3 Characterization of Fuzzy Sets

Fuzzy Systems Engineering Toward Human-Centric Computing

Contents

3.1 Generic characterization of fuzzy sets: fundamental descriptors **3.2 Equality and inclusion relationships in fuzzy sets 3.3 Energy and entropy measures of fuzziness 3.4 Specificity of fuzzy sets 3.5 Geometric interpretation of sets and fuzzy sets 3.6 Granulation of information 3.7 Characterization of the families of fuzzy sets 3.8 Fuzzy sets, sets, and the representation theorem**

3.1 Generic characterization of fuzzy sets: Some fundamental descriptors

Fuzzy sets

Fuzzy sets are membership functions

$A: \mathbf{X} \to [0, 1]$

In principle: any function is "eligible" to describe fuzzy sets

In practice it is important to consider:

 type, shape, and properties of the function
 nature of the underlying phenomena
 semantic soundness

Pedrycz and Gomide, FSE 2007

$\operatorname{Supp}(A) = \{ x \in \mathbf{X} \mid A(x) > 0 \}$

Open set

 $\operatorname{CSupp}(A) = \operatorname{closure} \{ x \in \mathbf{X} \mid A(x) > 0 \}$

Closed set

Pedrycz and Gomide, FSE 2007

Cardinality

$$\operatorname{Card}(A) = \sum_{x \in \mathbf{X}} A(x)$$

X finite or countable

$$\operatorname{Card}(A) = \int A(x) dx$$

X

Card(A) = |A| sigma count (σ -count)

3.2 Equality and inclusion relationships for fuzzy sets

Equality

 $A = B \text{ iff } A(x) = B(x) \quad \forall x \in \mathbf{X}$

Inclusion

 $A \subseteq B$ iff $A(x) \le B(x) \quad \forall x \in \mathbf{X}$

Degree of inclusion

$$||A(x) \subset B(x)|| = \frac{1}{\operatorname{Card}(\mathbf{X})} \int_{X} (A(x) \Rightarrow B(x)) dx$$

$$A(x) \Rightarrow B(x) = \begin{cases} 1 & \text{if } A(x) \le B(x) \\ 1 - A(x) + B(x) & \text{otherwise} \end{cases}$$

Degree of equality

$$||A(x) = B(x)|| = \frac{1}{\operatorname{Card}(\mathbf{X})} \int_{X} [\min(A(x) \Rightarrow B(x), B(x) \Rightarrow A(x))] dx$$

Examples of fuzzy sets A and B along with their degrees of inclusion:

- (a) $a = 0, n = 2, b = 3; m = 4 \sigma = 2; ||A = B|| = 0.637$
- (b) b = 7 ||A = B|| = 0.864

(c) $a = 0, n = 2, b = 9, m = 4, \sigma = 0.5 ||A = B|| = 0.987$

3.3 Energy and entropy measures of fuzziness

Energy measure of fuzziness

$$E(A) = \sum_{i=1}^{n} e[A(x_i)]$$

 $E(A) = \int e[A(x)] dx$ **X** Card $(\mathbf{X}) = n$

 $e:[0, 1] \to [0, 1]$ such that e(0) = 0e(1) = 1

e: monotonically increasing

Pedrycz and Gomide, FSE 2007

Example

 $e(u) = u \quad \forall u \in [0, 1]$

$$E(A) = \sum_{i=1}^{n} A(x_i) = \operatorname{Card}(A)$$

$$E(A) = \sum_{i=1}^{n} A(x_i) = \sum_{i=1}^{n} |A(x_i) - \phi(x_i)| = d(A, \phi)$$

d = Hamming distance

linear

Inclusion of probabilistic information

$$E(A) = \sum_{i=1}^{n} p_i e[A(x_i)]$$

 p_i : probability of x_i

$$E(A) = \int_{\mathbf{X}} p(x) e[A(x)] dx$$

p(x): probability density function

Entropy measure of fuzziness

$$H(A) = \sum_{i=1}^{n} h[A(x_i)]$$

$$H(A) = \int_{X} h(A(x)) dx$$

 $h: [0,1] \rightarrow [0,1]$ 1-monotonically increasing $[0, \frac{1}{2}]$ 2-monotonically decreasing $(\frac{1}{2}, 1]$ 3-boundary conditions: h(0) = h(1) = 0 $h(\frac{1}{2}) = 1$

Specificity of fuzzy sets

Pedrycz and Gomide, FSE 2007

Specificity

1-Spec(A) = 1 if and only if $\exists x_0 \in A(x_0) = 1$, $A(x) = 0 \quad \forall x \neq x_0$ 2-Spec(A) = 0 if and only if $A(x) = 0 \quad \forall x \in \mathbf{X}$ 3-Spec(A₁) \leq Spec(A₂) if $A_1 \supset A_2$

Examples

$$Spec(A) = \int_0^{\alpha_{\max}} \frac{1}{Card(A_{\alpha})} d\alpha$$

$$Spec(A) = \sum_{i=1}^{m} \frac{1}{Card(A_{\alpha_i})} \Delta \alpha_i$$

Yager (1993)

Geometric interpretation of sets and fuzzy sets

 $\mathbf{X} = \{ x_1, x_2 \} \quad P(\mathbf{X}) = \{ \emptyset, \{x_1\}, \{x_2\}, \{ x_1, x_2\} \}$

3.4 Granulation of information

Motivation

• Need of granulation:

abstract informationsummarize information

• Purpose:

- comprehension
- decision making
- description

Discretization, quantization, granulation

Pedrycz and Gomide, FSE 2007

Formal mechanisms of granulation

 $\langle \mathbf{X}, G, S, C \rangle$

X: universe

G: formal framework of granulationS: collection of information granulesC: transformation

3.5 Characterization of families of fuzzy sets

Frame of cognition

Codebook of conceptual entities

- family of linguistic landmarks

 $\Phi = \{A_1, A_2, \dots, A_m\}$

 A_i is a fuzzy set on **X**, i = 1, ..., m

• Granulation that satisfies semantic constraints

– coverage
– semantic soundness

Coverage

 $\Phi = \{A_1, A_2, \dots, A_m\}$ covers **X** if, for any $x \in \mathbf{X}$

 $\exists i \in I \mid A_i(x) > 0$ $\exists i \in I \mid A_i(x) > \delta \quad (\delta \text{-level coverage}) \ \delta \in [0, 1]$ $A_i \text{ 's are fuzzy set on } \mathbf{X}, \ i \in I = \{1, ..., m\}$

Semantic soundness

- Each A_i , $i \in I = \{1, ..., m\}$ is unimodal and normal
- Fuzzy sets A_i are disjoint enough (λ -overlapping)
- Number of elements of Φ is low

Characteristics of frames of Cognition

• Specificity: Φ_1 more specific than Φ_2 if $\text{Spec}(A_{1i}) > \text{Spec}(A_{2i})$

• Granularity: Φ_1 finer than Φ_2 if $|\Phi_1| > |\Phi_2|$

Focus of attention

Regions of focus of attention implied by the corresponding fuzzy sets

Information hiding

 $x \in [a_2, a_3]$ indistinguishable for A, but not for B

3.6 Fuzzy sets, sets and the representation theorem

Any fuzzy set can be viewed as a family of sets:

Example

 $\mathbf{X} = \{1, 2, 3, 4\}$ $A = \{0/1, 0.1/2, 0.3/3, 1/4, 0.3/5\} = [0, 0.1, 0.3, 1, 0.3]$ $A_{0.1} = \{0/1, 1/2, 1/3, 1/4, 1/5\} = [0, 1, 1, 1, 1] \rightarrow 0.1A_{0.1} = [0, 0.1, 0.1, 0.1, 0.1]$ $A_{0.3} = \{0/1, 0/2, 1/3, 1/4, 1/5\} = [0, 0, 1, 1, 1] \rightarrow 0.3A_{0.3} = [0, 0, 0.3, 0.3, 0.3]$ $A_1 = \{0/1, 0/2, 0/3, 1/4, 0/5\} = [0, 0, 0, 1, 0] \rightarrow 1.0A_1 = [0, 0, 0, 1, 0]$ $A = \max(0.1A_{0.1}, 0.3A_{0.3}, 1A_1)$

 $A = \max(0.1A_{0.1}, 0.3A_{0.3}, 1A_1)$

 $A = [\max(0,0,0), \max(0.1,0,0), \max(0.1,0.3,0), \max(0.1,0.3,1), \max(0.1,0.3,0)]$

A = [0, 0.1, 0.3, 1, 0.3]