1965: fruz sest* Appear - A Contribution to the $40^{\text {th }}$ Anniversary

L. A. Zadeh

Department of Electrical Engineering and Electronics Research Laboratory, University of California, Berkeley, California

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

Rudolf Seising

Medical Statistics and Informatics

Medical University of Vienna
Vienna - Austria

What is a little conference?
Criteria A: few parallel sessions.
Criteria B: few plenary talks.
Criteria C: cheap registration fees.
What is a big conference?
Criteria A: many participants.
Criteria B: important speakers.
Criteria C long and great tradition.

Criterion A:

- Conference C_{1} might be better than C_{2}, and
- Conference C_{2} might be better than C_{3}.

Criterion B:

- Conference C_{2} might be better than C_{3}, and
- Conference C_{3} might be better than C_{1}.

Criterion C:

- Conference C_{3} might be better than C_{1}, and
- Conference C_{1} might be better than C_{2}.

Communication Systems

What Is Optimal?

LOTFI A. ZADEH

How reasonable is our insistence on optimal solutions? Not too long ago we were content with designing systems which merely met given specifications. It was primarily Wiener's work on optimal filtering and prediction that changed profoundly this attitude toward the design of systems and their components. Today we tend, perhaps, to make a fetish of optimality. If a system is not "best" in one sense or another, we do not feel satisfied. Indeed, we are apt to place too much confidence in a system that is, in effect, optimal by definition.

To find an optimal system we first choose a criterion of performance. Then we specify a class of acceptable systems in terms of various constraints on the design, cost, ete. Finally, we determine a system within the specified class which is "best" in terms of the criterion adopted. Is this procedure more rational than the relatively unsophisticated approach of the pre-Wiener era?

Criterion A:

- Design D_{1} might be better than D_{2}, and
- Design D_{2} might be better than D_{3}.

Communicution
Channel

Criterion B:

- Design D_{2} might be better than D_{3}, and
- Design D_{3} might be better than D_{1}.

Criterion C:

- Design D_{3} might be better than D_{1}, and
- Design D_{1} might be better than D_{2}

History of the Theory of Fuzzy Sets

- Prehistory of the Theory of Fuzzy Sets 1920s-1960s
- Genesis of the Theory of Fuzzy Sets 1960s
- Applications of the Theory of Fuzzy Sets 1970s
- Enforcement of the Theory of Fuzzy Sets as a scientific paradigm 1980s - 1990s

History of the Theory of Fuzzy Sets

History of the Theory of Fuzzy Sets

- From Circuit Theory to System Theory 1940s-1960s
- From Signals to Filters
- From Filters to Systems
- From System Theory to Fuzzy Systems 1960-1964
- The State Space Approach
- A New View on System Theory
- The Appearance of „Fuzzy Sets" 1964 and 1965

Prehistory of the Theory of Fuzzy Sets

Pioneers of mathematical Electrical Engineering

Hendrik Bode,

Otto Brune,

Sidney Darlington, Wilhelm Cauer, Ronald Foster

Electrical Filters, Sieves

Electrical Filters, Sieves

Karl Ferdinand Braun (1850-1918)

George Ashley Campbell
(1870-1954)
Wilhelm Cauer
(1900-1945)

-1922-1926

- Studies in Electrical Engineering, University of Wisconsin - Madison

Ph. D. Studies in Munich (Saltonstall Traveling Fellowship), Ph. D. Thesis Supervisor: Prof. Arnold Sommerfeld

- 07.07.1926
- 1928
- 1936
- 1944
- 1931
- 1935
- 1953
- 1957 Zur Theorie der Frequenzvervielfachung durch Eisenkernkopplung Assistant professor Associate professor Full professor Communication Networks I Communication Networks II Introductory Circuit Theory Synthesis of Passive Networks

Burnell Dedicates Guillemin Laboratory

Science and industry joised in the dedication (OL. 2G, 1961) of Burnell © Co. Ines's new Guillemin Resarch Laboratoy in Cambrides, Mass. Fionocing Dr: Ernst A. Guilemin, eminent M.1.T sientist who is ilso shoe pestdens in charge of resarch of Burnell E Co., the lab be be lieved to be the first facility of its kind devoted exclusively to tesench in elsetronic filters aud netaorks.

Above, Dr, Guillemin leentery is shoun in at disussion with Dr. [nu]. Chu (right), professor of electuchl engincering at M.I.T, and Lewis G. Burnell, executive vice president and director of engikeering of Burnell $\&$ Co., who were anong the Euesta at the dedication. The firm's ment plant is koatod at 10 Pelhem Parkway. Pelham, N. Y_{g}

The Strange Case of Dr. Jekyll and Mr. Hyde

Robert Louis Stevenson (1850-1894)

Norbert Wiener, 1948: Cybernetics

- a new theory of information
- a new theory of prediction
- connections of both new theories

Norbert Wiener

- a new way to communication techniques
(1894-1964)
- analogies between
human nervous system and computing and control systems

Claude Elwood Shannon (1916-2001)

1938: A Symbolic Analysis of Relay and Switching Circuits, Transactions of the AIEE.

Figure 1 (left). Symbol for hindrance Figure 2 (middle). Interpretation of addition

Figure 3 (right). Interpretation of multiplication

Table I. Analogue Between the Calculus of Propositions and the Symbolic Relay Analysis

Symbol	terpretation in Relay C	Interpretation in the Calculus of Propositions
 0. ...The circuit is closed.............................. The proposition is false $1 . . \ldots .$. The circuit is open...............................The proposition is true $X+Y \ldots$ The series connection of circuits $X Y \ldots \ldots .$. . The proposition which is true if either X or Y is true $X Y \ldots .$. .The parallel connection of circuits X and $Y \ldots$. The proposition which is true if both X and Y are true $X^{\prime} \ldots \ldots$. . The circuit which is open when X is closed,... The contradictory of proposition X and closed when X is open m The circuits open and close simultaneously. Each proposition implies the other		

L. A. Zadeh

Robert Fano

J. R.Ragazzini

- born 1921 in Buku, Azerbaijan
- since 1942: Electrical Engineering, University Tehran
- then: Technical Associate of the US Army Forces in Iran
- 1944: Emigration into the USA, International Electronic Laboratories, New York Studies of Electrical Engineering at the MIT
- 1946: Master of Science, Supervisor: Robert Fano, Then: Columbia University, New York
- 1949: Ph. D. Thesis: Frequency Analysis of Variable Networks Supervisor: John Ralph Ragazzini
- 1950: (with Ragazzini) An Extension of Wiener's Theory of Prediction
- since 1952: Scientific Work: Information Theory and System Theory
- since 1964: Fuzzy Sets

Lotfi A. Zadeh, 1950: Thinking Machines, Columbia Engineering Quarterly, Jan. 1950.

THINKING MACHINES

A New Field in
Electrical Engineering
DR. LOFTI A. ZADEH electrical engineering dept.

The two units of R. Haufes Tit-Tat-Toe machine.

Lotfi A. Zadeh, 1950: Thinking Machines, Columbia Engineering Quarterly, Jan. 1950.

Figure 1-A schematic diagram illustrating how the basic elements of a thinking machine are arranged.

Lotfi A. Zadeh

Relay Circuit Element	Symbolic Logic Interpretation
Circuit A	Statement A
Closed circuit	A is false
Open circuit	A is true
Series connection of A and B	A and/or B $(\mathrm{A} \vee \mathrm{B})$
Parallel connection of A and B	A and B $(\mathrm{A} \cdot \mathrm{B})$

Lotfi Zadeh, 1952: Some Basic Problems in Communication of Information

The New York Academy of Sciences (1952)
Series II, Vol. 14, No. 5, pp. 201-204.
Problem:

Let $X=\{x(t)\}$ be a set of signals.
An arbitrarily selected member of this set, say $x(t)$,
is transmitted through a noisy channel Γ
and is received as $y(t)$.

As a result of the noise and distortion introduced by Γ, the received signal $y(t)$ is, in general, quite different from $x(t)$.

Nevertheless, under certain conditions it is possible to recover $x(t)$ - or rather a timedelayed replica of it - from the received signal $y(t)$.

$$
y=\Gamma x \quad \text { resp. } \quad x=\Gamma^{-1} y
$$

Lotfi Zadeh, 1952: Some Basic Problems in Communication of Information

The New York Academy of Sciences (1952)
Series II, Vol. 14, No. 5, pp. 201-204.
Special case: reception process:

Let $X=\{x(t)\}$ consist of a finite number of discrete signals $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$, which play the roles of symbols or sequences of symbols.

The replicas of all these signals are assumed to be available at the receiving end of the system. Suppose that a transmitted signal x_{k} is received as y.

To recover the transmitted signal from y, the receiver evaluates the 'distance' between y and all possible transmitted signals $x_{1}, x_{2}, \ldots, x_{n}$, by the use of a suitable distance function $d(x, y)$, and then selects that signal which is 'nearest' to y in terms of this distance function.

Distance functions:

- d(x,y) = l.u.b. $|x(t)-y(t)|$
- $d(x, y)=\left\{1 / T \int_{0}^{T}[x(t)-y(t)]^{2} d t\right\}^{1 / 2}$
- $d(x, y)=$ l.u.b. $\left.\left\{1 / T_{0} \int_{0}{ }^{+t} T x(t)-y(t)\right]^{2} d t\right\}^{1 / 2}$
- $d(x, y)=1 / T \int_{0}^{\top}|x(t)-y(t)| d t$

Figure 1. Recovery of the input signal by means of a comparison of the distances between the received signal y and all possible transmitted signals.

$$
d\left(x_{k}, y\right)<d\left(x_{i}, y\right) i \neq k, \text { for all } k \text { and } i .
$$

?n many practical situations it is inconvenient, or even impossible, to define a quantitative measure, such as a distance function, of the disparity between two signals.

In such cases we may use instead the concept of neighorhood, which is basic to the theory of topological spaces.'

Problem: multiplex transmission of two or more signals; the system has two channels.
$X=\{x(t)\}$ and $Y=\{y(t)\}$: sets af signals assigned to their respective channels.
At the receiving end: sum signal: $u(t)=x(t)+y(t)$.
Extract $x(t)$ and $y(t)$ from $u(t)$!

That means Find two filters N_{1} and N_{2} such, that, for any x in X and any y in Y,

$$
N_{1}(x+y)=x \quad \text { and } \quad N_{2}(x+y)=y
$$

Lotfi Zadeh, 1952: Some Basic Problems in Communication of Information

The New York Academy of Sciences (1952)
Series II, Vol. 14, No. 5, pp. 201-204.

Geometrical representation of
nonlinear filtering
and
linear filtering
in terms of two-dimensional signal spaces.

Lotfi A. Zadeh, 1954: System Theory, Columbia Engineering Quarterly, Nov. 1954.

System Theory

L. A. Zadeh

Associate Professor
Electrical Engineering

System: „an aggregation or assemblage of objects united by some form of interaction or interdependence"
 (Webster's dictionary)

Lotfi A. Zadeh, 1954: System Theory, Columbia Engineering Quarterly, Nov. 1954.

Lotfi A. Zadeh, 1954: System Theory, Columbia Engineering Quarterly, Nov. 1954.

Fig: 1.2.1 Diagrammatic representation of a system Q with input u and output y.

Input-output-relationship:

$$
y=f(u)
$$

Fig. 1.4.1 Tandem combination of \boldsymbol{a}_{1} and α_{2}.

Fig. 1.4.2 Example of a system which is a compination of three component systems $\mathfrak{a}_{1}, \mathfrak{a}_{2}$, and \mathfrak{a}_{3}.

System with two variables v_{1} and v_{2};

$$
\frac{d v_{2}}{d t^{2}}=\frac{d^{2} v_{1}}{d t^{2}}+v_{1}
$$

This system can be realized in different forms.

Lotfi A. Zadeh: 1963, Linear System Theory

Fig. 1.4.1 A network realization of the object of Example 1.4.14.

Fig. 1.4.2 A mechanical realization of the object of Example 1.4.14.

Physical Realization 2:
mechanical system.
v_{2} : force at particle
v_{1} : velocity of the particle

Lotfi A. Zadeh, 1963: Views on General Systems Theory

Proceedings of The Second Systems Symposium at Case Institute of Technology, April 1963, Cleveland, Ohio

A System is a big black box
Of which we can't unlock the locks, And all we can find out about

Is what goes in and what goes out.
Perceiving input-output pairs,
Related by parameters,
Permits us, sometimes, to relate
An input, output, and a state.
If this relation's good and stable
Then to predict we may be able,
But if this fails us - heaven forbid!
We'll be compelled to force the lid!

$$
\begin{aligned}
& s_{t+1}=f\left(s_{t}, u_{t}\right), \mathrm{t}=0,1,2, \ldots \\
& y_{t}=g\left(s_{t}, u_{t}\right)
\end{aligned}
$$

Kenneth E. Boulding

The Bandwagon

CLAUDE E. SHANNON

What is Information Theory?

Norbert Wiener

Indeed, the hard core of information theory is, essentially, a branch of mathematics, a strictly deductive system.

Research rather than exposition is the keynote, and our critical thresholds should be raised.

I am pleading in this editorial that Information Theory go back of its slogans and return to the point of view from which it originated: that of the general statistical concept of communication.

I hope that these Transactions may encourage this integrated view of communication theory by extending its hospitality to papers which, why they bear on communication theory, cross its boundaries, and have a scope covering the related statistical theories. In my opinion we are in a dangerous age of overspecialization.

Richard Bellman, Robert Kalaba, 1957:
On the Role of Dynamic Programming in Statistical Communication Theory

In mathematical terms, let
$x=$ the pure signal emanating from S.
$r=$ the noise associated with the signal.
$x^{\prime}=F(. x, r)$, the input to the communication system.
$y=$ the signal transmitted to the observer by the communication channeI.

Let us further write

$$
\begin{equation*}
y=T\left(x^{\prime}\right)=T(F(x, r)), \tag{2}
\end{equation*}
$$

What Is Optimal?

Lotfi A. Zadeh

Criterion A:

- Design D_{1} might be better than D_{2}, and
- Design D_{2} might be better than D_{3}.

Criterion B :

- Design D_{2} might be better than D_{3}, and
- Design D_{3} might be better than D_{1}.

Criterion C:

- Design D_{3} might be better than D_{1}, and
- Design D_{1} might be better than D_{2}

In fact, there is a fairly wide gap between what might be regarded as „animate" system theorists and „inanimate" system theorists at the present time, and it is not at all certain that this gap will be narrowed, much less closed, in the near future.

There are some who feel that this gap reflects the fundamental inadequacy of the conventional mathematics - the mathematics of precisely-defined points, functions, sets, probability measures, etc. - for coping with the analysis of biological systems, and that to deal effectively with such systems, which are generally orders of magnitude more complex than man-made systems, we need a radically different kind of mathematics, the mathematics of fuzzy or cloudy quantities which are not describable in terms of probability distributions. Indeed, the need for such mathematics is becoming increasingly apparent even in the realm of inanimate systems, for in most practical cases the a priori data as well as the criteria by which the performance of a manmade system is judged are far from being precisely specified or having accurately-known probability distributions.

Consider the constraint set $C \subseteq \Sigma$ is defined by the constraints imposed on system S, and a partial ordering \geq on Σ by associating with each system S in Σ the following three disjoint subsets of the set of systems Σ :
$\Sigma_{>}(S)$: the subset of all systems which are superior to S.
$\Sigma_{\leq}(S)$: the subset of all systems which are inferior or equal to S.
$\Sigma_{\sim}(S): \quad$ the subset of all systems which are not comparable with S.

$$
\Sigma_{>}(S) \cup \Sigma_{\leq}(S) \cup \Sigma_{\sim}(S)=\Sigma .
$$

$\begin{array}{ll}\text { Definition 1: } & \text { A system } S_{0} \text { in } C \text { is noninferior in } C \\ \text { if the intersection of } C \text { and } \Sigma_{>}(S) \text { is emty: }\end{array}$

$$
C \cap \Sigma_{>}\left(S_{0}\right)=\varnothing .
$$

Definition 2: \quad A system S_{0} in C is optimal in C if C is contained in $\Sigma_{\leq}(S)$:

$$
C \subseteq \Sigma_{\leq}\left(S_{0}\right) .
$$

If Σ is completely ordered by a scalar-valued criterion, then:

$$
\Sigma_{\sim}\left(S_{0}\right)=\varnothing
$$

and

$$
\Sigma_{>}\left(S_{0}\right) \text { and } \quad \Sigma_{\leq}\left(S_{0}\right) \text { are complementary classes. }
$$

Then:
If $C \cap \Sigma_{>}\left(S_{0}\right)=\varnothing$, then: $\Sigma_{s}\left(S_{0}\right) \subseteq C$, and
hence noninferiority and optimality become equivalent concepts.

Let system S be characterized by the vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, whose real-valued components represent, say, the values of n adjustable parameters of S, and let C be a subset of n-dimensional Euclidean space \mathbf{R}^{n}.

Let the performance of system S be measured by an m-vector
$\boldsymbol{p}(x)=\left[p_{1}(x), \ldots, p_{m}(x)\right]$
where $p_{\mathrm{i}}(x), i=1, \ldots, m$, is a given real-valued function of x.
Then: $S=S^{\prime} \Leftrightarrow p(x)=p\left(x^{\prime}\right) . \quad$ That is: $\quad p_{i}(x)=p_{i}\left(x^{\prime}\right), i=1, \ldots, m$.

L. A. Zadeh, 1963: Optimality and Non-Scalar-Valued Performance Criteria

Case:

$\Sigma_{>}(S)$ or, equivalently, $\Sigma_{>}(x)$ is a fixed cone with vertex at x.
and the constraint set C is a closed bounded subset of \mathbf{R}^{n}.

Example:

$$
p_{i}(x)=a_{i}^{i} x_{1}+\ldots+a_{n} x_{n}^{i},
$$

where $\mathrm{a}^{i}=\left(a_{i}^{i}, \ldots, a_{n}^{j}\right)$ is the gradient of $p_{i}(x)$,

Fig. 1-Illustration of the significance of C and $\Sigma>(x)$.
(a constant vector): $a^{i}=\operatorname{grad} p_{i}(x)$.

Then: $\Sigma_{>}(x)$ is the polar cone of the cone spanned by a^{i}.

L. A. Zadeh, 1963: Optimality and Non-Scalar-Valued Performance Criteria

Definition $1 \Rightarrow$ Noninferior points cannot occur in the interior of the set C.

If C is a convex set then the set of all noninferior points on the boundary of C is the set Γ of all points x_{0}, through which hyperplanes separating the set C and the set $\Sigma_{>}\left(x_{0}\right)$ can be passed.

The set Γ is heavy lined on the boundary of C.

Fig. 2-The set of noninferior points on the boundary of C.

Let x_{0} be such a point and let γ be the normal to the separating hyperplane at x_{0}, with γ directed away from the interior of C. Then γ belongs to the polar cone of $\Sigma_{>}\left(x_{0}\right)$ since γ makes nonobtuse angles with all vectors in $\Sigma_{>}\left(x_{0}\right)$.
$\begin{array}{ll}\text { 1964: } \quad \text { Lotfi Zadeh, Talk on Pattern Recognition } \\ & \text { in Dayton, Ohio (Wright-Patterson Air Base) }\end{array}$

R. Bellman, R. Kalaba, L. A. Zadeh, 1964: Abstraction And Pattern Classification

Robert Kalaba

Lotfi A. Zadeh

[^0]
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

```
goitor:
MICHARD SELLMANI
The IAND Corparetion
1700 moin 5lyetr
Santa Monica, Celilernis
A530<IAIt foitgRS
F. Y. Alkinson
G. Birkhoff
R. P. Bcos
5. Chandratekhar
C. Dolph
E. J. Duffin
K. Fom
M. Juncesa
S. Xarlin
5. Karlin
d. Xemeny
J. P. Le Selie
H0x
N. Levimen
A. Åamakrishng
J. Richurdron
F. Rounhiloom
H. N, Shopiro
S. Ulom
H S Voadive
H. $ Yondive
\mathrm{ 1. W. T. Young: Dear Lot自i:}
\mathrm{ 1. W.T. Young: Dear Lot主i:}
                            9 September 1964
Professor Lotfi Zadeh
Department of Electrical Engineering
University of California
Berkeley 4, California
I think that the paper is extremely interesting and
I would like to publish it in JMAA, if agreeable to
you. When I return, or while in Paris, I will write
a companion paper on optimal decomposition of a set
into subsets along the lines of our discussion.

\title{
FUZZY SETS AND SYSTEMS*
}

\author{
L. A. Zadeh \\ Department of Electrical Engineering, University of California, Berkeley, California
}
\[
\begin{aligned}
s_{t+1} & =f\left(s_{t}, u_{t}\right), \\
y_{t} & =g\left(s_{t}, u_{t}\right) \\
t & =0,1,2, \ldots
\end{aligned}
\] source of imprecision is not a random variable or a stochastic process, but rather a class or classes which do not possess sharply defined boundaries, e.g., the "class of bald men," or the "class of numbers which are much greater than 10 ," or the "class of adaptive systems," etc.

A basic concept which makes it possible to treat fuzziness in a quantitative manner is that of a fuzzy set, that is, a class in which there may be grades of membership intermediate between full membership and non-membership. Thus, a fuzzy set is characterized by a membership function which assigns to each object its grade of membership (a number lying between 0 and 1) in the fuzzy set.

After a review of some of the relevant properties of fuzzy sets, the notions of a fuzzy system and a fuzzy class of systems are introduced and briefly analyzed. The paper closes with a section dealing with optimization under fuzzy constraints in which an approach to problems of this type is briefly sketched.
\[
S \text { is a fuzzy system if } u(t) \text { or } y(t) \text { or } s(t) \text { or any combination are fuzzy sets. }
\]

\section*{Lotfi A. Zadeh, 1965: Fuzzy Sets}

\section*{Fuzzy Sets*}
L. A. ZADEH

Department of Electrical Engineering and Electronics Research Laboratory, University of California, Berkeley, California

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

\section*{I. INTRODCCTION}

More often than not, the classes of objects encountered in the real physical world do not have precisely defined criteria of membership. For example, the class of animals clearly includes dogs, horses, birds, etc. as its members, and clearly excludes such objects as rocks, fluids, plants, etc. However, such objects as starfish, bacteria, etc. have an ambiguous status with respect to the class of animals. The same kind of ambiguity arises in the case of a number such as 10 in relation to the "class" of all real numbers which are much greater than 1.
Clearly, the "class of all real numbers which are much greater than 1, " or "the class of beautiful women," or "the class of tall men," do not constitute classes or sets in the usual mathematical sense of these terms. Yet, the fact remains that such imprecisely defined "classes" play an important role in human thinking, particularly in the domains of pattern recognition, communication of information, and abstraction.

The purpose of this note is to explore in a preliminary way some of the basic properties and implications of a concept which may be of use in
* This work was supported in part by the Joint Services Electronics Prograin (U.S. Army, U.S. Navy and U.S. Air Force) under Grant No. AF-AFOSR-139-64 and by the National Science Foundation under Grant GP-2413.


X

Georg Cantor, 1895/97: Set Theory


\section*{Georg Cantor, 1895/97: Set Theory}


Georg Cantor (1845-1918):

Definition:
A set is a collection into a whole \(M\) of definite and separate objects \(m\) of our intuition or thought.'
„Unter einer Menge verstehen wir jede Zusammenfassung \(M\) von bestimmten, wohlunterschiedenen Objekten \(m\) unserer Anschauung oder unseres Denkens (welche die Elemente von \(M\) genannt werden) zu einem Ganzen."


Lotfi A. Zadeh, 1965: Fuzzy Sets


Definition:
„A fuzzy set (class) \(A\) in \(X\) is characterized by a membership function (characteristic function) \(\mu_{A}(x)\) which associates with each point in \(X\) a real number in the intervall \([0,1]\), with the value of \(\mu_{A}(x)\) at \(x\) representing the grade of membership \({ }^{\text {c }} \mathrm{x}\) in A ."


\(\operatorname{not} A\)

Set Theory

(a) \(A \cap B\)

(c) \(A \backslash B\)

(b) \(A \cup B\)

(d) \(\bar{A}\)
A fuzzy set is empty iff:
\(\mu_{A}(x)=0, \quad x \in X\).
Equal fuzzy sets, \(A=B\), iff:
\(\mu_{A}(x)=\mu_{B}(x), \quad x \in X\).

The complement \(A\) ' of a fuzzy set \(A\) is defined by:
\[
\mu_{\mathbf{A}^{\prime}}(x)=1-\mu_{\mathbf{A}^{\prime}}(x) x \in X
\]


Containment: \(A \subseteq B\) iff:
\(\mu_{A}(x) \leq \mu_{B}(x), \quad x \in X\).


\section*{Lotfi A. Zadeh, 1965: Fuzzy Sets}

Union \(A \cup B\) of two fuzzy sets
\(A\) and \(B\) with resp. membership functions
\(\mu_{\mathrm{A} \cup B}(x)=\max \left\{\mu_{A}(x), \mu_{B}(x)\right\}, x \in X\)


Intersection \(A \cap B\) of fuzzy sets
\(A\) and \(B\) with resp. membership functions
\(\mu_{A \cap B}(x)=\min \left\{\mu_{A}(x), \mu_{B}(x)\right\}, x \in X\)


\section*{Lotfi A. Zadeh, 1965: Fuzzy Sets}

Let \(A\) and \(B\) be two bounded fuzzy sets.
Let \(H\) be a hypersurface in \(\mathbf{E}^{n}\) defined by an equation \(h(x)=0\),
with all points \(x\), for which \(h(x)=0\) being on one side of \(H\)
and all points \(x\), for which \(h(x)=0\) being on the other side of \(H\).

Let \(K_{H}\) be a number dependent on \(H\) such that:
\[
f_{A}(x)=K_{H} \text { on one side of } H
\]
and \(\quad f_{A}(x)=K_{H}\) on th other side.

Let \(M_{H}\) be \(\operatorname{Inf} K_{H}\).
The number \(D_{H}=1-M_{H}\) will be called the degree of separation of \(A\) and \(B\) by \(H\).
In general: given a family of hypersurfaces \(\left\{H_{\lambda}\right\}\) with \(\lambda\) ranging over \(\mathbf{E}^{\mathrm{m}}\) :

Problem: Find a member of \(\left\{H_{\lambda}\right\}\) which realizes the highest possible degree of separation!
Special case: \(H_{\lambda}\) are hyperplanes in euclidean space \(E^{n}\), with \(\lambda\) ranging over \(E^{n}\) :
In this case, we define the degree of separability of \(A\) and \(B\) by: \(D=1-M\), where \(M=\operatorname{lnf}_{H}\) \(M_{H}\) is the infimum of \(M_{H}\) of all hypersurfaces \(H\).

\section*{Lotfi A. Zadeh, 1965: Fuzzy Sets}

The highest degree of separation of two convex fuzzy sets \(A\) and \(B\) that can be achieved with a hyperplane in \(\mathrm{E}^{\mathrm{n}}\) is one minus the maximal grade in the intersection \(A \cap B\).
(Figur: case \(\mathrm{n}=1\).)

\section*{Theorem:}


Let A and B be bounded convex fuzzy sets in \(\mathrm{E}^{n}\), with maximal grades \(M_{A}\) and \(M_{B}\), respectively \(\left[M_{A}=\operatorname{Sup}_{x} f_{A}(x)\right.\) and \(\left.M_{B}=\operatorname{Sup}_{x} f_{B}(x)\right]\).

Let M be the maximal grade for the intersection \(A \cap B\)
\(\left(M=\operatorname{Sup}_{x} \operatorname{Min}\left[f_{A}(x), f_{B}(x)\right]\right)\).
Then \(D=1-M\).
"Specifically, let \(f_{i}(x) i=1, \ldots, n\), denote the value of the membership function of \(A_{i}\) at \(x\).

Associate with \(f_{i}(x)\) a sieve \(S_{i}(x)\) whose meshes are of size \(f_{i}(x)\).
Then, \(f_{i}(x) \cup f_{j}(x)\) and \(f_{i}(x) \cap f_{j}(x)\) correspond, respectively, to parallel and series combinations of \(S_{i}(x)\) and \(S_{j}(x) . \ldots\).


Trg. 2. Bambl and series contaction of sieves smatating \(U\) and \(n\)

\section*{Lotfi A. Zadeh, 1965: Fuzzy Sets}
"More generally, a well formed expression involving \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}, \cup\) and \(\cap\) corresponds to a network of sieves \(S_{1}(x), \ldots, S_{n}(x)\) which can be found by the conventional synthesis techniques for switching circuits."


Fig. 3 . A nework of sieves simultating \(\left\{\left[\int_{1}(x) \vee f_{2}(x)\right\} \wedge f_{3}(x)\right\} \vee f_{4}(x)\)

\section*{First Ph. D Thesis on Fuzzy Sets}

Fuzzy Sets end Pattern Recognition
By
Chifr-Lfang Chang
Grad. (Taiwen Provineial Teipei Institute of Technology) 1958 M.S. (Lehigh University) 2964

\section*{DISSERTATION}

Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY
in
Engineerinas
in the
GRablate division
of the
UNIVERSITY OF CALIEORNIA, BERKEIEY

\section*{Cstegoriea or Futty Sete:}

Applicatioes of Hisn-Cantarian Siet Theory

8
Jcoejia Mandec Geguen, Jr.
A.S. (Haresra Vniveyaity) 2963
w.h. (University of Coliforaia) 296

\section*{DIESKEngidQ}

Salaietel in portiol sattafactign of the requirencrita for the degroe of

in

Mazhument lez
in then
Gsadoate DiYISion
of the


Aleropud;


Conolttee in Marge


\section*{First Papers on Fuzzy Sets (Part 1)}

1965: L. A. Zadeh, Fuzzy Sets, Information and Control, 8, pp. 338-353
L. A. Zadeh, Fuzzy sets and systems. In: J. Fox Ed., System Theory. Microwave Research Institute Symposia Ser. XV. Brooklyn, New York: Polytechnic Press, pp. 29-37.

1966: L. A. Zadeh, Shadows of fuzzy sets, Problems in Transmission of Information, 2, 37-44 (in Russian).

1968: L. A. Zadeh, Fuzzy algorithms, Information and Control, 12, pp. 94-100.
L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl., 23, 421-427.

1969: L. A. Zadeh, Biological applications of the theory of fuzzy sets and systems. In Proctor, L. D., Ed., Biocybernetics of the Central Nervous System. Boston, Mass.: Little, Brown \& Co., 199-212.

1971: L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci., 3, pp. 177-200.
L. A. Zadeh, Towards a theory of fuzzy systems. In: R.E. Kalman, N. DeClaris, Eds., Aspects of Network and System Theory, New York: Holt, Rinehart \& Winston. pp. 469490.
L. A. Zadeh, Quantitative fuzzy semantics, Inform. Sci., 3, pp. 159-176.

1972: L. A. Zadeh, Fuzzy languages and their relation to human intelligence. Proceedings of the International Conference Man, And Computer, Bordeaux, France. Basel: S. Karger pp. 130-165.
L. A. Zadeh, A new approach to system analysis. In: Marois, M. Ed., Man and Computer. Amsterdam: North Holland, pp. 55-94.
L. A. Zadeh, A fuzzy-set-theoretic interpretation of linguistic hedges. Journal of Cybernetics, 2, pp. 4-34.

1973: L. A. Zadeh, Outline of a New Approach to the Analysis of Complex Systems and Decision Processes, IEEE Transactions on Systems, Man, And Cybernetics, Vol. SMC-3, No. 1, January 1973, pp. 28-44.

1974: S. Assilian, E. H. Mamdani, Learning Control Algorithms in Real Dynamic Systems, Proc. 4th Int. IFAC/IFIP Conf. On Digital Computer Appl. To Process Control, Zürich, March 1974.

1982: Lauritz P. Holmblad and Jens-Jørgen Østergaard: Control of a Cement Kiln by Fuzzy Logic. In: M. M. Gupta and E. Sanchez (eds.): Fuzzy Information and Decision Processes, North-Holland, 1982.

\section*{First Papers on Fuzzy Sets (Part 3)}

\section*{Table 3}

Distribution of year of publication of papers classified as fuzzy
\begin{tabular}{lc}
\hline Year & Number \\
\hline 1965 & 2 \\
1966 & 4 \\
1967 & 4 \\
1968 & 12 \\
1969 & 22 \\
1970 & 25 \\
1971 & 42 \\
1972 & 58 \\
1973 & 88 \\
1974 & 136 \\
1975 & 227 \\
1976 & 143 (incomplete) \\
& 763 \\
Total & 7 \\
\hline
\end{tabular}

First Papers on Fuzzy Sets (Part 4)
\(\square\) Mozilla Firefox Deutsch User Support Forum Mozilla Firefox Hilfe \(\square\) Plug-in FAQ
BISC
The Berkeley Initiative in Soft Computing
Electrical Engineering and Computer Sciences Deparment University of California

Fuzzy Set: 1965 ... Fuzzy Logic: 1973 ... BISC: 1990 ... Human-Machine Perception: 2000-...

\section*{Statistics on the impact of fuzzy logic}

A measure of the wide-ranging impact of Lotfi Zadeh's work on fuzzy logic is the number of papers in the literature which contain the word "fuzzy" in title. The data drawn from the INSPEC and Mathematical Reviews databases are summarized below. The data for 2000 are not complete.

\section*{STATISTICS}

INSPEC/fuzzy
1970-1980 : 566
1980-1990: 2,361
1990-2000: 23,753
total : 26,680
Math.Sci.Net/fuzzy
1970-1980: 453
1980-1990: 2,476
1990-2000: 8,428
total: 11,357
INSPEC/soft computing


\section*{Professor Lotfi A. Zadeh}

Short Curriculum Vitae
Principal employment and affiliations
Editorial affiliations
Advisory committees
Awards, fellowships, honors
Achievement and principal contributions Summary of principal contributions
Primary publications
Statistics on the impact of Fuzzy Logic

\section*{Continue}

1990-2000: 1,994
\(X, Y\) usual sets.


A relation \(q\) of \(X\) and \(Y\) is a subset of \(X \times Y\).
A relation \(r\) of \(Y\) and \(Z\) is a subset of \(Y \times Z\).
A relation \(t:=q \circ r\) is a subset of \(X \times Z\).
\(t=\{(x, z) \mid \exists y:(x, y) \in q \wedge(y, z) \in r\}\)


Let be \(X, Y\) usual sets and \(X \times Y\) the Cartesian product
- \(L(X): \quad\) set of all fuzzy sets in \(X\),
- \(L(Y) \quad\) set of all fuzzy sets in \(Y\),
- \(L(X \times Y)\) set of all fuzzy sets in \(X \times Y\).

A fuzzy relation \(R\) of \(X\) and \(Y\) is a fuzzy-subset of \(L(X \times Y\).

Let be \(X, Y, Z\) usual sets and \(Q, R\) fuzzy-relations:
- \(Q\) in \(L(X \times Y\),
- \(R\) in \(L(Y \times Z)\).

How to combine \(Q\) and \(R\) to a new fuzzy-relation \(T \in L(X \times Z)\) ?
\begin{tabular}{lll} 
("and") & \(\rightarrow\) & \(\min\) \\
V ("or") & \(\rightarrow\) & \(\max\)
\end{tabular}
- \(Q\) is fuzzy relation of \(X\) and \(Y, \quad Q\) is fuzzy subset of \(L(X \times Y\),
- \(R\) is fuzzy relation of \(Y\) and \(Z, \quad R\) is fuzzy subset of \(L(Y \times Z)\).
- \(T=Q^{\circ} R\) is fuzzy relation of \(X\) and \(Z\),
\(T\) is fuzzy subset of \(L(X \times Z)\) with membership function:
\[
\mu_{T}(x, z)=\max _{y \in Y} \min \left\{\mu_{Q}(x, y) ; \mu_{R}(y, z)\right\}, y \in Y
\]
\(X=Y=Z=\) the set of conferences in the world
\(Q\) and \(R\) are fuzzy relations of \(X\) and \(X, \quad Q\) and \(R\) are fuzzy subsets of \(L(X \times X)\), \(x Q y\) means " \(x\) is little compared to \(y\) " \(y R z\) means " \(y\) is bigger than \(z\) "
\(T=Q^{\circ} R\) is the composition of these fuzzy relations,
\(x\) Tz means " \(x\) is bigger little than \(z\) "
\(T\) is a fuzzy subset of \(L(X \times X)\) with membership function:
\(\mu_{T}(x, z)=\max _{y \in Y} \min \left\{\mu_{Q}(x, y) ; \mu_{R}(y, z)\right\}, y \in Y\)
Then: the conference with the maximal \(\mu_{T^{-}}\)value is:```


[^0]:    Thi- revarch is -ponsored by the Lnited States Air Force under Project RAND-Con-
     Chief of Stafi. Research and Developatert. Hig LSAF. Views or conclusions contained in this Xlemoramum thould not be interpreted as representing the afficial opinion or policy of the (nited States Air Force.

    DDC AVAlLABILITY VOTICE
    Qualified requesters may obtain topies of this report from the Defense Documentation Cemer (DDC)

