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Fuzzy sets and a family of 
αααα -cuts
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From fuzzy set to a family of sets 

Pedrycz and Gomide, FSE 2007

The representation theorem offers an important insight into
links between a given fuzzy set and its α-cuts

In essence, any fuzzy set can be represented as an infinite
family of α-cuts
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From fuzzy set to a family of sets 

Pedrycz and Gomide, FSE 2007

reconstruction

∈

≥

 

x 

α 

1 

x 

α1 1 

α1 

α2 

α3 

x 

α2 1 

x 

α3 1 

A  

x 

α 

1 

α1 

α2 

α3 
A 

reconstructed fuzzy set  



From fuzzy set to a family of sets 
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From fuzzy set to a family of sets
An optimization  

Pedrycz and Gomide, FSE 2007

Is there an optimal level a that optimizes a single α-cut of A  
so that Aα approximates A to the highest extent?

Performance index  
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Triangular fuzzy sets -
optimization  
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A(x) =max ( 1-x/b ,0) defined for positive values of x  

Performance index  
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After integration  

Q = b –b(1-α) + b(1-α)2 –b/2 

The minimum of Q, dQ/dα = 0 is attained  for α =  ½. 

 



Set-based approximation of
fuzzy sets   

Pedrycz and Gomide, FSE 2007

By approximating fuzzy sets by a finite family of sets
we can directly exploit well-developed techniques of 
interval analysis and combine the partial results into 
a single fuzzy set (result).
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Fuzzy sets and interfaces

Pedrycz and Gomide, FSE 2007

Fuzzy sets do not exist in real-world (sets do not as well).

To interact with the world one has to construct interfaces
(encoders and decoders)
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Fuzzy sets and interfaces
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The need for building interfaces exists in case of sets
(interval analysis); here we encounter well-known 
constructs of analog-to-digital (AD) and digital-to-analog 
(DA) converters.
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Fuzzy sets and interfaces
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There are two functional modules:

Encoders The objective is to translate input data into some 
internal format acceptable for processing at level of fuzzy 
sets

Decoders The objective is to convert the results of 
processing of fuzzy sets into some format acceptable by the 
external world (typically in the form of some numeric 
quantities)

For encoding and decoding we engage a collection of fuzzy 
sets – information granules 



Encoding process
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Given is a collection of fuzzy sets A1, A2, …, Ac; express
some numeric input x in R in terms of these fuzzy sets

x � [ A1(x)   A2(x)… Ac(x)]

Nonlinear mapping from R to c-dimensional unit hypercube



Decoding process
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(a) decoding completed on a basis of a single fuzzy set 

 

(b) Decoding realized on a basis of a certain finite family of fuzzy sets and 

levels of their activation.  



Decoding process: a single fuzzy 
set
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Single fuzzy set B  � develop a single numeric representative



Single fuzzy set decoding: main 
strategies

Pedrycz and Gomide, FSE 2007

Mean of maxima.Determine the arguments of X for which this membership function achieves its maximal 

values. Denote them by p21 x~,...,x~ ,x~ . The decoding is taken as the average of these values,  
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Centre of area. Determine  x̂  such that it results in the equal areas below the membership function positioned 

on the left and on the right from this representative 
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Centre of gravity  Here the result of decoding is computed as follows 
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Single fuzzy set decoding: centre 
of gravity
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Solution to the following optimization problem 
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Single fuzzy set decoding: 
augmented strategies
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Augmented centre of gravity
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Single fuzzy set decoding: some 
general requirements

Pedrycz and Gomide, FSE 2007

Requirements implied by :

•Monotonicity with respect to changeable membership functions

•Graphically motivated requirements (symmetry, translation, scaling…)

•The use of logic operations and logic modifiers



Decoding: a collection of fuzzy 
sets

Pedrycz and Gomide, FSE 2007
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Decoding: one-dimensional 
(scalar) case
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Codeboook – a finite family of fuzzy sets 
{A1, A2, …, Ac}

 A1 A2 A i A i+1 

vi vi+1 
x 
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One-dimensional decoding
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Assume 

(a) the fuzzy sets of the codebook {Ai}, i=1, 2,…,c form a fuzzy partition, 1(x)A
c

1i
i =∑

=
, and for each x in X

at least one element of the codebook is “activated”, that is Ai(x) >0 

(b) for each x only two neighboring elements of the codebook are “activated” that is A1(x) = 0,…, Ai-1(x) = 

0, Ai(x) >0, Ai+1(x) >0,  Ai+2(x) = … = Ac(x) = 0 

(c) the decoding is realized as a weighted sum of the activation levels and the prototypes of the fuzzy 

sets vi , namely ∑=
=

c
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Then the elements of the codebook described by piecewise linear membership functions 
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lead to the zero decoding error (lossless compression) meaning that x̂  = x. 



Multivariable encoding and 
decoding: a global picture

Pedrycz and Gomide, FSE 2007
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Fuzzy Vector Quantization
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The codebook formed through fuzzy clustering (FCM) producing 
A finite collection of prototypes v1, v2, …, vc. 

Given any new input x we realize its encoding and decoding

Let us recall 

EncodingEncoding – representation of x in terms of the prototypes

DecodingDecoding – development of external representation of the result of 
processing realized at the level of information granules



Fuzzy Vector Quantization:
Encoding

Pedrycz and Gomide, FSE 2007

The optimization problem
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Fuzzy Vector Quantization:
Decoding

Pedrycz and Gomide, FSE 2007

Reconstruct original mutidimensional input  x
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Fuzzy Vector Quantization:
Decoding error

Pedrycz and Gomide, FSE 2007
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Fuzzy  encoding and decoding 
with possibility  and necessity 
measures

Pedrycz and Gomide, FSE 2007
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Consider a family of fuzzy sets A1, A2, …, Ac

Input datum X could be either a fuzzy set or a numeric quantity

necessity

possibility 
 

Poss (Ai, X) = (x)][X(x)tAsup ix X∈  

Nec (Ai, X) = (x))sX(x)]A-[(1inf ix X∈  



Possibility and necessity 
encoding 
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Possibility and necessity 
encoding: example 

Pedrycz and Gomide, FSE 2007

∑ =∈
=

c

1i
ii 1(x)u   [0,1],)(u x

X = [0.0 0.2 0.8 1.0  0.9  0.5  0.1  0.0]  

Ai = [0.6 0.5 0.4 0.5  0.6  0.9  1.0  1.0] 

 

Poss(Ai, X) = max (0.0, 0.5, 0.4, 0.5, 0.6, 0.5, 0.1, 0.0) = 0.6 

 

Nec (Ai, X) = min(0.4, 0.5, 0.8, 1.0, 0.9, 0.5, 0.1, 0.0) =0.0 



Encoding and decoding: an 
overview
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Decoding
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Given the nature of encoding (possibility and necessity measures),
the decoding is regarded as a certain “inverse” problem in terms
of fuzzy relational equations:

Possibility measure – sup-t composition

Necessity measure – inf-s composition 



Decoding –possibility measure
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Possibility measure – sup-t composition
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Decoding –necessity measure
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Necessity measure – inf-s composition
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Decoding: example
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Decoding: example
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Decoding: example
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bounds of possibility and  necessity measure
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Taxonomy of data structure with 
the use of shadowed sets
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Core structure

Shadowed data structure

Uncertain data structure



Taxonomy of data structure with 
the use of shadowed sets
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Core data structure   patterns that belong to a core of 

at least one or more shadowed sets 
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Taxonomy of data structure with 
the use of shadowed sets
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Shadowed data structure   This structure is formed by patterns that do not 

belong to core of any of the shadowed sets but fall within the shadow of 

one or more shadowed sets.  
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Taxonomy of data structure with 
the use of shadowed sets
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Uncertain data structure  The patterns belonging to this structure are those 

that are left out from all shadows  

Uncertain data structure = { x | )core(A and   )(A shadow     
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∉∀∉∀ xx } 



Three-valued characterization of 
data structure with shadowed 
sets
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Three-valued characterization of 
data structure: example
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Three-valued characterization of 
data structure: example

Pedrycz and Gomide, FSE 2007

 

0

1

2

3

4

5

6

0 1 2 3 4 5

shadow


