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8.1 Fuzzy sets of higher order
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Fuzzy sets: a retrospective view 

Pedrycz and Gomide, FSE 2007

• So far we distinguished between 
– implicit, and 
– explicit

description of phenomena when dealing with fuzzy sets 

• Typically explicit fuzzy sets we discussed so far 
were defined in some  universe of discourse:

– each elopement of the universe is associated with
a membership degree



Fuzzy sets of order 2 

Pedrycz and Gomide, FSE 2007

Defining fuzzy set over a finite family of fuzzy sets

Example

Describe comfortable temperature given a collection 
of generic terms (reference fuzzy sets) such as 

warm,
hot, 
cold,
around 15C,

…



Fuzzy set of order 2 
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Fuzzy set of order 2 
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preferred car 

good economy 

good  about 7l/ 100km  

about 22 mpg  

low depreciation 

about 
2,000 
$/year  

significant  

high reliability 

about 3 
repairs/year  

over  5 
repairs/year  

far less than a 
month  

without repair 



Fuzzy sets of order 2 vs. fuzzy 
sets: a comparative view 

Pedrycz and Gomide, FSE 2007
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note the fundamental difference in terms of the 
universes of discourse for fuzzy sets and fuzzy sets of
2nd order



Fuzzy sets and rough sets
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Recall that in rough sets we start with a finite collection  of
information granules using which we express any given
granule in terms of so-called lower and upper bound



Rough sets – an example
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X+ = {A i |Ai  ∅≠∩ X } 

X- = {A i |Ai  X⊂ } 

Upper bound

Lower bound



Rough sets – schematic 
representation 
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Fuzzy rough sets and rough 
fuzzy sets

Pedrycz and Gomide, FSE 2007

In rough sets the vocabulary and incoming object
were information granules represented as sets.

Two useful alternatives could be considered:

Reference information granules== sets
Object to be described == fuzzy set

Reference information granules== fuzzy sets
Object to be described == set

Fuzzy rough
sets

Rough fuzzy
sets



Fuzzy rough sets
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X+(A i) = X(x))](x),[min(Asup ix = X(x)sup )supp(Ax i∈  

X-(A i) = (x))]AX(x),-[max(1inf ix  



Rough fuzzy sets
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Interval-valued fuzzy sets

Pedrycz and Gomide, FSE 2007

We consider that instead of single membership grades, 
there are intervals of feasible membership values 

This brings a concept of interval-valued fuzzy sets 
where the concept of membership is represented in 
the form of interval
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Interval-valued fuzzy sets:
operations

Pedrycz and Gomide, FSE 2007

Given are two interval-valued fuzzy sets A= (A-, A+) and B = (B-, B+)  

union   )(∪     ( (min(A+(x), B+(x)), max (A-(x), B-(x)) ) 

intersection )(∩   ( (max(A+(x), B+(x)), min(A-(x), B-(x)) ) 

complement     (A-(x), A+(x)) 



Type-2 fuzzy sets
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Membership degree treated as a single number in [0,1]

Could the membership itself be a fuzzy set? 

Type-2 fuzzy set : admit membership modeled as
fuzzy sets defined in [0,1]



Type-2 fuzzy set: an example
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Type-2 fuzzy sets as results of
aggregation
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Intuitionistic fuzzy set
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Information granule A in which we  consider:

•degree of membership  A+

•degree of non-membership A-

where  

A+(x) + A-(x) ≤  1 



Shadowed sets
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Information granule A in which we admit:

Full membership 

Full exclusion, and 

Shadow – range of [0,1]
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Shadowed sets: operations
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A: X � {0, 1,  [0,1] }             S = [0,1]
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Design of shadowed sets
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Shadowed sets are viewed as constructs implied
by fuzzy sets:

“localization” of membership values by forming 
Shadows and using only 0 -1 degrees of membership

Shadowed sets support simpler computing by
operating on three logic values 



From fuzzy set to shadowed set
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membership 
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= shadow



From fuzzy set to shadowed set

Pedrycz and Gomide, FSE 2007

Reduction of membership∫
≤α:A(x)x

A(x)dx  

Elevation of membership  ∫
≥ α-1:A(x)x

A(x))dx-(1  

Shadow    ∫
<< α-1A(x)α:x

dx  

Performance index         V(α) = | ∫
≤α:A(x)x

A(x)dx + ∫
≥ α-1:A(x)x

A(x))dx-(1 - ∫
<< α-1A(x)α:x

dx | 

 

α opt = arg min α  V(α) 



From fuzzy set to shadowed set

Pedrycz and Gomide, FSE 2007

triangular membership function: 

α = 4142.012 ≈−   

 

parabolic membership function: 

α  = 0.405. 



From fuzzy set to shadowed set:
discrete case

Pedrycz and Gomide, FSE 2007

V(α) =|∑
Ω∈k

ku + )u-(1
k

k∑
Φ∈

 - card(Ω)|   

Minimize V(α) with respect to α 

                               range of feasible values of α  :  [umin, 
2

uu maxmin +
]. 



Shadowed sets in fuzzy 
clustering

Pedrycz and Gomide, FSE 2007

Results of fuzzy clustering could be conveniently 
interpreted using shadowed sets

•Elements completely belonging to the cluster

•Elements completely excluded from the cluster

•Elements with uncertainty (shadow of the cluster) that
are “flagged” in this way and may require further attention



Shadowed sets in fuzzy 
clustering: example

Pedrycz and Gomide, FSE 2007
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Probability and fuzzy sets

Pedrycz and Gomide, FSE 2007

Fuzzy sets and probability are orthogonal concepts:

probability is concerned with occurrence of Boolean 
phenomena

fuzzy sets are concerned with perception of concepts



Probability and fuzzy sets
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PERCEPTION 



Probability of fuzzy events
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- what is the probability of low temperature tomorrow 

-  

- what is the probability of high inflation in a short term  

-  

- what is the probability of small steady state error in control of pressure of 

steam boiler 



Probability of fuzzy events

Pedrycz and Gomide, FSE 2007

underlying probability density function (pdf) defined in X - p(x).  

fuzzy event (fuzzy set) - A 

probability of the fuzzy event  

 

                                                   ∫∫ =
XX
A(x)p(x)dxA(x)dP(x)  

(it is assumed that this integral does exist) 

 

Note that this probability is the expected value of the membership function E(A) 

 

E(A) = ∫
X
A(x)p(x)dx 



Probability of fuzzy events

Pedrycz and Gomide, FSE 2007

variance     E2(A) = ∫
X

p(x)dxE(A)]-[A(x) 2   

standard deviation    σ(A)= (A)E2   

higher order moments    ∫
X

p(x)dxE(A)]-[A(x) r   where r >2 



Probability of fuzzy events:
example

Pedrycz and Gomide, FSE 2007
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A= low temperature pdf of temperature

P(A) =0.294    σ(A) = 3.46*10-3. 



Probability of fuzzy events:
orthogonality

Pedrycz and Gomide, FSE 2007
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Linguistically quantified 
statements

Pedrycz and Gomide, FSE 2007

Linguistic probabilities:
low probability, high probability, probability around 60%...

 

0                                          1    probability 

1  membership 



Linguistically quantified 
statements: computing

Pedrycz and Gomide, FSE 2007

Z= i

n
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=
 

Random variable assumes values ai with linguistic probabilities Pi.  

The  extension principle: 

 

Z(z)  = sup [ min(P1(p1), P2(p2),...., Pn(pn))] 
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Linguistically quantified 
statements: example

Pedrycz and Gomide, FSE 2007
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