6 Fuzzy Relations

Fuzzy Systems Engineering
Toward Human-Centric Computing

Contents

6.1 The concept of relations
6.2 Fuzzy relations
6.3 Properties of fuzzy relations
6.4 Operations on fuzzy relations
6.5 Cartesian product, projections, and cylindrical extension
6.6 Reconstruction of fuzzy relations
6.7 Binary fuzzy relations

6.1 The concept of relations

Relation

Docs
X

Keywords

Y
$\left\{w_{1}, w_{2}, \ldots, j_{i}, \ldots w_{m}\right\}$
 Cusisitimy w_{j}

$$
R=\left\{\left(d_{i}, w_{j}\right) \mid d_{i} \in \mathbf{X}, w_{j} \in \mathbf{Y}\right\}
$$

Relation $\quad R: \mathbf{X} \times \mathbf{Y} \rightarrow\{0,1\}$

$\mathbf{X}=\mathbf{Y}=\{2,4,6,8\}$
equal to
$R=\{(2,2),(4,4),(6,6),(8,8)\}$

$$
R=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Examples

Circle

$$
R(x, y)= \begin{cases}1 & \text { if } x^{2}+y^{2}=r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Square

$$
R(x, y)= \begin{cases}1 & \text { if }|x| \leq 1 \text { and }|y| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

6.2 Fuzzy relations

Fuzzy relation $\quad R: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1]$

Example

Docs
$\mathbf{D}=\left\{d_{\mathrm{fs}}, d_{\mathrm{nf}}, d_{\mathrm{ns}}, d_{\mathrm{gf}}\right\}$

Keywords
$\mathbf{W}=\left\{w_{\mathrm{f}}, w_{\mathrm{n}}, w_{\mathrm{g}}\right\}$
$R: \mathbf{D} \times \mathbf{W} \rightarrow[0,1]$

$$
R=\left[\begin{array}{ccc}
w_{\mathrm{f}} & w_{\mathrm{n}} & w_{\mathrm{g}} \\
{\left[\begin{array}{ccc}
1 & 0 & 0.6 \\
0.8 & 1 & 0 \\
0 & 1 & 0 \\
0.8 & 0 & 1
\end{array}\right] \begin{array}{c}
d_{\mathrm{fs}} \\
d_{\mathrm{nf}}, \\
d_{\mathrm{ns}} \\
d_{\mathrm{gf}}
\end{array}}
\end{array}\right.
$$

Example

$$
R_{e}(x, y)=\exp \left\{\frac{-|x-y|}{\alpha}\right\}, \alpha>0
$$

$$
\mathbf{X}=\mathbf{Y}=[0,4]
$$

x approximately equal to y

$$
\alpha=1
$$

6.3 Properties of fuzzy relations

Fuzzy relation $\quad R: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1]$

Domain

$$
\operatorname{dom} R(x)=\sup _{y \in \mathbf{Y}} R(x, y)
$$

Codomain

$$
\operatorname{cod} R(y)=\sup _{x \in \mathbf{X}} R(x, y)
$$

Representation of fuzzy relations

$$
R=\underset{\alpha \in[0,1]}{\bigcup} \alpha R_{\alpha}
$$

$$
R(x, y)=\sup _{\alpha \in[0,1]}\{\min [\alpha, R(x, y)]\}
$$

Representation theorem

Fuzzy relations $P, Q: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1]$

Equality

$$
P(x, y)=Q(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

Inclusion

$$
P(x, y) \leq Q(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

6.4 Operations on fuzzy relations

Fuzzy relations $P, Q: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1]$

Union: $R=P \cup Q$
$R(x, y)=P(x, y)$ s $Q(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y} \quad$ (s is a t-conorm)

Intersection: $R=P \cup Q$

$$
R(x, y)=P(x, y) t Q(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y} \quad(t \text { is a t-norm })
$$

Fuzzy relation $\quad R: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1]$

Standard complement: $\overline{\mathrm{R}}$

$$
\bar{R}(x, y)=1-R(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

Transpose: R^{T}

$$
R^{\mathrm{T}}(y, x)=R(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

6.5 Cartesian product, projections,and cylindrical extension of fuzzy sets

Cartesian product

$A_{1}, A_{2}, \ldots, A_{n}$ fuzzy sets on $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{n}$
$R=A_{1} \times A_{2} \times \ldots \times A_{n}$
$R\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min \left\{A_{1}\left(x_{1}\right), A_{2}\left(x_{2}\right), \ldots, A_{n}\left(x_{n}\right)\right\} \quad \forall\left(x_{i}, y_{i}\right) \in \mathbf{X}_{i} \times \mathbf{Y}_{i}$

Generalization
$R\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) t A_{2}\left(x_{2}\right) t \ldots t A_{n}\left(x_{n}\right) \quad \forall\left(x_{i} y_{i}\right) \in \mathbf{X}_{i} \times \mathbf{Y}_{i}$
$t=\mathrm{t}-\mathrm{norm}$

Examples

$$
\begin{array}{ll}
A(x)=\exp \left[-2(x-5)^{2}\right] & R=A \times B \\
B(y)=\exp \left[-2(y-5)^{2}\right] &
\end{array}
$$

$R(x, y)=\min \{A(x), B(y)\}$

$R(x, y)=A(x) B(y)$

Projections of fuzzy relations

$$
\begin{aligned}
& R: \mathbf{X}_{1} \times \boldsymbol{X}_{2} \times \ldots \times \mathbf{X}_{n} \rightarrow[0,1] \\
& \mathbf{X}=\mathbf{X}_{i} \times \boldsymbol{X}_{j} \times \ldots \times \mathbf{X}_{k}
\end{aligned}
$$

$$
R_{\mathbf{X}}\left(x_{i}, x_{j}, \ldots, x_{k}\right)=\operatorname{Proj}_{\mathbf{X}} R\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sup _{x_{t}, x_{u}, \ldots, x_{v}} R\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
I=\{i, j, \ldots, k\}, \quad J=\{t, u, \ldots, v\}, \quad I \cup J=N, \quad I \cap J=\varnothing
$$

$$
N=\{1,2, \ldots n\}
$$

Example

$$
R(x, y)=\exp \left\{-\alpha\left[(x-4)^{2}+(y-5)^{2}\right]\right\}, \alpha=1
$$

$$
R_{\mathbf{X}}(x)=\operatorname{Proj}_{\mathbf{X}} R(x, y)=\sup R(x, y)
$$

$$
R_{Y}(y)=\operatorname{Proj}_{\mathbf{Y}} R(x, y)=\sup R(x, y)
$$

Example

$R: \mathbf{X} \times \mathbf{Y} \rightarrow[0,1], \quad \mathbf{X}=\{1,2,3\}, \quad \mathbf{Y}=\{1,2,3,4,5\}$
$R(x, y)=\left[\begin{array}{lllll}1.0 & 0.6 & 0.8 & 0.5 & 0.2 \\ 0.6 & 0.8 & 1.0 & 0.2 & 0.9 \\ 0.8 & 0.6 & 0.8 & 0.3 & 0.9\end{array}\right]$

$$
\begin{aligned}
& R_{\mathrm{X}}=[1.0,1.0,0.9] \\
& R_{\mathrm{Y}}=[1.0,0.8,1.0,0.5,0.9]
\end{aligned}
$$

Cylindrical extension

$$
\operatorname{cyl} A(x, y)=A(x), \quad \forall x \in \mathbf{X}
$$

cyl A

$\operatorname{cyl} A \cup R$

$\operatorname{cyl} A \cap R$

6.6 Reconstruction of fuzzy relations

Reconstruction using Cartesian product

$\operatorname{Proj}_{\mathbf{X}} R \times \operatorname{Proj}_{\mathbf{Y}} R \supseteq R$

noninteractive

6.7 Binary fuzzy relations

Binary fuzzy relation $\quad R: \mathbf{X} \times \mathbf{X} \rightarrow[0,1]$

Features

(a) Refilexivity
$R(x, x)=1$
$R(x, x) \supseteq I$
I = Identity
$R(x, x) \geq \varepsilon \quad \varepsilon$-reflexive
$\max \{R(x, y), R(y, x)\} \leq R(x, x)$ locally reflexive
(b) Symmetry

$$
\begin{aligned}
& R(x, y)=R(y, x) \quad \forall \in \times \\
& R^{\mathrm{T}}=R
\end{aligned}
$$

(c) Transitivity

$$
\sup _{z \in \mathbf{X}}\{R(x, z) t R(z, y)\} \leq R(x, y) \forall x, y, z \in \mathbf{X}
$$

Transitive closure

$$
\begin{aligned}
& \operatorname{trans}(R)=\overparen{R}=R \cup R^{2} \cup \ldots . . \cup R^{n} \\
& R^{2}=R o R \ldots \ldots . R^{p}=R o R^{p-1} \\
& R o R(x, y)=\max _{z}\{R(x, z) t R(z, y)\}
\end{aligned}
$$

If R is reflexive, then $I \subseteq R \subseteq R^{2} \subseteq \ldots \subseteq R^{n-1}=R^{n}$
$I=$ identity

Floyd-Warshall procedure to find trans(\boldsymbol{R})

procedure TRANSITIVE-CLOSUR-W (R) returns transitive fuzzy relation
static: fuzzy relation $R=\left[r_{i j}\right]$
for $\mathrm{i}=1:$ n do for $\mathrm{j}=1$: $\boldsymbol{n} \mathbf{d o}$ for $\mathrm{k}=1: n \mathbf{d o}$ $\Psi_{i k}^{\triangleright} \leftarrow \max \left(r_{j k}, r_{j t} t r_{i k}\right)$
return R

Equivalence relations

$R: \mathbf{X} \times \mathbf{X} \rightarrow\{0,1\}$
R is an equivalence relation if it is

- reflexive
- symmetric
- transitive
equivalence relations generalize the idea of equality

Equivalence class

$$
A_{x}=\{y \in \mathbf{X} \mid R(x, y)=1\}
$$

$\mathbf{X} / R=$ family of all equivalence classes of R (partition of \mathbf{X})

Similarity relations

$R: \mathbf{X} \times \mathbf{X} \rightarrow[0,1]$
R is a similarity relation if it is

- reflexive
- symmetric
- transitive

Equivalence class

$$
P(R)=\left\{\mathbf{X} / R_{\alpha} \mid \alpha \in[0,1]\right\}
$$

Nested partitions: if $\alpha>\beta$ then \mathbf{X} / R_{α} finer than \mathbf{X} / R_{β}

Example

$$
R=\left[\begin{array}{ccccc}
1.0 & 0.8 & 0 & 0 & 0 \\
0.8 & 1.0 & 0 & 0 & 0 \\
0 & 0 & 1.0 & 0.9 & 0.5 \\
0 & 0 & 0.9 & 1.0 & 0.5 \\
0 & 0 & 0.5 & 0.5 & 1.0
\end{array}\right]
$$

$$
R_{0.5}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right], R_{0.8}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], R_{0.9}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1.0 & 1 & 0 \\
0 & 0 & 1 & 1.0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Partition tree induced by similarity relation R

$$
R_{0.5}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right], R_{0.8}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], R_{0.9}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1.0 & 1 & 0 \\
0 & 0 & 1 & 1.0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Compatibility relations

$R: \mathbf{X} \times \mathbf{X} \rightarrow\{0,1\}$
R is a compatibility relation if it is

- reflexive
- symmetric
α-Compatibility class: $A \subset \mathbf{X}$ such that

$$
R(x, y)=1 \quad \forall x, y \in A
$$

Do not necessarily induce partitions

Proximity relations

$R: \mathbf{X} \times \mathbf{X} \rightarrow[0,1]$
R is a proximity relation if it is

- reflexive
- symmetric

Compatibility class: $A \subset \mathbf{X}$ such that

$$
R(x, y)=1 \quad \forall x, y \in A
$$

Do not necessarily induce partitions

