
Chapter 1

Introduction

We live in the world of digital technology that surrounds us and without which

we can barely function. There are myriads of examples (which we take for

granted) in which computers bring a wealth of services. Computers constitute an

omnipresent fabric of the society (Vasilakos and Pedrycz, 2006). As once

succinctly captured by Weiser (1991), ‘‘the most profound technologies are those

that disappear. They weave themselves into the fabric of everyday life until they

are indistinguishable from it.’’

There is an ongoing challenge of building intelligent systems whose function-

ality could make them predominantly human centric. Human centricity is one of the

driving forces of ubiquitous and pervasive computing. Although there are interesting

developments along this line, there is a still a long way to go. Some important

milestones have been achieved, yet a lot of challenges lie ahead.

In this chapter, we investigate some fundamental features of human centricity of

intelligent systems and in this context raise a need for comprehensive studies in

information granulation and fuzzy sets, in particular.

1.1 DIGITAL COMMUNITIES AND A FUNDAMENTAL
QUEST FOR HUMAN-CENTRIC SYSTEMS

Problem solving, design, and creative thinking—these are all endeavors in which we

are inherently faced with conflicting requirements, incomplete information, numer-

ous constraints, and finally collections of alternative solutions. All of these lead us to

situations in which we have to effectively manage enormous amounts of hetero-

geneous data, deal with conflicting or missing evidence, and arrive at meaningful

conclusions being aware of the confidence associated with our findings.

In spite of ever growing complexity of the problems, we somewhat manage to

develop solutions. Both in analysis and in design (synthesis), we follow the key

principles of abstraction and decomposition that help us handle a phenomenon of

complexity and arrive at meaningful solutions. In essence, the effective use of

abstraction means that instead of being buried in a flood of details and mountains
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of data, we establish certain, perhaps most suitable conceptual perspective and set up

a framework in which the problems could be tackled. Granularity of the problem

representation is a fundamental manifestation of the principle of abstraction. The

decomposition is a meaningful and commonly used strategy in which on the basis of

some prudently established granularity we solve the problem by isolating its loosely

connected subproblems and handling them on an individual basis.

Computing systems that are around us in so visible abundance operate on

completely different principles of binary (Boolean logic), numeric information and

solutions, and predefined models of the world of two-valued logic and human

information processing. It becomes apparent that we are concerned with two con-

ceptually distinct worlds. To make them work together and take full advantage of the

computing faculties, we need a well-developed interface through which both worlds

could talk to each other. This is the key rationale behind the emergence of human-

centric systems and human-centric computing (HC2). The primary objective of the

HC2 is to make computers adjust to people by being more natural and intuitive to use

and seamlessly integrated within the existing environment. Various pursuits along

the line of e-society include intelligent housing, ambient intelligence (Vasilakos and

Pedrycz, 2006) and ubiquitous computing, semantic web, e-health, e-commerce and

manufacturing, sensor networks, intelligent data analysis, and wearable hardware.

All of these are concrete examples of the general tendency existing in the develop-

ment of HC2 systems. Referring to the general architectural framework as portrayed

in Figure 1.1, we easily note that in such endeavors a middleware of the semantic

layer plays a crucial role in securing all necessary efficient interaction and commu-

nication between various sources of data and groups of users coming with their

diversified needs and objectives. In the development of HC2 systems, we are

ultimately faced with an omnipresent challenge known as a semantic gap. To

alleviate its consequences, we have to focus on how to reconcile and interpret

detailed numeric information with the qualitative, descriptive, and usually linguistic

input coming from the user. For instance, in the design of a typical HC2 system, such

Semantic  layer (middleware) 

Human 

Human 
Other systems 

Sensors
Databases 

WWW

Other resources 

Human-centric systems 

Figure 1.1 An overall architecture of human-centric systems; note a critical role of the semantic

layer linking the layers of computing and humans together.
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as a personalized digital photo album, we encounter a lot of detailed numeric data

(pixels of images) and have to accommodate a significant and highly descriptive

user’s input that comes in the form of some relevance feedback. The context

awareness and personalization invoke numerous collaborative aspects of processing

involving various sources of data and information (including those available directly

from the users). The user-based processing capability is an important aspect of HC2

systems that has to be taken into account in any design considerations.

The crux of the semantic layer lies in the formation and usage of entities that are

easily perceived and processed by humans. The difficulty is that the world of numeric

processing has to interact with humans who are quite resistant to the explicit use of

numbers and uncomfortable to process them. We operate at the higher level of

abstraction, and this essential design perspective has to be embraced by human-

centric systems through their underlying functionality.

Let us offer a sample of examples in which human centricity plays a pivotal role

(Table 1.1) (Frias-Martinez et al., 2005; Perkowitz and Etzioni, 2000; Spott and

Nauck, 2006). Most of them heavily rely on the idea of an effective relevance

feedback that needs to be implemented in an efficient manner.

1.2 A HISTORICAL OVERVIEW: TOWARDS
A NON-ARISTOTELIAN PERSPECTIVE OF THE WORLD

From the brief investigations covered above, it becomes apparent that in the realiza-

tion of the quest for human centricity of systems, the leitmotiv of many investigations

is in building effective mechanisms of communication including various schemes of

relevance feedback. Given that human processing is carried out at some level of

Table 1.1 Selected Examples of Human-Centric Systems and their Underlying Objectives.

Area Key objectives, existing trends, and solutions

Intelligent data analysis Effective explanatory analysis, delivery of findings at

the level of information granules, and effective

mechanisms of summarization.

System modeling Building transparent models that could be easily

interpreted and whose outcomes are readily

understood. Models should help the user justify

decisions being taken.

Adaptive hypermedia Personalization of hypermedia to meet needs of

individual users, development of specialized web

services, building collaborative filtering,

recommendation, content-based filtering,

personalization of web engines, and so on.

e-commerce Expressing preferences of customers formulated at

different levels of specificity (granularity).

Intelligent interfaces Face expression, emotion recognition and tracking,

formation and use of face-related features.
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abstraction, a concept of information granules and information granulation plays a

visible role. The question of dichotomy offered by some formal frameworks of

information granules has to be revisited as well.

The concept of dichotomy becomes profoundly imprinted into our education,

philosophy, and many branches of science, management, and engineering. Although

the formalism and vocabulary of Boolean concepts being effective in handling

various discrimination processes involving binary quantification (yes–no, true–false)

has been with us from the very beginning of our education, it becomes evident that

this limited, two-valued view at world is painfully simplified and in many circum-

stances lacks rapport with the reality. In real world, there is nothing like black–white,

good–bad, and so on. All of us recognize that the notion of dichotomy is quite simple

and does not look realistic. Concepts do not possess sharp boundaries. Definitions are

not binary unless they tackle very simple concepts (say odd–even numbers). Let us

allude here to the observation made by Russell (1923)

‘‘. . . the law of excluded middle is true when precise symbols are employed, but it is

not true when symbols are vague, as, in fact, all symbols are.’’

In reality, we use terms whose complexities are far higher and which depart from the

principle of dichotomy. Consider the notions used in everyday life such as warm

weather, low inflation, long delay, and so on. How could you define them if you were

to draw a single line? Is 25�C warm? Is 24.9�C warm? Or is 24.95�C warm as well?

Likewise in any image: Could you draw a single line to discriminate between objects

such as sky, land, trees, and lake. Evidently, as illustrated in Figure 1.2, identifying

boundaries delineating the objects in this way is a fairly futile task and in many cases

produces pretty much meaningless results. Objects in images do not exhibit clear and

unique boundaries (the location of the horizon line is not obvious at all) (Fig. 1.2(a)).

Experimental data do not come in well-formed and distinct clusters; there are always

some points in-between (Fig. 1.2(b)).

One might argue that these are concepts that are used in everyday language and,

therefore, they need not possess any substantial level of formalism. Yet, one has to

admit that the concepts that do not adhere to the principle of dichotomy are also

Figure 1.2 Objects, as we perceive and describe them, do not exhibit sharp boundaries. Such

boundaries implementing a principle of dichotomy exhibit limitations. Practically, they may not exist at

all: (a) images and (b) experimental data.
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visible in science, mathematics, and engineering. For instance, we often carry out a

linear approximation of nonlinear function and make a quantifying statement that

such linearization is valid in some small neighborhood of the linearization point.

Under these circumstances, the principle of dichotomy does not offer too much.

The principle of dichotomy, or as we say an Aristotelian perspective at the

description of the world, has been subject to a continuous challenge predominantly

from the standpoint of philosophy and logic. Let us recall some of the most notable

developments that have led to the revolutionary paradigm shift. Indisputably, the

concept of a three-valued and multivalued logic put forward by Jan Lukasiewicz and

then pursued by others, including Emil Post, is one of the earliest and the most

prominent logical attempts made toward the direction of abandoning the supremacy

of the principle of dichotomy. As noted by Lukasiewicz (1920, 1930,) the question of

the suitability or relevance of two-valued logic in evaluating the truth of propositions

was posed in the context of those statements that allude to the future. ‘‘Tomorrow will

rain.’’ Is this statement true? If we can answer this question, this means that we have

already predetermined the future. We start to sense that this two-valued model, no

matter how convincing it could be, is conceptually limited if not wrong. The non-

Aristotelian view of the world was vividly promoted by Korzybski (1933). Although

the concept of the three-valued logic was revolutionary in 1920s, we somewhat

quietly endorsed it over the passage of time. For instance, in database engineering, a

certain entry may be two-valued (yes–no), but the third option of ‘‘unknown’’ is

equally possible—here we simply indicate that no value of this entry has been

provided.

1.3 GRANULAR COMPUTING

Information granules permeate human endeavors (Zadeh, 1973, 1979, 1996, 1997,

2005; Pedrycz, 2001; Bargiela and Pedrycz, 2003). No matter what problem is taken

into consideration, we usually cast it into a certain conceptual framework of basic

entities, which we regard to be of relevance to the problem formulation and problem

solving. This becomes a framework in which we formulate generic concepts adher-

ing to some level of abstraction, carry out processing, and communicate the results to

the external environment. Consider, for instance, image processing. In spite of the

continuous progress in the area, a human being assumes a dominant and very much

uncontested position when it comes to understanding and interpreting images.

Surely, we do not focus our attention on individual pixels and process them as

such but group them together into semantically meaningful constructs—familiar

objects we deal with in everyday life. Such objects involve regions that consist of

pixels or categories of pixels drawn together because of their proximity in the image,

similar texture, color, and so on. This remarkable and unchallenged ability of humans

dwells on our effortless ability to construct information granules, manipulate them,

and arrive at sound conclusions. As another example, consider a collection of time

series. From our perspective, we can describe them in a semiqualitative manner by

pointing at specific regions of such signals. Specialists can effortlessly interpret
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electrocardiograms (ECG signals). They distinguish some segments of such signals

and interpret their combinations. Experts can interpret temporal readings of sensors

and assess the status of the monitored system. Again, in all these situations, the

individual samples of the signals are not the focal point of the analysis and the

ensuing signal interpretation. We always granulate all phenomena (no matter if they

are originally discrete or analog in their nature). Time is another important variable

that is subjected to granulation. We use seconds, minutes, days, months, and years.

Depending on which specific problem we have in mind and who the user is, the size

of information granules (time intervals) could vary quite dramatically. To the high-

level management, time intervals of quarters of year or a few years could be mean-

ingful temporal information granules on the basis of which one develops any

predictive model. For those in charge of everyday operation of a dispatching power

plant, minutes and hours could form a viable scale of time granulation. For the

designer of high-speed integrated circuits and digital systems, the temporal informa-

tion granules concern nanoseconds, microseconds, and perhaps seconds. Even such

commonly encountered and simple examples are convincing enough to lead us to

ascertain that (a) information granules are the key components of knowledge

representation and processing, (b) the level of granularity of information granules

(their size, to be more descriptive) becomes crucial to the problem description and an

overall strategy of problem solving, and (c) there is no universal level of granularity

of information; the size of granules is problem oriented and user dependent.

What has been said so far touched a qualitative aspect of the problem. The

challenge is to develop a computing framework within which all these representation

and processing endeavors could be formally realized. The common platform emer-

ging within this context comes under the name of granular computing. In essence, it

is an emerging paradigm of information processing. Although we have already

noticed a number of important conceptual and computational constructs built in

the domain of system modeling, machine learning, image processing, pattern recog-

nition, and data compression in which various abstractions (and ensuing information

granules) came into existence, granular computing becomes innovative and intellec-

tually proactive in several fundamental ways:

� It identifies the essential commonalities between the surprisingly diversified

problems and technologies used there, which could be cast into a unified

framework we usually refer to as a granular world. This is a fully operational

processing entity that interacts with the external world (that could be another

granular or numeric world) by collecting necessary granular information and

returning the outcomes of the granular computing.

� With the emergence of the unified framework of granular processing, we get a

better grasp as to the role of interaction between various formalisms and

visualize a way in which they communicate.

� It brings together the existing formalisms of set theory (interval analysis),

fuzzy sets, rough sets, and so on under the same roof by clearly visualizing that

in spite of their visibly distinct underpinnings (and ensuing processing), they

exhibit some fundamental commonalities. In this sense, granular computing
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establishes a stimulating environment of synergy between the individual

approaches.

� By building upon the commonalities of the existing formal approaches,

granular computing helps build heterogeneous and multifaceted models of

processing of information granules by clearly recognizing the orthogonal

nature of some of the existing and well-established frameworks (say, prob-

ability theory coming with its probability density functions and fuzzy sets

with their membership functions).

� Granular computing fully acknowledges a notion of variable granularity whose

range could cover detailed numeric entities and very abstract and general

information granules. It looks at the aspects of compatibility of such informa-

tion granules and ensuing communication mechanisms of the granular worlds.

� Interestingly, the inception of information granules is highly motivated. We do

not form information granules without reason. Information granules are an

evident realization of the fundamental paradigm of abstraction.

Granular computing forms a unified conceptual and computing platform. Yet, it

directly benefits from the already existing and well-established concepts of informa-

tion granules formed in the setting of set theory, fuzzy sets, rough sets and others. Let

us now take a quick look at the fundamental technologies of information granulation

and contrast their key features.

1.3.1 Sets and Interval Analysis

Sets are fundamental concepts of mathematics and science. Referring to the classic

notes, set is described as ‘‘any multiplicity, which can be thought of as one. . . any

totality of definite elements, which can be bound up into a whole by means of a law’’

or being more descriptive ‘‘. . .any collection into a whole M of definite and separate

objects m of our intuition or our thought’’ (Cantor, 1883, 1895). Likewise, interval

analysis ultimately dwells upon a concept of sets, which in this case are collections

of elements in the line of reals, say ½a;b�, ½c;d�,. . . and so on. Multidimensional

constructs are built upon Cartesian products of numeric intervals and give rise to

computing with hyperboxes. Going back to the history, computing with intervals is

intimately linked with the world of digital technology. One of the first papers in this

area was published in 1956 by Warmus. Some other early research was done by

Sunaga and Moore (1966). This was followed by a wave of research in so-called

interval mathematics or interval calculus. Conceptually, sets (intervals) are rooted in

a two-valued logic with their fundamental predicate of membership (2). Here holds

an important isomorphism between the structure of two-valued logic endowed with

its truth values (false–true) and set theory with sets being fully described by their

characteristic functions. The interval analysis is a cornerstone of reliable computing,

which in turn is ultimately associated with digital computing in which any variable is

associated with a finite accuracy (implied by the fixed number of bits used to repre-

sent numbers). This limited accuracy gives rise to a certain pattern of propagation of
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error of computing. For instance, addition of two intervals ½a; b� and ½c; d� leads to a

broader interval in the form ½aþ c; bþ d� (Hansen, 1975; Jaulin et al., 2001; Moore,

1966). Here, the accumulation of uncertainty (or equivalently the decreased granu-

larity of the result) depends upon the specific algebraic operation completed for given

intervals. Table 1.2 summarizes four algebraic operations realized on numeric

intervals A ¼ ½a; b� and B ¼ ½c; d�.
Interestingly, intervals distributed uniformly in a certain space are at the center

of any mechanism of analog-to-digital conversion; the higher the number of bits, the

finer the intervals and the higher their number. The well-known fundamental rela-

tionship states that with n bits we can build a collection of 2n intervals of width

ðb	 aÞ=2n for the original range of numeric values in ½a; b�. Intervals offer a

straightforward mechanism of abstraction: all elements lying within a certain interval

become indistinguishable and therefore are treated as identical. In addition to

algebraic manipulation, the area of interval mathematics embraces a wealth of far

more advanced and practically relevant processing including differentiation, integral

calculus, as well as interval-valued optimization.

1.3.2 The Role of Fuzzy Sets: A Perspective
of Information Granules

Fuzzy sets offer an important and unique feature of describing information

granules whose contributing elements may belong to varying degrees of membership

(belongingness). This helps us describe the concepts that are commonly encountered

in real world. The notions, such as low income, high inflation, small approximation

error, and many others, are examples of concepts to which the yes–no quantification

does not apply or becomes quite artificial and restrictive. We are cognizant that there

is no way of quantifying the Boolean boundaries as there are a lot of elements whose

membership to the concept is only partial and quite different from 0 and 1.

The binary view of the world supported by set theory and two-valued logic has

been vigorously challenged by philosophy and logic. The revolutionary step in logic

was made by Lukasiewicz with his introduction of three and afterward multivalued

logic (Lukasiewic, 1930, 1970). It took ‘however’ more decades to dwell on the ideas

of the non-Aristotelian view of the world before fuzzy sets were introduced. This

Table 1.2 Arithmetic Operations on Numeric Intervals A and B.

Algebraic operation Result

Addition ½aþ c; bþ d�
Subtraction ½a	 d; b	 c�
Multiplication ½minðac; ad; bc; bdÞ;maxðac; ad; bc; bdÞ�
Division min a

c
; a

d
; b

c
; b

d

� �
;max a

c
; a

d
; b

c
; b

d

� �� �
assumption:

the interval ½c; d� does not contain 0
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happened in 1965 with the publication of the seminal paper on fuzzy sets by Zadeh

(1965). Refer also to other influential papers by Zadeh (1979, 1996, 1997, 1999,

2005). The concept of fuzzy set is surprisingly simple and elegant. Fuzzy set A

captures its elements by assigning them to it with some varying degrees of member-

ship. A so-called membership function is a vehicle that quantifies different degrees of

membership. The higher the degree of membership AðxÞ, the stronger is the level of

belongingness of this element to A (Gottwald, 2005; Zimmermann, 1996).

The obvious yet striking difference between sets (intervals) and fuzzy sets lies in

the notion of partial membership supported by fuzzy sets. In fuzzy sets, we dis-

criminate between elements that are ‘‘typical’’ to the concept and those of borderline

character. Information granules such as high speed, warm weather, fast car are

examples of information granules falling under this category and can be conveniently

represented by fuzzy sets. As we cannot specify a single, well-defined element that

forms a solid border between full belongingness and full exclusion, fuzzy sets offer

an appealing alternative and a practical solution to this problem. Fuzzy sets with their

smooth transition boundaries form an ideal vehicle to capture the notion of partial

membership. In this sense, information granules formalized in the language of fuzzy

sets support a vast array of human-centric pursuits. They are predisposed to play a

vital role when interfacing human to intelligent systems.

In problem formulation and problem solving, fuzzy sets emerge in two funda-

mentally different ways.

Explicit. Here, they typically pertain to some generic and fairly basic concepts

we use in our communication and description of reality. There is a vast amount of

examples as such concepts being commonly used every day, say short waiting time,

large dataset, low inflation, high speed, long delay, and so on. All of them are quite

simple as we can easily capture their meaning. We can easily identify a universe of

discourse over which such variable are defined. For instance, this could be time,

number of records, velocity, and alike.

Implicit. Here we are concerned with more complex and inherently multifaceted

concepts and notions where fuzzy sets could be incorporated into the formal

description and quantification of such problems, yet not in so instantaneous manner.

Some examples could include concepts such as ‘‘preferred car,’’ ‘‘stability of the

control system,’’ ‘‘high performance computing architecture,’’ ‘‘good convergence

of the learning scheme,’’ ‘‘strong economy,’’ and so on. All of these notions

incorporate some components that could be quantified with the use of fuzzy sets,

yet this translation is not that completely straightforward and immediate as it

happens for the category of the explicit usage of fuzzy sets. For instance, the concept

of ‘‘preferred car’’ is evidently multifaceted and may involve a number of essential

descriptors that when put together are really reflective of the notion we have in mind.

For instance, we may involve a number of qualities such as speed, economy,

reliability, depreciation, maintainability, and alike. Interestingly, each of these

features could be easily rephrased in simpler terms and through this process at

some level of this refinement phase, we may arrive at fuzzy sets that start to manifest

themselves in an explicit manner.
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As we stressed, the omnipresence of fuzzy sets is surprising. Even going over

any textbook or research monograph, not mentioning newspapers and magazines,

we encounter a great deal of fuzzy sets coming in their implicit or explicit format.

Table 1.3 offers a handful of selected examples.

From the optimization standpoint, the properties of continuity and commonly

encountered differentiability of the membership functions become a genuine asset.

We may easily envision situations where those information granules incorporated as

a part of the neurofuzzy system are subject to optimization—hence the differentia-

bility of their membership functions becomes critical relevance. What becomes

equally important is the fact that fuzzy sets bridge numeric and symbolic concepts.

On one hand, fuzzy set can be treated as some symbol. We can regard it as a single

conceptual entity by assigning to it some symbol, say L (for low). In the sequel, it

could be processed as a purely symbolic entity. On the other hand, a fuzzy set comes

with a numeric membership function and these membership grades could be pro-

cessed in a numeric fashion.

Fuzzy sets can be viewed from several fundamentally different standpoints. Here

we emphasize the four of them that play a fundamental role in processing and

knowledge representation.

Table 1.3 Examples of Concepts Whose Description and Processing Invoke the Use of

Fuzzy Sets and Granular Computing.

p. 65: small random errors in the measurement vector. . .
p. 70: The success of the method depends on whether the first initial guess is already

close enough to the global minimum. . .
p. 72: Hence, the convergence region of a numerical optimizer will be large

(van der Heijden et al., 2004).

p. 162: Comparison between bipolar and MOS technology (a part of the table)

bipolar MOS

integration low very high

power high low

cost low low

(Katz and Borriello, 2005).

p. 50: validation costs are high for critical systems

p. 660: . . .A high value for fan-in means that X is highly coupled to the rest of the design

and changes to X will have extensive knock-on effect. A high value for fan-out

suggests that the overall complexity of X may be high because of the complexity

of control logic needed to coordinate the called components.

. . . Generally, the larger the size of the code of a component, the more complex and

error-prone the component is likely to be. . .
. . . The higher the value of the Fog index, the more difficult the document is to

understand

(Sommerville, 2007).
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As an Enabling Processing Technology of Some Universal
Character and of Profound Human-Centric Character

Fuzzy sets build upon the existing information technologies by forming a user-

centric interface using which one could communicate essential design knowledge

thus guiding problem solving and making it more efficient. For instance, in signal

processing and image processing we might incorporate a collection of rules capturing

specific design knowledge about filter development in a certain area. Say, ‘‘if the

level of noise is high, consider using a large window of averaging.’’ In control

engineering, we may incorporate some domain knowledge about the specific control

objectives. For instance, ‘‘if the constraint of fuel consumption is very important,

consider settings of a PID controller producing low overshoot.’’ Some other exam-

ples of highly representative human-centric systems concern those involving

(a) construction and usage of relevance feedback in retrieval, organization, and

summarization of video and images, (b) queries formulated in natural languages,

and (c) summarization of results coming as an outcome of some query.

Second, there are unique areas of applications in which fuzzy sets form a

methodological backbone and deliver the required algorithmic setting. This concerns

fuzzy modeling in which we start with collections of information granules (typically

realized as fuzzy sets) and construct a model as a web of links (associations) between

them. This approach is radically different from the numeric, function-based models

encountered in ‘‘standard’’ system modeling. Fuzzy modeling emphasizes an aug-

mented agenda in comparison with the one stressed in numeric models. Whereas we

are still concerned with the accuracy of the resulting model, its interpretability and

transparency become of equal and sometimes even higher relevance.

It is worth stressing that fuzzy sets provide an additional conceptual and algo-

rithmic layer to the existing and well-established areas. For instance, there are profound

contributions of fuzzy sets to pattern recognition. In this case, fuzzy sets build upon the

well-established technology of feature selection, classification, and clustering.

Fuzzy sets are an ultimate mechanism of communication between humans and

computing environment. The essence of this interaction is illustrated in Figure 1.3(a).

Any input is translated in terms of fuzzy sets and thus made comprehensible at the

level of the computing system. Likewise, we see a similar role of fuzzy sets when

communicating the results of detailed processing, retrieval, and alike. Depending

upon application and the established mode of interaction, the communication layer

may involve a substantial deal of processing of fuzzy sets. Quite often, we combine

the mechanisms of communication and represent them in a form of a single module

(Fig. 1.3(b)). This architectural representations stress the human-centricity aspect of

the developed systems.

As an Efficient Computing Framework of Global Character

Rather than processing individual elements, say a single numeric datum, an encap-

sulation of a significant number of the individual elements that is realized in the form

of some fuzzy sets, offers immediate benefits of joint and orchestrated processing.
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Instead of looking at the individual number, we embrace a more general point of view

and process a entire collection of elements represented now in the form of a single

fuzzy set. This effect of a collective handling of individual elements is seen very

profoundly in the so-called fuzzy arithmetic. The basic constructs here are fuzzy

numbers. In contrast to single numeric quantities (real numbers), fuzzy numbers

represent collections of numbers where each of them belongs to the concept (fuzzy

number) to some degree. These constructs are then subject to processing, say

addition, subtraction, multiplication, division, and so on. Noticeable is the fact that

by processing fuzzy numbers we are in fact handling a significant number of

individual elements at the same time. Fuzzy numbers and fuzzy arithmetic provide

an interesting advantage over interval arithmetic (viz. arithmetic in which we are

concerned with intervals—sets of numeric values). Intervals come with abrupt

boundaries as elements can belong to or are excluded from the given set. This means,

for example, that any gradient-based techniques of optimization invoked when

computing solutions become very limited: the derivative is equal to zero with an

exception at the point where the abrupt boundary is located.

Fuzzy Sets as a Vehicle of Raising and Quantifying Awareness About
Granularity of Outcomes

Fuzzy sets form the results of granular computing. As such they convey a global view

at the elements of the universe of discourse over which they are constructed. When

visualized, the values of the membership function describe a suitability of the

individual points as compatible (preferred) with the solution. In this sense, fuzzy

sets serve as a useful visualization vehicle: when displayed, the user could gain an

overall view of the character of solution (regarded as a fuzzy set) and make a final

choice. Note that this is very much in line with the idea of the human-centricity: We

present the user with all possible results however do not put any pressure as to the

commitment of selecting a certain numeric solution.

Fuzzy Sets as a Mechanism Realizing a Principle of the Least
Commitment

As the computing realized in the setting of granular computing returns a fuzzy set as

its result, it could be effectively used to realize a principle of the least commitment.

Computing  
system Human Computing  

system Human Interface 

(a) (b)

Figure 1.3 Fuzzy sets in the realization of communication mechanisms (a) both at the user end and

at the computing system side, (b) a unified representation of input and output mechanisms of

communication in the form of the interface, which could also embrace a certain machinery of processing

at the level of fuzzy sets.
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The crux of this principle is to use fuzzy set as a mechanism of making us cognizant

of the quality of obtained result. Consider a fuzzy set being a result of computing in

some problem of multiphase decision making. The fuzzy set is defined over various

alternatives and associates with them the corresponding degrees of preference, see

Figure 1.4. If there are several alternatives with very similar degrees of membership,

this serves as a clear indicator of uncertainty or hesitation as to the making of a

decision. In other words, in light of the form of the generated fuzzy set, we do not

intend to commit ourselves to making any decision (selection of one of the alter-

natives) at this time. Our intent would be to postpone decision and collect more

evidence. For instance, this could involve further collecting of data, soliciting expert

opinion, and alike. Based on this evidence, we could continue with computing and

evaluate the form of the resulting fuzzy set. It could well be that the collected

evidence has resulted in more specific fuzzy set of decisions on the basis of which we

could either still postpone decision and keep collecting more evidence or proceed

with decision making. Thus, the principle of the least commitment offers us an

interesting and useful guideline as to the mechanism of decision making versus

evidence collection.

1.3.3 Rough Sets

The description of information granules completed with the aid of some vocabulary is

usually imprecise. Intuitively, such description may lead to some approximations

called lower and upper bounds. This is the essence of rough sets introduced by Pawlak

(1982; 1991); refer also to Skowron (1989) and Polkowski and Skowron (1998).

Interesting generalizations, conceptual insights, and algorithmic investigations are

offered in a series of fundamental papers by Pawlak and Skowron (2007a,b,c).

Time 

Accumulation of evidence 

Decision 
released 

Decision postponed 

Figure 1.4 An essence of the principle of the least commitment; the decision is postponed until the

phase where there is enough evidence accumulated and the granularity of the result becomes specific

enough. Also examples of fuzzy sets formed at successive phases of processing that become more

specific along with the increased level of evidence are shown.
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To explain the concept of rough sets and show what they are to offer in terms of

representing information granules, we use an illustrative example. Consider a

description of environmental conditions expressed in terms of temperature and

pressure. For each of these factors, we fix several ranges of possible values where

each of such ranges comes with some interpretation such as ‘‘values below,’’ ‘‘values

in-between,’’ ‘‘values above,’’ and so on. By admitting such selected ranges in both

variables, we construct a grid of concepts formed in the Cartesian product of the

spaces of temperature and pressure, refer to Figure 1.5. In more descriptive terms,

this grid forms a vocabulary of generic terms using which we would like to describe

all new information granules.

Now let us consider that the environmental conditions monitored over some time

have resulted in some values of temperature and pressure ranging in-between some

lower and upper bound as illustrated in Figure 1.5. Denote this result by X. When

describing it in terms of the elements of the vocabulary, we end up with a collection

of elements that are fully included in X. They form a lower bound of description of X

when being completed in presence of the given vocabulary. Likewise, we may

Temperature 

Pr
es

su
re

 X

(a)

Temperature 

Pr
es

su
re

 X

Temperature 

Pr
es

su
re

 

(b)

Figure 1.5 A collection of vocabularies and their use in the problem description. Environmental

conditions X result in some interval of possible values (a). In the sequel, this gives rise to the concept of

a rough set with the roughness of the description being captured by the lower and upper bounds

(approximations) as illustrated in (b).
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identify elements of the vocabulary that have a nonempty overlap with X and in this

sense constitute an upper bound of the description of the given environmental

conditions. Along with the vocabulary, the description forms a certain rough set.

As succinctly visualized in Figure 1.6, we are concerned with a description of a

given concept X realized in the language of a certain collection (vocabulary) of rather

generic and simple terms A1, A2, . . ., Ac. The lower and upper boundaries (approxi-

mation) are reflective of the resulting imprecision caused by the conceptual incom-

patibilities between the concept itself and the existing vocabulary.

It is interesting to note that the vocabulary used in the above construct could

comprise information granules being expressed in terms of any other formalism, say

fuzzy sets. Quite often we can encounter constructs like rough fuzzy sets and fuzzy

rough sets in which both fuzzy sets and rough sets are put together (Dubois and

Prade, 1990).

1.3.4 Shadowed Sets

Fuzzy sets are associated with the collections of numeric membership grades.

Shadowed sets (Pedrycz, 1998; 2005) are based upon fuzzy sets by forming a

more general and highly synthetic view at the numeric concept of membership.

Using shadowed sets, we quantify numeric membership values into three categories:

complete belongingness, complete exclusion, and unknown (which could be also

conveniently referred to as do not know condition or a shadow). A graphic illustra-

tion of a shadowed set along with the principles of sets and fuzzy sets is schemati-

cally shown in Figure 1.7. This helps us contrast these three fundamental constructs

of information granules.

In a nutshell, shadowed sets can be regarded as a general and far more concise

representation of a fuzzy set that could be of particular interest when dealing with

further computing (in which case we could come up with substantial reduction of the

overall processing effort).

X

{A1, A2,…,Ac } 

R
ou

gh
 s

et
  

Figure 1.6 Rough set as a result of describing X in terms of some fixed vocabulary of information

granules {A1, A2, . . ., Ac}.
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1.4 QUANTIFYING INFORMATION GRANULARITY:
GENERALITY VERSUS SPECIFICITY

The notion of granularity itself and a level of specificity/generality seem to be highly

intuitive: We can easily sense what is more detailed and specific and what looks more

abstract and general. Formally, we can easily quantify granularity of information

granule by counting its number of elements. The more the elements are located in the

information granule, the lower its granularity (and the higher the generality). In this

limit, a single element exhibits the highest level of granularity (specificity). In the

case of sets, this will be the cardinality (number of elements) or the length of the

interval or a similar measure expressing a count of the elements. In case of fuzzy sets,

we usually use a so-called sigma count that is produced by summing up the member-

ship grades of the elements belonging to the fuzzy set under consideration. For rough

sets, we may consider the cardinality of their lower or upper approximations.

1.5 COMPUTATIONAL INTELLIGENCE

Emerged in the early 1990s (Bezdek, 1992; Pedrycz, 1997), Computational intelli-

gence (CI) offers a unique and interesting opportunity to narrow down the acute

semantic gap we encounter when building HC2 systems. The contributing technol-

ogies of CI (in particular, neural networks, granular computing, and evolutionary

optimization) along with their research thrusts are complementary to a high degree.

This has triggered a great deal of synergy, which in turn has made the CI a highly

cohesive conceptual and algorithmic platform exhibiting significant modifiability

(adaptability) and supporting mechanisms of context-awareness, human-centricity,

and user-friendliness. In this highly symbiotic CI environment, each of the techno-

logies listed above plays an important role. For instance, through the use of fuzzy

sets, detailed numeric data may be arranged into meaningful and tangible informa-

tion granules. Information granulation allows for the incorporation of a users’ prior

domain knowledge and preferences, as well as facilitates the management of

uncertainty. Neurocomputing delivers a rich diversity of learning techniques and

Belongingness Belongingness 

Shadow 

Exclusion Exclusion 

Degree of membership (a) (b) (c)

Figure 1.7 A schematic view at sets (a), shadowed sets (b), and fuzzy sets (c). Shadowed sets reveal

interesting linkages between fuzzy sets and sets.
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flexible neural or neuro-fuzzy architectures. Evolutionary methods help cope with

structural optimization and are often essential in the design of complex systems. CI

benefits from this both in terms of the overall methodology of problem understanding

and problem solving, as well as the ensuing system architectures. Again as strongly

advocated in the literature, CI addresses the very nature of human problem solving,

namely, problem modularization, dealing, for example, with numerous conflicting

criteria. The recently developed ideas and practices of granular computing promote a

general top-down design approach: knowledge tidbits are collected, afterward ana-

lyzed, refined, and used as a blueprint (backbone) of the ensuing detailed architec-

ture. Neurocomputing, on the contrary, supports the bottom-up design approach: here

one starts from ‘‘clouds’’ of data and attempts to reveal and describe some common

regularities (e.g., trends) and encapsulate them in the form of specific models. The

omnipresent tendency in the development of HC2 systems lies in its multistrategy and

multifaceted approach. It is strongly manifested in various architectures, different

design (learning) techniques, and more advanced user-friendly interfaces. In this

sense, CI becomes an ideal methodological, development, and experimental platform

for HC2 systems.

1.6 GRANULAR COMPUTING AND COMPUTATIONAL
INTELLIGENCE

Granular computing seamlessly integrates with architectures of CI. Given the fact

that information granules help set up the most suitable perspective when dealing with

the problem, collecting data (that could be of heterogeneous character), carrying out

processing, and releasing the results (in a formal acceptable to the environment), the

general architecture is shown in Figure 1.8.

Although the communication layers are supported by granular computing, the

underlying processing is a domain of neurocomputing, while the overall optimiza-

tion of the architecture is supported by the machinery of evolutionary computing.

There are different levels of synergy; for instance, one could regard the overall

architecture as a neurofuzzy system. In this case, the interface delivers a unified

setting where various sources of data are effortlessly combined and presented to

the neural network, which constitutes the core of the processing layer. In many

cases, the architecture could have somewhat blurred delineation between the

communication layers and the processing core, in particular, when information

granules become an integral part of the basic processing elements. A typical

example here comes when we are concerned with a granular neuron—a construct

in which the connections are treated as information granules, say fuzzy sets (and

then we may refer to it as a fuzzy neuron) or rough sets (which gives rise to the

concept of rough neurons).

As discussed earlier, information granules help us cast the problem into some

perspective. This becomes visible in case of neural networks. To cope with huge

masses of data, we could granulate them (which naturally reduce their number and
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dimensionality) and treat those as meaningful aggregates and components of the

learning set.

1.7 CONCLUSIONS

Human centricity becomes a feature that is of growing interest, especially when

dealing with the development of more sophisticated and intelligent systems. Whereas

there is a remarkably diversified spectrum of possible applications and ensuing

realizations, in all of them, we can identify some commonalities and a visible role

of information granules and information granulation. The chapter offers some

Users 
(relevance feedback) 

Sensors 

Databases 

Collaborating  
systems  

Processing 

Users 

Actuators 

Other  
systems 

Interface 

Interface 

Databases 

Figure 1.8 The layered architecture of systems of Computational Intelligence with the functional

layers of communication (interfacing) with the environment and the processing core.
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introduction to fuzzy sets and brings a number of motivating comments as far as their

methodology and applied side are concerned. Similarly, we looked at fuzzy sets

being an important component of granular computing. We also clarified a concept of

CI and pointed at the role of fuzzy sets within this framework.

EXERCISES AND PROBLEMS

1. Consider a certain concept A defined in the space of two variables (attributes) x1 and x2

whose geometric representation is shown below. We would like to describe it by means of

some Cartesian products of intervals. It becomes evident that such characterization cannot

be perfect. How would you define lower and upper bounds of the description of the concept

so that its ‘‘roughness’’ becomes as small as possible? Justify your construction of the

bounds.

A

x1 

x2 

2. Pick up some textbooks, newspapers, and magazines and identify terms (concepts) that

could be formalized as fuzzy sets. Justify your choice. Suggest possible models of member-

ship functions and link them with the semantics of the concepts being described in this

manner.

3. Discuss some additional functionality in commonly encountered computer systems that

could be beneficial in making them highly user centric or could be useful in enhancing their

user centricity.

4. Identify some concepts in which fuzzy sets could be used in explicit and implicit manner.

5. Unleash your imagination and suggest some functionality of future computing systems in

which human centricity could play an important role.

6. For the differentiable membership functions, we could evaluate their sensitivity by deter-

mining the absolute value of derivative of the membership function. Discuss the sensitivity

of piecewise linear membership functions (triangular fuzzy sets), parabolic membership

functions, and Gaussian membership functions. They are described by the following

membership functions:

(a) Triangular AðxÞ ¼

x	 a

m	 a
if x 2 ½a;m�

1	 x	 m

b	 m
if x 2 ½m; b�

0; otherwise

8>>><
>>>:

where a < m < b
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(b) Parabolic AðxÞ ¼
1	 x

a

	 
2

ifx 2 ½	a; a�

0; otherwise

8<
:

(c) Gaussian A ðxÞ ¼ expð	ðx	 mÞ2=s2Þ
7. You are about to buy a new car. The info sticker you see on the windshield of the vehicle

in the dealer’s exhibition area tells you about economy ‘‘22 mpg in city and 35 mpg

on highway.’’ How could you interpret this information? Would you be dissatisfied

after buying this vehicle and learning that it makes 20 mpg in city driving? Suggest

models of fuzzy sets capturing the semantics of the concept of economy of a vehicle;

be realistic. While dealing with cars, also suggest some other concepts that directly lead

to the emergence of fuzzy sets that could serve as the meaningful descriptors of the

concepts.

HISTORICAL NOTES

While the inception of fuzzy sets has to be attributed to 1965 paper by Zadeh (Zadeh, 1965), we have

indicated that their conceptual and philosophical roots are dated back to the beginning of 20th century

where the most influential and prominent ideas of three-valued and multivalued logic came into

existence (Lukasiewicz, 1920, 1930, 1970). The philosophical underpinnings of non-Aristotelian

view at the world were laid down by Korzybski (1933). The Aristotelian view of the world was

challenged by Black in his 1938 study entitled ‘‘Vagueness: an exercise in logical analysis.’’ The others

include Klaua and Post.

Jan Lukasiewicz (1878–1956) is known as a founder of three-valued and multivalued logics. After

studies of law at the University of Lvov (Poland), his interests were focused on philosophy in which he

received his Ph.D. in 1902. While at the University of Lvov, in 1907–1908, he offered the first Polish course

in mathematical logic. During the WW I in 1915, he moved to Warsaw where he occupied one of the two

chairs of philosophy at the Warsaw University. In 1946, not accepting the new political system set up in

Poland under the Soviet occupation, he moved to Dublin, Ireland. Lukasiewicz’s Polish notation (known as

reverse Polish notation or postfix notation) of 1920 was an inspiration behind the idea of the recursive
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stack, a last-in, first-out computer memory store. The reverse Polish notation is used in Hewlett Packard

calculators and postscript language.

Alfred Korzybski (1879–1950) has contributed to the area of general semantics and the funda-

mentals of non-Aristotelian systems. He studied in Warsaw University of Technology, Germany and Italy.

Then, he volunteered in the Russian army and was sent to Canada and USA as an artillery expert. His book

entitled Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics and

published in 1933 has become a landmark in studies of general semantics. Here, it is worth to recall

Korzybski’s note from this book that succinctly highlights the shortcomings of the Aristotelian perspective.

..in analyzing the Aristotelian codification, I had to deal with the two-valued,

‘‘either-or’’ type of orientation. In living, many issues are not so sharp, and therefore

a system that posits the general sharpness of ‘‘either-or’’ and so objectifies ‘‘kind,’’ is

unduly limited; it must be revised and more flexible in terms of ‘‘degree’’. . .

The developments of interval calculus emerged with inception of the era of digital computing and the

paper by J. Warmus was one of the first publications in this realm. It is interesting to follow a general way in

which the computing with such information granules is carried out (Fig. 1.9).

Fuzzy sets came into existence when the fundamental paper of L. A. Zadeh was published in

Information and Control (Fig. 1.10). Fuzzy sets departed from the principle of dichotomy by admitting

a notion of partial membership (degree of membership defined in the unit interval). Fuzzy sets offered a

rich conceptual and algorithmic setting in which granular information could be handled. Furthermore, they

provide a highly effective vehicle to express and quantify general principles of modeling and human-

centric systems, for example, the principle of incompatibility coined by Zadeh (1973).
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As the complexity of a system increases, our ability to make precise and yet

significant statements about its behavior diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost mutually

exclusive characteristics

The theory of rough sets established by Z. Pawlak (Fig. 1.11) opened another successful avenue of

investigations of information granules whose description realized in the setting of a certain vocabulary

leads to the concept of roughness of description (which itself manifests through lower and upper

boundaries or approximations).

Losfi Zadeh during his Student years in Tehran in the early 1940s (the large Russian sign ODIN which

means ‘‘alone,’’ was his early proclamation of Independence).

Figure 1.9 The first page of the paper by Warmus in which he outlined the concept of computing with

numeric intervals.
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Figure 1.10 The first page of the Zadeh’s seminal paper on fuzzy sets.
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Zdzislaw Pawlak (1926–2006) was born in Lodz, 130 km south–west from Warsaw, Poland. He studied in

Lodz University of Technology and Warsaw University of Technology. He has contributed to the number of

Figure 1.11 Dealing with information with unclear boundaries—an emergence of rough sets.
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disciplines of computer science and was one of the pioneers of computing. In 1961, he was on a research

team that constructed one of the first computers in Poland named UMC 1. He proposed and investigated

parenthesis-free languages, a generalization of reverse Polish notation introduced by Jan Lukasiewicz.

While working at the Institute of Mathematics, in 1965 he introduced the foundations for modeling DNA

what has come to be known as molecular computing. In 1968, he proposed a new formal model of a

computing machine. In 1970s, he introduced knowledge representation systems. The early 1980s saw the

inception of rough sets with the seminal papers published in the International Journal of Computer

Information Systems. The most comprehensive coverage of this subject was presented in his book entitled

‘‘Rough Sets. Theoretical Aspects of Reasoning about Data’’ published in 1991.
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Lukasiewicz, J., O logice trójwartościowej, Ruch Filoz. 5, 1920, 170.

Lukasiewicz, J. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalk, C. R. Soc.

Sci. Lett. Varsovie 23, 1930, 51–77.

Lukasiewicz, J. Studies in logic and the foundations of mathematics, in: L. Borkowski (ed.), Selected

Works, North-Holland, Amsterdam, 1970.

Moore, R. Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966.

Pawlak, Z. Rough sets, Int. J. Comput. Inform. Sci. 11, 1982, 341–356.

Pawlak, Z. Rough Sets. Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers,

Dordercht, 1991.

Pawlak, Z., Skowron, A. Rudiments of rough sets, Inf. Sci. 177(1), 2007a, 3–27.

Pawlak, Z., Skowron, A. Rough sets: some extensions, Inf. Sci. 177(1), 2007b, 28–40.

Pawlak, Z., Skowron, A. Rough sets and Boolean reasoning, Inf. Sci. 177(1), 2007c, 41–73.

References 25



Pedrycz, W. Computational Intelligence: An Introduction, CRC Press, Boca Raton, FL, 1997.

Pedrycz, W. Shadowed sets: representing and processing fuzzy sets, IEEE Trans. Syst. Man Cy. B 28, 1998,

103–109.

Pedrycz W. (ed.), Granular Computing: An Emerging Paradigm, Physica-Verlag, Heidelberg, 2001.

Pedrycz, W. Knowledge-Based Clustering, John Wiley & Sons, Inc., Hoboken, NJ, 2005.

Perkowitz, M., Etzioni, O. Adaptive web sites, Commun. ACM 43(8), 2000, 152–158.

Polkowski, L., Skowron A. (eds.), Rough Sets in Knowledge Discovery, Physica-Verlag, Heidelberg, 1998.

Skowron, A. Rough decision problems in information systems, Bull. Acad. Polonaise Sci. (Tech) 37, 1989,

59–66.

Sommerville, I. Software Engineering, 8th ed., Addison-Wesley, Harlow, 2007.

Spott, M., Nauck, D. Towards the automation of intelligent data analysis, Appl. Soft Comput. 6, 2006,

348–356.

Warmus, M. Calculus of approximations, Bull. Acad. Polonaise Sci. 4(5), 1956, 253–259.

Weiser, M. The computer of the twenty-first century, Sci. Am. 163(3), 1991, 94–104.

Vasilakos, A., Pedrycz W. (eds.), Ambient Intelligence, Wireless Networking, and Ubiquitous Computing,

Artech House, Boston, MA, 2006.

Zadeh, L. A. Fuzzy sets, Inf. Control 8, 1965, 338–353.

Zadeh, L. A. Outline of a new approach to the analysis of complex system and decision process, IEEE

Trans. Syst. Man Cyb. 3, 1973, 28–44.

Zadeh, L. A. Fuzzy sets and information granularity, in: M. M. Gupta, R. K. Ragade, R. R. Yager (eds.),

Advances in Fuzzy Set Theory and Applications, North Holland, Amsterdam, 1979, pp. 3–18.

Zadeh, L. A. Fuzzy logic¼ Computing with words, IEEE Trans. Fuzzy Syst. 4, 1996, 103–111.

Zadeh, L. A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and

fuzzy logic, Fuzzy Sets Syst. 90, 1997, 111–117.

Zadeh, L. A. From computing with numbers to computing with words-from manipulation of measurements

to manipulation of perceptions, IEEE Trans. Circ. Syst. 45, 1999, 105–119.

Zadeh, L. A. Toward a generalized theory of uncertainty (GTU)—an outline, Inf. Sci. 172, 2005, 1–40.

Zimmermann, H. J. Fuzzy Set Theory and Its Applications, 3rd ed., Kluwer Academic Publishers, Norwell,

MA, 1996.

26 Chapter 1 Introduction


