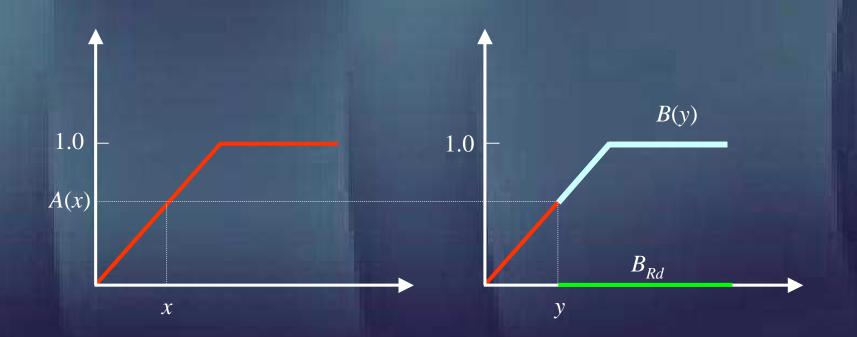
 $f_{ir}(A(x), B(y)) = \sup[c \in [0,1] | A(x)tc \le B(y)] \quad \forall (x, y) \in \mathbf{X} \times \mathbf{Y}$

 $t = \min$

$$f_g(A(x), B(y)) = \begin{cases} 1 & \text{if } A(x) \le B(y) \\ B(y) & A(x) > B(y) \end{cases}$$
Gödel

Semantics of gradual rules

the *more* X is A, the *more* Y is $B \implies B(y) \ge A(x) \quad \forall x \in \mathbf{X} \text{ and } \forall y \in \mathbf{Y}$

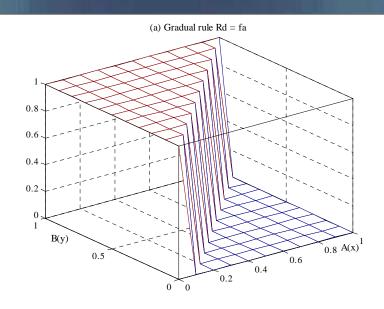


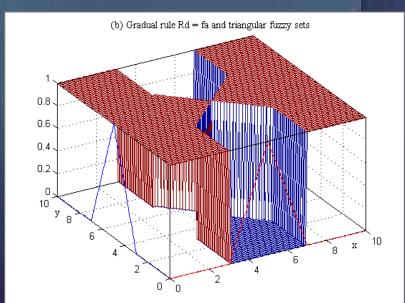
 $B_{Rd} = \{y \in \mathbf{Y} | B(y) \ge A(x)\}$ for each $x \in \mathbf{X}$

Pedrycz and Gomide, FSE 2007

Example: $R_d = f_a =$ Gaines

 $R_d(x, y) = \begin{cases} 1 & \text{if } B(y) \ge A(x) \\ 0 & \text{otherwise} \end{cases}$





 $R_d(x,y)$ $\forall (A(x), B(y)) \in [0,1]^2$ $R_d(x,y)$ A(x) = A(x,3,5,7)B(y) = B(y,3,5,7)

Pedrycz and Gomide, FSE 2007

Main types of rule bases

- Fuzzy rule base = $\{R_1, R_2, ..., R_N\}$ = finite family of fuzzy rules
- Fuzzy rule base can assume various formats:
 - 1. fuzzy graph
 - R_i : If X is A_i then Y is B_i is a fuzzy granule in $\mathbf{X} \times \mathbf{Y}$, i = 1, ..., N
 - 2. fuzzy implication rule base
 - R_i : If X is A_i then Y is B_i is fuzzy implication, i = 1, ..., N
 - 3. functional fuzzy rule base

 R_i : If X is A_i then $y = f_i(x)$ is a functional fuzzy rule, i = 1, ..., N

Fuzzy graph

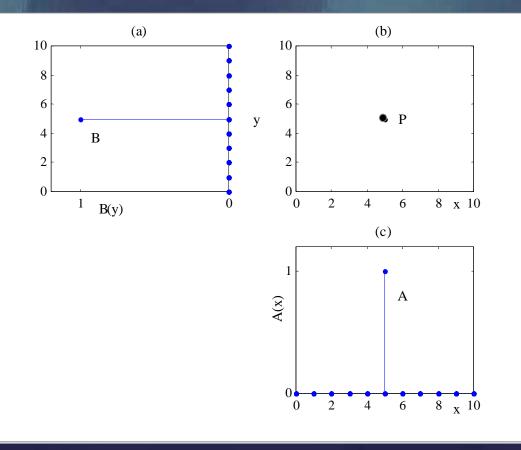
- Fuzzy rule base $R \equiv$ collection of rules R_1, R_2, \dots, R_N
- Each fuzzy rule R_i is a fuzzy granule (point)
- Fuzzy graph = R is a collection of fuzzy granules
 - granular approximation of a function

$$R = \bigcup_{i=1}^{N} R_i = \bigcup_{i=1}^{N} (A_i \times B_i)$$

- $-R = R_1 \text{ or } R_2 \text{ or....or } R_N$
- general form

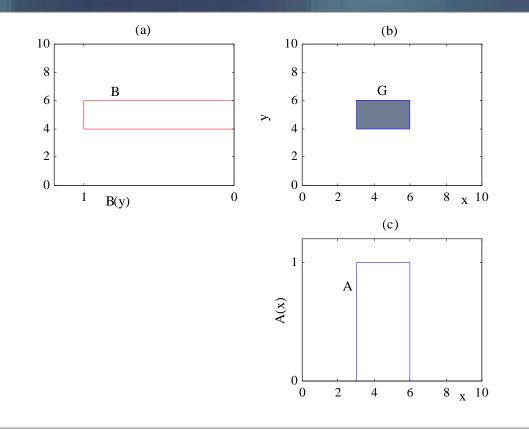
$$R(x, y) = \sum_{i=1}^{N} [A_i(x)tB_i(y)]$$

Point



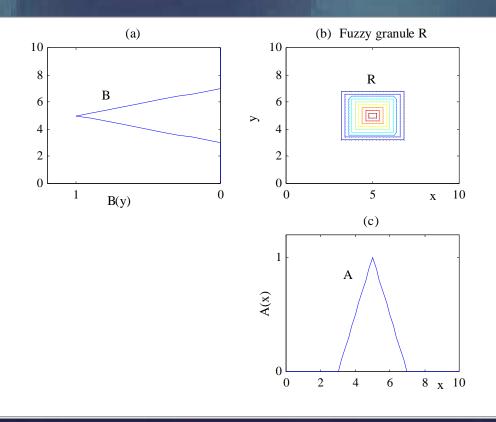
Point *P* in $\mathbf{X} \times \mathbf{Y}$ $P = A \times B$ *A* is a singleton in \mathbf{X} *B* is a singleton in \mathbf{Y}

Granule



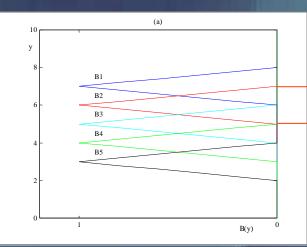
Granule G in $X \times Y$ $G = A \times B$ A is an interval in XB is an interval in Y

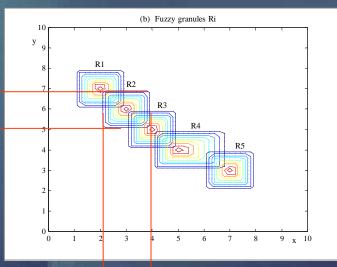
Fuzzy granules \equiv fuzzy points

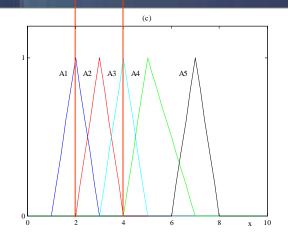


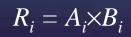
fuzzy granule R in $X \times Y$ $R = A \times B$ A is a fuzzy set on XB is a fuzzy set on Y

Fuzzy rule base as a set fuzzy granules

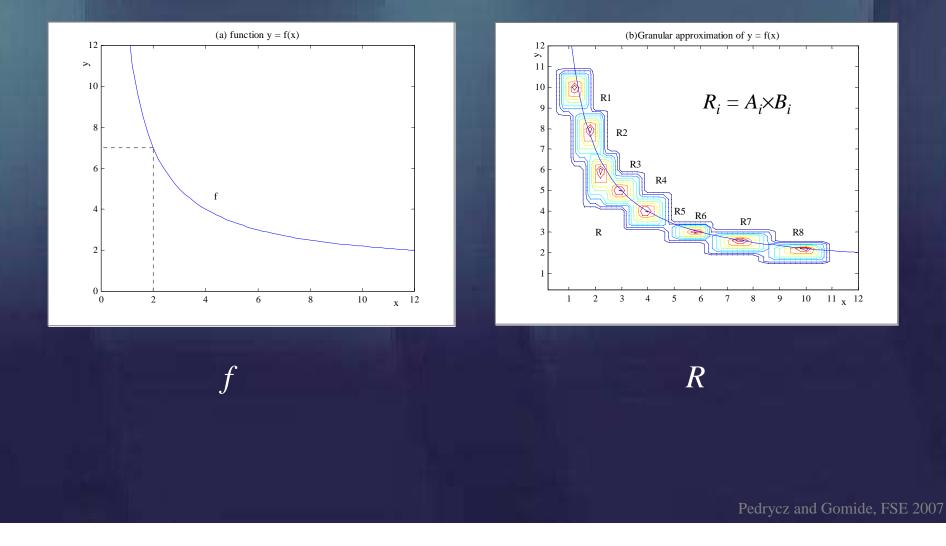




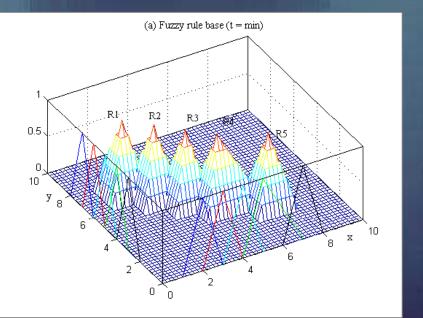


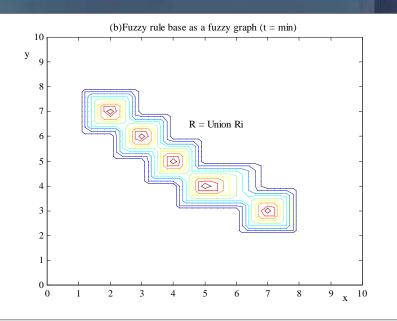


Graph of a function f and its granular approximation R



Fuzzy rule base and fuzzy graph Example 1

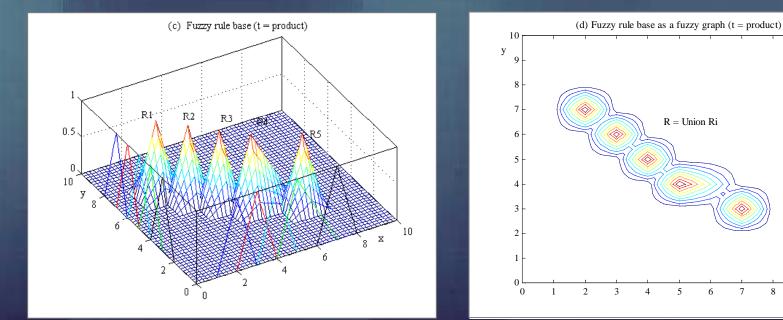




 $R_i = A_i \times B_i \implies R_i(x,y) = \min[A_i(x), B_i(y)]$

 $R = \bigcup R_i \implies R(x,y) = \max [R_i(x,y), i = 1,..., N]$

Fuzzy rule base and fuzzy graph Example 2



 $R_i = A_i t B_i \implies R_i(x,y) = A_i(x) B_i(y)$

 $R = \bigcup R_i \implies R(x,y) = \max [R_i(x,y), i = 1, ..., N]$

9 _x 10

5

6

7

8

Fuzzy implication

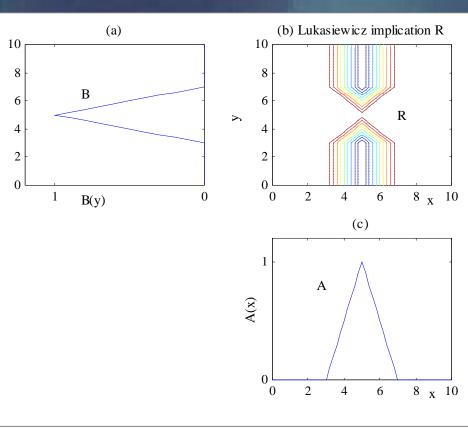
- Fuzzy rule base $R \equiv$ collection of rules $R_1, R_2, ..., R_N$
- Each fuzzy rule *R_i* is a fuzzy implication
- Fuzzy rule base *R* is a collection of fuzzy relations
 - relation *R* is obtained using intersection

$$R = \bigcap_{i=1}^{N} R_i = \bigcap_{i=1}^{N} f_i = \bigcap_{i=1}^{N} (A_i \Longrightarrow B_i)$$

- $R = R_1$ and R_2 and and R_N
- general form

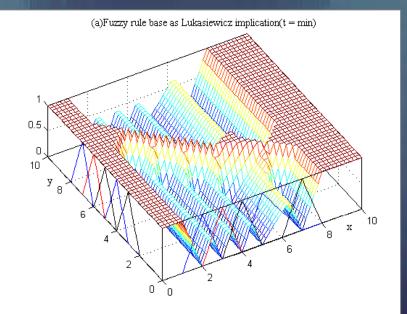
 $R = \prod_{i=1}^{N} f_i(A_i(x), B_i(y))$

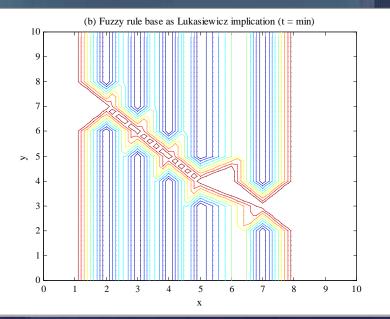
Fuzzy rule as an implication



fuzzy rule *R* in $\mathbf{X} \times \mathbf{Y}$ $R = f_{\ell}(A,B)$ Lukasiewicz implication

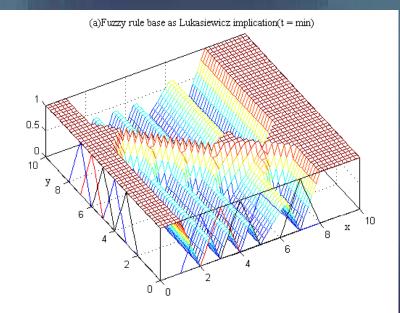
Fuzzy rule base and fuzzy implication Example 1a

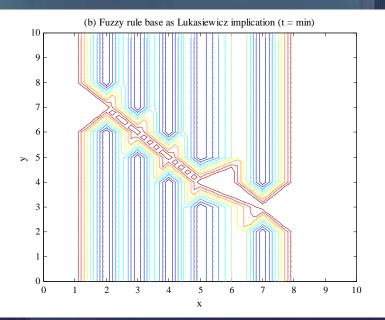




 $R_i = f_{\ell}(A,B) \Rightarrow R_i(x,y) = \min [1, 1 - A_i(x) + B_i(y)]$ Lukasiewicz implication $R = \bigcap R_i \Rightarrow R(x,y) = \min [R_i(x,y), i = 1,..., 5]$ min t-norm

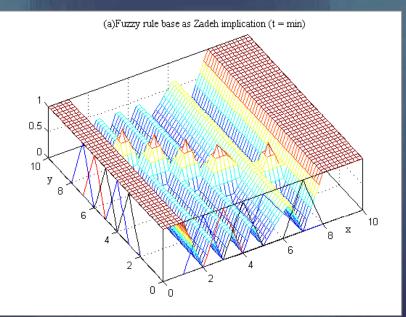
Fuzzy rule base and fuzzy implication Example 1b





 $R_{i} = f_{\ell}(A,B) \Rightarrow R_{i}(x,y) = \min [1, 1 - A_{i}(x) + B_{i}(y)]$ Lukasiewicz implication $R = \bigcap R_{i} \Rightarrow R(x,y) = R_{1}(x,y) t_{1} R_{2}(x,y) t_{1} \dots t_{1} R_{i}(x,y)$ Lukasiewicz t-norm
Pedrycz and Gomide, FSE 2007

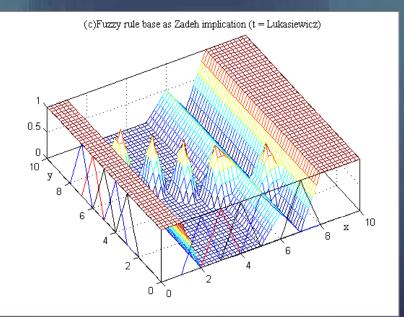
Fuzzy rule base and fuzzy implication Example 2a

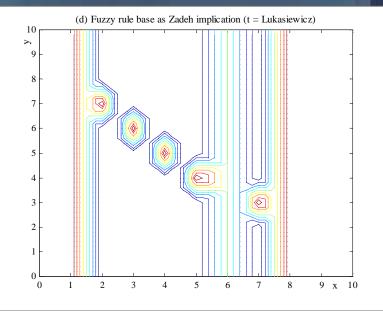




 $R_i = f_z(A,B) \Longrightarrow R_i(x,y) = \max [1 - A_i(x), \min(A_i(x), B_i(y))]$ $R = \bigcap R_i \implies R(x,y) = \min [R_i(x,y), i = 1,..., 5]$ Zadeh implication min t-norm

Fuzzy rule base and fuzzy implication Example 2b





 $R_i = f_z(A,B) \Longrightarrow R_i(x,y) = \max \left[1 - A_i(x), \min(A_i(x), B_i(y))\right]$ $R = \bigcap R_i \implies R(x,y) = R_1(x,y) \ t_1 R_2(x,y) \ t_1 \dots \ t_1 R_i(x,y)$

Zadeh implication Lukasiewicz t-norm

Data base

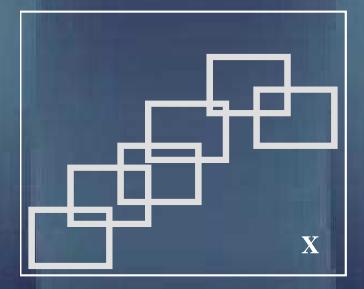
Data base contains definitions of:

- universes
- scaling functions of input and output variables
- granulation of the universes membership functions

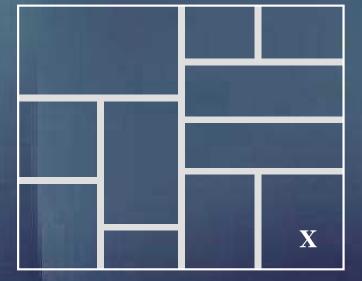
Granulation

- granular constructs in the form of fuzzy points
- granules along different regions of the universes
- Construction of membership functions
 - expert knowledge
 - learning from data

Granulation



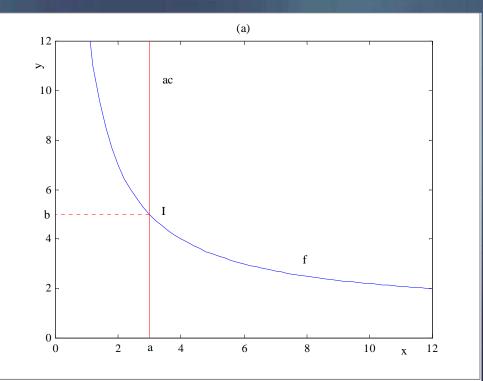
granular constructs in the form of fuzzy points



granules along different regions of the universes

Fuzzy inference

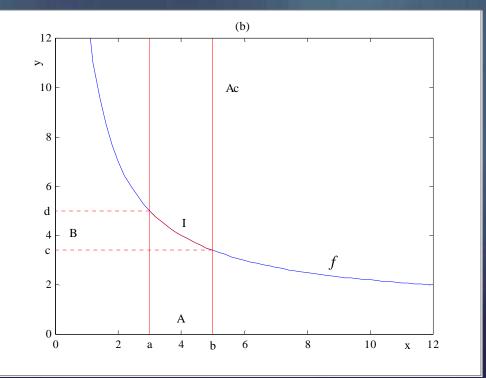
Basic idea of inference



x = a y = f(x)y = b

 $b = \operatorname{Proj}_{\mathbf{Y}} (a_c \cap f)$ \bigcup $b = \operatorname{Proj}_{\mathbf{Y}} (I)$

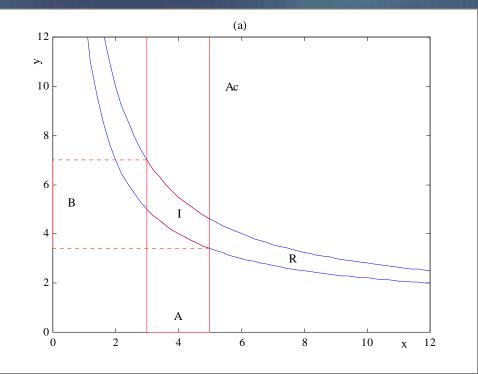
Inference involves operations with sets



x = A y = f(x) $B = f(A) = \{f(x), x \in A\}$

 $B = \operatorname{Proj}_{\mathbf{Y}} (A_c \cap f)$ \bigcup $B = \operatorname{Proj}_{\mathbf{Y}} (I)$

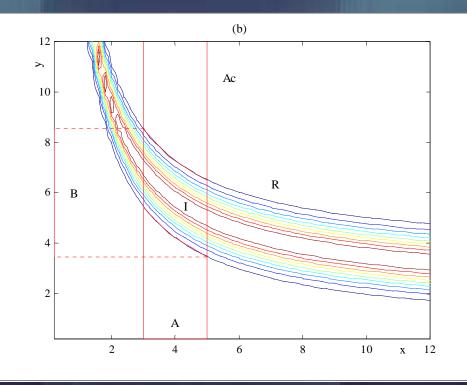
Inference involving sets and relations



x is A(x,y) is Ry is B

 $B = \operatorname{Proj}_{\mathbf{Y}} (A_c \cap R)$ \bigcup $B = \operatorname{Proj}_{\mathbf{Y}} (I)$

Fuzzy inference ands operations with fuzzy sets and relations



X is A(fuzzy set on \mathbf{X})(X,Y) is R(fuzzy relation on $\mathbf{X} \times \mathbf{Y}$)Y is B(fuzzy set on \mathbf{Y})

 $B(y) = \sup_{x \in \mathbf{X}} \{A(x)tR(x, y)\}$

Fuzzy inference

Compositional rule of inference

X is A(X,Y) is RY is B

$$B = A \circ R$$

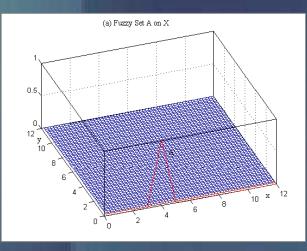
X is A(X,Y) is R $Y \text{ is } A \circ R$

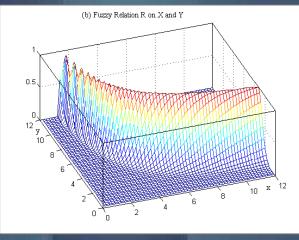
Fuzzy inference procedure

procedure FUZZY-INFERENCE (A, R) returns a fuzzy set input : fuzzy relation: R fuzzy set: A local: x, y: elements of X and Y t: t-norm

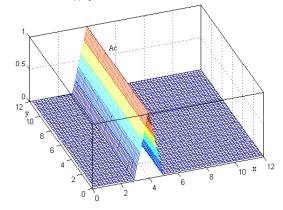
for all *x* and *y* **do** $A_c(x,y) \leftarrow A(x)$ **for** all *x* and *y* **do** $I(x,y) \leftarrow A_c(x,y) \ t \ R(x,y)$ $B(y) \leftarrow \sup_x I(x,y)$ **return** B

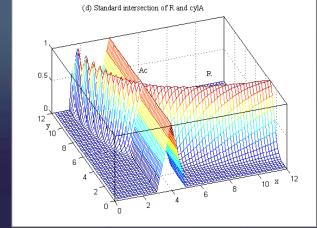
Example: compositional rule of inference

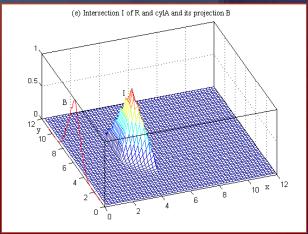




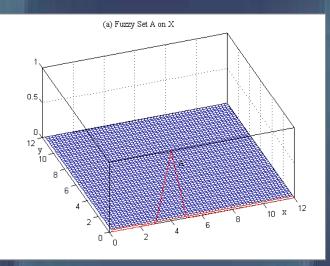
(c) Cylindrical Extension of A

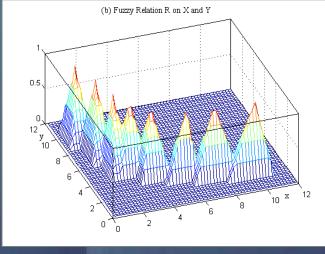


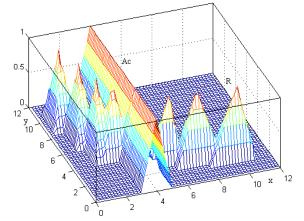


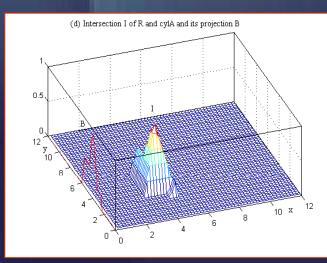


Example: fuzzy inference with fuzzy graph



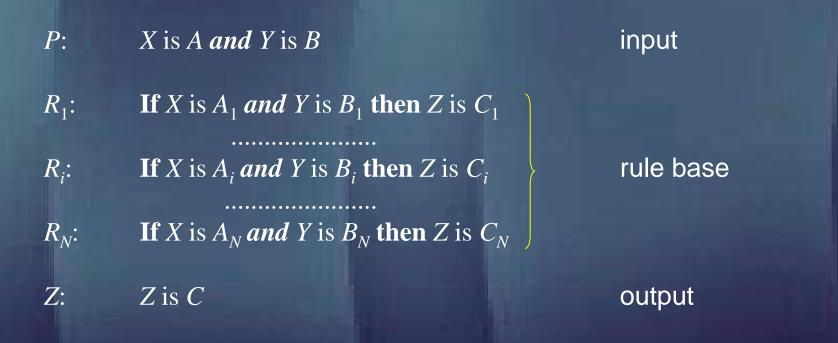






11.5 Types of rule-based systems and architectures

Linguistic fuzzy models



all fuzzy sets A, B, A_i,s and B_i,s are given
rule and connectives (*and*, *or*) with known semantics
membership function of fuzzy set C = ??

min-max models

Assume

P: X is A and Y is B

 R_i : If X is A_i and Y is B_i then Z is C_i

i = 1,..., *N*

 $P(x,y) = \min\{A(x), B(y)\}$ $R_{i}(x,y,z) = \min\{A_{i}(x), B_{i}(y), C_{i}(z)\}$

Using the compositional rule of inference (t = min)

 $C = P \circ R = P \circ \bigcup_{i=1}^{N} R_i$

$$C(z) = \sup\{\min[P(x, y), \max(R_i(x, y, z), i = 1, ..., N)]\}$$

$$C = P \circ R = P \circ \bigcup_{i=1}^{N} R_i = \bigcup_{i=1}^{N} (P \circ R_i) = \bigcup_{i=1}^{N} C'_i$$

$$C'_i = P \circ R_i$$

$$C'_i(z) = \sup_{x,y} \{\min[P(x, y), R_i(x, y, z)]\} = \sup_{x,y} \{A(x) \land B(y) \land A_i(x) \land B_i(y) \land C_i(z)]$$

$$\sup_{x,y} [A(x) \land A_i(x)] = \operatorname{Poss}(A, A_i) = m_i$$

$$\sup_{x} [B(y) \land B_i(y)] = \operatorname{Poss}(B, B_i) = n_i$$

$$y$$

$$C'_i(z) = m_i \land n_i \land C_i(z)$$

 $C(z) = \max\{(m_i \land n_i)C_i, i = 1, ..., N\} = \max\{\lambda_i \land C_i(z), i = 1, ..., N\}$

 λ_i is the degree of activation of i – th rule

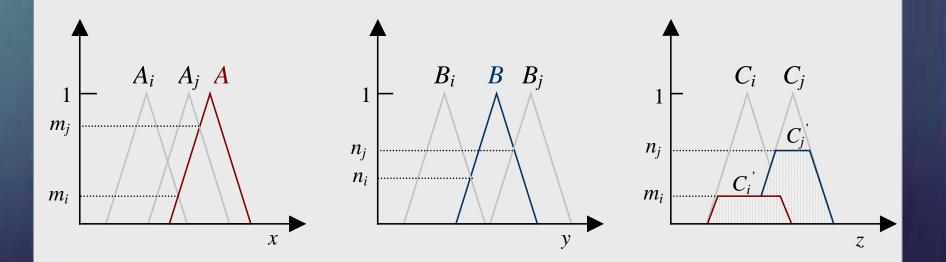
min-max fuzzy model processing

procedure MIN-MAX-MODEL (*A*,*B*) **returns** a fuzzy set local: fuzzy sets: A_i , B_i , C_i , i = 1,..., Nactivation degrees: λ_i

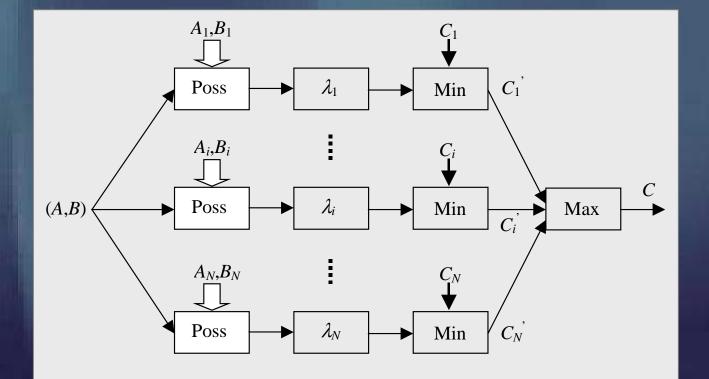
Initialization $C = \emptyset$

for i = 1: N do $m_i = \max(\min(A, A_i))$ $n_i = \max(\min(B, B_i))$ $\lambda_i = \min(m_i, n_i)$ if $\lambda_i \neq 0$ then $C_i' = \min(\lambda_i, C_i)$ and $C = \max(C, C_i')$ return C

Example: min-max fuzzy model processing



min-max fuzzy model architecture



Special case: numeric inputs

$$A(x) = \begin{cases} 1 & \text{if } x = x_o \\ 0 & \text{otherwise} \end{cases} \quad and \quad B(y) = \begin{cases} 1 & \text{if } y = y_o \\ 0 & \text{otherwise} \end{cases}$$

Numeric output

$$z = \frac{\int_{\mathbf{Z}} zC(z)dz}{\int_{\mathbf{Z}} C(z)dz}$$

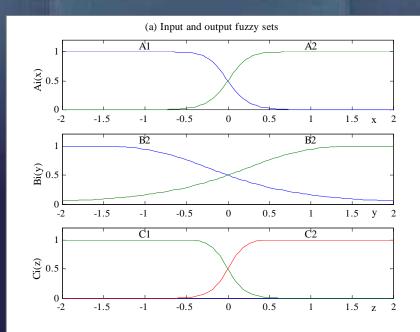
centroid defuzzification

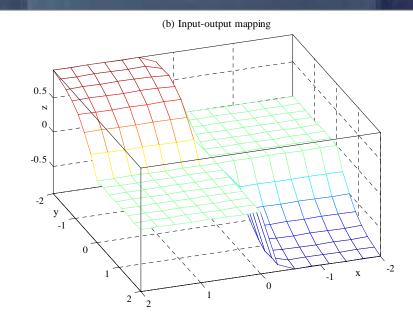
$$z = \frac{\sum_{i=1}^{N} (m_i \wedge n_i) v_i}{\sum_{i=1}^{N} (m_i \wedge n_i)}$$

weighted average modal values v_i

Example

<i>P</i> :	X is x_o and Y is y_o	inputs
<i>R</i> ₁ :	If <i>X</i> is A_1 and <i>Y</i> is B_1 then <i>Z</i> is C_1	rules
<i>R</i> ₂ :	If <i>X</i> is A_2 and <i>Y</i> is B_2 then <i>Z</i> is C_2	Tules
N=2,	centroid defuzzification	





nputs $(x_o, y_o), \forall x_o, y_o \in [-2, 2]$

min-sum models

Assume

- $P: \quad X \text{ is } A \text{ and } Y \text{ is } B$
- R_i : If X is A_i and Y is B_i then Z is C_i

i = 1, ..., N

 $P(x,y) = \min\{A(x), B(y)\}$ $R_{i}(x,y,z) = \min\{A_{i}(x), B_{i}(y), C_{i}(z)\}$

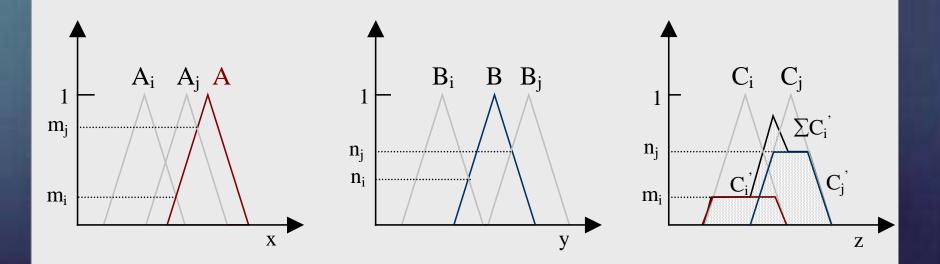
Using the compositional rule of inference (t = min)

 $C'_{i}(z) = \sup_{x,y} [A(x) \land B(y) \land A_{i}(x) \land B_{i}(y) \land C_{i}(z)]$

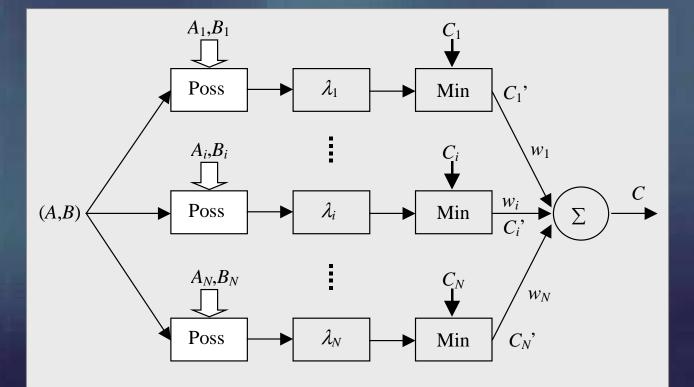
$$C(z) = \sum_{i=1}^{N} w_i C'_i$$

Additive fuzzy models (Kosko, 1992)

Example: min-sum fuzzy model processing

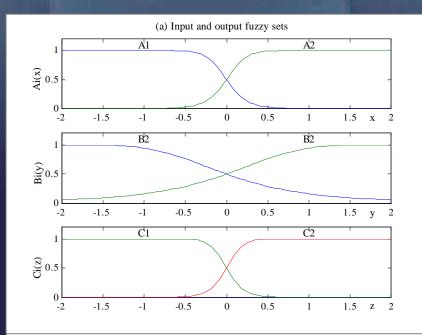


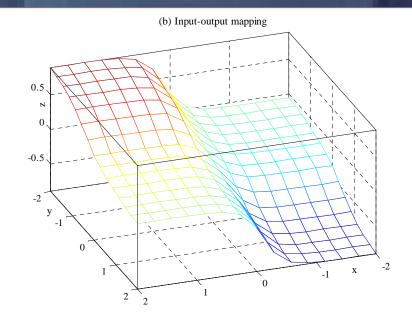
min-sum fuzzy model architecture



Example

<i>P</i> :	X is x_o and Y is y_o	inputs	$(x_o, y_o), \forall x_o, y_o \in [-2, 2]$
<i>R</i> ₁ :	If <i>X</i> is A_1 and <i>Y</i> is B_1 then <i>Z</i> is C_1	rules	
<i>R</i> ₂ :	If X is A_2 and Y is B_2 then Z is C_2	Tuico	
N=2	$w_1 = w_2 = 1$, centroid defuzzification		





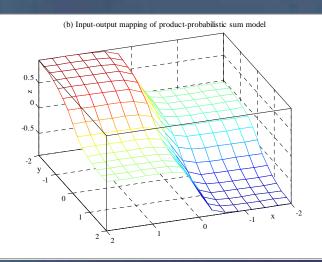
product-sum models

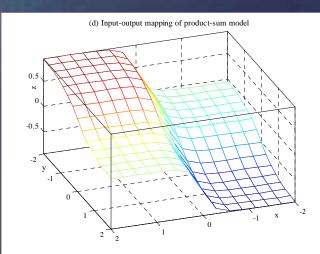
1- Product-probabilistic sum

 $C'_{i}(z) = m_{i}n_{i}C_{i}(z)$ $C(z) = \sum_{p=1}^{N} C'_{i}(z)$ i=1

2- Product–sum

$$C'_{i}(z) = m_{i}n_{i}C_{i}(z)$$
$$C(z) = \sum_{i=1}^{N} C'_{i}(z)$$

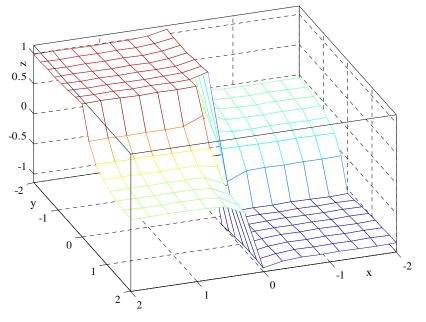




3 - Bounded product-bounded sum

$$C'_{i}(z) = m_{i} \otimes n_{i} \otimes C_{i}(z)$$
$$C(z) = \bigoplus_{i=1}^{N} C'_{i}(z)$$
$$a \otimes b = \max\{0, a+b-1\}$$
$$a \oplus b = \min\{1, a+b\}$$
$$a, b \in [0,1]$$

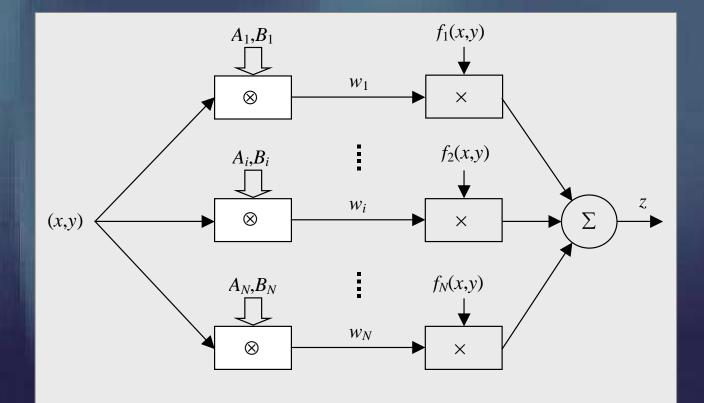




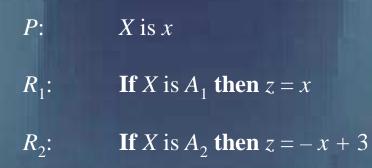
Functional fuzzy models

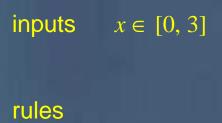
P:X is x and Y is yinput
$$R_1$$
:If X is A_1 and Y is B_1 then $z = f_1(x,y)$ R_i :If X is A_i and Y is B_i then $z = f_i(x,y)$ rule base R_N :If X is A_N and Y is B_N then $z = f_N(x,y)$ $\lambda_i(x,y) = A_i(x) t B_i(y)$ $t = t$ -normdegree of activation $z = \sum_{i=1}^N w_i(x,y) f_i(x,y),$ $w_i = \frac{\lambda_i}{\sum_{i=1}^N \lambda_i(x,y)}$ output

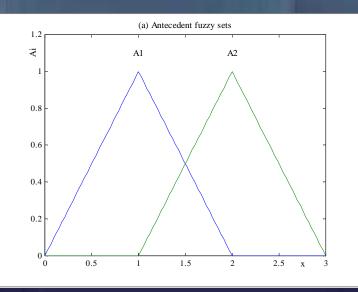
Functional fuzzy model architecture

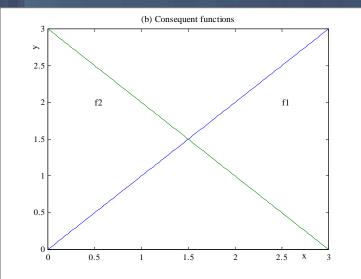


Example 1

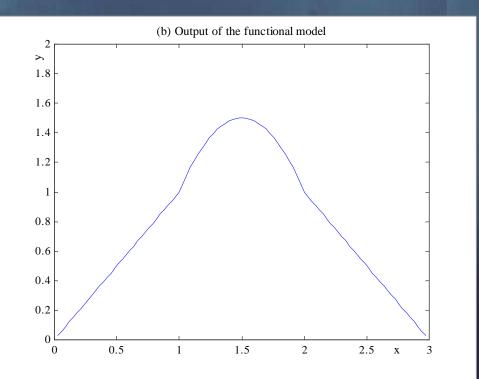




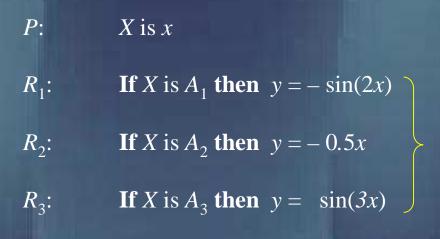




$$z = \begin{cases} x & \text{if } x \in (0,1] \\ A_1(x)x + A_2(x)(-x+3) & \text{if } x \in [1,2] \\ -x+3 & \text{if } x \in [2,3) \end{cases}$$

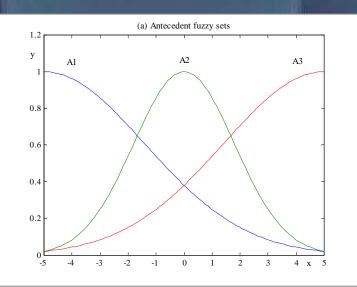


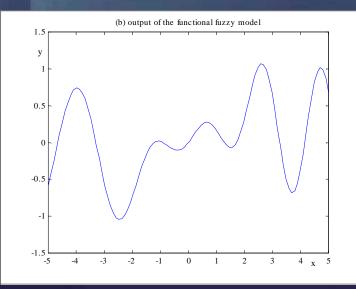
Example 2



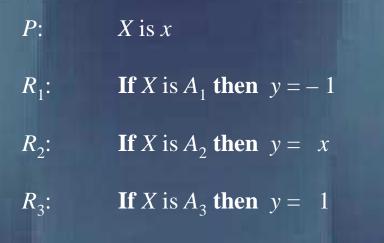
rules

output



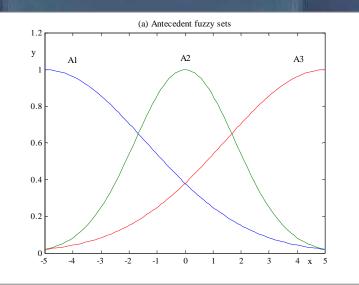


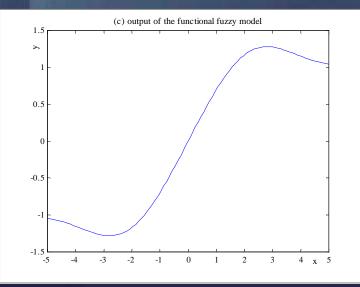
Example 2



rules

output





Gradual fuzzy models

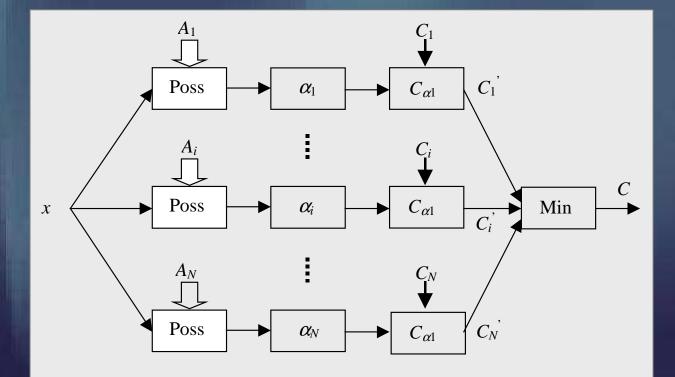
 R_i : The more X is A_i the more Z is C_i

i = 1, ..., N

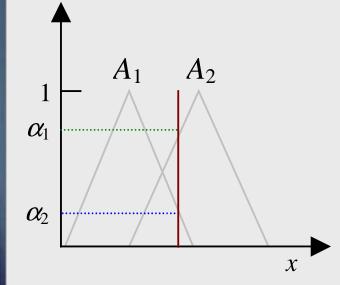
$$R_i(x, y) = \begin{cases} 1 & \text{if } C_i(z) \ge A_i(x) \\ 0 & \text{otherwise} \end{cases}$$

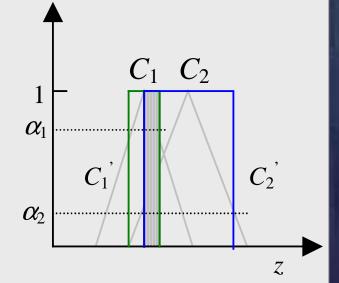
$$C = \bigcap_{i=1}^{N} (C'_i)_{\alpha_i} = \bigcap_{i=1}^{N} C_{\alpha_i}$$

Gradual fuzzy model architecture



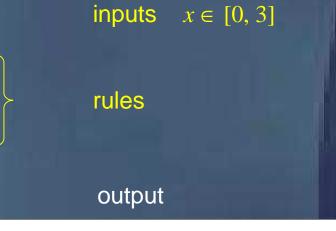
Example: gradual fuzzy model processing

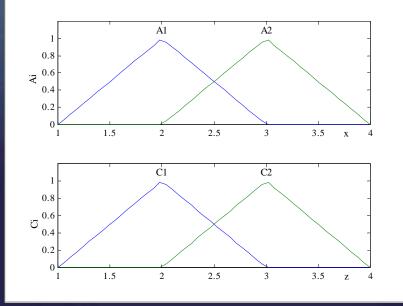


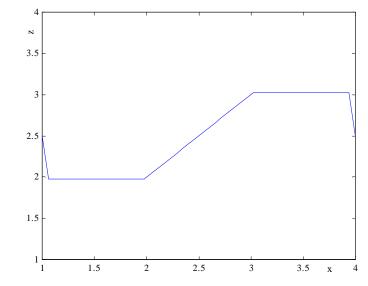


Example

P:X is x R_1 :The more X is A_1 the more Z is C_1 R_2 :The more X is A_1 the more Z is C_1







11.6 Approximation properties of fuzzy rule-based models

FRBS uniformly approximates continuous functions

 any degree of accuracy
 closed and bounded sets

Universal approximation with (Wang & Mendel, 1992):

- algebraic product t-norm in antecedent
- rule semantics via algebraic product
- rule aggregation via ordinary sum
- Gaussian membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification

Universal approximation when (Kosko, 1992):

- min t-norm in antecedent
- rule aggregation via ordinary sum
- symmetric consequent membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification

(additive models)

Universal approximation with (Castro, 1995):

- arbitrary t-norm in antecedent
- rule semantics: r-implications or conjunctions
- triangular or trapezoidal membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification

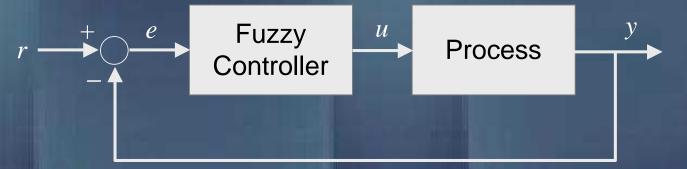
11.7 Development of rule-based systems

Expert-based development

- Knowledge provided by domain experts
 - basic concepts and variables
 - links between concepts and variables to form rules
- Reflects existing knowledge

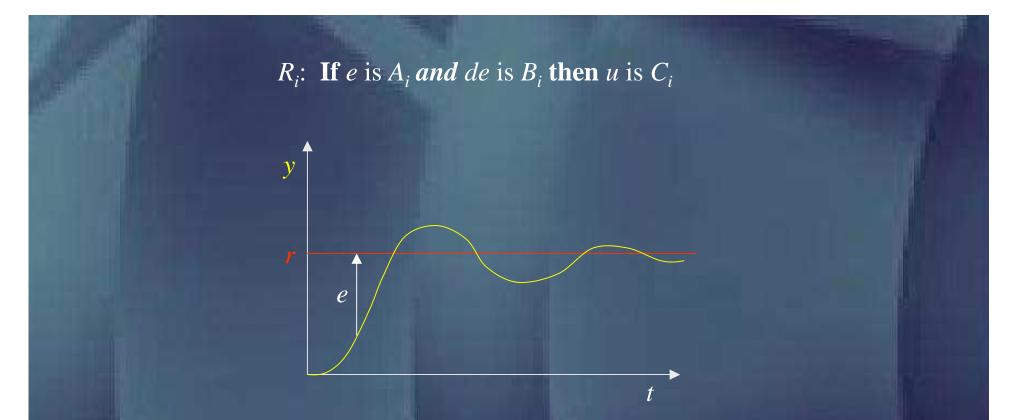
 can be readily quantified
 short development time

Example: fuzzy control



 R_i : If Error is A_i and Change of Error is B_i then Control is C_i

 R_i : If *e* is A_i and *de* is B_i then *u* is C_i



Change of Error (de) / Error (e)	NM	NS	ZE	PS	РМ
NB	РМ	NB	NB	NB	NM
NM	РМ	NB	NS	NM	NM
NS	РМ	NS	Z	NS	NM
Z	PM	NS	Z	NS	NM
PS	РМ	PS	Z	NS	NM
РМ	РМ	РМ	PS	РМ	NM
РВ	PM	PM	PM	PM	NM

Data-driven development

Given a finite set of input/output pairs

$$\{(\mathbf{x}_k, y_k), k = 1, ..., M\}$$

$$\mathbf{x}_k = [x_{1k}, x_{2k}, \dots, x_{nk}] \in \mathbf{R}^n$$

$$\mathbf{z}_k = [\mathbf{x}_k, y_k] \in \mathbf{R}^{n+1}, \ k = 1, ..., M$$

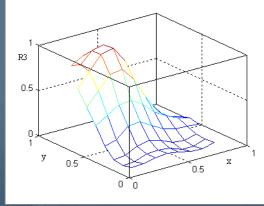
Clustering z_k = [x_k, y_k] ∈ Rⁿ⁺¹, k = 1,..., M (e.g. using FCM)
 v₁, v₂,...,v_N prototypes/cluster centers

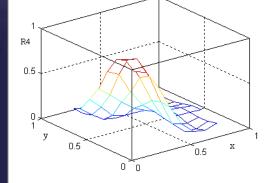
$$\mathbf{v}_i \in \mathbf{R}^{n+1}, i = 1, ..., N$$

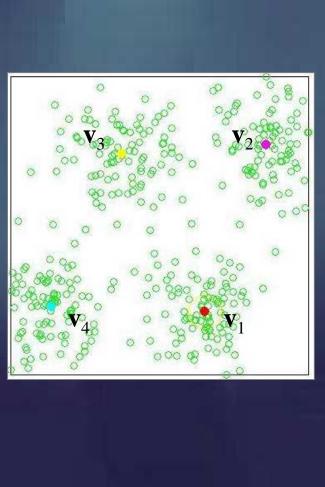
Idea: fuzzy clusters = fuzzy rules

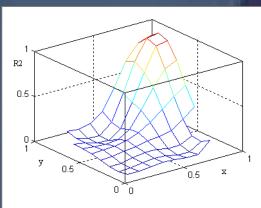
Example

*R*₃

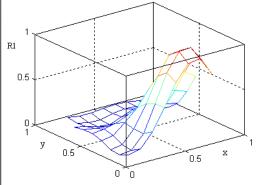




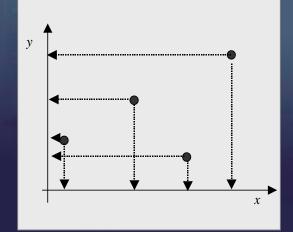


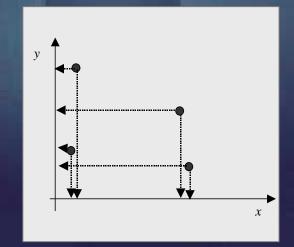


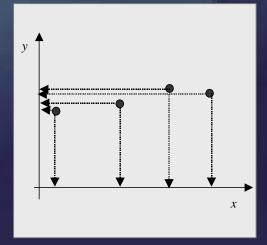
 R_2



Projecting the prototypes in the input and output spaces
v₁[y], v₂[y],....,v_N[y] projections of prototypes in Y
v₁[x], v₂[x],....,v_N[x] projections of prototypes in X *R_i*: If X is A_i then Y is C_i, i = 1,..., N







11.8 Parameter estimation for functional rule-based systems

Functional fuzzy rules

• R_i : If X_{i1} is A_{i1} and ... and X_{in} is A_{in} then $z = a_{i0} + a_{i1}x_1 + ... + a_{in}x_n$ i = 1, ..., N

• Given input/output data: {(x_1, y_1), (x_2, y_2),....,(x_M, y_M)}

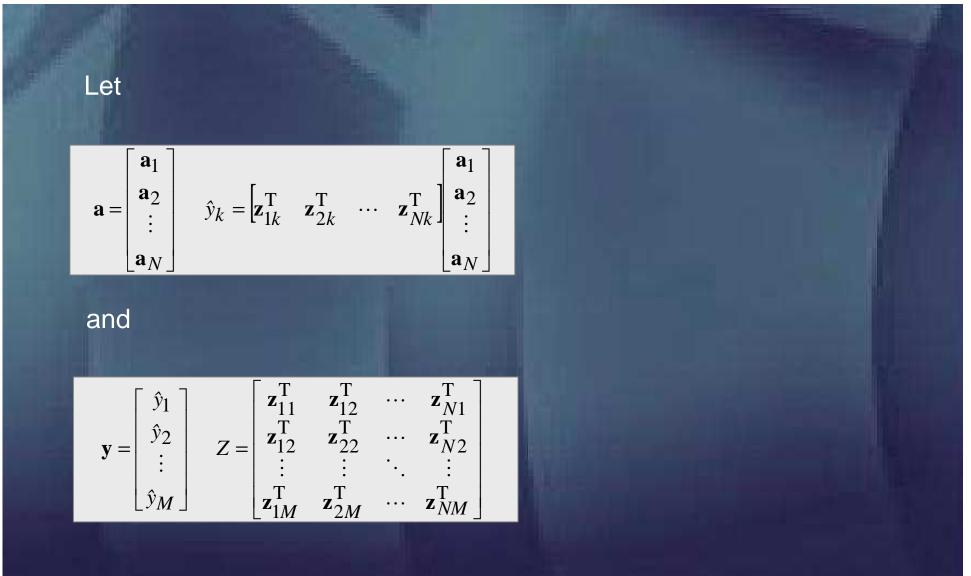
• Let $\mathbf{a}_i = [a_{i0}, a_{i1}, a_{i2}, ..., a_{in}]^{\mathrm{T}}$

Output of functional models

$$\hat{y}_k = \sum_{i=1}^N w_{ik} f_i(\mathbf{x}_k, \mathbf{a}_i), \qquad w_{ik} = \frac{\lambda_i(x_k)}{\sum_{i=1}^N \lambda_i(x_k)}$$

Output for linear consequents

$$\hat{y}_k = \sum_{i=1}^N \mathbf{z}_{ik}^{\mathrm{T}} \mathbf{a}_i, \quad \mathbf{z}_{ik} = [1, w_{ik} \mathbf{x}_k^{\mathrm{T}}]^{\mathrm{T}}$$



then y = Za

Global least squares approach $Min_{\mathbf{a}} J_{G}(\mathbf{a}) = || \mathbf{y} - \mathbf{Z}\mathbf{a} ||^{2}$

 $\|\mathbf{y} - \mathbf{Z}\mathbf{a}\|^2 = (\mathbf{y} - \mathbf{Z}\mathbf{a})^{\mathrm{T}} (\mathbf{y} - \mathbf{Z}\mathbf{a})$

- Solution
 - $\mathbf{a}_{opt} = \mathbf{Z}^{\#} \mathbf{y}$
 - $\mathbf{Z}^{\#} = (\mathbf{Z}^{\mathrm{T}})^{-1}\mathbf{Z}^{\mathrm{T}}$

Local least squares approach

$$\operatorname{Min}_{\mathbf{a}} \mathbf{J}_{L}(\mathbf{a}) = \sum_{i=1}^{N} \|\mathbf{y} - Z_{i} \mathbf{a}_{i}\|^{2}$$

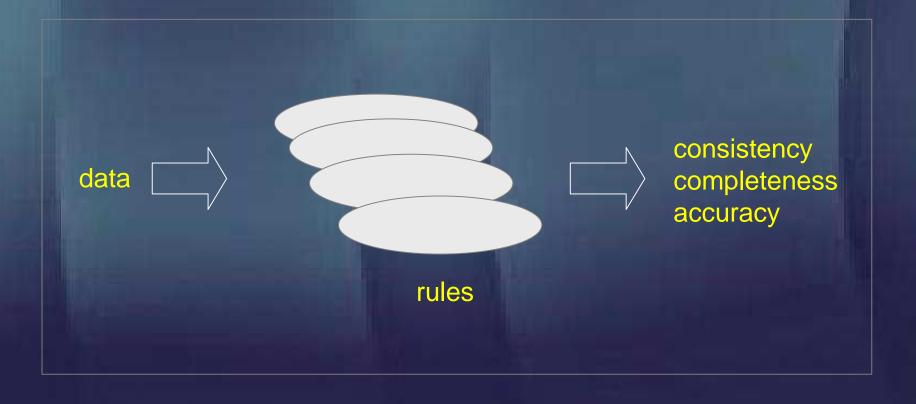
$$Z_{i} = \begin{bmatrix} \mathbf{z}_{i1}^{\mathrm{T}} \\ \mathbf{z}_{i2}^{\mathrm{T}} \\ \vdots \\ \mathbf{z}_{iM}^{\mathrm{T}} \end{bmatrix}$$

Solution

 $\mathbf{a}_{iopt} = \mathbf{Z}_i^{\#} \mathbf{y}$ $\mathbf{Z}_i^{\#} = (\mathbf{Z}_i^{\mathrm{T}})^{-1} \mathbf{Z}_i^{\mathrm{T}}$

11.9 Design issues of FRBS: Consistency and completeness

Given input/output data: {(\mathbf{x}_1 , y_1), (\mathbf{x}_2 , y_2),...,(\mathbf{x}_M , y_M)}



Issue: quality of the rules

Completeness of rules

• All data points represented through some fuzzy set $\max_{i=1,...,M} A_i(\mathbf{x}_k) > 0 \text{ for all } k = 1,2,...,M$

• Input space completely covered by fuzzy sets $\max_{i=1,...,M} A_i(\mathbf{x}_k) > \delta \text{ for all } k = 1,2,...,M$

Consistency of rules

Rules in conflict

- similar or same conditions
- completely different conclusions

Conditions and Conclusions	Similar Conclusions	Different Conclusions
Similar Conditions	rules are redundant	rules are in conflict
Different Conditions	different rules; could be eventually merged	different rules

R_i :If X is A_i then Y is B_i R_j :If X is A_j then Y is B_j

$$cons(i, j) = \sum_{i=1}^{M} \{ |B_i(y_k) - B_j(y_k)| \Rightarrow |A_i(x_k) - A_j(x_k)| \}$$

Alternatively

$$\operatorname{cons}(i,j) = \sum_{i=1}^{M} \{\operatorname{Poss}(A_i(x_k), A_j(x_k)) \Longrightarrow \operatorname{Poss}(B_i(y_k), B_j(y_k))\}$$

 \Rightarrow is an implication induced by some t-norm (r-implication)

$$\cos(i) = \frac{1}{N} \sum_{j=1}^{N} \cos(i, j)$$

11.10 The curse of dimensionality in rule-based systems

- Curse of dimensionality
 - number of variables increase
 - exponential growth of the number of rules

Example

-n variables

– each granulated using p fuzzy sets

- number of different rules = p^n

Scalability challenges

11.11 Development scheme of fuzzy rule-based models

Spiral model of development

- incremental design, implementation and testing
- multidimensional space of fundamental characteristics

