
11 Fuzzy Rule-Based
Models

Fuzzy Systems Engineering
Toward Human-Centric Computing



11.1 Fuzzy rules as a vehicle of knowledge representation

11.2 General categories of fuzzy rules and their semantics

11.3 Syntax of fuzzy rules 

11.4 Basic functional modules

11.5 Types of rule-based systems and architectures

11.6 Approximation properties of fuzzy rule-based models

11.7 Development of rule-based systems

Contents

Pedrycz and Gomide, FSE 2007



11.8   Parameter estimation procedure for functional
rule-based systems

11.9   Design of rule-based systems: consistency,
completeness and the curse of dimensionality

11.10 Course of dimensionality in rule-based systems

11.11 Development scheme of fuzzy rule-based models

Pedrycz and Gomide, FSE 2007



11.1 Fuzzy rules as a vehicle of
knowledge representation
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Rule ≡ conditional statement

� If 〈 input variable is A 〉 then 〈 output variable is B 〉

– A and B: descriptors of pieces of knowledge

– rule: expresses a relationship between inputs and outputs

� Example

– If 〈 the temperature is high 〉 then 〈 the electricity demand is high 〉

� If and then parts 〈.......〉 formed by information granules

– sets
– rough sets
– fuzzy sets
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Rule-based system/model (FRBS)

� FRBS is a family of rules of the form

If 〈 input variable is Ai 〉 then 〈 output variable is Bi 〉

i = 1, 2,..., c

Ai and Bi are information granules

� More complex rules

If 〈 input variable1 is Ai 〉 and 〈 input variable2 is Bi 〉 and ..... 
then 〈 output variable is Zi 〉

– multidimensional input space (Cartesian product of inputs)
– individual inputs aggregated by the and connective
– highly parallel, modular granular model
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11.2 General categories of fuzzy
rules and their semantics
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Multi-input multi-output fuzzy rules

� If X1 is A1 and X2 is A2 and ..... and Xn is An

then Y1 is B1 and Y2 is B2 and ..... and Ym is Bm

Xi = variables whose values are fuzzy sets Ai

Yj = variables whose values are fuzzy sets Bj

Ai on Xi, i = 1, 2,...,n

Bj on Yj, j = 1, 2,...,m

� No loss of generality if we assume rules of the form

If X is A and Y is B then Z is C
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Certainty-qualified rules

� If X is A and Y is B then Z is C with certaintyµ

µ ∈[0,1] 

µ : degree of certainty of the rule

µ = 1  rule is certain
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Gradual rules

� the more X is A the more Y is B

– relationships between changes in X and Y

– captures tendency between information granules

� Examples:

the higherthe income, the higherthe taxes

the lower the temperature, the higherenergy consumption
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Functional fuzzy rules

� If X is Ai then y = f (x,ai)

f : X → Y

x∈Rn

� Rule: confines the function to the support of granule Ai

f : linear or nonlinear (neural nets, etc..)

� Highly modular models
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11.3 Syntax of fuzzy rules
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Backus-Naur form (BNF)

〈 If_then_rule〉 ::= if 〈antecedent〉 then〈consequent〉{ 〈certainty〉}
〈gradual_rule 〉 ::= 〈word〉 〈antecedent〉〈word〉 〈consequent〉

〈word〉 ::= 〈more〉 { 〈less〉}
〈antecedent〉 ::= 〈expression〉
〈consequent〉 ::= 〈expression〉
〈expression〉 ::= 〈disjunction〉{and 〈disjunction〉}
〈disjunction〉 ::= 〈variable〉{or〈variable〉}

〈variable〉 ::= 〈attribute〉 is 〈value〉
〈certainty〉 ::= 〈none〉{certainty µ∈[0,1]}
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Construction of computable representations

Main steps:

1. specification of the fuzzy variables to be used

2. association of the fuzzy variables using fuzzy sets

3. computational formalization of each rule using fuzzy
relations and definition of aggregation operator to combine
rules together
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11.4 Basic functional
modules of FRBS
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Input interface

� (attribute) of (input) is (value)

the temperature of the motor is high

� Canonical (atomic) form

p: X is A temperature (motor) is high
X                    A

fuzzy set

Low Medium High

x (°C)
Pedrycz and Gomide, FSE 2007



Multiple fuzzy inputs: conjunctive canonical form

p : X1 is A1 and X2 is A2 and..... and Xn is An       conjunctive canonical form

Xi are fuzzy (linguistic) variables

Ai : fuzzy sets on Xi

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation P on X1×X1×... Xn
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=
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p : (X1, X2 , ....., Xn) is P

t (T) = t-norm
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Example

� Fuzzy relation associated with (X,Y) is P

� Triangular fuzzy sets A1(x,4,5,6) = A,   A2(y,8,10,12) = B

� t-norm: algebraic product
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q : X1 is A1 or X2 is A2 or ..... or Xn is An           disjunctive canonical form

Xi are fuzzy (linguistic) variables

Ai : fuzzy sets on Xi

i = 1, 2, ..., n

Compound proposition induces a fuzzy relation Q on X1×X1×... Xn

)()()()()(
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n

i
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=
== KK

q : (X1, X2 , ....., Xn) is Q

s (S) = t-conorm

Multiple fuzzy inputs: disjunctive canonical form
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Example

� Fuzzy relation associated with (X,Y) is Q

�Triangular fuzzy sets A1(x,4,5,6) = A,   A2(y,8,10,12) = B

� t-conorm: probabilistic sum
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Rule base

� Fuzzy rule:  If X is A then Y is B   ≡ relationship between X and Y

� Semantics of the rule is given by a fuzzy relation R on X×Y

� R determined by a relational assignment

R(x,y) = f (A(x),B(y))  ∀(x, y)∈X×Y

f : [0,1]2 → [0,1]

� In general f can be

– fuzzy conjunction: ft
– fuzzy disjunction:  fs
– fuzzy implication:  fi
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� Choose a t-norm t and define:

R(x,y) ≡ ft (x,y) = A(x) t B(y)   ∀(x,y) ∈ X×Y

Examples:

• t = min

Rc(x,y) ≡ fc (x,y) = min[A(x) t B(y)]   (Mamdani)

• t = algebraic product

Rp(x,y) ≡ fp (x,y) = A(x)B(y)   (Larsen)

Fuzzy conjunction
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Rc(x,y) = min {a, b}
∀ (a, b)∈[0,1]2

Rc(x,y) = min {A(x), B(y)}
∀ (A(x), B(y))∈[0,1]2

Example: t = min

Pedrycz and Gomide, FSE 2007

A(x) = A(x,4,5,6),  B(y) = B(y,4,5,6)



Rp(x,y) =ab
∀ (a, b)∈[0,1]2

Rp(x,y) = A(x)B(y)
∀ (a, b)∈[0,1]2

Example: t = algebraic product

Pedrycz and Gomide, FSE 2007
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� Choose a t-conorm s and define:

Rs(x,y) ≡ fs(x,y) = A(x) s B(y)   ∀(x,y) ∈ X×Y

Examples:

• s = max

Rm(x,y) ≡ fm (x,y) = max[A(x), B(y)]   

• s = Lukasiewicz t-conorm

Rl (x,y) ≡ fl (x,y) = min[1, A(x) + B(y)]

Fuzzy disjunction
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Example: s = max

Rm(x,y) = max{A(x), B(y)}

∀ (A(x), B(y))∈[0,1]2

Rm(x,y) = max {A(x), B(y)}
A(x) = A(x,4,5,6)
B(y) = B(y,4,5,6)
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Example: s = Lukasiewicz

Rl (x,y) = min{1, A(x)+B(y)}

∀ (A(x), B(y))∈[0,1]2

Rl (x,y) = min{1, A(x)+B(y)}
A(x) = A(x,4,5,6)
B(y) = B(y,4,5,6)
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Fuzzy implication

� Choose a fuzzy implication fi and define:

Ri(x,y) ≡ fi (x,y)    ∀(x,y) ∈ X×Y

� fi : [0,1]2 → [0,1] is a fuzzy implication if:

1. B(y1) ≤ B(y2) ⇒ fi (A(x), B(y1)) ≤ fi (A(x), B(y2)) monotonicity 2nd argument

2.  fi (0, B(y)) = 1 dominance of falsity

3.  fi (1, B(y)) = B(y) neutrality of truth
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� Further requirements may include:

4. A(x1) ≤ A(x2) ⇒ fi (A(x1), B(y)) ≥ fi (A(x2), B(y)) monotonicity 1st argument

5. fi (A(x1), fi (A(x2), B(y)) = fi (A(x2), fi (A(x1), B(y)) exchange

6. fi (A(x), A(x)) = 1 identity

7. fi (A(x), B(y)) = 1 ⇔ A(x) ≤ B(y) boundary condition

8. fi is a continuous function continuity

Pedrycz and Gomide, FSE 2007
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Example: fl = Lukasiewicz

Rl (x,y) = min{1, 1–A(x)+B(y)}

∀ (A(x), B(y))∈[0,1]2

Rl (x,y) = min{1, 1–A(x)+B(y)}
A(x) = A(x,4,5,6)
B(y) = B(y,4,5,6)
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Example: fk = Klir–Yuan

Rk (x,y) = 1–A(x)+A(x)2B(y)

∀ (A(x), B(y))∈[0,1]2

Rk (x,y) = 1–A(x)+A(x)2B(y)
A(x) = A(x,4,5,6)
B(y) = B(y,4,5,6)
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� Categories of fuzzy implications:

1.  s-implications
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Semantics of gradual rules

x

A(x)

B(y)

y

1.0 1.0

BRd

the more X is A, the more Y is B ⇒ B(y) ≥ A(x)    ∀x∈X and ∀y∈Y

BRd= { y∈Y |B(y) ≥ A(x)}  for each   x∈X

Pedrycz and Gomide, FSE 2007



Example: Rd = fa = Gaines
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Main types of rule bases

� Fuzzy rule base ≡ { R1, R2,....,RN} ≡ finite family of fuzzy rules

� Fuzzy rule base can assume various formats:

1. fuzzy graph

Ri:  If X is Ai then Y is Bi is a fuzzy granule in X×Y, i = 1,...,N

2. fuzzy implication rule base

Ri:  If X is Ai then Y is Bi is fuzzy implication, i = 1,...,N

3. functional fuzzy rule base

Ri:  If X is Ai then y = fi(x) is a functional fuzzy rule, i = 1,...,N

Pedrycz and Gomide, FSE 2007



Fuzzy graph

� Fuzzy rule base R ≡ collection of rules R1, R2,....,RN

� Each fuzzy rule Ri is a fuzzy granule (point)

� Fuzzy graph ≡ R is a collection of fuzzy granules

– granular approximation of a function

– R= R1 or R2 or....or RN

– general form
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Granule
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Fuzzy granules ≡ fuzzy points
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Ri = Ai×Bi
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Fuzzy rule base and fuzzy graph

Example 1

Ri = Ai×Bi   ⇒ Ri(x,y) = min [Ai(x), Bi(y)]

R = ∪ Ri   ⇒ R(x,y) = max [Ri(x,y), i = 1,..., N ]
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Fuzzy rule base and fuzzy graph

Example 2

Ri = Ai t Bi   ⇒ Ri(x,y) = Ai(x) Bi(y)

R = ∪ Ri   ⇒ R(x,y) = max [Ri(x,y), i = 1,..., N ]
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(d) Fuzzy rule base as a fuzzy graph (t = product)
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Fuzzy implication

• Fuzzy rule base R ≡ collection of rules R1, R2,....,RN

• Each fuzzy rule Ri is a fuzzy implication

• Fuzzy rule base R is a collection of fuzzy relations

• relation R is obtained using intersection

• R= R1 and R2 and....and RN

• general form
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Fuzzy rule as an implication
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Fuzzy rule base and fuzzy implication

Example 1a

Ri = fl (A,B)⇒ Ri(x,y) = min [1, 1 –Ai(x) + Bi(y)]   Lukasiewicz implication

R = ∩ Ri   ⇒ R(x,y) = min [Ri(x,y), i = 1,..., 5]        min t-norm
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(b) Fuzzy rule base as Lukasiewicz implication (t = min)
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Fuzzy rule base and fuzzy implication

Example 1b

Ri = fl (A,B)⇒ Ri(x,y) = min [1, 1 –Ai(x) + Bi(y)]         Lukasiewicz implication

R = ∩ Ri   ⇒ R(x,y) = R1(x,y) tl R2(x,y) tl .... tl Ri(x,y)   Lukasiewicz t-norm
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(b) Fuzzy rule base as Lukasiewicz implication (t = min)
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Fuzzy rule base and fuzzy implication

Example 2a

Ri = fz(A,B)⇒ Ri(x,y) = max [1 –Ai(x), min(Ai(x), Bi(y)]     Zadeh implication
R = ∩ Ri   ⇒ R(x,y) = min [Ri(x,y), i = 1,..., 5]        min t-norm
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(b) Fuzzy rule base as Zadeh implication (t = min)
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Fuzzy rule base and fuzzy implication

Example 2b

Ri = fz(A,B)⇒ Ri(x,y) = max [1 –Ai(x), min(Ai(x), Bi(y)]     Zadeh implication
R = ∩ Ri   ⇒ R(x,y) = R1(x,y) tl R2(x,y) tl .... tl Ri(x,y)          Lukasiewicz t-norm
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(d) Fuzzy rule base as Zadeh implication (t = Lukasiewicz)
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Data base

� Data base contains definitions of:
– universes
– scaling functions of input and output variables
– granulation of the universes membership functions

� Granulation
– granular constructs in the form of fuzzy points
– granules along different regions of the universes

� Construction of membership functions
– expert knowledge
– learning from data

Pedrycz and Gomide, FSE 2007



Granulation

   

X X

granular constructs in
the form of fuzzy points

granules along different
regions of the universes
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Fuzzy inference

� Basic idea of inference
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� Inference involves operations with sets

x = A 
y = f (x) 
B = f (A) ={ f (x), x∈A}

B = ProjY (Ac ∩ f )

⇓

B = ProjY ( I ) 
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� Inference involving sets and relations

x is A
(x,y) is R
y is B

B = ProjY (Ac ∩ R )

⇓

B = ProjY ( I ) 

f
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Fuzzy inference ands operations with fuzzy 
sets and relations

X is A (fuzzy set on X)
(X,Y) is R (fuzzy relation on X×Y)
Y is B        (fuzzy set on Y)

B = ProjY (Ac ∩ R )

⇓

B = ProjY ( I ) 

f
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Fuzzy inference

� Compositional rule of inference 

X is A         
(X,Y) is R
Y is B

X is A
(X,Y) is R
Y is AoR

RAB o=
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procedure FUZZY-INFERENCE (A, R) returns a fuzzy set
input : fuzzy relation: R

fuzzy set: A
local:    x, y: elements of X and Y

t: t-norm

for all x and y do
Ac(x,y) ← A(x)

for all x and y do
I(x,y) ← Ac(x,y) t R(x,y)

B(y)  ← supx I(x,y) 
return B

Fuzzy inference procedure

Pedrycz and Gomide, FSE 2007



Example: compositional rule of inference
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Example: fuzzy inference with fuzzy graph

Pedrycz and Gomide, FSE 2007



11.5 Types of rule-based
systems and architectures

Pedrycz and Gomide, FSE 2007



Linguistic fuzzy models

P: X is A and Y is B input

R1: If X is A1 and Y is B1 then Z is C1

......................
Ri: If X is Ai and Y is Bi then Z is Ci rule base

.......................
RN: If X is AN and Y is BN then Z is CN

Z: Z is C output

� all fuzzy sets A, B, Ai,s and Bi,sare given
� rule and connectives (and, or) with known semantics
� membership function of fuzzy set C = ??

Pedrycz and Gomide, FSE 2007



min-max models

Assume

P:     X is A and Y is B P(x,y) = min{A(x), B(y)}

Ri:    If X is Ai and Y is Bi then Z is Ci Ri(x,y,z) = min{Ai(x), Bi(y), Ci(z)}

i = 1,..., N

)]}1),(max(),({min[sup)(
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i
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Using the compositional rule of inference (t = min)

Pedrycz and Gomide, FSE 2007



rulethiofactivationofdegreetheis

}1),(max{}1)max{()(

)()(

)Poss()]()([sup

)Poss()]()([sup

)]}()()()()({sup)]}(),({min[sup)(

)(
111

−

=∧==∧=

∧∧=′

==∧

==∧

∧∧∧∧==′

=′

′====
===

i

iiiii

iiii

iii
y

iii
x

iii
y,x

i
y,x

i

ii

N

i
i

N

i
i

N

i
i

λ

N,,izCλN,,i,CnmzC

zCnmzC

nB,ByByB

mA,AxAxA

zCyBxAyBxAz,y,xRy,xPzC

RPC

CRPRPRPC

KK

o

ooo UUU

Pedrycz and Gomide, FSE 2007



procedure MIN-MAX-MODEL ( A,B) returns a fuzzy set
local: fuzzy sets: Ai, Bi, Ci, i =1,.., N

activation degrees: λi

Initialization C = ∅

for i = 1: N do
mi = max (min (A, Ai))
ni = max (min (B, Bi))
λi = min (mi, ni)
if λi ≠ 0 then Ci

’ = min (λi , Ci) and C =  max(C, Ci
’)

return C

min-max fuzzy model processing

Pedrycz and Gomide, FSE 2007



Example: min-max fuzzy model processing

 

Ai Aj Bi Bj A B 
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min-max fuzzy model architecture

 

Poss λ1 Min 

Max 

A1,B1 C1 

Poss λi Min 

Ai,Bi Ci 

Poss λN Min 
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C 
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� Special case: numeric inputs
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Example

P: X is xo and Y is yo inputs (xo, yo), ∀xo, yo ∈[-2, 2]

R1: If X is A1 and Y is B1 then Z is C1
rules

R2: If X is A2 and Y is B2 then Z is C2

N = 2,     centroid defuzzification

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

x

A
i(

x)

A1 A2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

y

B
i(

y)

B2 B2

(a) Input and output fuzzy sets

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

z

C
i(

z)

C1 C2

-2
-1

0
1

2

-2

-1

0

1

2

-0.5

0

0.5

x

(b) Input-output mapping

y

z

Pedrycz and Gomide, FSE 2007



min-sum models

� Assume

P:     X is A and Y is B P(x,y) = min{A(x), B(y)}

Ri:    If X is Ai and Y is Bi then Z is Ci Ri(x,y,z) = min{Ai(x), Bi(y), Ci(z)}

i = 1,..., N
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� Using the compositional rule of inference (t = min)

Additive fuzzy models
(Kosko, 1992)
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Example: min-sum fuzzy model processing
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min-sum fuzzy model architecture
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Example

P: X is xo and Y is yo inputs (xo, yo), ∀xo, yo ∈[-2, 2]

R1: If X is A1 and Y is B1 then Z is C1
rules

R2: If X is A2 and Y is B2 then Z is C2

N = 2       w1 = w2 = 1,  centroid defuzzification
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product-sum models

1- Product–probabilistic sum
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3 - Bounded product-bounded sum
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Functional fuzzy models

P: X is x and Y is y input

R1: If X is A1 and Y is B1 then z= f1 (x,y)
......................

Ri: If X is Ai and Y is Bi then z = fi (x,y) rule base
.......................

RN: If X is AN and Y is BN then z= fN (x,y)

λi(x,y) = Ai(x) t Bi(y)   t = t-norm degree of activation

output
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Functional fuzzy model architecture
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Example 1

P: X is x inputs x ∈ [0, 3]

R1: If X is A1 then z= x
rules

R2: If X is A2 then z= – x + 3
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Example 2

P: X is x inputs x∈ [0, 3]

R1: If X is A1 then y = – sin(2x)

R2: If X is A2 then y = – 0.5x                       rules

R3: If X is A3 then y =   sin(3x)
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Example 2

P: X is x inputs x∈ [0, 3]

R1: If X is A1 then y = – 1

R2: If X is A2 then y =   x                       rules

R3: If X is A3 then y =   1
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Gradual fuzzy models

Ri: The more Xis Ai the more Zis Ci

i = 1,..., N
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Gradual fuzzy model architecture

 

Poss α1 Cα1 

Min 

A1 C1 

Poss αi 

Ai Ci 

Poss αN 

AN CN 

C 
x 

Ci
’  

CN
’  

C1
’  

Cα1 

Cα1 

Pedrycz and Gomide, FSE 2007



x z 
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Example: gradual fuzzy model processing
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Example

P: X is x inputs    x ∈ [0, 3]

R1: The more Xis A1 the more Zis C1

rules
R2: The more Xis A1 the more Zis C1
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11.6 Approximation  properties
of fuzzy rule-based models
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� FRBS uniformly approximates continuous functions

– any degree of accuracy

– closed and bounded sets

� Universal approximation  with (Wang & Mendel, 1992):

– algebraic product t-norm in antecedent

– rule semantics via algebraic product

– rule aggregation via ordinary sum

– Gaussian membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification
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� Universal approximation  when (Kosko, 1992):

– min t-norm in antecedent

– rule aggregation via ordinary sum

– symmetric consequent membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification

(additive models)
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� Universal approximation  with (Castro, 1995):

– arbitrary t-norm in antecedent

– rule semantics: r-implications or conjunctions

– triangular or trapezoidal membership functions

– sup-min compositional rule of inference

– pointwise inputs

– centroid defuzzification

Pedrycz and Gomide, FSE 2007



11.7 Development of rule-based
systems
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Expert-based development

� Knowledge provided by domain experts

– basic concepts and variables

– links between concepts and variables to form rules

� Reflects existing knowledge

– can be readily quantified

– short development time

Pedrycz and Gomide, FSE 2007



Example: fuzzy control

Fuzzy
Controller

Processr
e u y+

−

Ri:  If Error is Ai and Change of Error is Bi then Control is Ci

Ri:  If e is Ai and de is Bi then u is Ci
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Ri:  If e is Ai and de is Bi then u is Ci

Change of Error (de)  /   Error (e) NM NS ZE PS PM

NB PM NB NB NB NM

NM PM NB NS NM NM

NS PM NS Z NS NM

Z PM NS Z NS NM

PS PM PS Z NS NM

PM PM PM PS PM NM

PB PM PM PM PM NM

r

y

t

e
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Data-driven development

� Given a finite set of input/output pairs

{( xk, yk),  k = 1,..., M}

xk = [x1k, x2k,...., xnk] ∈Rn

zk = [xk, yk] ∈Rn+1, k = 1,..., M

� Clustering zk = [xk, yk] ∈Rn+1, k = 1,..., M (e.g. using FCM)

v1, v2,....,vN prototypes/cluster centers

vi ∈ Rn+1, i = 1,..., N

� Idea: fuzzy clusters ≡ fuzzy rules

Pedrycz and Gomide, FSE 2007



Example

R1

v1

v2v3

v4

R2R3

R4
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� Projecting the prototypes  in the input and output spaces

v1[y], v2[y],....,vN [y]  projections of prototypes in Y

v1[x], v2[x],....,vN [x]  projections of prototypes in X

� Ri: If X is Ai then Y is Ci, i = 1,..., N
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11.8 Parameter estimation for
functional rule-based
systems
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� Functional fuzzy rules

� Ri: If Xi1 is Ai1 and ... and Xin is Ain then z= aio + ai1x1 + ....+ainxn

i = 1,..., N

� Given input/output data: {( x1, y1), (x2, y2),....,(xM, yM)}

� Let ai = [aio, ai1, ai2,....,ain]T

� Output of functional models

� Output for linear consequents
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� Global least squares approach

Mina JG(a) = || y – Za||2

|| y – Za||2 = (y – Za)T (y – Za)

� Solution

aopt= Z# y

Z# = (ZT)–1ZT
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� Local least squares approach

� Solution

aiopt= Zi
# y

Zi
# = (Zi

T)–1Zi
T
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11.9 Design issues of FRBS:
Consistency and
completeness
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Given input/output data: {( x1, y1), (x2, y2),....,(xM, yM)}

data
consistency
completeness
accuracy

rules

Issue: quality of the rules
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Completeness of rules

� All data points represented through some fuzzy set

maxi = 1,..., M Ai(xk) > 0 for all k = 1,2,..., M

� Input space completely covered by fuzzy sets

maxi = 1,..., M Ai(xk) > δ for all k = 1,2,..., M
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Consistency of rules

� Rules in conflict

– similar or same conditions

– completely different conclusions

Conditions and 
Conclusions

Similar 
Conclusions

Different 
Conclusions

Similar Conditions rules are redundant
rules are in 

conflict

Different 
Conditions

different rules; 
could be eventually 

merged
different rules
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11.10 The curse of dimensionality
in rule-based systems
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� Curse of dimensionality

– number of variables increase

– exponential growth of the number of rules

� Example

– n variables

– each granulated using p fuzzy sets

– number of different rules = pn

� Scalability challenges
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11.11 Development scheme of
fuzzy rule-based models
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Accuracy 

Stability 

Interpretability  
Knowledge 

Representation 

� Spiral model of development

– incremental design, implementation and testing

– multidimensional space of fundamental characteristics
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