
3 Characterization
of Fuzzy Sets 

Fuzzy Systems Engineering
Toward Human-Centric Computing



3.1 Generic characterization of fuzzy sets: fundamental descriptors

3.2 Equality and inclusion relationships in fuzzy sets

3.3 Energy and entropy measures of fuzziness

3.4 Specificity of fuzzy sets

3.5 Geometric interpretation of sets and fuzzy sets

3.6 Granulation of information

3.7 Characterization of the families of fuzzy sets

3.8 Fuzzy sets, sets, and the representation theorem

Contents

Pedrycz and Gomide, FSE 2007



3.1 Generic characterization of 
fuzzy sets:

Some fundamental descriptors
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Fuzzy sets
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• Fuzzy sets are membership functions

• In principle: any function is “eligible” to describe fuzzy sets

• In practice it is important to consider:
– type, shape, and properties of the     function
– nature of the underlying phenomena
– semantic soundness

A: X → [0, 1]



Normality
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Normalization
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Convexity
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Cardinality
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3.2 Equality and inclusion 
relationships for fuzzy sets



Equality
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A = B iff A(x) = B(x)  ∀x ∈ X

Inclusion

A ⊆ B iff A(x) ≤ B(x)  ∀x ∈ X
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Degree of inclusion
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Degree of equality
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Example

Examples of fuzzy sets A and B along with their degrees of inclusion: 

(a)   a = 0, n = 2, b =3; m = 4 σ = 2; ||A = B|| = 0.637

(b) b = 7   ||A = B|| = 0.864

(c)  a = 0, n = 2, b = 9,  m = 4, σ = 0.5 || A =B || = 0.987
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3.3 Energy and entropy
measures of fuzziness



Energy measure of fuzziness

Pedrycz and Gomide, FSE 2007

∑
=

=
n

i
ixAeAE

1
)]([)( Card (X) = n

∫=
X

xxAeAE d)]([)(

e : [0, 1] → [0, 1] such that

e(0) = 0

e(1) = 1

e: monotonically increasing



Pedrycz and Gomide, FSE 2007

Example

e(u) =  u ∀u ∈ [0, 1]                            linear
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e(u) non-linear
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Inclusion of probabilistic information
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Entropy measure of fuzziness
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h : [0,1] → [0,1]

1-monotonically increasing [0, ½]

2-monotonically decreasing (½, 1]

3-boundary conditions:
h(0) = h (1) = 0
h(½) = 1



Specificity of fuzzy sets 
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Specificity
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1-Spec(A) = 1 if and only if ∃x0 ∈ A(x0) = 1, A(x) = 0   ∀x≠ x0

2-Spec(A) = 0 if and only if A(x) = 0 ∀x ∈ X

3-Spec(A1) ≤ Spec(A2) if A1 ⊃ A2
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Examples

Pedrycz and Gomide, FSE 2007

∫
α

α
α= max

0
d

)(
1

)(
ACard

ASpec

∑
= α

α∆=
m

i
i

iACard
ASpec

1 )(
1

)(

Yager (1993)



Geometric interpretation of sets and 
fuzzy sets
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X = { x1, x2}   P(X) = {∅, {x1}, { x2}, { x1, x2}}
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3.4 Granulation of information
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Motivation

• Need of granulation:

– abstract information
– summarize information

• Purpose:

– comprehension
– decision making
– description 



Discretization, quantization, granulation
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Formal mechanisms of granulation
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〈X, G, S, C 〉

X : universe

G: formal framework of granulation

S: collection of information granules

C: transformation G
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3.5 Characterization of families 
of fuzzy sets



Frame of cognition
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• Codebook of conceptual entities

– family of linguistic landmarks

Φ = {A1, A2, … ., Am}

Ai is a fuzzy set on X, i = 1, …, m

• Granulation that satisfies semantic constraints

– coverage
– semantic soundness



Coverage
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Φ= {A1, A2, … ., Am} covers  X if, for any x ∈ X

∃i ∈ I | Ai(x) > 0

∃i ∈ I | Ai(x) > δ (δ-level coverage) δ ∈ [0, 1]

Ai´s are fuzzy set on X,  i ∈ I = {1, …, m}



Semantic soundness 
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• Each Ai, i ∈ I = {1, …, m}  is unimodal and normal

• Fuzzy sets Ai are disjoint enough (λ-overlapping)

• Number of elements of Φ is low
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Characteristics of frames of Cognition
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• Specificity: Φ1 more specific than Φ2 if Spec(A1i) > Spec(A2j)

• Granularity: Φ1 finer than Φ2 if |Φ1| > |Φ2|
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• Focus of attention
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• Information hiding
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3.6 Fuzzy sets, sets and
the representation
theorem
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Any fuzzy set can be viewed as a family of sets:

Pedrycz and Gomide, FSE 2007

)(sup)(
]1,0[

]1,0[

xAxA

AA

α
∈α

∈α
α

α=

α= U 1.0

x

A

αj

αk

αi

αkAαk

Aαi



Example

Pedrycz and Gomide, FSE 2007

X = {1, 2, 3, 4}

A = {0/1, 0.1/2, 0.3/3, 1/4, 0.3/5} = [0, 0.1, 0.3, 1, 0.3]

A0.1 = {0/1, 1/2, 1/3, 1/4, 1/5}  = [0, 1, 1, 1, 1] → 0.1A0.1 = [0, 0.1, 0.1, 0.1, 0.1]

A0.3 = {0/1, 0/2, 1/3, 1/4, 1/5}  = [0, 0, 1, 1, 1] → 0.3A0.3 = [0, 0 , 0.3, 0.3, 0.3]

A1 = {0/1, 0/2, 0/3, 1/4, 0/5}    = [0, 0, 0, 1, 0] → 1.0A1 = [0, 0, 0, 1, 0]

A = max (0.1A0.1 , 0.3A0.3 , 1A1 )

A = [max (0,0,0), max(0.1,0,0), max(0.1,0.3,0), max(0.1,0.3,1), max(0.1,0.3,0)]

A = [0, 0.1, 0.3, 1, 0.3]


