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ince Richard Lippmann’s 1987 tutorial article in ASSP

Magazine An Introduction to Computing with Neural

Networks [81], a number of additional tutorials have
appeared, but none have compared in popularity to the
original. Even today, Lippmann’s article is one of the most
widely referenced papers in the neural network literature.

In the original article, Lippmann discussed several dif-
ferent neural network models, the composition of which
form the foundation for most of today's neural network
research. Two of the newest and most theoretically imma-
ture at the time were the Hopfield network and the mult-
layer perceptron (MLP). There were many unresolved
issues concerning these two models, such as finding the
best way to learn the weights in the Hopfield network;
using the Hopfield network to process time-varying inputs;
finding the number of layers needed in a multilayer net-
work; determining the intrinsic ditficulty of learning in
multilayer networks; determining the conditions for which
we could expect to achieve good generalization in multi-
layer networks; finding how to use multilayer networks to
estimate probability functions; and the efficacy of multi-
layer networks in scaling to larger problems.
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Significant progress has been made on these and related
issues in the past few years. In addition. numerous extensions
to the basic models in Lippmann’s paper have emerged. Most
of these were designed to help overcome some of the inherent
limitations of the basic models. For example, extensions to
the MLP have made it possible for this network to solve larger
and more difficult problems. Extensions to the Hopfield (and
other) networks have generated interest in a new class of
dynamic network models called recurrent neural networks
which are capable of performing a wide variety of computa-
tional tasks including sequence recognition, trajectory fol-
lowing, nonlinear prediction. and system modeling.

Our goal in this article is to summarize the recent theoreti-
cal results concerning the capabilities and limitations of these
models, and to discuss some of their extensions. The network
models that we discuss are partitioned into two basic
categories: static networks and dynamic networks. Static
networks, of which the MLP is the most widely used, are
characterized by node equations that are memoryless. That is,
their output is a function only of the current input, not of past
or future inputs or outputs. Another static model that has
gained a great deal of notoriety in recent years is the Radial
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Basis Function (RBF) network. it is popular and provides an
interesting contrast to the MLP.

Dynamic networks, on the other hand, are systems with
memory. Their node equations are typically described by
differential or difference equations. They can be categorized
into three different groups: networks with feedforward
dynamics, networks with output feedback, and networks with
state feedback. Networks from each of these groups will be
discussed, with the greatest emphasis placed on networks
with state feedback.

For the most part. the networks discussed in this article are
trained using supervised learning. This means they are
presented with a set of example input-output pairs (xi, di) and
trained to implement a mapping that matches the examples as
closely as possible. In contrast, for unsupervised learning the
networks are presented with only the input samples, xi, and
samples are grouped into classes which are self-similar. Net-
works trained in this fashion are called self-organizing net-
works, examples of which are the Adaptive Resonance
Theory (ART) network and Kohonen’s Self Organizing fea-
ture maps.

Static Networks

Static networks implement nonlinear transformations of the
form u = G(x). Typically xe R", andue [0,1]" orue K™
where n and m are integers that represent the dimensions of
x and u, respectively. These networks are useful in a variety
of applications.

We present examples of their application to logic func-
tions, pattern recognition, and functional approximation. The
static networks discussed in the sections that follow include
the multilayer perceptron (MLP). its extensions, and the
radial basis function (RBF) network. Our discussion will
focus on the following characteristics of these models: the
model itself, its functional capabilities, learning algorithms
for the model, the inherent complexity of learning, and
generalization and its relationship to sample-size complexity.
We begin our discussion of static networks with the per-
ceptron, which is the building block of the MLP network.

The Perceptron

The perceptron (Fig. 1) was conceived by Rosenblatt in 1958
[118]. The input is an n-dimensional vector. The perceptron

1. The Perceptron.
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2. Nonlinear activation functions. Hard-limiting (a); sigmoid (b).

forms a weighted sum of the n components of the input vector
and adds a bias value, 0 (alternatively, we could view this as
subtracting a threshold value, - 8). The result is then passed
through a nonlinearity (Fig. 2). Rosenblatt’s original model
used the hard-limiting nonlinearity (Fig. 2a), whereby:

L1 ¥>0 (0))
fHL(") - { 0 v< 0
When perceptrons are cascaded together in layers, it is more
common to use the sigmoid nonlinearity shown in Fig. 2b:

fo=(+ePy! (2)

This function is continuous and varies monotonically from O
to 1 as y varies from — o to oo. The gain of the sigmoid, B,
determines the steepness of the transition region. Note that as
the gain approaches infinity, the sigmoid approaches a hard-
limiting nonlinearity. Often the gain is set equal to 1. One of
the advantages of the sigmoid is that it is differentiable. This
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property had a significant impact historically because it made
it possible to derive a gradient search learning algorithm for
networks with multiple layers.

The sigmoid nonlinearity is popular for other reasons as
well. For example, many applications require a continuous-
valued output rather than the binary output produced by the
hard-limiter. In addition, it is particularly well-suited to pat-
tern recognition problems because it produces an output
between 0 and 1 that can often be interpreted as a probability
estimate [114]. These topics will be discussed further in
subsequent sections. For now we will concentrate on
Rosenblatt’s original model, which uses a hard-limiter.

For the sake of notation, it will be convenient to view the
threshold as a bias weight, wo = 6, and the input vector as
being augmented with an additional dimension which always
assumes a value of unity. With this convention we can rep-
resent the weighted sum as an inner product between the
augmented input vector and the weight vector. Thus the
operation performed by the perceptron can be expressed as:

v= wlx 3
u=faL(y)

There are two ways of viewing the operation of a perceptron.
First, it can be viewed as a discriminant function for two-class
pattern recognition problems; that is, as a function which
performs a nonlinear transformation fromx € R"toue {0,1}
according to the class assignment of Xx. When viewed in this
manner, the perceptron effectively partitions the input space
into two regions with a linear decision boundary. This is
easily verified since points that lie on the boundary between
the two classes are described by y = wlx = 0, which is the

2 -3
SN

1
L4

X,

e XA X,
e
AND
1
*
X, 2 ng'l
X2 2
OR
1
L4
v 1
2

/N 3
Xl.———{>——~\/)—‘o X1

COMPLEMENT

3. Simple logic functions implemented by the perceptron (hard- o
limiters not shown).
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equation of an (n - 1) dimensional hyperplane in R™ As a
result, the perceptron is suitable as a discriminant function in
classification problems which are best solved by a linear
dichotomization of the pattern space.

There are many interesting problems however, that require
a nonlinear partitioning of the pattern space. These can be
solved with the multilayer perceptron network, which cas-
cades two or more layers of perceptrons together, thus making
it possible to partition the pattern space with arbitrarily com-
plex decision boundaries.

Second. the perceptron can be viewed as a binary logic
unit. It is capable of implementing numerous logic functions,
including the three fundamental operations of Boolean al-
gebra: AND, OR and COMPLEMENT (Fig. 3). The per-
ceptron cannot, however. implement all possible logic
functions. For example, it cannot implement the exclusive-or

(XOR) function. With n variables, there are a total ()f22 logic

functions (2" rows in the truth table yield 2% combinations
of output functions). The fraction of these that the perceptron
can implement are called threshold logic functions. Deriving
an exact expression for the number of threshold logic func-
tions, NTL(n), has proven an illusive task. However, the
following bounds are well-known [96]:

" . @
2/1(/1 —-1)y2 < NTL(n) < 22 [2” _ 1} - 2’1‘
1
i=0

This is a vanishingly small percentage of the total number of
logic functions for large n.

There are numerous learning algorithms for the per-
ceptron. Most of them were developed in the 1960s. They
include the perceptron learning algorithm [118], the Least
Mean Squares (LMS) learning algorithm [149], and many
others [28, 134]. For the most part, the details of these
algorithms are beyond the scope of this article. The LMS
algorithm, however, is a special case of the backpropagation
learning algorithm (for multilayer perceptrons), and will be
discussed shortly.

The Multilayer Perceptron (MLP)

The capabilities of single perceptrons are limited to linear
decision boundaries and simple logic functions. However, by
cascading perceptrons in layers we can implement complex
decision boundaries and arbitrary Boolean expressions. The
individual perceptrons in the network are called neurons or
nodes, and differ from Rosenblatt’s perceptron in that a
sigmoid nonlinearity is commonly used in place of the hard-
limiter. The input vector feeds into each of the first layer
perceptrons, the outputs of this layer feed into each of the
second layer perceptrons, and so on (Fig. 4). Often the nodes
are fully connected between layers. i.e., every node in layer/
is connected to every node in layer /+ /. Sometimes the input
vector itself is also referred to as a layer of the network,
although we prefer not to do so here.
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hidden layer

\ first
hidden layer

inputs output layer

4. Architecture of a tvpical multilayer perceptron.

Thus we refer to the architecture in Fig. 4 as a 3-layer
network. It is also common to specify an architecture by
referring to the number of hidden layers: that is. layers that
are neither inputs nor outputs. Thus. the network in the Figure
is also referred to as a 2-hidden layer network. The multiple
nodes in the output layer typically correspond to multiple
classes for the multi-class pattern recognition problem.

MLP Functional Capabilities

The capabilities of the MLP can be viewed from three dif-
ferent perspectives. The first has to do with its ability to
implement Boolean logic functions. the second with its ability
to partition the pattern space for classification problems, and
the third with its ability to implement nonlinear transforma-
tions for functional approximation problems.

In the previous section we found that a single perceptron
can implement only a vanishingly small fraction of the total
number of logic functions of 1 variables. By cascading per-
ceptrons together in layers however, arbitrary logic functions
can be implemented.

Since it is possible to implement any logic function using
two layers of fundamental operations (ANDs and ORs), no
more than two layers of perceptrons are needed to implement
an arbitrary logic function [95]. Some logic functions, how-
ever, may require an extremely large number of hidden layer
nodes (at most exponential in n) [55, 96]. Finally, with the
addition of feedback connections and a mechanism for im-
plementing a unit time delay. it can be argued that perceptrons
are capable of simulating a complete digital computer [131].
However, in neural networks one is not so much interested in
implementing known logic functions as in learning the logic
functions that describe a set of input/output examples.

Examples of the MLP’s application to pattern classifica-
tion and functional approximation are shown in Fig. 5. In both
cases a 2-layer network has been used. In Fig. 5a there are
three nodes in the hidden layer, and in Fig. 5b there are two.
In the classification problem, the nonlinear decision boundary
which separates the inner class from the outer class is a
combination of three linear boundaries. one from each of the
three hidden layer nodes. The linear boundaries are connected
in a smooth fashion because of the sigmoid nonlinearity. In
the interpolation problem. the function is approximated by a
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combination of two rounded step functions, one from each of
the two nodes in the hidden layer. Again, the approximation
is smooth and continuous because of the sigmoid function.
This approximation can be made more accurate by including
additional nodes in the hidden layer. In both of these examples
we see that the MLP solves the problem by combining simple
functional units formed by the hidden layer nodes. In the
classification problem these units are hyperplanes, and in the
functional approximation problem they are rounded step
functions.

For classification problems, Lippmann demonstrated that
a 2-layer MLP can implement arbitrary convex decision
boundaries [81]. Later it was shown that a 2-layer network
can form an arbitrarily close approximation to any nonlinear
decision boundary [84]. It has also been shown that a 2-layer
MLP is capable of forming an arbitrarily close approximation
to any continuous nonlinear mapping [24]. However, these
results do not necessarily imply that there is no benefit to
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having more than two layers. For some problems, a small
3-layer network can be used where a 2-layer network would
require an infinite number of nodes [21]. It has also been
shown that there are problems which require an exponential
number of nodes in a 2-layer network that can be imple-
mented with a polynomial number of nodes in a 3-layer
network [42], although it is an open problem whether a
similar statement could be made for networks with more than
three layers. None of these results require the use of the
sigmoid nonlinearity in Eq. 2. The proofs in these papers
assume only that the nonlinearity is a continuous smooth
monotonically increasing function that is bounded above and
below. Thus, numerous alternatives to the sigmoid have been
proposed. Examples include ranh(o), erf(c), and o/(1 + o).
In addition, none of the above results require that the non-
linearity be present at the output layer. Thus, it is quite
common to use linear output nodes since this tends to make
learning easier.

MLP Learning Algorithm (Backpropagation)

One of the limitations of Rosenblatt’s original formulation of
the MLP was the lack of an adequate learning algorithm [89].
Algorithms were eventually developed to overcome this
limitation [106, 119, 144]. The most common approach is to
use a gradient descent algorithm, but the key difficulty in
deriving such an algorithm for the MLP was that the gradient
is zero almost everywhere when the hard-limiting non-
linearity is used. The nonlinearity must be present however.
because without it the MLP would implement nothing more
than a linear transformation at each layer, in which case the
MLP could be reduced to an equivalent single layer network.
The solution is to use a nonlinearity that is differentiable. The

Oth component of the input vector to each layer to be equal to
1: that is uz0 = 1, i.e., wyj0 are the bias weights. With this
understanding, the output of a node in layer / is given by:

Ni-i (5)
utj=f( Zwu,i u-1i)

i=0

where f(-) is the sigmoid nonlinearity. This function has a
simple derivative:

df((x) (6)

filoy= =floy (1 - flo)

The most common learning algorithm for the MLP uses a
gradient search technique to find the network weights that
minimize a criterion function. The criterion function to be
minimized is the Sum-of-Squared-Error Criterion function:

P ©)
Jwy=Y, Jp(w)

p=1

where P is the number of training patterns, J,(w) is the total
squared error for the pth pattern:

{ Ni , &)
TIpw) =5 3 (uLg(xp) — dglxp))”
g=1

and N7 is the number of nodes in the output layer as defined above.
The weights of the network are determined iteratively according to:

nonlinearity most often used is the sigmoid function. With 9J(w) 9
this nonlinearity, it is possible to implement a gradient search wijiilk + 1) = wijitk) — 1 anJI
of the weight space. Before we derive the learning algorithm, wik)
let us introduce the following notation: _ ‘ aJL(W)
=wyi(k) = Ll i
J i
Notation Meaning ®
uyj output of the jth node in layer / . . .
, . . . where |l is a positive constant called the learning rate. To
Wiji weight which connects the ith node . K . .
. . . implement this algorithm we must develop an expression for
in layer [-1 to the jth node in layer / . .= . . .
. the partial derivative of J, with respect to each weight in the
Xp pth training sample . . . . .
. . network. For an arbitrary weight in layer / this can be written
uo,i ith component of the input vector ) ,
) i using the Chain Rule:
dj(xp) desired response of the jth output
for th ining s
node for the pth tljaxnlng sample ajp(w) aJp(w) auzJ (10)
Ni number of nodes in layer / 3 = P) 3
Wi Wi Owr i
L number of layers L ty b
P number of training patt
ming patterns where:
For notational convenience we let the Oth layer of the network Mo
hold the input vector components; that is, in our notation uo;  duij 9 Z )
= xj, where x; is the jth component of the current input vector.  gwy;; ~ dwyjj FC2 Whjm ui-1.m )
Also, in order to account for the bias weights we define the m=0 an
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N Ni-i

_f (ZW[_]IVI ul-1 m)a” ZW[JHI Ui—1m
m=0 m=0

Ni-y

=f7 (Y, Wigm ti-tm) wi-vi

m=0

Substituting from Eq. 6 for the first term, we get:

duij (12)
. L= w1 = ) uie
With this, Eq. 10 becomes:
oJp(w)  dJp(w) (13)
SEPATS _POAT 1 —ur ) ui— i
owlj.i dulj wrj (1= uig) it

The term dJp(w )/du;j represents the sensitivity of Jp(w) to
the output of node u;, ;. The node u;j exhibits its influence on
Jp through all of the nodes in the succeeding layers. Thus,
9Jp(w)/duy jcan be expressed as a function of the sensitivities
to nodes in the next highest layer as follows:

AJp(w) _ 2 BJJ;(W) Oul+1m (4

aul.j auH-Lm aM[.j
oIpw) D X ]
oJpw)
Witlmg Ul,
z‘ aum.m duy j A Z Hmg k)
¢=0
Nt A, w) 3 Ni
p w
= 2 a f( z Wiklmg Ulg) 5 2 Witlmg Ulg
ul+1.m out
g=0 LF()
aJp(w
Z Ut m (1= i tm) Wikt
8u1+1,m

This process can be continued for dJ,(w)/dui+1,m and so on,
until we reach the output layer. At the output layer we reach
a boundary condition where the sensitivities of the nodes in
the last layer are derived from Eq. 8 as:

dJp(w)

= up ixp) - (15)
ourj = uLir

dj(xp)

While the derivation seems to be working its way forward to
the output layer, the sensitivity of a node is actually computed
from the output layer backwards. The expression in Eq. 15 is
called the output error, and the corresponding expression for
hidden layer nodes in Eq. 14 is often referred to as the hidden
layer error, although strictly speaking it doesn’t represent an
error of any type. Since this “‘hidden layer error” is computed
from the output layer backwards, it has historically been
called the backpropagated error, and the learning algorithm
the BackpropagationAlgorithm. The results in Egs. 13-15can
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be used in Eq. 9 to implement the gradient search. Typically
the summation in Eq. 9 is replaced with an estimate of the
gradient based on a single sample. That is, typically
dJ(w)/ 0wy, is approximated so that Eq. 9 becomes:
%m<}d P(w) (16)

owyii i)

wiji(k + 1) = wij.i(k) —

where (k mod P) is the index of the pattern used to estimate
the gradient at the kth iteration.

Equations 13-16 comprise the Backpropagation learning
algorithm. The complete algorithm is shown in Table 1. The
weights are typically initialized to small random values. This
starts the search in a relatively “safe” position [58]. The
learning rates can be chosen in a number of different ways.
They can be the same for every weight in the network,
different for each layer, different for each node, or different
for each weight in the network. In general it is difficult to
determine the best learning rate, but a useful rule of thumb is
to make the learning rate for each node inversely proportional
to the average magnitude of vectors feeding into the node.
Several attempts have been made to adapt the learning rate as
a function of the local curvature of the surface [11, 25, 63,
119]. The simplest approach, and one that works quite well
in practice, is to add a momentum term of the form
owij.i(k) = wiji(k—1)) to each weight update, where
0 <a< 1. This term makes the current search direction an
exponentially weighted average of past directions, and helps
keep the weights moving across flat portions of the perfor-
mance surface after they have descended from the steep
portions.

The process of computing the gradient and adjusting the
weights is repeated until a minimum (or a point sufficiently
close to the minimum) is found. In practice it may be difficult
to automate the termination of the algorithm. However, if one
wishes to do so, there are several stopping criteria that can be
considered. The first is based on the magnitude of the
gradient. The algorithm can be terminated when the mag-
nitude of the gradient is sufficiently small, since by definition
the gradient will be zero at the minimum.

Second, one might consider stopping the algorithm when
J falls below a fixed threshold. However this requires some
knowledge of the minimal value of J, which is not always
available. In pattern recognition problems, one might con-
sider stopping as soon as all of the training data are correctly
classified. This assumes, however, that the network can ac-
tually classify all of the data correctly, which won’t always
be the case. Even if it can do so, this stopping criterion may
not yield a solution that generalizes well to new data.

Third, one might consider stopping when a fixed number
of iterations have been performed, although there is little
guarantee that this stopping condition will terminate the
algorithm at a minimum. Finally, the method of cross-valida-
tion can be used to monitor generalization performance
during learning, and terminate the algorithm when there is no
longer an improvement. The method of cross-validation
works by splitting the data into two sets: a training set which
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procedure BACK_PROP
Initialize the weights to small random values ;
repeat

Choose next training pair (x,d) and let the o' layer be up=x :

FEED_FORWARD ;
COMPUTE_GRADIENT :
UPDATE_WEIGHTS ;
until termination condition reached ;
end; {BACK_PROP}

subroutine FEED_FORWARD
for layer =1 to L do

Niaver-1

. i=0
endloop

endloop

-end; {FEED_FORWARD}

subroutine COMPUTE_GRADIENT
for layer=Lto | do
for node = 1 to Nigyer do

if layer = L then eL node = L node - dnode ;
Nla_\ er=1

m=1
endloop
for all weights in layer layer do
glayer,j,i=€Za)'er.juch)’er,j(1 - UlaverjUlaver-1.i -
endloop
endloop
‘end; {COMPUTE_GRADIENT})

‘subroutine UPDATE_WEIGHTS

' for all wij;do

‘ wrjik + 1) =wijik) - Hgiji;
i endloop

i end; {UPDATE_WEIGHTS}

for node =1 to Nla}'er do Ulayer.node :ﬂzW/av\*er.node.illla)‘(’rfl.l) N

else €laver,node = Zela)'gr+l.mulayer+l.m(] — Ulaver+1.m)Wlaver+l.mnode

| reduces the size of the training set even
| further.
i

MLP example
Examples of how the MLP can be used for
classification and functional approximation
were shown previously in Fig. S. In both of
these examples, a 2-layer network was
trained using the Backpropagation algo-
rithm. We now consider an example where
the MLP is trained to implement a simple
i logic function.
| Consider the 2-input XOR problem.
| This problem has a great deal of historical
| significance because itis one of the simplest
; logic functions that cannot be implemented
I by asingle perceptron; that is, it requires at
least two layers of perceptrons [89]. This
problem has four training patterns cor-
responding to the four combinations of two
bipolar inputs, {(-1, -1), (-1, 1), (1, -1), (1,
1)}. The objective is to teach an MLP to
respond with a high output when the two
inputs are different and a low output when
they are the same.

Output target values of O and 1 are used
in the training process. A 2-layer MLP is
used with two hidden layer nodes and one
output node. The weights of the network are
initialized to small random values. In this
example we used random numbers
generated from a uniform distribution over
the interval (-0.1, 0.1). The four patterns
above were presented in mixed order so that
the desired output alternates between 0 and
1 at each iteration. A fixed learning rate of
u=1.0 was used for all nine weights. After
4000 iterations (1000 cycles through the

Table 1: Backpropagation Learning Algorithm

is used to train the network, and a fest ser which is used to
measure the generalization performance of the network.
During learning, the performance of the network on the
training data will continue to improve, but its performance on
the test data will only improve to a point, beyond which it will
start to degrade. It is at this point, where the network starts to
overfit the training data, that the learning algorithm is ter-
minated.

The first three criteria are sensitive to the choice of
parameters, and if not chosen properly the results can be very
poor due to premature termination. Cross-validation, how-
ever, does not suffer from this characteristic. It not only
avoids premature termination, but can actually improve the
generalization performance of the network. However, cross-
validation can be more computationally intensive. Further, if
the number of data samples is limited, cross-validation
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four training patterns), the Backpropaga-
tion algorithm found a weight solution
which produced the results shown in Fig. 6.
This algorithm can take varying amounts of time to solve this
problem depending on the exact values of the initial weights
and the learning rates that are used. In Fig. 6, we give three
different representations of the solution: the weights learned
by the network, a logic diagram equivalent, and the decision
boundaries formed in the pattern space. It should be clear that
there are many possible solutions to this problem, and that in
this example the network has correctly learned one of these.

MLP Temporal Difference Learning

Neural networks are often used to predict the outcome of a
future event based on current observations of the state of the
environment. An example of one such use is in “game play-
ing” where the network is asked to predict whether or not a
particular board position will lead to a win at the end of the
came. Given a choice of several moves, we can use the
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6. A solution to the XOR problem. Weight solution (a): logic
diagram equivalent (b); partitioning of the pattern space (c).

network to choose the move which arrives at the board
position that is most likely to lead to victory. This type of
application adds an interesting twist to the learning problem.

Standard learning algorithms like backpropagation cannot
be used to update the weights after every move. since the
outcome (the value that we want to predict) is not available
until the end of the game. While it is possible to wait until the
end of the game. and then update the weights (using infor-
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mation that was stored along the way), this would result in
rather large storage requirements. Temporal difference
learning is a technique developed by Sutton [132] for
accumulating weight update information at each move
along the way without having to save the states of the
network and without having to wait until the end of the
game for the final outcome.

Formally. we seek to minimize the following criterion
function:

P Ny

Jwy =3 3 WK (o, ~ Gl
p=1 k=1

]

where P is the number of examples, e.g., the number of
games; Np is the number of steps in the pth example, e.g.,
the length of the game, which is not known until the
outcome is determined; z, is the actual outcome for the
pth example; G(xp(k)) is the output of the network when
presented with xp(k), and A «(0,1) is a parameter which is
used to place more emphasis on predictions temporally
close to the outcome. The value of G(xp(k)) is the predicted
outcome based on the observation xp(f), and can cor-
respond to the output of a simple linear function or some-
thing more complex such as an MLP. For example, x,(1)
might be a description of the current board position in a
game of backgammon and xp(k) would be the predicted
outcome of the game based on that board position.

As usual, we update the weights of our network using a
gradient descent learning algorithm. However, as mentioned
above, a direct application of this type of algorithm is not
particularly amenable to an on-line approach. The problem is
that we do not know the outcome zy, until we have gone
through the complete set of Nj observations for a particular
example. A straightforward approach to learning can resultin
large storage requirements since we must maintain copies of
the states of the network at each time, &, in order to implement
a gradient descent algorithm such as backpropagation.
Moreover, most of our computations cannot be performed
until the final time step N, when the outcome, z,, is observed.
Sutton has developed an algorithm for implementing these
prediction problems that is suitable for on-line computation
[132]. Specifically, the algorithm does not require the states
of the network to be stored for each time step, and further it
distributes the computation of the gradient uniformly over the
entire time sequence. While the derivation of the algorithm is
relatively straightforward. itis beyond the scope of this paper.
The final algorithm is shown in Table 2. This algorithm is
commonly known as the TD (&) algorithm, or the Temporal
Difference Learning Algorithm. Note this algorithm is slight-
ly different than Sutton’s algorithm in that A would be equal
to 1 in equations (A) and (B).

The TD (M) algorithm has been used successfully as an
approach for learning the game of backgammon from the
outcome of self-play [133]. Specifically. the algorithm at-
tempts to learn the evaluation function that determines which
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procedure TD(})
Initialize network ;
repeat
Begin next example (e.g. start next game) ;
€0,i=0,7,=0,k=1;
repeat
Get next observation xp(k) ;
Calculate G(xp(k)) ;
for all w; do
i = G (xp(k))
ow;
Yri = [Gxp(k)) — GOxp(k = 1))Jek—1.i + AYk-1.is
k=k+1;
endloop
until outcome determined (Note: k = Np) :
for all w; do
Yii = [2n, — G(Xp(k))ek-1.i + Aya-1.i
wilm + 1) = wi(m) - Wk, ;
endloop
until termination condition reached ;
end; {TD(\)}

+ Aek—1.i;

Table 2: Temporal Difference Learning Algorithm

board positions are more likely to lead to a win. The resulting
program has reached near-expert level performance and has
achieved good results against human Grand Masters. In fact,
the resulting network was capable of beating two-time world
champion Bill Robertie 13 out of 31 times, and has been
shown to win approximately 60 percent of the games against
Neurogammon 1.0, winner of the 1989 Computer Olympiad.

MLP Issues and Limitations

The MLP is capable of approximating arbitrary nonlinear
mappings, and given a set of examples, the Backpropagation
algorithm can be called upon to learn the mapping at the
example points. However, there are a number of practical
concems. The first is the matter of choosing the network size.
The second is the time complexity of learning. That is, we may
ask if it is possible to learn the desired mapping in a reasonable
amount of time. Finally, we are concerned with the ability of
our network to generalize; that is, its ability to produce ac-
curate results on new samples outside the training set.

Choosing the Network Size

First, theoretical results indicate that the MLP is capable of
forming arbitrarily close approximations to any continuous
nonlinear mapping; but this is true only as the size of the
network grows arbitrarily large [24]. In general, it is not
known what (finite) size network works best for a given
problem. Further, itis not likely that this issue will be resolved
in the general case since each problem will demand different
capabilities from the network. Choosing the proper network
size is important. If the network is too small. it will not be
capable of forming a good model] of the problem. On the other
hand, if the network is too big then it may be too capable [ 10].
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That is, it may be able to implement numerous solu-
tions that are consistent with the training data, but
most of these are likely to be poor approximations to
the actual problem. In this case, the solution learned
during any given training session is likely be a poor
approximation to the actual problem.

Ultimately, we would like to find a network whose
size best matches the capability of the network to the
structure of underlying problem: or, since the data is
sometimes not sufficient to describe all of the in-
tricacies of the underlying problem, we would like a
network whose size best captures the structure of the
data. With some specific knowledge about the struc-
ture of the problem (or data), and a fundamental un-
derstanding of how the MLP might go about
implementing this structure, one can sometimes form
a good estimate of the proper network size.

The examples in Fig. 5 provide some insight into
how a 2-layer MLP might go about solving a pattern
recognition problem (by piecing together linear boun-
daries in a smooth fashion) and a functional ap-
proximation problem (by combining smooth step
functions).

With little or no prior knowledge of the problem
however, one must determine the network size by trial
and error. A methodical procedure is recommended.
One approach is to start with the smallest possible network
and gradually increase the size until the performance begins
to level off. In this approach, each size network is trained
independently. A closely related approach is to “grow a
network.” The idea here is to start with one node and create
additional nodes as they are needed. Approaches that use such
a technique include Cascade Correlation {30], the Group
Method of Data Handling (GMDH) [8. 62], Projection Pur-
suit [33, 34], the Algorithm for Synthesis of Polynomial
Networks (ASPN) [8], and others [9]. These approaches
differ from the previous approach in that additional nodes are
created during the training process.

Another possibility is to start with a large network and then
apply a pruning technique that destroys weights and/or nodes
which end up contributing little or nothing to the solution
[77]. With this approach one must have some idea of what
size network constitutes a “large” network; that is, “what size
network is probably too big for the problem?"

The following guidelines are useful in placing an upper
bound on the network size. For a fully connected MLP network,
no more than three layers are typically used, and in most cases
only two. Numerous bounds exist on the number of hidden layer
nodes needed in 2-layer networks. For example, it has been
shown that an upper bound on the number of hidden layer nodes
needed for the MLP to implement the training data exactly is on
the order of P, the number of training samples [55]. This suggests
that one should never use more hidden layer nodes than training
samples. Actually, the number of hidden layer nodes should
almost always be much less than the number of training samples,
otherwise the network simply “memorizes” the training
samples, resulting in poor generalization.

(A)

(B)
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It is more useful to consider bounds on the number of
hidden layer nodes that are expressed as a function of n.
the dimension of the input pattern. It is possible to find
problems that require the number of hidden layers nodes
to be exponential in n, but it is generally recommended that
MLPs be used for problems that require no more than a
polynomial number of hidden layer nodes [26. 42, 127].
For example, if the problem is one that requires a pattern
class to be completely enclosed by a spherical decision
boundary, then the number of hidden layer nodes should
be approximately 3n [59].

Complexity of Learning

Even if one is able to determine the optimal network size. it
turns out that finding the correct weights for a network is an
inherently difficult problem. The problem of finding a set of
weights for a fixed-size network which performs the desired
mapping exactly for some training set is known as the loading
problem. Recently it has been shown that the loading problem
is NP-complete [13. 65]. This suggests that if we have a very
large problem, e.g.. if the dimension of the input space is very
large, then it is unlikely that we will be able to determine if a
weight solution exists in a reasonable amount of time.

On the other hand, learning algorithms like Backpropaga-
tion are based on a gradient search, which is a greedy
algorithm that seeks out a local minimum and thus may not
yield the exact mapping. Gradient search algorithms usually
don’t take exponential time to run (if a suitable stopping
criterion is employed). However. it is well known that find-
ing local weight solutions using Backpropagation is extraor-
dinarily slow. One way to explain this sluggishness is to
characterize the error surface which is being searched. In the
case of a single perceptron with linear activation function the
error surface is a quadratic bowl (with a single (global)
minimum), and thus it is a relatively agreeable surface to
search. For MLPs however. it turns out that the surface is
quite harsh [58]. This is illustrated in Fig. 7. which shows J
for two different cases. In both cases there is a single node
with two weights and the training samples are {-4,-3.-2, -1}
for class 1 and {1. 2, 3, 4} for class 2. The only difference
between the two cases is that in Fig. 7a the node is linear,
and in Fig. 7b a sigmoid is used. The surface in Fig. 7b is for
a single node only. but it has been shown that many of the
characteristics of this surface are typical of surfaces for
multilayer perceptrons as well [58].

These surtaces tend to have a large amount of flatness as
well as extreme steepness, but not much in between. It is
difficult to determine if the search has even terminated with
this type of surface since the transient flat spots “look™ much
the same as minima, i.e.. the gradient is very small. Further-
more, with this type of surface a gradient search moves very
slowly along these flat parts.

It is dangerous to increase the learning rate to compen-
sate for the sluggishness in these areas because the algo-
rithm may then exhibit instabilities when it reaches the
steep parts of the surface. Attempts to speed learning
include variations on simple gradient search [63. 110, 119].
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7. Error surface examples. J for a linear node (a); J for a non-
linear mode with a sigmoid (b).

line search methods [60], and second-order methods [12,
140]. Although most of these have been somewhat successful,
they usually introduce additional parameters which are dif-
ficult to determine, must be varied from one problem to the
next, and if not chosen properly can actually slow the rate of
convergence.

Generalization

Generalization is a measure of how well the network performs
on the actual problem once training is complete. It is usually
tested by evaluating the performance of the network on new
data outside the training set. Generalization is most heavily
influenced by three parameters: the number of data samples
(and how well they represent the problem at hand), the
complexity of the underlying problem, and the network size.
Generally speaking, a larger number of data samples will do
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a better job at representing the underlying problem and, as
long as the proper network size is used, this should allow us
to learn a better solution to the problem.

The generalization issue is often viewed from two dif-
ferent perspectives. In the first, the size of the network is fixed
(presumably in accordance with the complexity of the under-
lying problem) and the issue becomes: “How many training
samples are required to achieve good generalization?” This
perspective is useful in applications where we have the ability
to acquire as many samples as we deem necessary. In the
second case, the number of training samples is fixed and the
issue becomes: “What size network gives the best generaliza-
tion for this data?” This perspective is useful in applications
where we are limited in our ability to acquire training data,
and we would like to know what size network is best at
describing the data we have available. Both are valid view-
points, although the first is probably more common in the
theoretical literature, and will therefore be the one adopted
here.

Although the concepts discussed in this section are ap-
plicable to the general learning problem, they are perhaps
most easily understood in the context of a specific problem;
namely that of learning logic functions. We will focus our
discussion on the problem of learning logic functions of d
variables. This problem has a finite domain (2d patterns) and
arange of {0,1}.

We can think of a network as a device that formulates
hypotheses as to what the true logic function might be: the
larger the network, the larger the set of functions it can form,
and the more likely the true logic function is in this set.
Further, we can view the training samples as clues that help
us discover the correct function.

Training samples allow us to reject logic functions which
are not consistent with the clues. We assume for now that the
network size is chosen sufficiently large to include the true
logic function in its set of implementable functions. If it is
not, then the solution we seek is the one (or more) function(s)
that best approximates the true logic function.

In a sense, the learning process can be viewed as a process
of elimination: the more training data we have, the more
incorrect functions we are able to reject, and the more likely
we are to find the correct function.

Given this perspective, there are two different approaches
for studying generalization. The first attempts to determine
the average (or expected) generalization of the network,
while the second attempts to bound the worst-case
generalization.

The average generalization of the network is determined
by allowing Q to represent the set of all logic functions
implementable by the network. Associated with each func-
tion, g € Q, is a measure of its generalization, g(q). Typically
8(q) is taken to be the fraction of the domain, i.e., the fraction
of all 2¢ samples, for which ¢ produces the correct output.
Now suppose that the network is presented with P training
samples. Let Qp < Q be the subset of functions in Q that are
consistent with the set of P training samples. Then the average
(or expected) generalization of the network is found by
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averaging the generalization over all functions in Qp. Addi-
tional data samples serve to improve generalization by reduc-
ing the size of Qp while at the same time retaining the
functions that are consistent with the new data. Although very
interesting, this approach can be difficult to apply in practice.
The details of this approach are beyond the scope of this
article [26, 48, 83, 93].

The second approach for studying generalization uses a
worst-case analysis to compute a bound on the generalization
error. The generalization error is defined to be the difference
between the generalization on the training samples and the
generalization on the actual problem. We expect the
generalization on the training data to be overly optimistic
since the learning algorithm concentrates its efforts on this
data. In many cases however, the difference between this
estimate and the actual generalization can be bounded, and
by increasing the number of training samples this bound can
be made arbitrarily small. This was shown by Vapnik and
Chervonenkis [135]. A key result of their work was that a
useful bound can only be established when the number of
training samples exceeds a parameter called the Vapnik-
Chervonenkis Dimension (VCdim), which is a measure of the
capability of the system. In our case, the system is an MLP.
Formally the VCdim is defined as follows:

The VCdim of a system is the size of the largest set S of data
samples for which the system can implement all possible 2!

dichotomies on S

where IS| is used to denote the cardinality of S; that is, the
number of samples in S. Note this definition requires only that
one such set of examples exist, it need not be true for all sets
of size VCdim. As an example, the VCdim of a single
perceptron with a two-dimensional input is 3. This is easily
verified since it is possible to find a set of 3 points that can be
linearly dichotomized (?artitioned into two groups with a
linear boundary) in all 2” ways (Fig. 8), and at the same time
there is no set of 4 points that can be linearly dichotomized
inall 2* ways. In general, it can be shown that the VCdim of
a single perceptron with a n-dimensional inputis n + 1.

It is possible for the VCdim of a system to be infinite, in
which case it becomes impossible to bound the worst case
generalization error for the system (although it may still be
possible to learn solutions that exhibit some degree of
generalization on average). Fortunately the VCdim for the

8. Eight possible ways to dichotomize three points in a plane.
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MLP has been shown to be finite. For example. the VCdim
of a one-hidden-layer MLP with complete connections be-
tween the layers has been shown [10] to lie in the range:

2[]\2[]} n < VCdim < 2N, log(eNy) (1%
where [] is the floor operator that returns the largest integer
less than its argument, N, is the number of hidden layer nodes,
n is the dimension of the input pattern, N, is the total number
of weights in the network, ¢ is the base of the natural
logarithm, and N is the total number of nodes in the network.
The lower bound is approximately equal to the number of
weights connecting the input to the hidden layer, which
usually accounts for a majority of the weights the network.
The upper bound is not much more than twice the number of
weights in the network. Thus, as a rule of thumb. we can use
the number of weights in the network as a rough estimate of
the true VCdim. These results assume that all nodes in the
network use hard-limiting nonlinearities. It is more difficult
to determine the VCdim when sigmoids are used, but
Sontag’s results suggest that it is at least twice as large in this
case [128]. Also, only the lower bound above assumes a
one-hidden-layer network. The upper bound holds regardiess
of the number of layers and the connectivity.

Once the VCdim of a system is known. it is possible to
determine the number of training samples required for good
generalization. Vapnik and Chervonenkis's result suggests
that the number of samples be larger than the VCdim. A useful
rule of thumb is that the number of training samples be
approximately ten times the VCdim. For an MLP this means
that the number of training samples should be approximately
ten times the number of weights. This rule seems to work
fairly well in practice [148]. In addition, there are more exact
expressions relating the VCdim and the number of training
samples [10, 100].

The above result has strong implications in practice since
the number of weights can grow quite large in many
problems. Consider, for example. the handwritten character
recognition problem [76] in which the network must learn to
discriminate between the handwritten digits 0" through 9",
Each digit is represented as a 16 by 16 binary image. Thus,
the dimension of the input to the MLP is 256. A fully
connected 2-layer network with 12 hidden layer nodes and
10 output layer nodes (one for each digit class) would have
a total of 3214 weights [75]. Using the rule of thumb men-
tioned above, we would need approximately 32,140 ex-
amples of handwritten characters to expect good
generalization from the network. In practice it may be dif-
ficult to obtain this many samples. In addition. during train-
ing we would probably have to cycle through this training
set several times before the algorithm converges to a solu-
tion. The training time required for the Backpropagation
algorithm on this data would probably be on the order of
several days using a fast single-CPU machine.

Thus, a large number of weights adversely affects not only
generalization, but also the time required to learn the solution.
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[t is therefore to our advantage to seek methods for reducing
the number of weights, while at the same time retaining the
capability of solving the problem. The next three sections are
devoted to such methods.

Improving MLP Generalization Through Pruning

It is generally true that there is a large amount of redundant
information contained in the weights of a fully connected
MLP. Thus it seems plausible that we could eliminate weights
from the network, and at the same time retain the functional
capability needed to solve the problem. This process is known
as pruning. There are two advantages to pruning. First, with
a fixed number of training samples the reduction in weights
can lead to a marked improvement in the generalization
properties of the network. Second. by isolating the relevant
parameters. learning is presumably easier.

The simplest approach to pruning is to delete the smallest
weights in the network. This however is not always the best
approach since the solution can be quite sensitive to these
weights. A much better approach is to delete the weights that
end up disturbing the solution the least.

A very popular method based on this approach is called
Optimal Brain Damage (OBD) [77]. In OBD, the network is
first trained using the Backpropagation algorithm. Then the
weights with the smallest saliency are deleted. After this, the
reduced size network is re-trained to obtain the final solution
(it may be useful to repeat this procedure of deleting weights
and re-training the network several times before settling on a
final solution). The saliency for weight wiij is defined as:

stij=0J1i; W/z.i.j (19)
where SJ/_,':,‘ measures the sensitivity of the criterion function
to small perturbations in wl,i,j. This procedure avoids the
deletion of small weights which have a large influence on the
solution because the saliency value for these weights is inflated
by 8J1.;j. In OBD. the sensitivity measure is approximately:

i P (20)

U
8J1ij= =y =Y i
Tij o OWTiy

p=1

This approximation is obtained by expanding 87 in a Taylor
series and dropping all second-order cross terms as well as all
higher-order terms. The first-order terms drop out automat-
ically because the network has converged to a local minimum
where first-order terms are zero. To implement the above
equation we need an expression for r;. For hidden layer
nodes it is given by:

N 3J (20
’ 2 < r”
rei= (" oL))” zr[H.mW[’-f-l.m.i +f (\'I,i)’aT[A

m=1

where f" is the second derivative of the nonlinear activation
function. 9J/0uy, is defined in Eq. 14, and yy, is the weighted
sum for node /,i;
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Ni-y (22)
VL= 3 Whim U=l
m=1
At the output layer, rz,; is given by:
rLi= (' OL) = (dj = uL ) (L) 23)

In summary, the OBD method comprises the following
steps. First, the network is trained with the Backpropaga-
tion algorithm. The saliencies are then computed using the
above equations. The weights with the smallest saliency
are deleted, and the network is retrained to obtain the final
solution. In some applications it has been found that the
number of weights can be reduced by a factor of four (77].
A recent extension of the OBD method which uses the full
Jacobian (instead of just the diagonal elements) is
described in [47].

Improving Generalization Through Weight Sharing
Another way to reduce the number of weights in the net-
work is through the use of local connections and weight
sharing [76, 138]. The basic idea behind local connections
is to make individual nodes process only a local region of
the input.

For example, in the handwritten character recognition
problem, hidden layer nodes may process only a small
m-by-m patch, e.g., m = 5, of the input pattern. Of course,
this requires several hidden layer nodes to cover the entire
input pattern. It is possible that multiple nodes may be used
to cover the same region. and that adjacent regions may
overlap.

This is illustrated in Fig. 9 for a very simple network, a
2-layer network with six hidden layer nodes. Each of the
hidden layer nodes, A-F, is connected to a local region of the
input. Adjacent regions overlap by one position. Nodes A, B.
and C cover the same regions as D, E. and F. respectively. If
this network were a fully connected MLP with six hidden
layer nodes it would have a total of 37 weights. With the local
connection scheme however, there are only 25 weights. On
the other hand, a locally connected network may require more
nodes than a fully connected network to solve the same
problem. So even though local connections can reduce the

9. Simple nerwork with local connections and weight sharing.
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number of weights per node, it may not always reduce the
total number of weights, but when coupled with weight
sharing a dramatic reduction can be achieved.

With weight sharing, nodes A, B, and C in Fig. 9 share all
the same weights: similarly, so do D, E, and F. This reduces
the total number of weights to 13. For large problems this
approach can lead to a drastic reduction in the number of
weights. Such an approach has been used successfully to
solve the handwritten character recognition problem [75, 76].
In this problem., nodes with identical weights are positioned
at every possible registration point in the input pattern [76].
Conceptually these nodes are all looking for the same m-by-m
“feature.” but each node is looking at a different registration
point in the pattern. From another perspective, it is as if a
single node with an m-by-m kernel is being used to scan the
input pattern, producing as its output another pattern with one
value for each registration point. Networks that use these
techniques typically have more than one hidden layer of
locally connected nodes with weight sharing. Excellent
results have been reported using this technique with only four
different groups of nodes in the first hidden layer, i.e., four
different sets of weights, each shared by a group of nodes
positioned at every registration point in the pattern, and
twelve in the second hidden layer [ 76].

Improving Generalization

Through Complexiry Regularization

Another way to improve generalization is through the use of
complexity regularization. In this approach. a term is added
to the criterion function that discourages the learning algo-
rithm from seeking solutions which are too complex. This
term then, represents a measure of the network’s complexity,
e.g.. the number of weights. The resulting criterion function
is of the form:

Cost = Mapping Error + Model Complexity

This type of criterion is sometimes referred to as a Minimum
Description Length (MDL) criterion, because it is of the same
form as the information theoretic measure of description
length [115. 116}. Simply put, the description length of a set
of data is the total number of bits required to represent the
data. If a model, e.g., a neural network, is used to represent
the data. then the total description length is the number of bits
required to describe the model plus the number of bits re-
quired to encode the errors, i.e.. the portion of the data which
1s not described by the model. The cost function above is of
this form if we relate the average mapping error to the number
of bits required to encode the errors. and the model com-
plexity to the number of bits required to describe the model.
The model that minimizes this cost function then, in some
sense, provides a minimal description of the data. Cost func-
tions of this type are used in the methods of weight decay and
weight elimination discussed below.

Weight decay [43, 52] can be viewed as a way of reducing
the effective number of weights in the network by encouraging
the learning algorithm to seek solutions that use as many zero
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{or near zero) weights as possible. This is accomplished by
adding a term to the criterion function that penalizes the
network for using nonzero weights. The new criterion func-
tion takes on the form:
P 3 (24)
Jw) = ZJ,,(W) + ?21‘;

p=I i

where the first term is the same squared error criterion as
before, and the second term is a new term involving a sum
over all the weights in the network. The A parameter is a small
positive constant that is used to control the influence of this
term relative to the squared error term. The learning algorithm
derived from this criterion is a simple extension to the Back-
propagation algorithm. In fact. the only modification that is
needed is to subtract an extra term of the form pAw;(k) each
time the ith weight is updated.

The weight decay method does not actually delete weights
from the network, nor does it typically produce weights that
are exactly zero. This begs the question: How does weight
decay actually improve generalization? After all, the total
number of weights is unchanged. the network is simply
encouraged to seek solutions that have smaller weights. How
do solutions with smaller weights provide better generaliza-
tion? The answer is that not all weights are smaller. Some
weights will remain at relatively large values while others
(that would normally take on larger values) will be forced to
take on values near zero. The result is that the average weight
size is smaller.

More specifically, the weights of the network fall into two
categories: those that have a large influence on the solution.
and those that have little of no influence on the solution. Let
us refer to the weights in the second category as excess
weights. Excess weights can take on a wide range of values
without significantly affecting the solution. They are not
likely to take on values near zero unless they are encouraged
to do so. They are more likely to take on values that are either
completely arbitrary. or that cause the network to overfit the
data in order to gain a slight reduction in the training error. In
either case the result is poor generalization. The addition of
the second term in Eq. 24 to the criterion function encourages
the excess weights to take on zero (or near zero) values. This
improves generalization by discouraging overfitting.

When the weight decay method is used. it is easy to show
that, once learning is complete. the magnitude of each weight
in the network is directly proportional to its influence on the
mapping error (the first term in Eq. 24). Thus, if we actually
wish to delete weights from the network. we can simply delete
the smallest weights produced by the weight decay process.

Weight decay is not without its drawbacks. It has the
undesirable effect of biasing the weights that are influential
in the solution toward slightly smaller values. This. in turn.
biases the solution away from the one that minimizes the true
mapping error [93].

An alternative technique which is based on the same
approach is called weight elimination |142, 143]. In weight
elimination the complexity regularization term is of the form:
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Jow)=YJp (w)+AY,

p=1 i

(25)

L
wi/wy

1+ (w,z/vv?;)

where w,, is a fixed weight normalization factor. When w; > w,,
the expression inside the sum is close to unity and this
criterion essentially counts the number of weights. When w;

<wo. the expression inside the sum is proportional to w? and
this criterion works like the weight decay criterion. Through
the appropriate choice of wy we can encourage the the net-
work to seek solutions with a few large weights (wp small),
or many small weights (wy large).

More recently a technique referred to as soft weight shar-
ing has been proposed[102. 103]. This technique adds a term
to the criterion function that encourages the network to use
both zero and nonzero weights. In addition, it encourages the
nonzero weights to cluster into different groups, so that
weights from the same group have approximately the same
value. This can be viewed as a type of weight sharing. In short,
this technique combines the advantages of weight sharing and
weight decay into a single unified approach.

Statistical Pattern Recognition

In statistical pattern recognition, the oprimal classifier assigns
the pattern x to a class @ according to Bayes decision rule.
The two-class Bayes decision rule is given by:

oY (26)

Poilx) Z Plalx)
mn

The reader familiar with statistical decision theory will recog-
nize this as the minimum risk decision rule with a zero-one
loss function.

Equation 26 says: If P(w! x }is greater than P(w>| x ), then
assign x to w1, otherwise assign x to 2. P(wl x ) is the a
posteriori probability, and represents the probability that
pattern X was drawn from class ;. Simply put, the decision
rule says: “assign the pattern x to the class that it most
probably belongs to.” This decision rule is optimal in the
sense that it minimizes the classification error, i.e., the
average number of misclassifications.

Bayes decision rule can be (and often is) expressed in
many different forms. In fact, any pair of functions
{@1(x),02(x)} can be used in place of the a posteriori prob-
abilities in Eq. 26 as long as they yield an equivalent decision
rule. That is, the decision rule in Eq. 26 can be expressed as:

o 27)
Q1x) 2 @aAx)

2
as long as:
¢1(x)>@2(x) when P(wlx)>P@lx) (28)

and

IEEE SIGNAL PROCESSING MAGAZINE 21



Q1(x) < @2(x) when Ployx)<Pl@lx) (29)

Let us refer to @1 and @2 as the simplified decision func-
tions. These decision functions can be obtained in a number
of ways. If a functional description of the a posteriori prob-
abilities is available then these decision functions can be
obtained through simple algebraic manipulations of Eq. 26.
This is a useful approach because it allows us to consider
alternative implementations of the decision rule which may
be easier to implement or computationally more efficient. A
common example of this is the following two-class problem:
both classes are equally likely. and their data have Gaussian
distributions with equal covariance matrices and different
mean vectors. Through a series of simple algebraic manipula-
tions the decision functions can be reduced to linear clas-
sifiers [28, 134].

Although there is often an advantage to seeking simplified
decision functions, there are some applications where the a
posteriori probabilities are essential. These are applications
where it is required that the data not only be assigned to the
most probable class, but also that we know what that prob-
ability is. For example, suppose we are designing a system
that classifies military targets as friend or foe. It may be
essential that we know the probability that our decisions are
correct, 1.e., that we have some measure of confidence in our
decisions. We are likely to react differently if our confidence
is 99 percent as opposed to only 51 percent. even though the
classification would be the same in both cases. The «
posteriori probabilities provide these confidence estimates
directly.

Although Bayes decision rule is quite simple, it is difficult
to apply in practice because the a posteriori probabilities (and
their corresponding family of decision functions) are usually
unknown. This means that they must be estimated. There are
numerous ways of estimating these functions. It is possible.
for example, to use Bayes Rule to rewrite Eq. 26 in terms of
a priori probabilities and density functions. i.e..
P(wil x) = P(0i)p(x] 0i)/p(x). These probabilities and density
functions can then be estimated using a variety of techniques
described in the conveniional pattern recognition literature
[28. 134].

It is also possible to estimate the a posteriori probabilities
directly. This problem is essentially one of functional ap-
proximation. Given a set of examples. we wish to train an
estimator 6;(x,w) to approximate P(w;lx). The vector w rep-
resents parameters of the estimator to be determined by the
training procedure, e.g., weights in the MLP. Ideally we
would expect the training set to be composed of example pairs
of the form (x,P(w;l x) ). In practice however. we don’t have
access to the probability function. only the class labels ;. All
is not lost, however. since it can be shown that when a
mean-squared-error criterion is used for training, and Os and
Is are used as the target outputs (in place of P(wilx) and
P(mnl x), respectively). the optimal solution for the
parameters of 8;(x,w) is the same as if the true a posteriori
probabilities were used as the target outputs [28. 146]. Similar
results exist for other types of criterion functions as well [7.
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29. 40, 114]. It should be noted that this result is only true
when the target outputs are Os and 1s. Other target values,
suchas 0.1 and 0.9, can lead to biased results [84]. Thus, when
we train with the Backpropagation algorithm, the MLP can
learn the best mean-squared-error approximation to the a
posterioriprobabilities! This holds regardless of the estimator
0;(x,w). Of course, this approximation can be very poor unless
the estimator is capable of forming a good model of
P(wil x).

In general, choosing functions 6;(x,w) that can serve as
good estimators of P(m;l x) can be very difficult. These func-
tions should have outputs that are bounded between zero and
one and, in the multi-class case (3 or more classes), their
outputs should all sum to unity. In the two-class case we only
need to estimate one probability since the second is given by
default, that is P(m2 | x)=1-P(w1 | x). These restrictions can
severely limit the class of functions that we can consider, and
can also complicate the learning procedure considerably. For
this reason, it is more common to choose functions 6;(x,w)
that are good estimators of the simplified decision functions
¢i(x). Estimators for @;(x) are not nearly as restricted as those
for P(wjl x). The parameters of 8;(x,w) are determined in the
same way as before, by using Os and Is as target outputs as if
we were trying to estimate P(m;l x). The result is that we
obtain good estimates of the decision functions @;(x), but
typically very poor estimates of the a posteriori probabilities
P(wil x). As a result, most systems are typically unable to
provide confidence estimates with the class assignments.
MLPs, on the other hand, can be very good estimators of the
aforementioned function. Their sigmoid functions guarantee
that the outputs are bounded between 0 and 1. In addition, it
is not difficult to train these networks so that their outputs sum
to one in the multi-class case [17. 27]. In fact, some authors
have shown that the outputs tend to sum to a value close to
one without applying any special constraints [14, 114]. Of
course. the network must be the right size before the MLP can
form a good approximation to P(w;l x). In addition, the num-
ber of training samples must also be sufficiently large to
guarantee good generalization.

Accurate estimates of a posteriori probabilities are par-
ticularly important in applications where multiple estimates
are combined in a higher level decision making process. One
such example is in hidden Markov models (HMM) where
MLPs have been used to estimate the emission and transition
probabilities of the model [15]. One of the consequences of
the fact that the network learns a posteriori probabilities is
that the a priori probabilities. i.e., P(®;), can easily be ad-
justed after training. These probabilities, P(w;), represent the
likelihood that a pattern will be drawn from class oy, prior to
the actual presentation of the pattern. During learning, these
probabilities are implicitly assumed to be equal to the relative
number of patterns from each of the different classes in the
training set. If the training set distribution does not accurately
reflect the actual a priori probabilities, the network outputs
can be scaled to compensate. This is possible because of the
scalar relationship between the a posteriori probability es-
timate produced by the network and the a priori probability,
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i.e., P(wl x)=P(®;) p(x| ®;) / p(x). The proper adjustment can
be made by scaling the estimate of P(wil x) by P(wi)/ P{®),
where P(w;) is the true a priori probability, and Px(o;) is the
a priori probability implied by the training set distribution.
Estimates of true a priori probabilities are easily obtained in
most problems. In the zip-code recognition problem for ex-
ample, the relative frequency of occurrence of the different
digits can easily be determined from the large databases of
zip codes that are available.

In summary, MLPs are good at both classification and in
estimating a posteriori probabilities. In some applications
this gives them a distinct advantage over other techniques.

Radial Basis Function Network

A Radial Basis Function (RBF) network [113] (Fig. 10)is a
two-layer network whose output nodes form a linear com-
bination of the basis (or kernel) functions computed by the
hidden layer nodes. The basis functions in the hidden layer
produce a localized response to input stimulus. That is, they
produce a significant nonzero response only when the input

network |
outputs

network
inputs

10. The radial basis function network.

falls within a small localized region of the input space. For
this reason this network is sometimes referred to as the
localized receptive field network [91, 92].

Although implementations vary, the most common basis
is a Gaussian kernel function of the form:

(»ijhg)T(x —-wi,) i=1 (30)

u|j=exp — 5 > 2,....N|
Oj

where u;j is the output of the jth node in the first layer, X is
the input pattern, w1 ; is the weight vector for the jth node in

the first layer, i.e., the center of the Gaussian for node j; 0']2
is the normalization parameter for the jth node, and Ny is the
number of nodes in the first layer. The node outputs are in the
range from zero to one so that the closer the input is to the
center of the Gaussian, the larger the response of the node.
The name “Radial Basis Function” comes from the fact that
these Gaussian kernels are radially symmetric; that is, each
node produces an identical output for inputs that lie a fixed
radial distance from the center of the kernel w ;.
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The output layer node equations are given by:

_y)zwzr‘jul j=12,...,N2 G
where yj is the output of the jth node, w2, is the weight vector
for this node, and u1 is the vector of outputs from the first layer
(augmented with an additional component which assumes a
value of one, just as we did in the perceptron). In addition,
N3 is the number of nodes in the output layer. The output layer
nodes form a weighted linear combination of the outputs from
the first layer. Thus, the overall network performs a nonlinear

transformation from R to R™? by forming a linear combina-
tion of the nonlinear basis functions in Eq. 30.

Functional Capabilities of the RBF
The RBF network can be used for both classification and
functional approximation, just like the MLP (Fig. 11). In the
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11. Radial basis function examples. Classification (a); functional
approximation (b).
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i procedure K_MEANS

Initialize the cluster centers wj, j=12,... N ;

repeat
/* Group all patterns with the closest cluster center. */
for all x; do
Assign x; to ©j+ where wj* = min IIx; - w; Il ;
J
endloop

/* Compute the sample means. */
for all w;do
1
wj= ;jz,r,
Xi€;
endloop

end ; {K_MEANS}

o typically these are set equal to the first N| training samples */

until there is no change in cluster assignments from one iteration to the next ;

clustering algorithm, while learning
in the output layer is supervised.
Once an initial solution is found using
this approach, a supervised learning
algorithm is sometimes applied to
both layers simultaneously to fine-
tune the parameters of the network.

There are numerous clustering al-
gorithms that can be used in the hid-
den layer. A popular choice is the
K-means algorithm shown in Table 3
[28, 134]. This algorithm is perhaps
the most widely known clustering al-
gorithm because of its simplicity and
its ability to produce good results.

The normalization parameters, 612,
are obtained once the clustering algo-

Table 3: K-Means Clustering Algorithm -

classification example, only a single hidden layer node is
required. The network effectively positions the Gaussian
kernel at the center of the data, and then weights and
thresholds it appropriately to produce the circular decision
boundary shown. In the functional approximation example,
the RBF network contains five hidden layer nodes. It is
apparent from the figure that the Gaussian function centered
1.0 receives a negative weighting from the output layer while
the other four Gaussians receive a positive weighting. It is
instructive for the reader to compare these results with those
in Fig. 5 for the MLP network.

In theory, the RBF network, like the MLP, is capable of
forming an arbitrarily close approximation to any continuous
nonlinear mapping [39, 46, 78, 111]. The primary difference
between the two is in the nature of their basis functions. The
hidden layer nodes in a MLP form sigmoidal basis functions
which are nonzero over an infinitely large region of the input
space, while the basis functions in the RBF network cover
only small localized regions. While some problems can be
solved more efficiently with sigmoidal basis functions, others
are more amenable to localized basis functions. For example,
in the classification problem in Fig. 11a, the RBF network
provides a more efficient solution than the MLP network. The
efficiency of the RBF network becomes even more
pronounced as this problem is extended to higher dimensions
(in higher dimensions. one class forms a complete shell
around the other).

Regardless of the dimension, the RBF network will require
only a single hidden layer node to solve this problem, but the
MLP network will require on the order of n (the input dimen-
sion) hidden layer nodes. The reverse is true for the problem
in Fig. 11b, where MLP network is more efficient.

RBF Learning Algorithms

There are a variety of approaches to learning in the RBF
network. Most of them start by breaking the problem into two
stages: learning in the hidden layer, followed by learning in
the output layer [91, 92]. Learning in the hidden layer is
typically performed using an unsupervised method, i.e., a
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rithm is complete. They represent a

measure of the spread of the data as-

sociated with each node. Although they can be determined in

a variety of ways the most common is to make them equal to

the average distance between the cluster centers and the
training patterns, that is:

1 32
GJZ:MZ(x—le)T(x—wl\/) (32)
}xeG,

where 0 is the set of training patterns grouped with cluster
center wj j, and M is the number of patterns in ©;. Learning
in the output layer is performed after the parameters of the
basis functions have been determined; that is, after learning
in the first layer is complete. The output layer is typically
trained using the Least Mean Squares (LMS) algorithm [149].
The training set consists of input/output pairs (#1.d) as before,
but now the input patterns are processed by the first layer
before being presented to the second layer for use in the
training algorithm. The LMS algorithm is summarized in
Table 4.

RBF Extensions

Extensions of the RBF network include variations on the basis
functions, the learning algorithm, or both. A common varia-
tion on the basis functions is to increase their functionality (in
an attempt to decrease the number of hidden nodes) by using
the Mahalanobis distance in the Gaussian kernel [78,97]. The
basis function in Eq. 30 becomes

- ‘ 33)
uj:exp[—(x—wu)TZ w1 =12
J

-1
where Z is the normalization matrix for node j. These
J

basis functions are no longer radially symmetric.

There are also numerous variations on learning. For ex-
ample, once the initial phase of learning is completed as
described above, it is sometimes useful to apply supervised
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G’rocedure LMS

‘ Initialize the weights, w2,j. to small random value j = 1.2,

repeat
‘ Choose next training pair (uj,d) :
‘ /* Compute Outputs */
| for all j do

yi=whjun:
‘ endloop
/* Compute Errors */

‘ for all j do
' e=yj-dj:
‘ endloop
1 /* Update Weights */
1 for all j do
| wj(k + 1) =wj(k) - uejur ;
‘ endloop

until termination condition reached :
‘ end; {LMS}

Table 4: LMS Algorithm

learning to both layers simultaneously in an attempt to fine-
tune the parameters in the hidden layer [19, 145].

Other variations on learning include techniques that select
the centers of the Gaussians as a subset of the training samples
[20]. In this method the samples are chosen one at a time in
such a way that each new sample maximizes the amount of
incremental gain in explaining the variance of the desired
output. An orthogonal least squares algorithm is used to
determine the output layer mapping. An Akaike-type
criterion, which includes both a measure of “model fit” as
well as “model complexity,” is used to determine the number
of hidden layer nodes. Nodes are no longer added when the
incremental gain in model fit becomes smaller than the in-
crease in model complexity. This algorithm is attractive be-
cause it includes a means for automatically determining the
number of hidden layer nodes.

Other learning algorithms which incorporate methods for
determining the number of hidden layer nodes can be found
in [78, 97). These methods focus primarily on pattern clas-
sification problems. During learning, a class membership is
associated with each hidden layer node, i.e., each basis func-
tion. The number of hidden layer nodes is determined by
using a type of supervised hierarchical clustering algorithm
which either starts with one node and creates additional nodes
as needed [78], or starts with a large number of nodes and
merges them together whenever possible [97]. Both of these
approaches also adapt the width of the basis functions during
learning in an attempt to minimize the overlap between
neighboring nodes of opposite classes.

Complexity of Learning in the RBF

One of the major advantages of the RBF network is that
learning tends to be much faster than in the MLP [92]. The
main reason for this is that the learning process is broken into
two stages, and the algorithms used in both stages can be made
relatively efficient. The first stage is intrinsically the most
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difficult since finding the optimal K-clustering
for a set of data is NP-complete [37]. K-means
is a greedy algorithm that finds a locally optimal
solution, but generally produces good results
and is usually very efficient. Other clustering
algorithms, including some that are guaranteed
to run in polynomial time, can be found in {28,
36, 45, 64, 134]. Once the hidden layer
parameters are fixed, learning in the output layer
is intrinsically easier. Because the network out-
put is linear in the weights, the learning problem
can be made polynomial. Although we have
suggested the use of the LMS algorithm above,
any learning algorithm for linear mappings
could be used [28, 49, 134, 147].

It is not always the case that an optimal
solution to the clustering problem yields an op-
timal set of hidden layer parameters for the RBF
network. Thus, there are good reasons to apply
a supervised learning algorithm to the hidden
layer parameters. Several approaches were dis-
cussed above [19, 20, 78, 97, 145]. These algorithms can all
be viewed as heuristic methods for finding good local solu-
tions, but none are guaranteed to find the globally optimal
solution. Although they tend to be more complicated than the
simple two-stage approach that we presented, they offer
efficient methods that can improve performance.

Generalization in the RBF

The basic issues related to generalization are the same for the
RBF network as they were for the MLP network. We are
concerned primarily with the number of training samples
required for good generalization. As such, we are interested
in determining the VCdim of the RBF network.

To get a handle on the upper bound, we can use the results
of Baum and Haussler [10]. These results can be applied to
any feedforward network with binary node outputs. Thus,
assuming the outputs of the hidden layer nodes are
thresholded to produce binary values, the VCdim of the RBF
network can be shown [10, 70] to be bounded by:

VCdim < 2Nw log (eNn ) (34)
where Nw is the number of weights in the network, and Ny
is the total number of nodes in the network. Of course the
hidden layer nodes in the RBF network do not produce binary
outputs, so this result must be used cautiously. In fact, much
of the power of the RBF approach is due to the continuity of
the basis functions. This bound is likely to be larger for nodes
with continuous-valued outputs.

When the parameters in the hidden layer nodes are found
in an unsupervised manner, the supervised learning procedure
at the output layer cannot fully exploit the complete set of
functions that the network is capable of implementing. Thus,
to obtain a lower bound on the VCdim, we can simplify the
generalization issue by treating the hidden layer as a pre-
processing step, and focusing only on generalization as it
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relates to the supervised training at the output layer. The
output layer consists of linear nodes, each with inputs of
dimension Ny. The VCdim for one of these nodes is Ni+1, as
we saw previously. This value then represents a lower bound
on the VCdim of the RBF network.

Other Pattern Classifiers

Thus far, this paper has focused primarily on the Multilayer
Perceptron and the Radial Basis Function networks, and their
extensions. While these are not the only neural network pattern
classifiers, we feel that they are arguably the most popular and
most clearly illustrate the major features of neural network
approaches to pattern classification. In this section, we briefly
discuss some other pattern classifiers. These include more
traditional techniques such as the Gaussian classifier {28, 36],
Gaussian mixture methods [28, 36, 45], Parzen windows [28,
36], polynomial classifiers [28, 36], nearest-neighbor techni-
ques [36], and tree-based methods [ 16]. There are as well other
neural network approaches, including the Cerebellar Model
Arithmetic Computer (CMAC) [3], the Probabilistic Neural
Network (PNN) [129], and Learning Vector Quantization
(LVQ) [67]. It is not our intent to develop each of these
methods in detail, but rather to describe their basic modes of
operation so that the reader can gain an appreciation for the
relationships between them. By understanding how these dif-
ferent techniques relate to one another it can help to determine
when neural network classifiers are appropriate.

The Gaussian classifier is a consequence of applying
Bayes decision rule for the case where the probability func-
tions for each class are assumed to be Gaussian. Toimplement
this classifier, one need only form estimates of the mean
vector and covariance matrix for each class of data, and
substitute these estimates into the decision rule. The decision
rule can be simplified to yield a polynomial classifier which
is in general quadratic, but reduces to linear in the case where
the covariance matrices for both classes are equal [28].

There are numerous ways of implementing the Gaussian
classifier. The following three approaches are important because
they form the foundation for the other classification schemes
discussed in this section. The direct approach uses estimates of
the class density functions which are substituted directly
(without simplification) into Bayes rule. The discriminant func-
tion approach uses a simplified decision function which, as
mentioned above, is a polynomial which is at most quadratic.
The distance classifier approach uses a decision rule which
assigns input patterns to the “closest class”. In the Gaussian case,
the closest class is determined by the distance from the input
pattern to the class means. In the Gaussian problem all of these
methods yield equivalent results, and all are optimal. But when
these approaches are extended and applied to other problems
their results can be quite different.

These three basic approaches can be extended by:

1. Using more elaborate density function estimates,
2. Using more powerful discriminant functions, or
3. Using a more general distance classifier.
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More elaborate density estimates can be formed using a
Gaussian mixture [28, 36, 45]. In this case the density func-
tion for each pattern class is approximated as a mixture of
Gaussian density functions. Determining the optimal number
of Gaussians in the mixture, and the parameters for each of
the Gaussians can prove to be a difficult problem. Clustering
algorithms like the K-Means algorithm can be used to deter-
mine the mean vectors of these distributions. Covariance
matrices can then be estimated for each cluster once the mean
vectors are determined. Such an approach should remind the
reader of the Radial Basis Function network. The RBF net-
work can be viewed as a weighted Gaussian mixture where
the weights of the Gaussians are determined by the supervised
learning algorithm at the output layer. In theory, this approach
is capable of forming arbitrarily complex decision boundaries
for classification.

An alternative approach to probability density function
estimation is to place a window function, e.g., a Gaussian
window, at every training sample. This type of approach is
usually referred to as a Parzen window method. While the
positions of the windows are defined automatically, deter-
mining the window widths can be a difficult task {28, 36].
Many neural network models are related to this approach.
These models include the probabilistic neural network (PNN)
[129], which uses a Gaussian window, and the CMAC model
which uses a rectangular window [3]. As with the RBF
network above, these approaches are capable of forming
arbitrarily complex decision boundaries for classification, but
they tend to consume more resources, in terms of both storage
and computation, than the RBF network.

The methods discussed in the previous two paragraphs are
sometimes called local methods because their receptive fields
(window functions) provide a significant nonzero response
for only a localized portion of the input space. The training
patterns determine the positions and response of these recep-
tive fields. New inputs will generate a response that is similar
to the response generated by the training data that they
resemble. In fact, if the windows are rectangular and nonover-
lapping, the response to a new input pattern will be exactly
that of the training pattern to which it is closest (assuming the
input actually falls within one of the windows). In essence,
the system is working as a look-up table. Typically, however,
the windows are overlapping so that several receptive fields
contribute to each network response.

These methods are often referred to as memory-based
models since they represent generalizations of methods that
work by “memorizing” the response to the training data. The
usefulness of these techniques is generally determined by the
efficiency with which they can cover the relevant portions of
the input space. An inherent advantage of these techniques is
that they respond only to inputs that are in the same regions
of the input space as the training data.

The second of the three basic approaches mentioned above
is the discriminant function approach. Perhaps the simplest
discriminant function is a linear discriminant. This gives rise
to a decision boundary between the classes that is linear, i.e.,
a hyperplane.
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Linear discriminants are important, not only because of
their practicality, but also because they have been shown to
be optimal for many problems, including a special case of the
Gaussian problem mentioned above. The Perceptron is a
simple neural network classifier which employs a linear dis-
criminant. The MLP can be viewed as an extension of the
discriminant function approach which is capable of forming
arbitrarily complex decision boundaries.

Tree-based classifiers can also be viewed as a nonlinear
discriminant function approach. In a tree based-approach.
the classifier is constructed by a series of simple greedy splits
of the data into subgroups. Each subgroup is then split
recursively, so that the resulting classifier has a hierarchical
binary tree structure.

Typically, each greedy split simply finds the best in-
dividual component along which to split the data, although
the algorithm can apply a more general split such as a linear
or polynomial discriminant function at each node in the tree.
Classification assignments are made at the leaves of the tree.
The resulting decision boundary is generally a piecewise
linear boundary. Typically, several leaves correspond to the
same pattern class. The algorithm for building the tree is
beyond the scope of our discussion here, but the interested
reader is referred to [ 16]. This approach is particularly useful
in problems where the input patterns contain a mixture of
symbolic and numerical data. It also provides a rule-based
interpretation of the classification method (the decisions
made at each node determine the rules). Many of the techni-
ques for growing neural networks that were previously dis-
cussed share the characteristics of tree-based classifiers.

The third approach is the distance classifier. The simplest
distance classifier approach corresponds to the case of the Gaus-
sian classifier with equal covariance matrices. In this case, the
Euclidean distance from the input data sample to the mean of
each class is used to make the classification decision. When the
covariance matrices for the different classes are unequal, then
the Euclidean distance must be replaced with the Mahalanobis
distance. The resulting decision boundary is quadratic.

Extensions of the distance classifier approach include the
k-nearest neighbor (k-NN) and the Learning Vector Quan-
tization (LVQ) methods. The k-NN approach computes the
distance between the input pattern and a set of labeled pat-
terns, keeping track of the k-set of closest patterns from the
labeled set. The input is then assigned to the class with the
most members in the k-set. The labeled pattern set is formed
directly from the training data. In fact, in the standard k-NN
classifier, all training data are used in the labeled set. How-
ever, in the interest of reducing the computational and storage
requirements, algorithms have been devised to reduce the size
of the labeled set [36, 44]. The decision boundaries formed
by this method are piecewise linear.

The LVQ method works exactly like a 1-NN classifier
except that the set of labeled patterns is formed differently.
This set is typically obtained by clustering the training data
(to reduce the number of labeled patterns), and then using a
supervised learning algorithm to move the cluster centers into
positions that reduce the classification error {67].
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Determining which classification method works best in a
given application usually involves some degree of trial and
error. Generally speaking, most of the approaches mentioned
above can be designed to yield near-optimal classification
performance to most problems. The real difference between
them lies in other areas such as their time complexity of
learning, their computational and storage requirements, their
robustness, their number of free parameters (which govern
generalization and sample size issues), and their potential use
as estimators of a posteriori probabilities [56, 79, 80, 101].

Methods for Predicting Generalization
Performance

Unless the training set is very large, the performance of the
network on the training data is not likely to be an accurate
measure of its performance on future data. Thus, there is a
need for reliable methods of predicting the generalization
performance of the network.

The standard method for predicting generalization perfor-
mance is called cross-validation. This method works by
splitting the data into two sets, a training set and a test set.
Learning is performed on the training set, and network per-
formance is evaluated on the test set. To achieve statistically
significant results it is generally necessary to perform several
independent splits, and then average the results to obtain an
overall estimate of performance. While cross-validation is a
widely accepted method, it can be extremely time consuming
in neural networks because of the lengthy learning times
required for each of the splits.

An alternative technique which requires far fewer calcula-
tions is called predicted squared error (PSE). This technique
relys on statistical analysis methods to derive an expression
for the generalization performance of a system as a function
of its performance on the training set, the number of free
parameters in the system, and the training set size. In par-
ticular, let us assume that the true function to be estimated is
F(x), and that our training set consists of noisy samples of this
function such that the variance of the noise is 02; that is,
E[(d—F(x))2]=62, where (x,d) are input/output training pairs,
and E[-] is the expected value operator. Then, for systems
which which contain F(x) in their set of implementable
functions, and are linear in the parameters, the predicted
mean-squared-error is given by [8, 85, 93, 94]:

ZN\«\' 2
PSE =MSE + 5 ©

(35)

where MSE is the mean-squared-error on the training set,
Ny is the number of free parameters (weights), and P is the
number of training samples. It has been argued that this
equation also provides an unbiased estimate of the predicted
mean-squared-error for systems that are nonlinear in the
parameters, e.g., neural networks, provided their mappings
are sufficiently smooth [8]. Before the above expression can
be used to predict network performance we must have a method
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. . 2 . . .
for estimating 6~. A standard estimate for this term [93} is:

(36)

/\2_
C =P N

jMSE

Recently, Moody has proposed a similar formula that is
applicable to systems which are trained using a complexity
regularization term {93. 94]. This formula is called the
generalized prediction error (GPE), and 1s of the form:

(37)

2Nefy
P

GPE = MSE + o’

where Nef is the effective number of parameters in the net-
work. Because of complexity regularization, the effective
number of parameters is typically much less than the actual
number of parameters. Methods for estimating Neg are dis-
cussed in [93, 94]. The corresponding estimate of the noise
variance is the same as in Eq. 36, with N, replaced by Ney.

Dynamic Networks

The second class of networks we will discuss are dynamic
networks. The node equations in these networks are described
by differential or difference equations. These networks are
important because many of the systems that we wish to model
in the real world are nonlinear dynamical systems. This is
true, for example, in the controls area in which we wish to
model the forward or inverse dynamics of systems such as
airplanes, rockets, spacecraft, and robots. Another class of
nonlinear systems we wish to model are finite state machines
which are at the heart of all modern day computers. Although
these two examples may seem very different in nature. the
networks discussed in this section can be used to model both.
In this sense. they are very general models, with the potential
for use in a wide variety of applications.

Time Delay Neural Network (TDNN)

Before we discuss networks that are truly dynamic, consider
how an MLP is often used to process time series data. It is
possible to use a static network to process time series data by
simply converting the temporal sequence into a static pattern
by unfolding the sequence over time. That is, time is treated
as another dimension in the problem. From a practical point
of view we can only afford to unfold the sequence over a finite

u(k)

|

Multilayer Perceptron

|

|

} x(k)T x(k-1)T x(k—n) T
x(k) Tapped Delay Line l

12. Time delay neural network.
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period of time.

This can be accomplished by feeding the input sequence
into a tapped delay line of finite extent, then feeding the taps
from the delay line into a static neural network architecture
like a Multilayer Perceptron (Fig. 12). An architectures like
this is often referred to as a Time Delay Neural Network
(TDNN) [51]. It is capable of modeling systems where the
output has a finite temporal dependence on the input, that is:

wk)=Filxk),xk=-1).., x (k—n)l (38)

When the function F{(-) is a weighted linear sum, this architec-
ture is equivalent to a linear finite impulse response (FIR)
filter. Because there is no feedback in this network, it can be
trained using the standard Backpropagation algorithm.

The TDNN has been used quite successfully in many
applications. The celebrated NETtalk project {124] used the
TDNN for text-to-speech conversion. In this system, the input
consisted of a local encoding of the alphabet and a small
number of punctuation symbols. The output of the network
was trained to give the appropriate articulary parameters to a
commercial speech synthesizer. These signals represented
the phoneme to be uttered at the point of text corresponding
to the center character in the tapped-delay line. A version of
the TDNN with weight sharing and local connections has
been used for speech recognition with excellent results [73].
The TDNN has also been applied to nonlinear time series
prediction problems [74]. The same approach using a Radial
Basis Function Network in place of Multilayer Perceptrons
was investigated in [92].

As an example, we trained the TDNN to perform 1-step
prediction of the chaotic sequence:

x(k)y=40x(k-D[1.0-x(k-1)] (39)

A two layer network was used with 2 hidden layer nodes. The
input to the network was of order 1, i.e., only one delay was
used in the tapped delay line. Figure 13 shows the actual and
predicted sequences after training (the two are virtually indis-
tinguishable).

Networks with Feedback Dynamics

Dynamical systems with feedback can offer great advantages
over purely feedforward systems. For some problems, a small
feedback system is equivalent to a large and possibly infinite
feedforward system. For example, it is well known that an
infinite number of feedforward logic gates are required to
emulate an arbitrary finite state machine, or that an infinite
order FIR filter is required to emulate a single pole infinite
impulse response (IIR) filter {104, 130]. Systems with feed-
back are particularly appropriate for identification (model-
ing), control, and filtering applications. Most of the
conventional work in these areas has been dominated by
linear systems theory. But, as mentioned above, there are
many problems which require nonlinear dynamics. Although
the neural networks discussed here are by no means the only
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approach to dynamical systems, they are interesting because
of their neurological motivation and because of their ap-
plicability to a diverse set of nonlinear problems. This class
of networks are commonly referred to as recurrent neural
networks because they incorporate feedback and thus are

inherently recursive.

One difficulty with recurrent networks is developing
meaningful learning algorithms. For the most part, these
learning algorithms are gradient search techniques similar to
Backpropagation for Multilayer Perceptrons. Since the output
of the nodes is a recursive function of the output of nodes on
the previous time step, the calculation of the gradient must
also be a recursive computation. This makes these learning
algorithms considerably more complex.

Networks with OQutput Feedback

A simple way to incorporate feedback into a neural network
architecture is to feed back the output of the network through
a second tapped-delay line (Fig. 14). This particular architec-
ture was introduced by Narendra [98] and has been used
primarily for nonlinear identification and control problems
[95]. This architecture is very general. In fact, if we apply the
mapping theorems previously discussed for MLPs, then this
architecture is capable, in theory. of modeling any system
which can be expressed as:

w(k)=Fx(k) x(k=1),...x(k=n).u(k=1).u(k=2).....u(k=m)]
(40)

When the function F(-) is replaced by a weighted linear sum,
this architecture is equivalent to an [IR filter. A constrained
version of this architecture has also been proposed in which
the outputs of the two tapped-delay lines are processed by two
separate networks whose individual outputs are then summed
to form the overall network output [57, 98]. The development
of gradient descent learning algorithms for this architecture
is beyond the scope of this article; however, the reader is
referred to [57. 99] for more information.

Networks with State Feedback

The next class of dynamic network models that we discuss
incorporates a different type of feedback called state feed-
back. These networks are typically single-layer networks
with feedback connections between nodes. In the most
general case the nodes are completely interconnected, i.c.,
every node is connected to every other node, and also to itself
(Fig. 15). Every node in the
network contributes one com-
ponent to the state vector. Any

u(k)

or all of the node outputs can

Multilayer Perceptron

be viewed as outputs of the
network.

Additionally, any or all of
these nodes may receive ex-
ternal inputs. This class of net-

x(K) T x(k=1) T

u(k42)? U(H)T works is perhaps the most

x(k-n) L T u(k-m)
— L

Tapped Delay Line

Tapped Delay Line

general since many of the net-
works in previous sections can

[ O —
14. Narenda’s dynamic neural network.
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be obtained as simplifications
of these.
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15. Recurrent network with state feedback.

Continuous-Time Hopfield Net

The Hopfield network is probably the best known dynamic
network model [53, 54]. It is a single-layer network with
complete interconnections. The node equations for the con-
tinuous-time Hopfield network are given by:

N (41)
TN ==y () + Y wijui (1) vy
=1
ui(r)y=f(i(t))

where yi(r) is the internal state of the ith neuron, () is the
output activation (or output state) of the ith neuron, wy is the
weight connecting the jth neuron to the ith neuron, and v; is
the input to the ith neuron.

The Hopfield network can be viewed as a nonlinear
dynamical system with input vector v, state vector y(r). and
output vector u(r) as shown in Fig. 16. Because of the sigmoid
nonlinearity, the output vector lies in the interior of an N-

dimensional unit hypercube; that is, u(t)e (0.1 )N.

The Hopfield network is a nonlinear dynamical system
which is capable of exhibiting a wide range of complex
behavior. Depending on how the network parameters are
chosen, it may function as a stable system, an oscillator, or
even a chaotic system [2, 22, 32, 122]. Most of Hopfield's
original applications required that the network perform as a
stable system with multiple asymptotically stable equilibrium
points. Conditions which guarantee this type of behavior are
described below.

The asymptotic stability of a Hopfield network can be
shown using Lyapunov’s second method [137]. This method
basically works by showing that the system is dissipating
energy with time. This proof is accomplished by forming a
Lyapunov function (or energy function) for the network, and
showing that its time derivative is nonincreasing. The
Lyapunov function for this network is defined as follows [23.
54]

nou(r)
E(t)=- %u OWu ) ~u v+ [ o do
=l 0

(42)

where f{-) is defined in Eq. 2. Note that Eq. 42 is not a typical
Lyapunov function because it can take on negative values.
However, it is easy to show that this function is bounded
below, and can thus be made positive with an additive con-
stant. This fact is sufficient for the proof of stability. Taking
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the time derivative of Eq. 42 yields:

B =" - 9, £ ) @
where Vy, is the gradient operator with respect to u.

With symmetric W, we have:

Vu Ey==Wu (1) —v+y (1) (44)
which from the equation in Fig. 16 is simply:

Vu E(t)y=-Ty(1) (45)
With this, E(r) in Eq. 43 becomes:

E()=—y &) Ta ) (46)

n n
. . . > Juj
==X i ()i (1) == 2 i) 5
R | Vi
=1 =1
Since 1; and ,\",'(t)z are always positive, we need only show that
du;i/dy; 2 0 to show that E(r) < 0. This is trivially true, how-

Iv() =—v(0) + %(r) +v 1
7ii(f) =f ()

16. Continuous-time Hopfield network.

ever, since f{) in Eq. 2 is monotonically increasing. We also
note from Eq. 46 that £()=0 only when ¥(#) = 0. This com-
pletes the proof of asymptotic stability. Thus, under the
condition that W is symmetric, the network will eventually
reach a fixed equilibrium point. Furthermore, the locations of
these equilibrium points, which can be found by setting
(=0 in Fig. 16, are also extrema of E(0). This is easily
verified from the above equations by noting that the extrema
of £(r) are defined by Eq. 45, with y(1)= 0.

The above result tells us that given any set of initial
conditions #(0). the Hopfield network (with symmetric W)
will converge to a fixed equilibrium point, that is, to a point
where 2(#)=0. This equilibrium point, ur, is a fixed point in
(0.1)". Because the network is deterministic, the location of
this point is uniquely determined by the initial conditions,
That is, the nonlinear nature of the Hopfield network gives
rise to multiple equilibrium points, and the one chosen on any
particular run of the network is determined uniquely by the
initial conditions. All initial conditions that fall within the
region of attraction of an equilibrium point will asympotically
converge to that point. The exact number of equilibrium
points, and their locations, are determined by the network
parameters W, v, and f3. At low gain (B small) the number of
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equilibrium points is small (possibly as small as 1), and their
locations lie towards the interior of the hypercube. As the gain
is increased, however, the number of equilibrium points
grows large and their locations move towards the corners of
the hypercube [54].

In the high-gain limit (B approaches infinity) the equi-
librium points actually reach the corners of the hypercube and
are maximum in number. This number is at most exponential
in N [1, 87]. In addition, as [} approaches infinity, one can
show that the third term in Eq. 42 approaches zero, so that the
energy function for the network simplifies to [54]:

E()=— a0 Wa ) -u @)y 47)

The high-gain characteristics of the Hopfield network are of
interest because many of the problems that we solve with this
network require binary solutions; that is, we wish the equi-
librium points, uf, to be binary vectors.

Once the gain is fixed (possibly at infinity so that hard-
limiting nonlinearities are used), the locations of the equi-
librium points are determined by W and v. When used to solve
problems like the associative memory problem discussed
below, the challenge is to design W and v so that the equi-
librium points of the network correspond to solutions of the
problem.

Discrete-Time Hopfield Network

A popular discrete-time version of the Hopfield network is
described by the following node equations:

N (48)
Vi (k):ZwiJuj (k) +vi
5=l

ui (k+ 1) =fur i (k)

where k is the time increment. These are a discrete-time
approximation to Eq. 41, with the sigmoids replaced by
hard-limiters. The behavior of this system is similar to Eq. 41:
given any set of initial conditions u(0), and appropriate
restrictions on the weights (given below), this network will
converge to a fixed equilibrium point. Because a hard-limit-
ing nonlinearity is used, these equilibrium points are binary
vectors that are minima of Eq. 47. The system diagram for
this network is shown in Fig. 17.

The stability and convergence properties of the discrete-
time model are discussed in [18]. Sufficient conditions for
stability are that W be symmetric and positive definite. Ac-
tually these conditions depend on the type of update that is
used in the node equations. If synchronous updates are used,
which implies that all nodes are updated simultaneously as
suggested Fig. 17, then W must be positive definite; but when
asynchronous updates are used (one node at a time) it is
sufficient that the diagonal elements of W be nonnegative;
that is wi; > 0. These conditions are more stringent than those
for the continuous-time network.
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17. Discrete-time Hopfield network.

Hopfield Associative Memory

One of Hopfield’s original applications was the associative
memory. An associative memory is a device which accepts
an input pattern and produces as an output the stored pattern
which is most closely associated with the input. In the Hop-
field associative memory, the input/output patterns are bi-
nary. For example, the input pattern may be a noisy version
of one of the stored patterns. The function of the associative
memory is to recall the corresponding stored pattern, produc-
ing a clean version of the pattern at the output. In the Hopfield
network the stored patterns are encoded in the weights of the
network.

When used as an associative memory the input/output
patterns are represented in bipolar form; that is, with 1s and
-1s. Thus, the activation function in Eq. 1 is modified to yield
a bipolar output.

The simplest approach for programming the weights of the
Hopfield associative memory is to use the outer product
method [53]. If we letzi, i=1,2,....M represent the M (bipolar)
patterns that are to be stored in the network, then the weight
matrix is programmed as follows:

M (49)
w=Y ziz —aMl

i=1

where 0 < o < 1. Note first that W is symmetric. Note also that
each term in the summation contributes a value of +1 to the
diagonal elements of W, so that the total contribution from the
summation is M. The second term serves only to decrease the
value of the diagonal elements by a fraction o.. With 0=0 the
diagonal elements of W equal M, and with o=1 they equal 0.
The effect of having zero verses nonzero diagonal elements in
W is discussed in [18]. The storage and recall properties of this
method are well known. It has been shown that if the input
patterns are less than N/2 away in Hamming distance from a
stored pattern, and if the M stored patterns are chosen at
random, the maximum asymptotic value of M for which all M
of the patterns can be perfectly recalled is [71, 87]:
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For example, if N =256 then M < 12. Alternatively. if we
allow a small fraction of the bits in the recalled pattern to be
in error, then the capacity is M<0.138 N [51]. With
M=0.138 N, approximately 1.6 percent of the bits in the
recalled pattern are in error. For M greater than 0.138 M. the
number of erroneous bits increases rapidly (an avalanche
effect), rendering the network useless as an associative
memory. These results assume that the weight matrix is
formed using the outer product design method in Eq. 49.
Other design techniques which provide improved storage
capacity can be found in [31, 136]. The capacities achieved
with these methods are closer to M = N. which is much better
than those achieved with the outer product method. and are
in fact the maximum possible for the Hopfield network [1].

Continuous-Time Recurrent Neural Network

The next model that we discuss is very similar to the Hopfield
network. This model is called the Continuous-Time Recur-
rent Neural Network (CTRNN), and is described in [109].
Like the Hopfield network, this network consists of a single
layer of nodes which are fully interconnected. Generally, one
subset of the nodes serve as the “input nodes.” while another
serves as the “output nodes.” These subsets are denoted A and
Q, respectively. The dynamics of the network are described
by the following differential equation:

N (51)

J=

where ui(t) is the state of the ith node, wij is the weight which
connects node j to node i, vj is the input to the ith node. and
) is the nonlinear activiation function (typically a sigmoid).
The dynamics of this system are shown in Fig. 18. It is
instructive to compare this diagram with that of the Hopfield
network in Fig. 16; the two models are closely related. In fact,
one can show that the Hopfield Network is related the
CTRNN by a simple affine transformation. If we let
yH(r) = Wupr(f) + v, where yy(r) is the state vector of the
Hopfield network and ug(r) is the state vector of the recurrent
neural net, then the defining equations in Fig. 18 can easily
be obtained from the equations accompanying Fig. 16. (This
transformation requires that W be invertible.) Training algo-
rithms for the CTRNN are discussed in [107, 109].

| N
4 f e =

\ w K
: Ti=-u+fWu+v

18. Continuous-time recurrent neural nenvork.
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Discrete-Time Recurrent Neural Network

A discrete-time approximation to the CTRNN is the discrete-
time recurrent neural network (DTRNN) [117, 150]. Con-
sider the following discrete-time approximation of Eq. 51:

N (52)
ui(k+1) :f(z wijij (k) +vi(k))

J=1

Now if we allow each node to weight not only the outputs
from other nodes. but also the components of the input vector,
then we can re-express the above equation as:

N+M (33)
u; (k+1) :,f’(zw‘f,/ uj (k)
J=0
where u;(k) is reexpressed as:
1 i=0 (54)
wi (ky=quik) i=12...N
vien (k) i=N+1LLL N+M
y(k) u(k+1)

vik) > W, f

W

2

(k) = Wiu(k) + Wav(k)
u(tk + 1) = f(v(k))

19. Discrete-time recurrent neural network.

N is the number of nodes in the network, and M the size of
the input vector v. We define ug(k)=1 to account for the bias
weights, w;. just as we did in the MLP. Equation 53 then
describes the node equations for the DTRNN. The system
diagram for this network is shown in Fig. 19.

DTRNN Functional Capabilities
The behavior of the DTRNN is similar to the CTRNN dis-
cussed above. However, the DTRNN can take on a unique
interpretation based on its discrete-time nature. Recall that
each node in the network is capable of implementing simple
logic functions. This property. along with the feedback con-
nections and the discrete time delays, make it possible for the
DTRNN to emulate Deterministic Finite Automata (DFAs)
[4. 88]. With this interpretation, it is easy to see how the
DTRNN can perform such tasks as sequence recognition.

It is also easy to show that the DTRNN can be reduced to
an ordinary MLP. First we note that when the connection
matrix W2is lower triangular, all weight connections are feed
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Recurrent Neural Network

Recurrent Neural Network
Unfolded Through Time
(N Copies of the Network)

20. Unfolding a recurrent network into a static nerwork with
shared weights.

forward. Then with some additional constraints we can form
a weight matrix which imposes a layered structure onto the
nodes. The resulting system is identical to an MLP except that
it takes n time steps to feed a pattern from the input to the
output layer of an n layer network.

DTRNN Learning Algorithms
One way to learn the weights in a Discrete-Time Recurrent
Neural Network is to convert the network from a feedback
system into a purely feedforward system by unfolding the
network over time. The idea is that if the system processes a
signal that is n time steps long. then we create n copies of the
network. The feedback connections are modified so that they
are now feedforward connections from one network to the
subsequent network (Fig. 20).

The network can then be trained as if it is one giant feedfor-
ward network with the copied weights being treated as shared
weights. This approach to learning is called Backpropagation
Through Time [119). Another approach, called Truncated Back-
propagation Through Time, tries to approximate the true
gradient by only unfolding the network over the last i time steps
[151]. In this case. only m copies of the network are made, and
normal Backpropagation with weight sharing is used. For some
problems performance may be sacrificed if critical information
occurs more than m time steps in the past. The
advantage of these learning algorithms is

than Backpropagation Through Time, although there is a
computational cost incurred by the recursive process. Here
again, the learning algorithm is derived using a gradient
search to minimize a Sum of Squared Error criterion. The
criterion function is given by:
P (53)
Jw)=YJp (w)

p=l

where P is the number of training sequences, and J,(w) is the
total squared error for the pth sequence:

| Ky (56)
Tpw) =53 Xt k)~ uj (k))?

k=1 jeQ

In this equation, K}, is the length of the pth training sequence.
Recall also that Q represents the set of output nodes in the
network. Applying the gradient operator to Eq. 55 and sub-
stituting into the weight update formula yields:

P 57
aJ,
wid 1) = ) g 3SR
r=l ' w(m)

where m is the iteration index of the weights. Note that m is
necessarily different from k. The later is an index on the time
scale of the input sequences, while the former is an index on
the time scale of weight updates which is much slower. The
partial derivative in Eq. 57 is of the form [150]:

dJp (w) & (58)
T == X o (k) - un (ke (k)
s k=1 heQ
where pj]'fi (k) is a partial derivative defined as:
Jup (k) (59)
plitk)= o

and can be expressed as:

that the computation is simplified, since
normal Backpropagation with weight shar-
ing can be used. However, there is a large
memory cost to maintain several copies of
the network.

Another approach is to calculate the
gradient recursively. This approach is com-
monly known as Real Time Recurrent Learn-

start

1

ing (RTRL) [150]. The advantage of this
approach is that it is more memory efficient
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21. DFA that recognizes arbitrary length strings with an odd number of 1's.
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a=0
N
oup (k-1
. 1:8}1,/ ui (k- 1)+ Z Whﬁl%]
p=i "
N+M
=f" (Cwho o (k= 1))
a=0
N
. [6},,,‘ ui (k—1)+ 2 Wh,B PE:’ (k- I)J
B=1

where 8y, is the Kronecker delta function. Note that in an n
node network, we must maintain n terms for each weight.

Since there are n’ weights, there are n’ of these terms. In
addition, the calculation of each of these terms requires a
summation over n terms (the sum over B). Thus, each time

iteration requires 0(n4) calculations.
Finally, substituting Eq. 58 into equation 57 gives:

wji(m+1) = wj i(m) 61

P K,

1Y, S S dn k) - un k) plli (k)

p=1 k=1heQ

Note in this equation that the weights are updated only once
each time through the training set. However, it may be
desirable to perform updates each time a sequence is
presented to the network.

Recall that in the derivation of the Backpropagation algo-
rithm the true gradient was approximated by an instantaneous
estimate based on a single sample. Using a similar approach
here, one obtains the following approximation:
0Jm mod P(W) (62)

wjilm+ 1) =wji(m) — U Jwis
'j.i

w(m)

The learning algorithm with this approximation is sum-
marized in Table 5.

An example
Logic problems were among the first to be considered for
learning in static networks because of their solid theoretical
foundation. It seems natural then that Deterministic Finite
Automata (DFAs) (logic gates coupled with a finite memory)
be among the first problems investigated in recurrent neural
networks. We have seen that Multilayer Perceptrons are
capable of implementing arbitrary logic functions if we allow
a sufficient number of hidden layer nodes. Similarly, it can
be shown that the DTRNN is capable of implementing ar-
bitrary DFAs [4]. Of course, we are interested primarily in
learning DFAs from a set of examples.

Since the XOR problem has a great deal of historical
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significance, it is natural to look at its time-dependent
counterpart— the parity problem. The DFA for parity is
shown in Fig. 21. The circles in the figure correspond to the
states of the DFA. There are two states, Seven and So44. The
directed arcs between the states are transitions indicating how
the states change as the input string is processed. We start in
state Seven and process the input string one character at a time,
making transitions between the states. For this DFA, the state
labeled Seven corresponds to the case when the number of “1’s
in any prefix of the input string is an even number, while the
state labeled Soqq corresponds to an odd number of ‘1’s. The
double circle on state Sy44 indicates that if we end in this state
after processing an input string, then that string is accepted
by the DFA; otherwise the string is rejected. Thus, this DFA
accepts all strings which have an odd number of 1’s and
rejects all other strings.

The problem of learning, or inferring DFAs is typically
stated as follows: Given a set of positive and negative ex-
ample strings, find a DFA which accepts the positive strings
and rejects the negative strings. It turns out that such
problems are relatively easy [35] unless we limit the number
of states that the DFA can have, in which case the problem is
NP-complete 6, 41].

A DTRNN with 3 nodes, one of which was chosen as the
output node, was trained to solve the parity problem. The
training set consisted of a set of 1000 strings randomly
sampled from the set of all strings of length up to and
including length five. Thus, many of these strings were
presented repeatedly to the network. We found it ad-
vantageous to repeat the shorter strings more frequently than
the longer strings. In our case each string appeared with a
relative frequency of occurrence equal to:

(63)

where /; is the length of the ith string. A popular alternative
approach is to train on shorter strings first, and then add longer
strings in the later stages of learning [82]. The network found
a solution after 91 training epochs. To determine the DFA
learned by the network, we replaced the sigmoids with hard
limiting nonlinearities and extracted the logic functions im-
plemented by the network. The resulting DFA is shown in
Fig. 22. While this DFA looks considerably more complex
than the DFA shown in Fig. 21, it can easily be shown that
the two DFAs are equivalent.

The process of extracting the DFA from a recurrent neural
network is not, in general, as easy as replacing sigmoids by
hard limiters {38, 141]. Often the network utilizes the transi-
tion region of the sigmoid to encode the states of the DFA
which can greatly complicate matters. Some researchers have
found that the representations of the states in the DFA can be
distributed throughout the state space in a chaotic manner,
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procedure DTRNN
Initialize the weights ;
setm=1:
repeat

Choose next training sequence {v(k),d(k)}. k=1.....

Set all states to zero :

Set all gj.i(m) to zero :

fork=1to Kp do
for all u; do

N+M
ui(k) =ﬂz,{) wij (mujtk = 1):
=

endloop

for all p!'; do
N+M

N
pliky =13  halmual= 1) @itk = 1) + Zﬁ ]Wh.B(m)p/[%i(k’ DI
o= =

endloop
for all g.; do

g.i(m) = gj.i(m) + Lhe dn(k) - uh(k))p/"fi(k) :
endloop
endloop
for all w;; do
wji(m + 1) = wji(m) + ugji(m)
endloop
Setm=m+1;
until termination condition reached ;
end; {DTRNN}

in the 1980s such as the Multi-
layer Perceptron, the Hopfield
network, and various Recurrent
Network models. For additional

Kp: material, the reader is referred to

the numerous text books and
edited volumes that have ap-
peared in recent years, many of
which are cited in the reference
section.

In addition, neural networks
are now becoming a part of
many conferences and journals
in engineering, computer
science. cognitive science, and
physics. Conferences which are
devoted entirely to neural net-
works include Neural Informa-
tion Processing Systems—
Natural and Synthetic, (NIPS)
sponsored by the IEEE Informa-
tion Theory Group; World Con-
gress on Neural Networks,
(WCNN) sponsored by the In-
ternational Neural Network
Society: IEEE International
Conference on Neural Net-
works, (IEEE-ICNN) sponsored

Table 5: Real-Time Recurrent Learning with the DTRNN

22. DFA extracted from the DTRNN.

indicating that recurrent networks may be capable of im-
plementing much more complex machinery than simple
DFAs [112]. In fact, it has been shown that theoretically the
DTRNN is Turing equivalent [125].

Summary

This article has summarized some of the recent developments
in neural networks. Of course, space constraints make it
impossible to cover all of the relevant work in this area, so
we have restricted our focus to the network models that were
probably the most theoretically immature at the time of
Lippmann’s 1987 paper, and recent extensions to these
models. This includes the most popular networks to emerge
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by the IEEE Neural Networks

Council: International Con-
ference on Artificial Neural Net-
works, (ICANN) sponsored by the European Neural Network
Society. and IEEE Workshop on Neural Networks for Signal
Processing sponsored by the IEEE Signal Processing Society.
Journals devoted entirely to neural networks include IEEE
Transactions on Neural Networks. Neural Networks, Neural
Computation, Neurocomputing, and Network.
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