11 Fuzzy Rule-Based Models

Fuzzy Systems Engineering
Toward Human-Centric Computing

Contents

11.1 Fuzzy rules as a vehicle of knowledge representation 11.2 General categories of fuzzy rules and their semantics
11.3 Syntax of fuzzy rules
11.4 Basic functional modules
11.5 Types of rule-based systems and architectures
11.6 Approximation properties of fuzzy rule-based models
11.7 Development of rule-based systems
11.8 Parameter estimation procedure for functional rule-based systems
11.9 Design of rule-based systems: consistency, completeness and the curse of dimensionality
11.10 Course of dimensionality in rule-based systems
11.11 Development scheme of fuzzy rule-based models

11.1 Fuzzy rules as a vehicle of knowledge representation

Rule $=$ conditional statement

－If \langle input variable is $A\rangle$ then \langle output variable is $B\rangle$
－A and B ：descriptors of pieces of knowledge
－rule：expresses a relationship between inputs and outputs
－Example

- If 〈 the temperature is high＞then＜the electricity demand is high＞
- If and then parts 〈．．．．．．．〉 formed by information granules
－sets
－rough sets
－fuzzy sets

Rule-based system/model (FRBS)

- FRBS is a family of rules of the form

If $\left\langle\right.$ input variable is $\left.A_{i}\right\rangle$ then $\left\langle\right.$ output variable is $\left.B_{i}\right\rangle$
$i=1,2, \ldots, c$
A_{i} and B_{i} are information granules

- More complex rules

If $\left\langle\right.$ input variable ${ }_{1}$ is $\left.A_{i}\right\rangle$ and $\left\langle\right.$ input variable ${ }_{2}$ is $\left.B_{i}\right\rangle$ and then $\left\langle\right.$ output variable is $\left.Z_{i}\right\rangle$

- multidimensional input space (Cartesian product of inputs)
- individual inputs aggregated by the and connective
- highly parallel, modular granular model

11.2 General categories of fuzzy rules and their semantics

Multi-input multi-output fuzzy rules

- If X_{1} is A_{1} and X_{2} is A_{2} and and X_{n} is A_{n} then Y_{1} is B_{1} and Y_{2} is B_{2} and $\ldots .$. and Y_{m} is B_{m} $X_{i}=$ variables whose values are fuzzy sets A_{i} $Y_{j}=$ variables whose values are fuzzy sets B_{j}

$$
\begin{aligned}
& A_{i} \text { on } \mathbf{X}_{i}, i=1,2, \ldots, n \\
& B_{j} \text { on } \mathbf{Y}_{j}, j=1,2, \ldots, m
\end{aligned}
$$

- No loss of generality if we assume rules of the form If X is A and Y is B then Z is C

Certainty-qualified rules

- If X is A and Y is B then Z is C with certainty μ $\mu \in[0,1]$
μ : degree of certainty of the rule
$\mu=1$ rule is certain

Gradual rules

- the more X is A the more Y is B
- relationships between changes in X and Y
- captures tendency between information granules
- Examples: the higher the income, the higher the taxes the lower the temperature, the higher energy consumption

Functional fuzzy rules

- If X is $A i$ then $y=f\left(x, a_{i}\right)$

$$
\begin{aligned}
& f: \mathbf{X} \rightarrow \mathbf{Y} \\
& \mathbf{x} \in \mathrm{R}^{n}
\end{aligned}
$$

- Rule: confines the function to the support of granule A_{i} f : linear or nonlinear (neural nets, etc..)
- Highly modular models

11.3 Syntax of fuzzy rules

Backus-Naur form (BNF)

```
< If_then_rule\rangle ::= if \langleantecedent\rangle then <consequent\rangle{\langlecertainty\rangle}
<gradual_rule \rangle::= <word\rangle \antecedent\\langleword\rangle <consequent\rangle
    <word\rangle ::= \langlemore\rangle {\langleless\rangle}
    <antecedent\rangle ::= <expression\rangle
    <consequent\rangle ::= <expression\rangle
    <expression\rangle ::= \langledisjunction\rangle{and \langledisjunction\rangle}
    <disjunction\rangle::= <variable\rangle{or\variable\rangle}
        <variable\rangle::= <attribute\rangle is \langlevalue\rangle
        <certainty\rangle::= \langlenone\rangle{certainty }\mu\in[0,1]
```


Construction of computable representations

Main steps:

1. specification of the fuzzy variables to be used
2. association of the fuzzy variables using fuzzy sets
3. computational formalization of each rule using fuzzy relations and definition of aggregation operator to combine rules together

11.4 Basic functional modules of FRBS

General architecture of FRBS

Input interface

- (attribute) of (input) is (value)
the temperature of the motor is high
- Canonical (atomic) form

Multiple fuzzy inputs: conjunctive canonical form

$\mathrm{p}: X_{1}$ is A_{1} and X_{2} is A_{2} and and X_{n} is A_{n} conjunctive canonical form
X_{i} are fuzzy (linguistic) variables
A_{i} : fuzzy sets on \mathbf{X}_{i}
$i=1,2, \ldots, n$
Compound proposition induces a fuzzy relation P on $\mathbf{X}_{1} \times \mathbf{X}_{1} \times \ldots \mathbf{X}_{n}$

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) t A_{2}\left(x_{2}\right) t \ldots t A_{n}\left(x_{n}\right)=\prod_{i=1}^{n} A_{i}\left(x_{i}\right) \quad t(T)=\text { t-norm } \\
& \mathrm{p}:\left(X_{1}, X_{2}, \ldots . ., X_{n}\right) \text { is } P
\end{aligned}
$$

Example

- Fuzzy relation associated with (X, Y) is P
- Triangular fuzzy sets $A_{1}(x, 4,5,6)=A, A_{2}(y, 8,10,12)=B$
- t-norm: algebraic product

Multiple fuzzy inputs: disjunctive canonical form

$\mathrm{q}: X_{1}$ is A_{1} or X_{2} is A_{2} or $\ldots .$. or X_{n} is $A_{n} \quad$ disjunctive canonical form
X_{i} are fuzzy (linguistic) variables
A_{i} : fuzzy sets on \mathbf{X}_{i}
$i=1,2, \ldots, n$
Compound proposition induces a fuzzy relation Q on $\mathbf{X}_{1} \times \mathbf{X}_{1} \times \ldots \mathbf{X}_{n}$

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=A_{1}\left(x_{1}\right) s A_{2}\left(x_{2}\right) s \ldots s A_{n}\left(x_{n}\right)=\int_{i=1}^{n} A_{i}\left(x_{i}\right) \quad s(S)=\text { t-conorm } \\
& \mathrm{q}:\left(X_{1}, X_{2}, \ldots . ., X_{n}\right) \text { is } Q
\end{aligned}
$$

Example

- Fuzzy relation associated with (X, Y) is Q
-Triangular fuzzy sets $A_{1}(x, 4,5,6)=A, \quad A_{2}(y, 8,10,12)=B$
- t-conorm: probabilistic sum

Rule base

- Fuzzy rule: If X is A then Y is $B \equiv$ relationship between X and Y
- Semantics of the rule is given by a fuzzy relation R on $\mathbf{X} \times \mathbf{Y}$
- R determined by a relational assignment

$$
\begin{aligned}
& R(x, y)=f(A(x), B(y)) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y} \\
& f:[0,1]^{2} \rightarrow[0,1]
\end{aligned}
$$

- In general f can be
- fuzzy conjunction: f_{t}
- fuzzy disjunction: f_{s}
- fuzzy implication: f_{i}

Fuzzy conjunction

Choose a t-norm t and define:

$$
R(x, y) \equiv f_{t}(x, y)=A(x) t B(y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

Examples:

$$
\begin{aligned}
& \cdot t=\min \\
& R_{c}(x, y) \equiv f_{c}(x, y)=\min [A(x) t B(y)]
\end{aligned}
$$

(Mamdani)

- $t=$ algebraic product

$$
R_{p}(x, y) \equiv f_{p}(x, y)=A(x) B(y)
$$

(Larsen)

Example: $t=\min$

$$
R_{c}(x, y)=\min \{A(x), B(y)\}
$$

$$
\forall(A(x), B(y)) \in[0,1]^{2}
$$

(c) Min and triangular fuzzy sets

$$
\begin{gathered}
R_{c}(x, y)=\min \{A(x), B(y)\} \\
A(x)=A(x, 4,5,6) \\
B(y)=B(y, 4,5,6)
\end{gathered}
$$

Example: $t=$ algebraic product

$$
\begin{gathered}
R_{p}(x, y)=A(x) B(y) \\
\forall(A(x), B(y)) \in[0,1]^{2}
\end{gathered}
$$

(d) Product and triangular fuzzy sets

$$
\begin{gathered}
R_{p}(x, y)=A(x) B(y) \\
A(x)=A(x, 4,5,6) \\
B(y)=B(y, 4,5,6)
\end{gathered}
$$

Fuzzy disjunction

Choose a t-conorm s and define:

$$
R_{s}(x, y) \equiv f_{s}(x, y)=A(x) s B(y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

Examples:
-s = max

$$
R_{m}(x, y) \equiv f_{m}(x, y)=\max [A(x) t B(y)]
$$

- $s=$ Lukasiewicz t-conorm

$$
R_{\ell}(x, y) \equiv f_{\ell}(x, y)=\min [1, A(x)+B(y)]
$$

Example: $s=\max$

$$
\begin{gathered}
R_{\ell}(x, y)=\max \{A(x), B(y)\} \\
\forall(A(x), B(y)) \in[0,1]^{2}
\end{gathered}
$$

$$
R_{\ell}(x, y)=\max \{A(x), B(y)\}
$$

$$
A(x)=A(x, 4,5,6)
$$

$$
B(y)=B(y, 4,5,6)
$$

Example: $s=$ Lukasiewicz

$$
R_{c}(x, y)=\min \{1, A(x)+B(y)\}
$$

$$
\forall(A(x), B(y)) \in[0,1]^{2}
$$

(d) Lukasiewicz s-norm and triangular fuzzy sets

$$
R_{c}(x, y)=\min \{1, A(x)+B(y)\}
$$

$$
A(x)=A(x, 4,5,6)
$$

$$
B(y)=B(y, 4,5,6)
$$

Fuzzy implication

- Choose a fuzzy implication f_{i} and define:

$$
R_{i}(x, y) \equiv f_{i}(x, y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y}
$$

- $f_{i}:[0,1]^{2} \rightarrow[0,1]$ is a fuzzy implication if:

1. $B\left(y_{1}\right) \leq B\left(y_{2}\right) \Rightarrow f_{i}\left(A(x), B\left(y_{1}\right)\right) \leq f_{i}\left(A(x), B\left(y_{2}\right)\right)$
2. $f_{i}(0, B(y))=1$
3. $f_{i}(1, B(y))=B(y)$
monotonicity $2^{\text {nd }}$ argument
dominance of falsity
neutrality of truth

- Further requirements may include:

4. $A\left(x_{1}\right) \leq A\left(x_{2}\right) \Rightarrow f_{i}\left(A\left(x_{1}\right), B(y)\right) \geq f_{i}\left(A\left(x_{2}\right), B(y)\right)$
5. $f_{i}\left(A\left(x_{1}\right), f_{i}\left(A\left(x_{2}\right), B(y)\right)=f_{i}\left(A\left(x_{2}\right), f_{i}\left(A\left(x_{1}\right), B(y)\right)\right.\right.$
6. $f_{i}(A(x), A(x))=1$
7. $f_{i}(A(x), B(y))=1 \Leftrightarrow A(x) \leq B(y)$
8. f_{i} is a continuous function
monotonicity $1^{\text {st }}$ argument
exchange
identity
boundary condition
continuity

Examples of fuzzy implications

Name	Definition	Comment
Lukasiewicz	$f_{\ell}(A(x), B(y))=\min [1,1-A(x)+B(y)]$	
Pseudo-Lukasiewicz	$f_{\lambda}(A(x), B(y))=\min \left[1, \frac{1-A(x)+(\lambda+1) B(y)}{1+\lambda A(x)}\right]$	$\lambda>-1$
Pseudo-Lukasiewicz	$f_{w}(A(x), B(y))=\min \left[1,\left(1-A(x)^{w}+B(y)^{w}\right)^{1 / w}\right]$	$w>0$
Gaines	$f_{a}(A(x), B(y))=\left\{\begin{array}{cc}1 & \text { if } A(x) \leq B(y) \\ 0 & \text { otherwise }\end{array}\right.$	
Gödel	$f_{g}(A(x), B(y))=\left\{\begin{array}{cc} 1 & \text { if } A(x) \leq B(y) \\ B(y) & \text { otherwise } \end{array}\right.$	
Goguen	$f_{e}(A(x), B(y))=\left\{\begin{array}{cc} 1 & \text { if } A(x) \leq B(y) \\ \frac{B(y)}{A(x)} & \text { otherwise } \end{array}\right.$	
Kleene	$f_{b}(A(x), B(y))=\max [1-A(x), B(y)]$	
Reichenbach	$\left.f_{r}(A(x), B(y))=1-A(x)+A(x) B(y)\right]$	
Zadeh	$f_{z}(A(x), B(y))=\max [1-A(x), \min (A(x), B(y))]$	
Klir-Yuan	$f_{k}(A(x), B(y))=1-A(x)+A(x)^{2} B(y)$	

Example: $f_{\ell}=$ Lukasiewicz

$R_{\ell}(x, y)=\min \{1,1-A(x)+B(y)\}$

$$
\forall(A(x), B(y)) \in[0,1]^{2}
$$

(c) Lukasiewicz implication and triangular fuzzy sets

$$
\begin{gathered}
R_{\ell}(x, y)=\min \{1,1-A(x)+B(y)\} \\
A(x)=A(x, 4,5,6) \\
B(y)=B(y, 4,5,6)
\end{gathered}
$$

Example: $f_{k}=$ Klir-Yuan

$$
\begin{gathered}
R_{k}(x, y)=1-A(x)+A(x)^{2} B(y) \\
\forall(A(x), B(y)) \in[0,1]^{2}
\end{gathered}
$$

$$
\begin{gathered}
R_{k}(x, y)=1-A(x)+A(x)^{2} B(y) \\
A(x)=A(x, 4,5,6) \\
B(y)=B(y, 4,5,6)
\end{gathered}
$$

- Categories of fuzzy implications:

1. s-implications

$$
\begin{aligned}
& f_{i S}(A(x), B(y))=\bar{A}(x) s B(y) \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y} \\
& f_{b}(A(x), B(y))=\max [1-A(x), B(y)] \quad \text { Kleene } \\
& f_{g}(A(x), B(y))=\min \{1,1-A(x)+B(y)\} \quad \text { Lukasiewicz }
\end{aligned}
$$

2. r-implications

$$
\begin{aligned}
& f_{\text {ir }}(A(x), B(y))=\sup [c \in[0,1] \mid A(x) t c \leq B(y)] \quad \forall(x, y) \in \mathbf{X} \times \mathbf{Y} \\
& t=\min \\
& f_{g}(A(x), B(y))=\left\{\begin{array}{ll}
1 & \text { if } A(x) \leq B(y) \\
B(y) & A(x)>B(y)
\end{array} \quad\right. \text { Gödel }
\end{aligned}
$$

Semantics of gradual rules

$$
\text { the more } X \text { is } A \text {, the more } Y \text { is } B \quad \Rightarrow B(y) \geq A(x) \quad \forall x \in \mathbf{X} \text { and } \forall y \in \mathbf{Y}
$$

$$
B_{R d}=\{y \in \mathbf{Y} \mid B(y) \geq A(x)\} \text { for each } x \in \mathbf{X}
$$

Example: $R_{d}=f_{a}=$ Gaines

$$
R_{d}(x, y)= \begin{cases}1 & \text { if } B(y) \geq A(x) \\ 0 & \text { otherwise }\end{cases}
$$

$$
R_{d}(x, y)
$$

$\forall(A(x), B(y)) \in[0,1]^{2}$

$R_{d}(x, y)$
$A(x)=A(x, 3,5,7)$
$B(y)=B(y, 3,5,7)$

Main types of rule bases

- Fuzzy rule base $\equiv\left\{R_{1}, R_{2}, \ldots, R_{N}\right\} \equiv$ finite family of fuzzy rules
- Fuzzy rule base can assume various formats:

1. fuzzy graph
R_{i} : If X is A_{i} then Y is B_{i} is a fuzzy granule in $\mathbf{X} \times \mathbf{Y}, i=1, \ldots, N$
2. fuzzy implication rule base
R_{i} : If X is A_{i} then Y is B_{i} is fuzzy implication, $i=1, \ldots, N$
3. functional fuzzy rule base
R_{i} : If X is A_{i} then $y=f_{i}(x)$ is a functional fuzzy rule, $i=1, \ldots, N$

Fuzzy graph

- Fuzzy rule base $R \equiv$ collection of rules $R_{1}, R_{2}, \ldots, R_{N}$
- Each fuzzy rule R_{i} is a fuzzy granule (point)
- Fuzzy graph \equiv R is a collection of fuzzy granules
- granular approximation of a function

$$
R=\bigcup_{i=1}^{N} R_{i}=\bigcup_{i=1}^{N}\left(A_{i} \times B_{i}\right)
$$

- $R=R_{1}$ or R_{2} or....or R_{N}
- general form

$$
R(x, y)=\int_{i=1}^{N}\left[A_{i}(x) t B_{i}(y)\right]
$$

Point

(c)

Point P in $\mathbf{X} \times \mathbf{Y}$

$$
P=A \times B
$$

A is a singleton in \mathbf{X} B is a singleton in \mathbf{Y}

Granule

Granule G in $\mathbf{X} \times \mathbf{Y}$ $G=A \times B$
A is an interval in \mathbf{X} B is an interval in \mathbf{Y}

Fuzzy granules = fuzzy points

fuzzy granule R in $\mathbf{X} \times \mathbf{Y}$

$$
R=A \times B
$$

A is a fuzzy set on \mathbf{X} B is a fuzzy set on \mathbf{Y}

Fuzzy rule base as a set fuzzy granules

$R_{i}=A_{i} \times B_{i}$

Graph of a function f and its granular approximation R

f
(b) Granular approximation of $y=f(x)$

R

Fuzzy rule base and fuzzy graph

Example 1

$$
\begin{aligned}
& R_{i}=A_{i} \times B_{i} \Rightarrow R_{\mathrm{i}}(x, y)=\min \left[A_{i}(x), B_{i}(y)\right] \\
& R=\cup R_{i} \Rightarrow R(x, y)=\max \left[R_{i}(\mathrm{x}, \mathrm{y}), i=1, \ldots, N\right]
\end{aligned}
$$

Fuzzy rule base and fuzzy graph

Example 2

$$
\begin{aligned}
& R_{i}=A_{i} t B_{i} \Rightarrow R_{i}(x, y)=A_{i}(x) B_{i}(y) \\
& R=\cup R_{i} \Rightarrow R(x, y)=\max \left[R_{i}(x, y), i=1, \ldots, N\right]
\end{aligned}
$$

Fuzzy implication

- Fuzzy rule base $R \equiv$ collection of rules $R_{1}, R_{2}, \ldots, R_{N}$
- Each fuzzy rule R_{i} is a fuzzy implication
- Fuzzy rule base R is a collection of fuzzy relations
- relation R is obtained using intersection

$$
R=\bigcap_{i=1}^{N} R_{i}=\bigcap_{i=1}^{N}, f_{i}=\bigcap_{i=1}^{N}\left(A_{i} \Rightarrow B_{i}\right)
$$

- $R=R_{1}$ and R_{2} and....and R_{N}
- general form

$$
R={ }_{i=1}^{N} f_{i}\left(A_{i}(x), B_{i}(y)\right)
$$

Fuzzy rule as an implication

fuzzy rule R in $\mathbf{X} \times \mathbf{Y}$
$R=f_{\ell}(A, B)$
Lukasiewicz implication

Fuzzy rule base and fuzzy implication

Example 1a

$R_{i}=f_{\ell}(A, B) \Rightarrow R_{\mathrm{i}}(x, y)=\min \left[1,1-A_{i}(x)+B_{i}(y)\right] \quad$ Lukasiewicz implication
$R=\cap R_{i} \Rightarrow R(x, y)=\min \left[R_{i}(x, y), i=1, \ldots, 5\right] \quad \min \mathrm{t}$-norm

Fuzzy rule base and fuzzy implication

Example 1b

$R_{i}=f_{\ell}(A, B) \Rightarrow R_{\mathrm{i}}(x, y)=\min \left[1,1-A_{i}(x)+B_{i}(y)\right] \quad$ Lukasiewicz implication
$R=\cap R_{i} \Rightarrow R(x, y)=R_{1}(x, y) t_{1} R_{2}(x, y) t_{1} \ldots t_{1} R_{i}(x, y) \quad$ Lukasiewicz t-norm

Fuzzy rule base and fuzzy implication

Example 2a

$R_{i}=f_{z}(A, B) \Rightarrow R_{\mathrm{i}}(x, y)=\max \left[1-A_{i}(x), \min \left(A_{\mathrm{i}}(x), B_{i}(y)\right]\right.$ $R=\cap R_{i} \Rightarrow R(x, y)=\min \left[R_{i}(x, y), i=1, \ldots, 5\right]$

Zadeh implication min t-norm

Fuzzy rule base and fuzzy implication

Example 2b

$$
\begin{aligned}
& R_{i}=f_{z}(A, B) \Rightarrow R_{\mathrm{i}}(x, y)=\max \left[1-A_{i}(x), \min \left(A_{\mathrm{i}}(x), B_{i}(y)\right]\right. \\
& R=\cap R_{i} \Rightarrow R(x, y)=R_{1}(x, y) t_{1} R_{2}(x, y) t_{1} \ldots . t_{1} R_{i}(x, y)
\end{aligned}
$$

Zadeh implication Lukasiewicz t-norm

Data base

- Data base contains definitions of:
- universes
- scaling functions of input and output variables
- granulation of the universes membership functions
- Granulation
- granular constructs in the form of fuzzy points
- granules along different regions of the universes
- Construction of membership functions
- expert knowledge
- learning from data

Granulation

granular constructs in the form of fuzzy points

granules along different regions of the universes

Fuzzy inference

- Basic idea of inference

$$
\begin{aligned}
& x=a \\
& y=f(x) \\
& y=b \\
& \\
& b=\operatorname{Proj}_{\mathbf{Y}}\left(a_{c} \cap f\right) \\
& \Downarrow \\
& b=\operatorname{Proj}_{\mathbf{Y}}(I)
\end{aligned}
$$

Inference involves operations with sets

$$
\begin{aligned}
& x=\mathrm{A} \\
& y=f(x) \\
& B=f(A)=\{f(x), x \in A\} \\
& B=\operatorname{Proj}_{\mathbf{Y}}\left(A_{c} \cap f\right) \\
& \quad \Downarrow \\
& B=\operatorname{Proj}_{\mathbf{Y}}(I)
\end{aligned}
$$

Inference involving sets and relations

x is A
(x, y) is R
y is B
$B=\operatorname{Proj}_{\mathrm{Y}}\left(A_{c} \cap R\right)$
\Downarrow
$B=\operatorname{Proj}_{\mathrm{Y}}(I)$

Fuzzy inference ands operations with fuzzy sets and relations

$$
\begin{array}{ll}
X \text { is } A & \text { (fuzzy set on } \mathbf{X} \text {) } \\
(X, Y) \text { is } R & \text { (fuzzy relation on } \mathbf{X} \times \mathbf{Y}) \\
Y \text { is } B \quad & \text { (fuzzy set on } \mathbf{Y})
\end{array}
$$

$$
\begin{gathered}
B=\operatorname{Proj}_{\mathbf{Y}}\left(A_{c} \cap R\right) \\
\Downarrow
\end{gathered}
$$

$$
B=\operatorname{Proj}_{\mathbf{Y}}(I) \quad \Rightarrow \quad B(y)=\sup _{x \in \mathbf{X}}\{A(x) t R(x, y)\}
$$

Fuzzy inference

- Compositional rule of inference
X is A
(X, Y) is R
Y is B
$B=A \circ R$
X is A
(X, Y) is R
Y is $A \circ R$

Fuzzy inference procedure

procedure FUZZY-INFERENCE (A, R) returns a fuzzy set input : fuzzy relation: R fuzzy set: A
local: x, y : elements of \mathbf{X} and \mathbf{Y}
t : t-norm

$$
\begin{aligned}
& \text { for all } x \text { and } y \text { do } \\
& \quad A_{c}(x, y) \leftarrow A(x) \\
& \text { for all } x \text { and } y \text { do } \\
& \quad I(x, y) \leftarrow A_{c}(x, y) t R(x, y) \\
& B(y) \leftarrow \sup _{x} I(x, y) \\
& \text { return B }
\end{aligned}
$$

Example: compositional rule of inference

Example: fuzzy inference with fuzzy graph

11.5 Types of rule-based systems and architectures

Linguistic fuzzy models

P	X is A and Y is B	input
R_{1} :	If X is A_{1} and Y is B_{1} then Z is C_{1}	
R_{i} :	If X is A_{i} and Y is B_{i} then Z is C_{i}	rule base
R_{N} :	If X is A_{N} and Y is B_{N} then Z is C_{N}	
Z:	Z is C	output

- all fuzzy sets A, B, A_{i} s and B_{i}, s are given
- rule and connectives (and, or) with known semantics
- membership function of fuzzy set $C=$??

min-max fuzzy models

Assume

$P: \quad X$ is A and Y is B
R_{i} : If X is A_{i} and Y is B_{i} then Z is C_{i}

$$
i=1, \ldots, N
$$

$P(x, y)=\min \{A(x), B(y)\}$
$R_{i}(x, y, z)=\min \left\{A_{i}(x), B_{i}(y), C_{i}(z)\right\}$

Using the compositional rule of inference $(\mathrm{t}=\mathrm{min})$

$$
C=P \circ R=P \circ \bigcup_{i=1}^{N} R_{i}
$$

$$
C(z)=\sup \left\{\min \left[P(x, y), \max \left(R_{i}(x, y, z), i=1, \ldots, N\right)\right]\right\}
$$

$$
x, y
$$

```
\(C=P \circ R=P \circ \bigcup_{i=1}^{N} R_{i}=\bigcup_{i=1}^{N}\left(P \circ R_{i}\right)=\bigcup_{i=1}^{N} C_{i}^{\prime}\)
\(C_{i}^{\prime}=P \circ R_{i}\)
\(\left.C_{i}^{\prime}(z)=\sup \left\{\min \left[P(x, y), R_{i}(x, y, z)\right]\right\}=\sup \left\{A(x) \wedge B(y) \wedge A_{i}(x) \wedge B_{i}(y) \wedge C_{i}(z)\right]\right\}\)
                        \(x, y\)
                        \(x, y\)
\(\sup \left[A(x) \wedge A_{i}(x)\right]=\operatorname{Poss}\left(A, A_{i}\right)=m_{i}\)
    \(x\)
\(\sup \left[B(y) \wedge B_{i}(y)\right]=\operatorname{Poss}\left(B, B_{i}\right)=n_{i}\)
    \(y\)
\(C_{i}^{\prime}(z)=m_{i} \wedge n_{i} \wedge C_{i}(z)\)
    \(C(z)=\max \left\{\left(m_{i} \wedge n_{i}\right) C_{i}, i=1, \ldots, N\right\}=\max \left\{\lambda_{i} \wedge C_{i}(z), i=1, \ldots, N\right\}\)
```

 \(\lambda_{i}\) is the degree of activation of \(\mathrm{i}-\) th rule

min-max fuzzy model processing

procedure MIN-MAX-MODEL (A, B) returns a fuzzy set
local: fuzzy sets: $A_{i}, B_{i}, C_{i}, i=1, . ., N$ activation degrees: λ_{i}

Initialization $C=\varnothing$
for $i=1: N$ do
$m_{i}=\max \left(\min \left(A, A_{i}\right)\right)$
$n_{i}=\max \left(\min \left(B, B_{i}\right)\right)$
$\lambda_{i}=\min \left(m_{i}, n_{i}\right)$
if $\lambda_{i} \neq 0$ then $C_{i}^{\prime}=\min \left(\lambda_{i}, C_{i}\right)$ and $C=\max \left(C, C_{i}^{\prime}\right)$
return C

Example: min-max fuzzy model processing

min-max fuzzy model architecture

Special case: numeric inputs

$$
A(x)=\left\{\begin{array}{ll}
1 & \text { if } x=x_{O} \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad B(y)= \begin{cases}1 & \text { if } y=y_{O} \\
0 & \text { otherwise }\end{cases}\right.
$$

Numeric output

$z=\frac{\int_{\mathbf{Z}} z C(z) d z}{\int_{\mathbf{Z}} C(z) d z} \quad$ centroid defuzzification
$z=\frac{\sum_{i=1}^{N}\left(m_{i} \wedge n_{i}\right) v_{i}}{\sum_{i=1}^{N}\left(m_{i} \wedge n_{i}\right)} \quad$ weighted average modal values v_{i}

Example

P: $\quad X$ is x_{o} and Y is $y_{o} \quad$ inputs $\left(x_{o}, y_{o}\right), \forall x_{o}, y_{o} \in[-2,2]$
R_{1} : If X is A_{1} and Y is B_{1} then Z is C_{1}
$R_{2}: \quad$ If X is A_{2} and Y is B_{2} then Z is $\left.C_{2}\right\}$ rules
$N=2, \quad$ centroid defuzzification

min-sum fuzzy models

Assume

$P: \quad X$ is A and Y is B
$R_{i}:$ If X is A_{i} and Y is B_{i} then Z is C_{i}

$$
i=1, \ldots, N
$$

$P(x, y)=\min \{A(x), B(y)\}$
$R_{i}(x, y, z)=\min \left\{A_{i}(x), B_{i}(y), C_{i}(z)\right\}$

Using the compositional rule of inference ($\mathrm{t}=\mathrm{min}$)

$$
\begin{aligned}
& C_{i}^{\prime}(z)=\sup _{x, y}\left[A(x) \wedge B(y) \wedge A_{i}(x) \wedge B_{i}(y) \wedge C_{i}(z)\right] \\
& C(z)=\sum_{i=1}^{N} w_{i} C_{i}^{\prime}
\end{aligned}
$$

Additive fuzzy models (Kosko, 1992)

Example: min-sum fuzzy model processing

min-sum fuzzy model architecture

Example

P: $\quad X$ is x_{o} and Y is $y_{o} \quad$ inputs $\left(x_{o}, y_{o}\right), \forall x_{o}, y_{o} \in[-2,2]$
$R_{1}: \quad$ If X is A_{1} and Y is B_{1} then Z is C_{1}
$R_{2}: \quad$ If X is A_{2} and Y is B_{2} then Z is $\left.C_{2}\right\}$ rules
$N=2 \quad w_{1}=w_{2}=1$, centroid defuzzification

product-sum fuzzy models

1- Product-probabilistic sum

$$
\begin{gathered}
C_{i}^{\prime}(z)=m_{i} n_{i} C_{i}(z) \\
C(z)=\stackrel{N}{S_{p}} C_{i=1}^{\prime}(z)
\end{gathered}
$$

2- Product-sum

$$
\begin{aligned}
& C_{i}^{\prime}(z)=m_{i} n_{i} C_{i}(z) \\
& C(z)=\sum_{i=1}^{N} C_{i}^{\prime}(z)
\end{aligned}
$$

3 - Bounded product-bounded sum

$$
\begin{aligned}
& C_{i}^{\prime}(z)=m_{i} \otimes n_{i} \otimes C_{i}(z) \\
& C(z)={\underset{i=1}{\oplus} C_{i}^{\prime}(z)}_{a \otimes b=\max \{0, a+b-1\}} \\
& a \oplus b=\min \{1, a+b\} \\
& a, b \in[0,1]
\end{aligned}
$$

Functional fuzzy models

P: $\quad X$ is x and Y is y
$R_{1}: \quad$ If X is A_{1} and Y is B_{1} then $z=f_{1}(x, y)$
R_{i} : If X is A_{i} and Y is B_{i} then $z=f_{i}(x, y) \quad$ rule base
$R_{N}: \quad$ If X is A_{N} and Y is B_{N} then $z=f_{N}(x, y)$
$\lambda_{i}(x, y)=A_{i}(x) t B_{i}(y) \quad t=\mathrm{t}$-norm

$$
z=\sum_{i=1}^{N} w_{i}(x, y) f_{i}(x, y), \quad w_{i}=\frac{\lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}(x, y)}
$$

input
degree of activation
output

Functional fuzzy model architecture

Example 1

\(\left.\begin{array}{ll}P: \& X is x

R_{1}: \& If X is A_{1} then z=x

R_{2}: \& If X is A_{2} then z=-x+3\end{array}\right\} \quad\)| inputs $x \in[0,3]$ |
| :--- |

$$
z= \begin{cases}x & \text { if } x \in(0,1] \\ A_{1}(x) x+A_{2}(x)(-x+3) & \text { if } x \in[1,2] \\ -x+3 & \text { if } x \in[2,3)\end{cases}
$$

Example 2

$\left.\begin{array}{ll}P: & X \text { is } x \\ R_{1}: & \text { If } X \text { is } A_{1} \text { then } y=-\sin (2 x) \\ R_{2}: & \text { If } X \text { is } A_{2} \text { then } y=-0.5 x \\ R_{3}: & \text { If } X \text { is } A_{3} \text { then } y=\sin (3 x)\end{array}\right\} \quad$ rules $\quad x \in[0,3]$

Example 2

$\left.\begin{array}{ll}P: & X \text { is } x \\ R_{1}: & \text { If } X \text { is } A_{1} \text { then } y=-1 \\ R_{2}: & \text { If } X \text { is } A_{2} \text { then } y=x \\ R_{3}: & \text { If } X \text { is } A_{3} \text { then } y=1\end{array}\right\} \quad$ rules \quad inputs \quad r0,3]

Gradual fuzzy models

R_{i} : The more X is A_{i} the more Z is C_{i}

$$
i=1, \ldots, N
$$

$$
\begin{aligned}
& R_{i}(x, y)= \begin{cases}1 & \text { if } C_{i}(z) \geq A_{i}(x) \\
0 & \text { otherwise }\end{cases} \\
& C=\bigcap_{i=1}^{N}\left(C_{i}^{\prime}\right)_{\alpha_{i}}=\bigcap_{i=1}^{N} C_{\alpha_{i}}
\end{aligned}
$$

Gradual fuzzy model architecture

Example: gradual fuzzy model processing

Example

$$
P: \quad X \text { is } x
$$

inputs $x \in[0,3]$
R_{1} : \quad The more X is A_{1} the more Z is C_{1}
R_{2} : \quad The more X is A_{1} the more Z is C_{1}

rules
output

11.6 Approximation properties of fuzzy rule-based models

- FRBS uniformly approximates continuous functions
- any degree of accuracy
- closed and bounded sets
- Universal approximation with (Wang \& Mendel, 1992):
- algebraic product t-norm in antecedent
- rule semantics via algebraic product
- rule aggregation via ordinary sum
- Gaussian membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification
- Universal approximation when (Kosko, 1992):
- min t-norm in antecedent
- rule aggregation via ordinary sum
- symmetric consequent membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification
(additive models)
- Universal approximation with (Castro, 1995):
- arbitrary t-norm in antecedent
- rule semantics: r-implications or conjunctions
- triangular or trapezoidal membership functions
- sup-min compositional rule of inference
- pointwise inputs
- centroid defuzzification

11.7 Development of rule-based systems

Expert-based development

- Knowledge provided by domain experts
- basic concepts and variables
- links between concepts and variables to form rules
- Reflects existing knowledge
- can be readily quantified
- short development time

Example: fuzzy control

$R_{i}:$ If Error is A_{i} and Change of Error is B_{i} then Control is C_{i}
R_{i} : If e is A_{i} and de is B_{i} then u is C_{i}

$$
R_{i}: \text { If } e \text { is } A_{i} \text { and de is } B_{i} \text { then } u \text { is } C_{i}
$$

Change of Error (de) / Error (e)	NM	NS	ZE	PS	PM
NB	PM	NB	NB	NB	NM
NM	PM	NB	NS	NM	NM
NS	PM	NS	Z	NS	NM
Z	PM	NS	Z	NS	NM
PS	PM	PS	Z	NS	NM
PM	PM	PM	PS	PM	NM
PB	PM	PM	PM	PM	NM

Data-driven development

- Given a finite set of input/output pairs

$$
\begin{aligned}
& \left\{\left(\mathbf{x}_{k}, y_{k}\right), k=1, \ldots, M\right\} \\
& \mathbf{x}_{k}=\left[x_{1 k}, x_{2 k}, \ldots, x_{n k}\right] \in \mathrm{R}^{n} \\
& \mathbf{z}_{k}=\left[\mathbf{x}_{k}, y_{k}\right] \in \mathrm{R}^{n+1}, k=1, \ldots, M
\end{aligned}
$$

- Clustering $\mathbf{z}_{k}=\left[\mathbf{x}_{k}, y_{k}\right] \in \mathrm{R}^{n+1}, k=1, \ldots, M$ (e.g. using FCM)

$$
\begin{aligned}
& \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots ., \mathbf{v}_{N} \text { prototypes/cluster centers } \\
& \mathbf{v}_{i} \in \mathrm{R}^{n+1}, i=1, \ldots, N
\end{aligned}
$$

- Idea: fuzzy clusters = fuzzy rules

Example

- Projecting the prototypes in the input and output spaces
$\mathbf{v}_{1}[y], \mathbf{v}_{2}[y], \ldots, \mathbf{v}_{N}[y]$ projections of prototypes in \mathbf{Y} $\mathbf{v}_{1}[\mathbf{x}], \mathbf{v}_{2}[\mathbf{x}], \ldots, \mathbf{v}_{N}[\mathbf{x}]$ projections of prototypes in \mathbf{X}
- R_{i} : If X is A_{i} then Y is $C_{i} i=1, \ldots, N$

11.8 Parameter estimation for functional rule-based systems

- Functional fuzzy rules
- R_{i} : If $X_{i 1}$ is $A_{i 1}$ and \ldots and $X_{i n}$ is $A_{i n}$ then $z=a_{i 0}+a_{i 1} x_{1}+\ldots .+a_{i n t} x_{n}$ $i=1, \ldots, N$
- Given input/output data: $\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots .,\left(\mathbf{x}_{M}, y_{M}\right)\right\}$
- Let $\mathbf{a}_{i}=\left[a_{i 0}, a_{i 1}, a_{i 2}, \ldots, a_{i n}\right]^{\mathrm{T}}$
- Output of functional models

$$
\hat{y}_{k}=\sum_{i=1}^{N} w_{i k} f_{i}\left(\mathbf{x}_{k}, \mathbf{a}_{i}\right), \quad w_{i k}=\frac{\lambda_{i}\left(x_{k}\right)}{\sum_{i=1}^{N} \lambda_{i}\left(x_{k}\right)}
$$

- Output for linear consequents

$$
\hat{y}_{k}=\sum_{i=1}^{N} \mathbf{z}_{i k}^{\mathrm{T}} \mathbf{a}_{i}, \quad \mathbf{z}_{i k}=\left[1, w_{i k} \mathbf{x}_{k}^{\mathrm{T}}\right]^{\mathrm{T}}
$$

Let

$\mathbf{a}=\left[\begin{array}{c}\mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{N}\end{array}\right] \quad \hat{y}_{k}=\left[\mathbf{z}_{1 k}^{\mathrm{T}} \quad \mathbf{z}_{2 k}^{\mathrm{T}} \quad \cdots \quad \mathbf{z}_{N k}^{\mathrm{T}}\right]\left[\begin{array}{c}\mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{N}\end{array}\right]$
and

$$
\mathbf{y}=\left[\begin{array}{c}
\hat{y}_{1} \\
\hat{y}_{2} \\
\vdots \\
\hat{y}_{M}
\end{array}\right] \quad Z=\left[\begin{array}{cccc}
\mathbf{z}_{11}^{\mathrm{T}} & \mathbf{z}_{12}^{\mathrm{T}} & \cdots & \mathbf{z}_{N 1}^{\mathrm{T}} \\
\mathbf{z}_{12}^{\mathrm{T}} & \mathbf{z}_{22}^{\mathrm{T}} & \cdots & \mathbf{z}_{N 2}^{\mathrm{T}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{z}_{1 M}^{\mathrm{T}} & \mathbf{z}_{2 M}^{\mathrm{T}} & \cdots & \mathbf{z}_{N M}^{\mathrm{T}}
\end{array}\right]
$$

then $\mathrm{y}=\mathrm{Za}$

Global least squares approach

$$
\begin{aligned}
& \operatorname{Min}_{\mathrm{a}} J_{G}(\mathbf{a})=\|\mathrm{y}-\mathrm{Za}\|^{2} \\
& \|\mathbf{y}-\mathrm{Za}\|^{2}=(\mathbf{y}-\mathrm{Za})^{\mathrm{T}}(\mathrm{y}-\mathrm{Za})
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{opt}}=\mathrm{Z}^{\#} \mathbf{y} \\
& Z^{\#}=\left(Z^{T}\right)^{-1} Z^{T}
\end{aligned}
$$

Local least squares approach

$$
\begin{gathered}
\operatorname{Min}_{\mathbf{a}} \mathrm{J}_{L}(\mathbf{a})=\sum_{i=1}^{N}\left\|\mathbf{y}-Z_{i} \mathbf{a}_{i}\right\|^{2} \\
Z_{i}=\left[\begin{array}{c}
\mathbf{z}_{i 1}^{\mathrm{T}} \\
\mathbf{z}_{i 2}^{\mathrm{T}} \\
\vdots \\
\mathbf{z}_{i M}^{\mathrm{T}}
\end{array}\right]
\end{gathered}
$$

Solution

$$
\begin{aligned}
& \mathbf{a}_{\text {iopt }}=\mathrm{Z}_{i}^{\#} \mathbf{y} \\
& \mathrm{Z}_{i}^{\#}=\left(\mathrm{Z}_{i}^{\mathrm{T}}\right)^{-1} \mathrm{Z}_{i}^{\mathrm{T}}
\end{aligned}
$$

11.9 Design issues of FRBS: Consistency and completeness

Given input/output data: $\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots .,\left(\mathbf{x}_{M}, y_{M}\right)\right\}$

Issue: quality of the rules

Completeness of rules

- All data points represented through some fuzzy set

$$
\max _{i=1, \ldots, M} A_{i}\left(\mathbf{x}_{k}\right)>0 \text { for all } k=1,2, \ldots, M
$$

- Input space completely covered by fuzzy sets

$$
\max _{i=1, \ldots, M} A_{i}\left(\mathbf{x}_{k}\right)>\delta \text { for all } k=1,2, \ldots, M
$$

Consistency of rules

- Rules in conflict
- similar or same conditions
- completely different conclusions

Conditions and Conclusions	Similar Conclusions	Different Conclusions
Similar Conditions	rules are redundant	rules are in conflict
Different Conditions	different rules; could be eventually merged	different rules

$R_{i}: \quad$ If X is A_{i} then Y is B_{i}
$R_{j}: \quad$ If X is A_{j} then Y is B_{j}

$$
\operatorname{cons}(i, j)=\sum_{i=1}^{M}\left\{\left|B_{i}\left(y_{k}\right)-B_{j}\left(y_{k}\right)\right| \Rightarrow\left|A_{i}\left(x_{k}\right)-A_{j}\left(x_{k}\right)\right|\right\}
$$

Alternatively

$$
\operatorname{cons}(i, j)=\sum_{i=1}^{M}\left\{\operatorname{Poss}\left(A_{i}\left(x_{k}\right), A_{j}\left(x_{k}\right)\right) \Rightarrow \operatorname{Poss}\left(B_{i}\left(y_{k}\right), B_{j}\left(y_{k}\right)\right)\right\}
$$

\Rightarrow is an implication induced by some t-norm (r-implication)

$$
\operatorname{cons}(i)=\frac{1}{M} \sum_{j=1}^{M} \operatorname{cons}(i, j)
$$

11.10 The curse of dimensionality in rule-based systems

- Curse of dimensionality
- number of variables increase
- exponential growth of the number of rules
- Example
$-n$ variables
- each granulated using p fuzzy sets
- number of different rules $=p^{n}$
- Scalability challenges

11.11 Development scheme of fuzzy rule-based models

- Spiral model of development
- incremental design, implementation and testing
- multidimensional space of fundamental characteristics

