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4.1 Semantics of fuzzy sets:
General observations
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Semantics of fuzzy sets

Pedrycz and Gomide, FSE 2007

• Generic constructs/building conceptual blocks to describe systems
in a meaningful way

• Each fuzzy set comes with a well-delineated semantics (meaning)

– Example: small – medium – large error

• Limited number of fuzzy sets

– “magic” number of 7 +/- 2 (Miller, 1956)
(short –term memory)



• Fuzzy sets require calibration

– determination of their membership functions

• Two main approaches to the problem:

– Expert –driven (designer, user, decision-maker…)

– Data driven (from data to fuzzy sets) 
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4.2 Fuzzy sets as a descriptor
of feasible solutions
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Fuzzy sets as descriptor of feasible solutions (1)

  Consider  some function f(x) defined in ΩΩΩΩ,  
 

f: ΩΩΩΩ → R. where ΩΩΩΩ ⊂  R 
 
  Determine its maximum  
 

xopt = arg maxx f(x). 
 
  Fuzzy set A of optimal solutions  ≡ a collection of feasible 
  solutions that could be labeled as optimal with some degrees  
  of membership.  
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Fuzzy sets as descriptor of feasible solutions (2)

  Consider  some function f(x) defined in ΩΩΩΩ,  
 

f: ΩΩΩΩ → R. where ΩΩΩΩ ⊂  R 
 
  Determine its minimum  
 

xopt = arg maxx f(x). 
 
  Fuzzy set A of optimal solutions  ≡ a collection of  
  feasible solutions that could be labeled as optimal with 
  some degrees of membership.  
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Fuzzy sets as descriptors of feasible solutions
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Linearization error 
 
  Linearize function y = g(x) = exp(-x) around x0=1 and assess the quality 
  of this linearization in the range [−1, 7].  
 
  Linearization formula:     y − y0 =g’(x0)(x − x0)  
 
  y0 = g(x0) and g’(x0) is the derivative of g(x) at x0.  
 
 Linearized version of the function   exp(−1)(2 − x).  
 
 Quality of linearization   f(x) = |g(x) − exp(−1)(2 − x)|.  

fmax = f(7) = 1.84 and fmin = 0.0 
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Example
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Example



4.3 Fuzzy sets as a descriptor
of the notion of typicality
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Fuzzy sets as notions of typicality 

• Fuzzy set as collection of elements of varying degrees
of typicality

• Geometric figures : squares, circles…. 

 

a 

b 

| a − b| 

membership 

1 

Pedrycz and Gomide, FSE 2007



4.4 Membership functions in
the visualization of
preferences solutions
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Fuzzy sets in visualization of preferences of 
solutions
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4.5 Nonlinear transformations
of fuzzy sets
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4.6 Vertical and horizontal
schemes of membership
estimation



Horizontal scheme of membership 
estimation

Finite elements of the universe of discourse X 
Question of the form

-does x belong to concept A?

Accepted are binary answers (yes-no)

“n” experts – count of positive (yes) answers:   p/n
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Horizontal scheme of 
membership estimation

 

p/n 

X 

binary replies follow binomial distribution; we can determine
confidence interval

n
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Vertical scheme of membership 
estimation

Estimation of membership function by determining α-cuts
and aggregating them (see representation theorem)

-What are the elements of X which belong to fuzzy set A at 
degree not lower than α?

 

α1 

αp 

X 
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Horizontal and vertical schemes 
of membership estimation

Simple and intuitively appealing

Reflective of domain knowledge

Lack of continuity – elements of X considered independently
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Saaty’s priority method of 
pairwise comparison

Collection of elements x1, x2, …, xn

Membership degrees are given A(x1), A(x2)…. A(xn)

Reciprocal matrix R
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Saaty’s priority method of 
pairwise comparison

Reciprocal matrix R –main properties:
(a) reflexivity
(b) reciprocality
(c) transitivity 
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Saaty’s priority method of 
pairwise comparison: computing

i-th row of R 
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Saaty’s priority method of 
pairwise comparison

Estimation of reciprocal matrix:

Scale (typically 1-7 range, could be larger, 1-9)
• strong preference: high values on the scale (7-9)
• preference: 4-7
• weak preference or no preference 1-3

Solving the eigenvalue problem for R, max eigenvalue, 
λmax
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Saaty’s priority method :
consistency of results

ν = (λmax –n)/(n-1)

lack of consistency ν >0.1
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Saaty’s priority method :
Example

high temperature

Universe of discourse: 10, 20, 30, 40, 45

Scale 1-5
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R

max eigenvalue = 4.114     eigenvector [0.122 0.195  0.438  0.869]
after normalization  [0.14  0.22  0.50  1.00].
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Fuzzy sets as granular 
representation of numeric data

The principle of justifiable granularity

experiment-driven and intuitively appealing rationale: 

(a) we expect that A reflects (or matches) the available 
experimental data to the highest extent, and

(b) second, the fuzzy set is kept specific enough so 
that it comes with a well-defined semantics. 

Pedrycz and Gomide, FSE 2007



The principle of justifiable 
granularity

(a) we expect that A reflects (or matches) the available 
experimental data to the highest extent, and

(b) second, the fuzzy set is kept specific enough so 
that it comes with a well-defined semantics. 

Maximize “coverage” of data

Minimize spread of fuzzy set
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The principle of justifiable 
granularity: unimodal fuzzy set

Numeric data x1, x2, …, xn

Determine its “modified” median

Consider separately data to the left and right from the median  
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The principle of justifiable 
granularity: examples

Distance of point from geometric figure
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The principle of justifiable 
granularity: examples

Distance between two geometric figures A and B
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Clustering: Fuzzy C-Means (FCM)

Given a collection of n-dimensional data set {xk}, k=1,2,…,N,  

determine its structure – a collection of “c” clusters. 

 

Minimize the following objective function (performance index) Q  
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Fuzzy clustering: structure 
representation

Partition matrix  U 

Prototypes v1, v2, …, vc

c 1,2,...,i    ,Nu0
N
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FCM – optimization procedure

Optimization with respect to 

• Partition matrix  U, and 

• Prototypes v1, v2, …, vc

Pedrycz and Gomide, FSE 2007



Optimization: partition matrix

use of Lagrange multipliers
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Optimization: partition matrix
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Optimization: prototypes

2
ij

n

1j
kj

N

1k

m
ik

c

1i
)v(xuQ −∑∑∑=

===

Gradient of Q w.r.t.  prototype vs ∑ =−
=

N

1k
stkt

m
ik 0)v(xu

∑

∑

=

=

=
N

1k

m
ik

N

1k
kt

m
ik

st

u

xu

v

Pedrycz and Gomide, FSE 2007



FCM: an overview of the 
algorithm procedure FCM-CLUSTERING (x) returns prototypes and partition matrix 

input :  data x = {x1, x2, ..., xk} 

local:    fuzzification parameter: m 

             threshold: ε 

  norm: ||.|| 

  

 INITIALIZE-PARTITION-MATRIX 

 t ← 0 

  repeat 

               for i=1:c  do 
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  for i = 1:c do 

        for k = 1:N   do 
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t ← t + 1 

until ||U(t+1)-U(t)|| ≤ ε 

return U, V 
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FCM and its parameters 

Number of clusters (c)

Objective function Q

Distance function ||.||

Fuzzification coefficient  (m)

Termination criterion
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Geometry of clusters and 
fuzzification coefficient (m)
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Cluster sharing: a separation 
measure  

∏−=
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Data fully belongs to a single cluster (1- 0)

Data belongs to all clusters at the same level (1/c)
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Hierarchical format of FCM:
Successive refinements of clusters  
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Fuzzy equalization  

Construct triangular fuzzy sets A1, A2, …, Ac defined in R
such that they come with the same level of experimental 
evidence (support)
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Linguistic approximation  

Given is a family of reference fuzzy sets {Ai} 
defined in some space X

We have at disposal is a family of linguistic modifiers τj, say 
more or less (dilution), 
very (concentration)

Represent (approximate) B in X with the use of reference fuzzy
sets and linguistic modifiers == linguistic approximation
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Linguistic approximation: 
optimization

 B 

{A i} 

τj 

B ≈   τi(A j)  
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Construction of fuzzy sets:
Design guidelines (1)

Strive for highly visible and well-defined semantics of information granules.  

Keep the  number of information granules quite low ( 7 ± 2 fuzzy sets). 

 

There are several fundamental views at fuzzy sets and depending upon them, 

consider the use of various estimation techniques. 

 

Fuzzy sets are context-sensitive constructs and require careful calibration. This 

The calibration mechanisms being used in the design of the membership 

function are reflective of human-centricity of fuzzy sets. 
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Construction of fuzzy sets:
Design guidelines (2)

two major categories of approaches supporting the design of membership functions: 

data-driven and  expert (user)-driven.  

 

The user-driven membership estimation uses the statistics of data yet in an implicit manner.  

The granular term – fuzzy sets come into existence once there is some experimental  

evidence behind them  

  

the development of fuzzy sets can be carried out in an stepwise manner.  
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