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ABSTRACT 

Fuzzy logic was first suggested as the mechanism 
by which humans drive cars. This paper addresses 
the use of fuzzy logic and algorithms towards the 
intelligent autonomous motion control of land 
vehicles. To cope with vehicle complexities, internal 
parametric changes, and with unpredictable environ- 
mental effects, the controllers that are presented, 
whilst heuristic in nature, are self-organizing or 
self-learning in that they generate automatically by 
observation an experiential rule base that models 
the vehicle, and via an appropriate performance 
index an optimal control rule base that is robust to 
large parametric changes. The methodology pre- 
sented is applicable to any complex process which 
is too difficult to model or control using 
conventional methods, or which has relied on the 
experience of a human operator. An overview of 
fuzzy logic and static fuzzy logic control (akin to 
expert systems) is provided, together with illustrative 
examples. 

INTRO D U CTION 

The earliest automatically guided vehicles were 
developed in Japan ~, the USA 2 and the EEC 3. These 
were characterized by complex supervisory control 

systems with partial autonomy through on-board 
navigation. More recently 4, a wide range of 
special-purpose and generic autonomous guided 
vehicles (AGV) research programmes have been 
initiated (in the UK the MOD MARDI programme 5 
(1988) includes tracked cross country and road 
vehicles; in the USA the DARPA programme6; in 
the EEC the Esprit II project (No. 2483) Panorama, 
includes a tracked mining vehicle, wheeled cross- 
country vehicle and a laboratory test bed). Of 
central importance to AGVs are the intelligent tasks 
of: 

1. Multi-sensor data integration or fusion 7'8 to 
locate the vehicle, to represent or model its 
internal states and its environment (including 
obstacles) and to assess the current system 
situation state vector 9 (see also the EEC Esprit 
I project (No. 1560) SKIDS). 

2. Planning and navigation. 
3. Motion control s'1°'~1. 

The systems architecture of the majority of AGVs 
is hierarchical 12'13 with usually three levels of 
abstraction (as with command and control 
systems9). At the highest, most abstract (and least 
time-critical, precise or detailed) level, is the planner, 
which operates on a global mission to determine 
the connected subgoals or tasks to achieve an 
assigned objective. At the next level, the navigator 
utilizes a detailed plan or map to, say, evaluate an 
obstacle-free local path that optimizes a performance 
criterion (say, minimum fuel usage or minimum 
path . . . .  ) to produce motion and velocity trajec- 
tories. Given these trajectories, the pilot or motion 
controller must provide, in real time, optimal 
motion control avoiding obstacles not identified by 
the planning or navigation stages--requiring direct 
local feedback of 'visually' acquired proximity 
sensor data and appropriate very local path 
adaption. Vehicle motion control from current 
position and velocity is a two-point boundary-value 
problem with constrained states; by utilizing a 

0952-1976/89/040267-1952.00 
© 1989 Pineridge Press Ltd Eng. Appli. of AI, 1989, Vol. 2, December  267 



Intelligent identification and control for autonomous guided vehicles: C. J. Harris and C. G. Moore 

hierarchical problem decomposition, the search 
space for optimization can be reduced and the 
resulting subproblem of motion control can then be 
defined over unconstrained subspaces. The proce- 
dure is then establishing obstacle-free subspaces and 
selecting those which provide, say, minimum time 
or effort trajectories, but since the vehicle and its 
environmental database are based upon models or 
representations that are incomplete, uncertain or 
fuzzy, then the associated rules or controls are 
equally fuzzy. 

Humans use fuzzy-like algorithms when they 
drive or park a vehicle, search for an object or 
obstacle, etc., adopting procedures that are 
sufficiently flexible, robust, imprecise and intelligent 
that they can be adapted to slightly different 
situations (the principle of generalization) and have 
a capability to learn. An approximate solution is 
acceptable in that there are tolerances in the goals 
as well as in uncertainties associated with 'world' 
models. This is a natural top-down approach to 
AGVs since there is imperfect knowledge of (i) the 
environment (due to incompleteness and uncertainty 
of sensor data), (ii) the vehicle dynamics (e.g. 
variations in payload, velocity, frictional forces, 
road conditions), etc. and (iii) routes to be followed 
and some task objectives. Zadeh's principle of 
incompatibility ~4 and fuzzy logic applies particularly 
to intelligent guidance and motion control of AGVs 
in unstructured environments, e.g. human drivers 
utilize experiential models, with inexact observations 
linguistically modelled as fuzzy sets (such as 'near', 
'close' or 'very close') and implement vehicle control 
through the maximization of some objective (such 
as minimum time, or minimum fuel usage) via a set 
of adaptive fuzzy rules or algorithms. Fuzzy decision 
rule methods have been proposed for path 
determination of AGVs that progressively discover 
the environment 14, for car parking15, ~ 6 and motion 
control 5'~'17 of AGVs. 

Classical control is based upon (i) deriving from 
physical laws or identification algorithms a set of 
model equations, and (ii) generating a set of 
feedback control laws that ensure that these models 
behave as desired. To evaluate an AGV dynamic 
state equation it is necessary to evaluate the 
longitudinal and lateral dynamics. The vehicle's 
longitudinal dynamics can be represented TM by the 
nonlinear equation: 

mb=Fl(Io, We, Tp, Rs), (1) 

where m is vehicle mass, v vehicle velocity and FI (.) 
is a complex function that includes gearing; inertial 

terms 19 for rotating elements; engine speed We; 
throttle position Tp; and resistance or loss terms R~ 
to represent drag, rolling resistance/braking, etc. 
Similarly the lateral dynamics can be represented 
by the two degree of freedom 'planar bicycle' model 

m@=F2(Uf, fr, v, cy, 0~, e, y), 
(2) 

I~O~=F3(Ui, f .v ,  ci, O~,e,Y), 

where Fz(.), F3(.) are also nonlinear functions of 
the yaw angle 0r; steering angle e; side slip angle y; 
wheel circumferential and normal side forces Uy, cy 
respectively; and fr the coefficient of friction between 
wheels and surface. I= is the vehicle moment  of 
inertia about the vertical direction. The control 
inputs to (1) and (2) are acceleration a (=b); and 
steering angle e. The composite system (1), (2) is 
both nonlinear and nonstationary (e.g. parameters 
m,f);  also variables cy, Uy, ~ satisfy other complex 
dynamical relationships 18. However, these equations 
can be linearized and for a constant velocity vehicle 
on a smooth small radius of curvature road 
conventional Kalman filtering and pole placement 
control methods have been used 1°. It is, however, 
clear for an unstructured environment with 
substantial variations in environmental and vehicle 
states that the classical 'bottom up' control methods 
for AGVs are inappropriate, and a 'top down' 
experiential approach is currently the only practically 
feasible generic approach. 

The layout of the paper is: first, an introduction 
and overview of fuzzy logic and algorithms; next, 
generation of fuzzy rule bases for system modelling 
and control, followed by a discussion of fuzzy 
controller synthesis and, finally, a description of 
self-organizing or learning fuzzy controllers. 

F U Z Z Y  SETS, LOGIC,  RELATIONSHIPS 
AND ALGORITHMS 

Fuzzy sets 
A fuzzy set is a more-general form of a classical set. 
In a classical set, a collection of objects, or points 
in a space, or attributes, are said to be elements of 
that set; a particular element of the universe of 
discourse is either in that set or outside it. However, 
in fuzzy-set theory, a fuzzy set A of a universe of 
discourse X (A c X) may have elements x ~ X which 
partially belong to the set. The degree to which it 
belongs to the set A is characterized by the 
membership function/~A(x) in the interval [0, 1] that 
represents the orade of membership, with 1 
representing full membership, 0.5 (etc.) partial 
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membership and 0 no membership. ]~A(X) determines 
the degree or grade of membership of x of A. 
Continuous and discrete fuzzy sets are respectively 
defined by the sets: 

A = (x, I~A(x)/x6X), (3) 

A={k~=l PA(Xk)/Xk}. (4) 

Example 1 
The fuzzy set 'approximately equal to 5' for x taking 
discrete values ( - 2 ,  - 1 ,  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12); two possible membership functions are: 

A 1 = {0 / -2 ,  0 .1 / -1 ,  0.17/0, 0.24/1, 0.36/2, 

0.56/3, 0.84/4, 1/5, 0.83/6, 0.56/7, 0.36/8, 

0.24/9, 0.17/10, 0.1/11, 0/12}, 

A z = {0 / -  2, 0.24/-- 1, 0.49/0, 0.74/1, 1/2, 1/3, 1/4, 

1/5, 1/6, 1/7, 1/8, 0.74/9, 0.49/10, 0.24/11, 

0/12}, 

which are illustrated in Figure 1. Note that the shape 

of the membership function is defined by the user; 
unfortunately fuzzy-set theory does not provide the 
means of selecting the most appropriate membership 
function; for most practical cases the results are not 
particularly sensitive to the actual shape. 

Fuzzy logic 

Example 2 
Consider for illustration purposes three finite fuzzy 
sets of X defined by three linguistic qualifiers, 
positive big (PB), positive medium (PM) and 
positive small (PS) on the finite universe of real 
numbers l-0, 6]. (See Figure 2.) 

PB= {0/0, 0/1, 0/2, 0.3/3, 0.7/4, 1/5, 1/6}, (5) 

P M  = {0/0, 0.3/1, 0.7/2, 1/3, 0.7/4, 0.3/5, 0/6}, (5) 

PS= {1/0, 1/1, 0.7/2, 0.3/3, 0/4, 0/5, 0/6}. (5) 

1. The union of two fuzzy sets A and B (A, B~_X); 
A L) B = A + B has a membership function defined by 

P(A + ~)(x) = max[pa(x),/~B(x)]. (6) 

This corresponds to the logic OR function. From 
(5) and (6) Example 2 gives the membership function 
of PB OR PM (see Figure 2) 

I~(PB OR PM) = {max[0, 0]/0, max[0, 0.3]/1, 

max[0, 0.7]/2, max[0.3, 1]/3, 

max[0.7, 0.7]/4, max[l ,  0.3]/5, 

max[l ,  0]/6} 

= {0/0, 0.3/1, 0.7/2, 1/3, 0.7/4, 1/5, 

1/6}. 

2. The intersection of two sets A and B, A c~ B 
is defined by 

#anB(x) = min(pa(x), #n(x)). (7) 

This corresponds to the logic AND function. From 

.$ 

Figure 2 

, la,(x) P M  P8  

0 ! 2 3 4 5 6 x 

Membership functions for PS, PM, PB and (PB OR PM) 

-(PB + PM) 
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Figure 3 Membership functions for (PMAND PS) and for (--PB) 

(5) and (7) Example 2 gives for the membership 
function (PM AND PS) (see Figure 3) 

#(PB AND PS)= {mini0, 1]/0, mini0.3, 1]/1, 

min[0.7, 0.7]/2, min[-1, 0.3]/3, 

min[0.7, 0]/4, mini0.3, 0]/5, 

min[0, 0]/6} 

= {0/0, 0.3/1, 0.7/2, 0.3/3, 0/4, 

0/5, 0/6}. 

3. The complement of a set A is defined by ----~A, 
with membership function 

#-~A(X) = 1 - #a(x), (8) 

which corresponds to the logical negation NOT. 
For Example 2, NOT PB=---nPB membership 
function is 

#(----~PB)= {(1--0)/0, (1-0)/1,  (1-0) /2 ,  

(1-0.3)/3, (1-0.7)/4, (1 - 1)/5, 

(1 -- 1)/6} 

= {1/0, 1/1, 1/2, 0.7/3, 0.3/4, 0/5, 0/6}, 

which is illustrated in Figure 3. 

Fuzzy relations and algorithms 

Control systems are essentially relationships or 
mappings between inputs and outputs of a 
controller. A fuzzy algorithm can be used to 
represent such a mapping as a set of situation-action 
pairs, between a fuzzy input variable Ui and the 
corresponding fuzzy output variable S~ defined over 
disparate universes of discourse X and Y respec- 
tively. Each situation-action pair is represented by 
a linguistic implication or conditional rule of the 
form 

Ui -~ Si or IF Ui THEN Si. (9) 

This implied relation Ri is expressed in terms of the 

Cartesian product of the sets U~ and Si, denoted by 

Ri = U/x Si. (10) 

The membership function of which is given by 

#R,( x, Y)= Pv, xs,( x, Y)=min{#v,(x), #s,(Y)} 

= #v,(x) A #s,(Y). (11) 

When U~ and S i are defined by membership functions 
on finite discrete universes X and Y (i.e. XkeX: 
k = l , . . . , m  and y~eY; l = l , . . . , n )  then the 
relation R~ is given by the finite discrete relational 
matrix pro(k, l). 

#g,(k, l) = #v,(Xk) A #s,(Yt)" (12) 

Example 3 
Consider the control rule: 

R: IF (error is PB) 
THEN (regulator position is reduced to PS) 

for PB, PS defined in Example 2, hence from (12) 
and (5) 

#R(k, 1)= 

0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0.3 0.3 0.3 0.3 

0.7 0.7 0.7 0.3 

1 1 0.7 0.3 

1 1 0.7 0.3 0 0 0 

A fuzzy algorithm is formed by collecting together 
several conditional rules, as given by (9), and 
combining them using the ELSE (union) operator: 

IF U 1 THEN S1, ELSE IF U 2 THEN $ 2 , . . . ,  
ELSE IF U i THEN Si. 

If R is the relation describing the complete 
algorithm, then from (10) 

R = ( U  1 x $ 1 )  k..) ( U  2 x $ 2 )  k . ) .  • . k..J (U i x Si) 

=R1 w R 2 u .  • .w Ri. (13) 

The corresponding membership function, for the 
case of finite discrete fuzzy sets, from (11) and (6) is 

#R(k, l)= max{pRl(k, 1), #R2(k, l) . . . . .  pR,(k,/)} 

= m a x  {#ui(Xk)A #si(Yl)} 
i 

= V (#v,(Xk) A #s,(Y,)). (14) 
i 

The above can be readily extended to fuzzy 
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relationships of multi-dimensional rules such as the 
case: 

IF  U1 T H E N  IF  F 1 T H E N  IF G1 T H E N  IF H 1 
T H E N  $1 E L S E  

IF U2 T H E N  IF  F2 T H E N  IF G2 T H E N  IF H 2 
T H E N  $2 . . . .  

The relation describing the algorithm is now given 
by 

R= U ( U i x F i x G i x H i x S i ) .  (15) 
i 

A typical controller has error E and change in error 
AE as inputs and control U as output.  Rules are 
constructed from sets E i, AEi and U i defined by fuzzy 
sets on the discrete universes, e.g. ej E E; j  = 1 , . . . ,  o, 
A e  k ~ AE; k = 1 , . . . ,  m and u~ ~ U; l=  1 , . . . ,  n. An 
example of a typical rule and the relation R of the 
overall controller are given by 

Ri: IF(error is Ei) A N D  (error chanye is AEi) (16a) 
T H E N  (control is Ui). 

#R(J, k, I ) = V  (#E,(eJ) A # A E , ( A e k )  A #u,(Ul)). (16b) 
i 

It is impractical to have a rule for every situation, 
therefore use is made of the compositional rule: 
given R = A x B, the value B' which is inferred by 
R for any given A' is 

B ' = A ' o R ,  (17) 

where o denotes the compositional or max-min 
operator. The membership function for B' is given 
by 

#8,(b) = max min{#A,(a), #R(a, b)}. (18) 
a 

Example 4 

For the control rule or relational matrix of Example 
3 suppose that it is required to determine the change 
in regulator position if the positional error is 'about 
3' (i.e. P M  with membership function given by (5)). 
From this relational matrix R, equations (5) and 
(18), the regulator positional change membership 
function is 

#Reoulator position(Ul)= max min{#eM(ek) , #R(ek, Ul)} 
k 

= {0.7/0, 0.7/1, 0.7/2, 0.3/3, 0/4, 

0/5, 0/6}. 

Note that the control set has a membership function 
less than one, denoting incomplete knowledge of 

the si tuation--but  at least a decision can be made! 
For practical purposes a deterministic value of 
regulator positional change is required, therefore 
the resultant membership function must be 
defuzzified. 

Defuzzification 
Given a fuzzy relation R: U ~ S formed from a fuzzy 
algorithm which describes the relationship between 
x and y and a particular measured value Xo of x. 
x 0 is a non-fuzzy singleton, since its membership 
function is unity at x = x o and zero elsewhere. The 
composition of the non-fuzzy singleton set of x o, 
with the fuzzy relation R, produces a fuzzy set S on 
Y. To produce a non-fuzzy singleton output  Yo as 
a consequence of a deterministic input Xo, the set S 
has to be defuzzified to a singular value Yo- Two 
methods of defuzzification are commonly used" 

1. Mean of Maximum (MOM) 2° generates a 
value which corresponds to the maximum grade 
of membership in S; in the case when there is 
more than one maximum with the same 
magnitude, the algorithm generates a value 
which represents the mean of all local maxima 
in S, i.e. 

~1 yj (19) Yo=j= j '  

where y j = m a x  #s(Y); J=l{Y}l- 
2. Centre of Area (COA) method divides the 

first moment  of area under the membership 
function into half, and the y value marking the 
dividing line is the defuzzified value of S; 
algorithmically this is expressed as: 

~ Yk#s(Yk) 
k=l 

Yo - (20) 

#s(Yk) 
k = l  

For Example 4, the regulator positional change 
would be Yo = 1.25 by COA and Yo = 1 by M O M  
defuzzification. 

In control terms the M O M  is analogous to a 
multi-level relay, whereas COA is analogous to the 
conventional PI controller. 

F U Z Z Y  M O D E L L I N G  AND C O N T R O L  

From the properties of fuzzy sets, it has been shown 
that a set of given linguistic rules can be implemented 
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Figure 4 Open-loop response of a typical underdamped plant 

through a fuzzy relation, and a single value 
deterministic output  can be generated by defuzzi- 
fication. The problem now is the generation of the 
set of rules that represents the system behaviour, 
and the sets on which they are defined. There are 
three stages to the construction of a fuzzy linguistic 
model of a system: (i) definition of the model class, 
(ii) rule production and (iii) assessment of model 
quality. 

Definition of model class 
Given a system's dynamic behaviour several 
characteristic parameters have to be determined21: 
1. The rule dimension; those input /output  variables 

which have a causal relationship, e.g. a system 
with two inputs (say, error and error change) and 
one output  (say, control) is three-dimensional 
(E, AE ~ U). 

2. The range of the rule variables. 
3. The number of quantization levels required 

on each variable range. The quantization spacing 
is selected on the basis of the smallest change in a 
variable that has to be detected. 

4. The number of fuzzy sets (and associated 
membership function) for each range. Increasing 
the number of fuzzy sets leads to increased 
resolution, but greater sensitivity to measurement 
noise. A useful practical guide is the number of 
fuzzy sets on a variable's range is the smallest 
integer that satisfies (range)/(5 x standard devi- 
ation of noise). 

Rule production 
There are three methods of achieving a linguistic 
set of fuzzy rules that represents a system's 
input/output behaviour--verbalization, fuzzification 
and identification. 

1. Verbalization. This is the most subjective 
method, and directly akin to expert systems rule 

Table 1 Control rules for three-dimensional fuzzy controller. 
Linguistic definitions: P& positive, N~ negative, B & big, M ~- medium, 

S&small 

AE 
N8 NM NS AZ PS 

E 

NB NM(16) NB(3) 

NM NM(7) 

N$ PM(17) AZ(19) NS(11) 

Z PB(4) PM(8) PS(12) AZ(13) NS(10) 

PS P$(9) AZ(18) 

PM PM(5) 

PB PB(1) PM(14) 

PM PB 

NM(6) NB(2) 

NM(1S) 

acquisition, whereby a rule set is generated by 
interrogating an experienced operator through 
structured questions 22. As our feedback controller 
example, consider the open-loop plant response of 
Figure 4, for which a controller is to be synthesized 
on the basis of the 'operator'  observing zero crossing 
points (bi, di) and maxima and minima points 
(ai, ci). and error change AE (current error, previous 
error) at these points. The variables (E, AE) can be, 
for example, represented by seven fuzzy linguistic 
qualifiers {NB, NM, NS, AZ, PS, PM, PB}, hence 
there are 7 × 7 = 49 possible control rules of the form 
of (16) of which the 'sample' points (a, b~, c~, d3 
provide 12 rules which are represented in the rule 
Table 1. The table entries denote the control output  
'suggested' by an expert for the appropriate 
combinations of (E, AE) to produce a feedback 
controller with a fast response with minimum peak 
overshoot. The consequent output  response is 
shown in Figure 5 as trace A; an improved response, 
trace B, can be achieved by deriving six additional 
rules (numbers 14-19 in Table 1) based on the 
differences (ai--bi) and (ci--di) for i = 1 , 2 , 3  in 
Figure 4. Even with this improved feedback 
behaviour there are potentially another 30 rules to 
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Figure 5 Verbal ized feedback  con t ro l l ed  response 

be found, or alternatively there are 30 combinations 
if (E, AE) for which there is no control decision. To 
overcome this inadequacy of modelling, nearest 
neighbourhood type rules are implemented. 
2. Fuzzification involves the formulation of a set 
of rules from a mathematical expression that 
represents the system. The advantage of this method 
is having obtained a set of rules, they can be readily 
validated against the known analytical model. 

Example 3 

In the context of vehicular motion, consider a 
breaking or decelerating vehicle with initial velocity 
v 0, and constant deceleration - a ,  then the stopping 
distance d is 

~0 s ~ ts 
d = v(t) dt, but v(t) = v o + a dt 

dO 
(21) 

v~ 
hence d = -v .  

2a 

Thus (velocity, acceleration) are input variables 
that are mapped through (21) into (distance), i.e. 
there is a linguistic causal relationship 

(velocity, acceleration) --. (distance). 

For acceleration control, this cause-effect relation- 
ship needs to be inverted to 

(velocity, distance) --. (required acceleration) 

(in mathematical terms a =  v2/2d). In general, the 
causal relationship R may not be isomorphic and 
invertible. 

Example 6 

Define the following linguistic qualifiers for velocity, 
distance and deceleration respectively; velocity= 
(very slow, slow, medium, medium fast, fast, very 
fast), distance= (almost zero, very close, close, 
medium, medium far, far, very far), deceleration = 
(almost zero, braking, hard braking, very hard 

braking); inversion of (21) leads to the braking rule 
Table 2. 

In practice the rule table needs to be parameterized 
by environmental conditions such as (road surface, 
temperature, humidity, vehicle dynamics . . . .  )--see 
section 'Self-organizing or learning fuzzy controllers' 
for adaptive fuzzy rule-based control. 

3. Identification provides a system model for either 
the purpose of output prediction and simulation 
or for the design of a feedback controller. 
Fuzzy-set theory generates system models 5'z4"-36 
that are descriptive and experiential, rather than 
the more classical integro-differential equation 
representations, and therefore do not rely on 
technical constraints (such as linearity or Lipschitz 
conditions) being satisfied. As with all identification 
or estimation algorithms, fuzzy-set modelling 
requires adequate and representative input/output 
signal pairs that provide a rich and completely 
dynamically stimulating data-base so that the 
consequent model, or estimated relational matrix R 
represents all, or nearly all, possible input/output 
situations. 

Consider a causal and a time-invariant process, 
represented by a finite-dimensional fuzzy relation R 
that maps current states S(t) into future states 
S(t+ T) (T is the sample period) for some input 
U(t), i.e. 

R 
S(t) x U(t) , S(t + T).  (22) 

The fuzzy relation or algorithm R is a collection 
of implication statements or rules of the form: 

Ri: IFSi(t) A N D  Ui(t) 
THENS~(t + T); i=  1, 2 , . . . ,  N. (23a) 

distance 

AZ 

VC 

C 

M 

MF 

F 

VF 

Table 2 Stat ic  brak ing fuzzy rule base 

'~elooty 

V$ S M MF F VF 

8 HB HB VHB VHa VHB 

B 8 HB HB VHB VH8 

AZ B B HB HB VHB 

AZ B B B H8 VHB 

AZ B B B H8 VHB 

AZ AZ B B B Ha 

AZ AZ AZ B B 8 
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If Si(t ), Ui(t) and Si(t+ T) are described by fuzzy 
sets with membership functions 

#Si( t ) '  #Ui(t) '  #Si( t  4-T) 

respectively, then by (7) the membership function 
for this particular rule R i is 

#R,(S(t), e(t), S(t + T)) 

= min {#s,(,(S(t)), #v,(,)(U(t)), #s,(,4- r)(S(t + T))}. 
i 

(23b) 
For  practical applications, the fuzzy sets are 

described on finite discrete universes; in this case 
both R~ and the relational matrix R are finite discrete 
fuzzy relations. To construct R, collect all N rules, 
R i, as R~ OR R 2 OR R 3 OR . . .  OR RN; hence 
from (6), the membership function of R is 

#R(S(t), U(t), S(t + T)) 

=max{#R,(S(t), U(t), S(t+ T))} 

= max {min{ps,(t)(S(t)), #ui(t)(U(t)), 
i 

#s,(,+r)(S(t+ 7))}}. (24) 

The relational matrix R has to be evaluated from 
system input/output  data, its dimensionality N 
being unknown a priori. Therefore consider every 
data set (Si(t), Ui(t) , . . . ,Si( t+T))  as a possible 
rule, and use it to update the relational matrix R. 
However, it is necessary to identify and track 
systems with time-varying parameters-- including 
those with catastrophic changes through system 
faults. Hence the relational matrix is dynamic 
implying both learning and forget t ing-- through a 
forgetting operator D. At each update a new version, 
say, R' is computed from the previous version R 
through: 

u(t), s(t+ T)) 

=max{(D x #R(S(t), U(t), S(t+ T))), 

max {min{#s,m(S(t)), #v,m(U(t)), 
i 

#s,it+T)(S(t+ T))}}}, (25) 

where D < 1 is the forgetting factor causing old rules 
to decay slowly as new ones are added. Selection of 
D determines the speed of adaptation; the slower 
the rate the less susceptible the modelling process 
is to noise (simply by the averaging-out principle). 
The forgetting factor mechanism introduces a 
problem due to the uneven distribution of the input 
signal space over the relational matrix. If data is 
heavily biased to a particular region of R, then the 

forgetting factor will reduce all rules external to this 
region to zero. To avoid this, the updating 
procedure in (25) only applies for those {Ri} for 
which our confidence in the data set 

{Si(t), U,(t), Si(t+ T)} 

being relevant to {R} is greater than a prescribed 
threshold 0, i.e. 

min{#s,(t)(S(t)), #v,(,)(U(t))} > 0. (26) 

Having derived a relational matrix R, the system 
rule base can be used with specific measured values 
of S(t) and U(t) (say, S(t)' and U(t)') to predict the 
corresponding output value S(t+ T)' through the 
composition operator 

S(t+T) '=(U(t) 'xS(t) 'oR) (27) 

or as a membership function 

#sit + r)' S(t + T)= max{min{#s,it)(S(t)), #v,(,)(O(t)), 

c(t), s(t+ T))}} 
(28) 

which must be defuzzified (by maxima or centre of 
area method) to get the deterministic output 
prediction S(t + T)'. 

Example 7 
To evaluate the above fuzzy estimator/predictor, 
consider a single input/output  system with second- 
order structure with model rules: 

IFXI(t)AND Xz(t)AND U(t) THENX3(t ), (29) 

where X 1, X 2 and X 3 represent actual positional 
output,  velocity and predicted acceleration respec- 
tively. Predicted acceleration X 3 is the constant 
value over one time period T, which takes the system 
from current state St = (Xl(t), Xz(t)) to a next state 
St+T = (Xx(t + T), Xz(t-4- T)). Having determined 
the rule structure, the discretization levels used in 
evaluating the fuzzy sets on each variable must be 
selected. Discretization of X 1 and U is linear over 
the expected input/output  range ( -  10, 10), to give 
uniform sensitivity across the range; whereas X 2 and 
X 3 used nonlinear discretization to give optimum 
sensitivity around zero, while retaining adequate 
range. Seven discretization levels were selected, 
hence for four variables (X 1, Xm, X 3, U) a 7 x 7 x 7 x 7 
relational matrix is required! For  the purposes of 
simulation an 'unknown'  second-order linear 
system with damping ratio 0.2 and natural 
frequency 4.4 rad s -~ was selected together with 
modelling parameters of D--0.95, 0 = 0.4 and a rate 
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Figure 6 Fuzzy  p r e d i c t o r  o u t p u t  fo r  u n k n o w n  s e c o n d - o r d e r  o l a n t  

(~ = 1.0,  r a n = 4 . 4  r a d / s e c )  

of 20 Hz. The relational matrix R was evaluated 
from (25), (26) and (28) from an initially empty rule 
base; the one-step-ahead predictor (27) was driven 
by the estimated relational matrix R (essentially a 
dynamic expert-system rule base). Figure 6 compares 
the real output  response with the predictor output,  
for a square wave input; to demonstrate that the 
relational matrix has converged to a representative 
model rule set, the rule-updating process has been 
terminated after 20 seconds. Error convergence 
would have continued had not the rule base been 
stopped. 

Model quality 
There are several possible measures of model 
adequacy 

1. The number of rules--the more rules required, 
the more complex the model. 

2. Mean squared error between model predicted 
output  and actual system output.  

3. Normalized absolute error (normalized by 
dividing by the number of quantization rules). 

4. Mean uncertainty--a set of fuzzy inputs to the 
model generates a fuzzy output  set, if the 
membership function is 'peaky' then it is a 'fairly 
certain' output.  Associated uncertainty can be 
expressed numerically by 1 - m a x  (membership 
grade). Usually a combination of the above 
criteria is used to evaluate a fuzzy model. 

system to be controlled and the fuzzy relation of 
the desirable system behaviour. 

3. Inversion of the system rules and substitution of 
the rules of the desirable behaviour. 

Verbalization 
The vast majority of application studies have used 
this method to synthesize fuzzy logic controllers. 
The rules are derived by placing the controller in 
parallel with a human expert and learning or 
imitating the control actions for particular input/  
output  situations. An example of a typical feedback 
two-term controller (essentially, equivalent to a 
classical PD controller) was given above. Practical 
applications include aircraft flight control 22, auto- 
pilots 27, warm water plants 3°, PID servo control- 
lers 11,21,28, and vehicle control I 1,29 

Example 8: Case Study into automatic vehicle 
parking 16 

The purpose here is to design a controller that 
can, with adequate measurements, autonomously 
manoeuvre a vehicle into and park in a confined 
space. Three scenarios are considered: 

1. Parallel forward parking. 
2. Parallel reverse parking and 
3. Slot or garage parking (see Figure 7). 

• LEN • 

I A ~ B 

"= L " 

Figure 7a Parallel parking conf igurat ion 

A B 

1 J 
Figure 7b Garage parking conf igurat ion 

C O N T R O L L E R  SYNTHESIS 

There are essentially three methods of synthesizing 
a rule-based controller 

1. Verbalization (see also the section above, on rule 
production). 

2. Inverse composition of the fuzzy relation of the 

\ \ 

Figure 7c Garage at angle parking conf igurat ion 
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Pore, 3 

Parking vehicle measured variables 

The control rules must also include a decision 
process that evaluates the potential parking slots; 
essential to this is the satisfaction (or otherwise) of 
a set of geometric constraints that define the various 
parking possibilities (see Figure 8). For forward 
parking, the vehicle's front wheel steering geometry 
requires a larger space than for reverse parking. For 
garage or slot parking an additional door-opening 
inequality must be satisfied to allow passengers to 
enter or leave the vehicle. 

The possible control variables for fine positioning 
include steering angle and angular rate, and 
translational velocity. The vehicle's dynamics can 
be safely ignored during fine manoeuvres as the 
vehicle velocity is low, hence control variables 
selected are steering angle and translation velocity 
(-c ,O,c)  where c is a constant (typically <2.5 

msec-1). The input variables and vehicle location 
and direction (see Figure 9) are determined by two 
distance measures X, and X 2, where X 1 is vehicle 
distance from side wall/parked vehicles and X2 is 
vehicle distance from parking slot entrance. The 
fuzzy sets for the input/output  variables are shown 
in Figure 10. The control rule bases for the three 
scenarios are generated by modelling an expert 
driver, and then validating the resultant rule base 
by simulation. A typical rule base for forward 
parking is given in Table 3, note that the table has 
two output entries--one relating to required 
steering angle, the other to the translational 
velocity. A typical forward parking trajectory is 
shown in Figure 11; observe that the vehicle reverses 
to the back of the parking slot ready for the 
driving-out manoeuvre. 

For reverse parking, the vehicle is driven forward 
past the parking slot, prior to being reverse parked; 
the iterated rule base is given in Table 4. A typical 
computer simulation is shown in Figure 12. 

Similarly for garage or slot parking the rule base 
for the reversing mode is given in Table 5, with its 
associated simulation in Figure 13. More-complex 
fine positioning shapes can be decomposed into a 
set of primitives whose constituent elements are 
given above. Another fuzzy rule base is then 
required to interface the primitives. 

276 Eng. Appli. of AI, 1989, Vol. 2, December 



Intelligent identification and control for autonomous guided vehicles: C. J. Harris and C. G. Moore 

P~ / PL, XI 

3 4 ~ 6 v 

LTX1 a) 

o 1 2 

b) 
UX2 

NL ~ PL 

-14-12-10 -8 -8 -4- -2 0 2 4 6 8 10 12 14 , X2 

PL 

o) 

UY 

-80 -60 -4-0 -20 0 20 4,0 60 80 

Figure 10 Membership functions for parking variables: (a) distance 
from parked car, (b) distance from entrance corner, (c) output angle 

Table 4 Reverse parking rule base 

Xl 

X2 
PB PM PS AZ N$ NM NB 

SO 

2 0 -  

| 0  

i J i 

0 10 20 30 40 

Figure 12 Reverse parking trajectory 

Table 3 Forward parking rule base 

PB PM PS AZ NS NM NB 

Xl 

X2 

Table 5 Reverse slot parking rule base 

PB PM PS AZ NS NM NB 

3 0  3 0  , 

20. 

10 

0 10 2 0  3 0  40  

Figure 11 Forward parking trajectory 

20 

10 

10 20 30 40  

Figure 13 Reverse garage or slot parking 
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Inverse composition of the fuzzy relation of the 
system and fuzzy relation of desired system 
behaviour 
Let the system be described by the discrete fuzzy 
state transition or mapping 

S(t) x U(t) Rs, S( t+T) .  (30) 

Given a desired system performance which infers a 
fuzzy set on S'(t+ T), from fuzzy sets S'(t) and G(t) 
(for G the set of system inputs demands) represented 
by the fuzzy relation Re, i.e. 

S'(t)xG(t) Re, S ' ( t+T).  (31) 

The problem is to find a fuzzy controller R c such 
that 

s(t) x 6(0 "c, u(t) 
from which it is easy to see that 

(32) 

R e = R c o Rs. (33) 

Hence to evaluate R o it is necessary to generate an 
inverse composition operator (o-1) so that 

Rc = Rv °- 1 Rs. (34) 

Unfortunately this inverse composition is difficult 
to achieve owing to the non-uniqueness of 
solution 3~, also the resultant controller is a fuzzy 
relation rather than a rule base. An approximate 
compositional inversion can be achieved by a trial- 
and-error method 32. The third fuzzy-logic controller 
method similarly produces a non-unique solution, 
but the inverse operation is produced linguistically. 

Inverse of system rules and substitution of the rules 
of behaviour 
This method 21 performs inverse composition 
directly on the algorithms (30), (31) by linguistically 
inverting the system algorithm (30) to produce a 
new algorithm R, such that 

S(t) xS( t+  T) R U(t). (35) 

This is achieved by systematically searching the 
rules of the plant relational matrix R s. This linguistic 
search produces three possible outcomes: (i) ideally, 
one fuzzy set on the universe U; (ii) no fuzzy sets 
on U (in this case the nearest-neighbour fuzzy set 
on U has to be selected); (iii) many fuzzy sets on 
U (in the case of a non-unique solution, the optimal 
set on U is required). This is generated by 
linguistically substituting the performance algorithm 

(31) into (35) to produce a new algorithm 

(S(t) xG(t) Rv, S ( t+T) )xS( t )  R,, U(t) 

o r  

(S(t) x G(t)) Rc', U(t) (36) 

and selecting those rules which minimize control 
effort. 

SELF-ORGANIZING OR LEARNING 
F U Z Z Y  CONTROLLERS 

The methods presented thus far have modelled a 
system as a set of linguistic causalities in the form 
of discrete fuzzy rules or algorithms, and by 
inversion of the causalities formulated a control rule 
base that optimizes some performance criteria. For 
many dynamical systems, such as AGVs there are 
substantial changes in system parameters or 
environment which must be reflected in turn in the 
model and in the consequent control rule base. To 
effect a self-adaptive or self-organizing rule-base 
controller 5'a1'33'34 a fixed performance measure P 
is required. The performance relation P is composed 
of a static set of rules driven by, say, error E(t) 
(between actual system behaviour) and error change 
AE(t); the control system designer specifies those 
combinations of (E, AE) -~ U that lead to good or 
optimal system behaviour. Two approaches to 
performance index optimization are possible; to 
illustrate these methods, a second-order dynamic 
process (representing an AGV's yaw dynamics) is 
selected as the system to be controlled, but without 
any a priori knowledge by the controller. As with 
previous examples a language with seven linguistic 
qualifiers is used LI. } = {PB, PM, PS, AZ, NS, NM, 
NB}e). 

Cost output performance link 
The performance index Table 6 entries are costs or 
penalties associated with combination of measured 
(E, AE) that are used to modify those rules which 
contributed to the poor system behaviour. The 
almost zero band represents a fuzzy set of ideal 
(E, AE) combinations, a control rule change is 
initiated if (E, AE) combination lies off the ideal 
band. The output  of a rule is an input to the plant 
or system, hence the change (and direction) required 
to a rule output  is determined by the performance 
table entry. Whilst the table indicates the direction 
and magnitude of rule change, it is still necessary 
to determine which control rule(s) contributed to 
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AE 

Table 6 Cost output performance rule table 

NB NM NS AZ ~ PM PB 

NB N8 NB NB PM PS AZ AZ 

NM NB PM PM PS AZ AZ AZ 

N5 NB PM PS AZ AZ AZ NS 

AZ PM ~ AZ AZ AZ N5 NM 

PS PS AZ AZ AZ NS NM NB 

PM AZ AZ AZ NS NM NM N8 

P8 AZ AZ NS NM NB NB NB 

poor performance, and those rules for which the 
system is most responsive. The controller evaluates 
all rules in parallel; applicable rules are selected by 
the inference property of the fuzzy relationship. 
Those rules that made the greatest contribution to 
the controller output  at each sample are memorized; 
when a rule change is indicated by the performance 
table, the offending rule(s) can be readily identified. 
If a transportation delay of m-samples occurs 
between the process input/output ,  then the previous 
(m) set of rules cannot affect the current process 
output.  In general (m + k) samples in the past can 
be changed where k~> 1; however, all investiga- 
tors 11'33'34 have used k = l  in practical studies. 
When there are several penalty-inducing rules, the 
amount  of change may be the same for each rule, 
or could be weighted according to 'blame'. 

As a rule-based controller can be described in two 
forms--as a fuzzy relation or as an algori thm--there 
are two basic methods of rule changing. When the 
rules are in algorithmic form (which has to be 
ultimately converted to a fuzzy relation) the 
consequent linguistic qualifier is simply changed. 
However, when rules are contained in a fuzzy 
relation R, a more-complex and computationally 
inefficient procedure for rule adaptation is necessary: 

1. form a fuzzy relation R1 of the old rule (which 
is to be changed) 

2. form a fuzzy relation R2 of the new rule 
3. the rule change produces a new controller fuzzy 

relation R' 

R ' =  (R A---nR1) V R 2 . (37) 

Example 9." Case Study into cost output 
performance-based self-organizing control of an 
AG V lateral dynamics 
To demonstrate the self-organizing and robustness 
of an intelligent fuzzy-control algorithm, consider 

the control of an AGV lateral dynamics. For the 
purpose of illustration, assume that these yaw-type 
dynamics can be expressed as a second-order linear 
differential equation with constant coefficients (see 
'Introduction').  

/)v+ 2~o~.0v+ 2 2 ~o,0v= Kilo, e, (38) 

where ~ is the damping ratio (nominally 0.5), ~o, is 
the undamped natural frequency (nominally f , =  
10Hz). This model is selected purely for the 
purposes of a demonstrator process or plant 
database which can be readily validated; the 
proposed controller algorithm does not require 
process linearity or stationarity or a priori 
knowledge of internal plant dynamics/parameters. 
In practice the coefficients 4, co,, K 1 are functions 
of the vehicle longitudinal velocity (assumed 
piecewise constant), wheel and axle forces, vehicle 
payload and wheel/road friction coefficient--all of 
which are assumed known (or can be estimated 
on-line) and constant over the control cycle. 

The requirement is for the fuzzy controller to 
provide the 'fastest' transient response to a step 
input with 'little' or no overshoot, the control input 
is restricted to 10 > I U[. 

The fuzzy controller is a three-dimensional 
algorithm which infers the controller output  (u) 
based upon output  error (E) and error change (AE). 
The variable ranges of (U, E, AE) are selected for 
13 quantization levels each. Also, seven fuzzy sets 
are defined on each range of error and error change, 
that is 7 • 7 = 49 rules are required. The seven fuzzy 
sets could be defined on the linguistic qualifiers 
(NB, NM, NS, AZ, PS, PM, PB). The feedback 
controller (see Figure 14) can be implemented with 
the rules stored as an algorithm, with self-adaptive 

i ,I 
I 

(E) 

I 

I°'='" t l Performance Table or Rule 
Evaluator 

Rule Changing j 
I 
1, 

Rule 9ase ~ Oefuzzification , ~  

Le U 

lh e 

{ Desired ResDonse 
0 

Figure 14 Self-organizing rule based fuzzy controller 
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rules. When compositional inference is used to infer 
an output  from a fuzzy relation composed with 
non-fuzzy measurements (in this case Eo and AEo), 
then only those rules which are pertinent to the 
inputs have any effect upon the resulting fuzzy 
output set. A pertinent rule in this case is one for 
which the error and error change are both covering 
sets (defined as having a non-zero grade at the 
measured value). Hence for any error or error- 
change level, there will be one or two covering fuzzy 
sets; there are two covering sets in a level if they 
are overlapping at that level. That is, for any error, 
error-change measurement (quantized) combination 
(Eo, AEo), there will be a maximum of four pertinent 
rules. Each of these rules can be implemented 
separately by forming a fuzzy relation of the rule 
and then performing a max-min composition with 
the quantized error and error-rate levels. The four 
fuzzy output  sets can then be combined by 
maximization and the resulting fuzzy set is then 
de-fuzzified to give the non-fuzzy controller output. 
A typical rule is given by (16) for i=  1, 2, 3, 4. Next 
the composition of this rule with the non-fuzzy 
singleton sets (Eo, AEo); the measured output set 
(Uo) generated by this rule has a membership 
function given by 

#(Uo)=min{pE(Eo), #~z(AEo),Pv(U)}. (39) 

To implement this fuzzy controller it is necessary 
to perform: 

1. One operation to evaluate min[#E(E0), p~(AEo) ] 
2. 13 operations to find Uo for one rule 
3. Each of the four rules can be processed in parallel 
4. 1 3 , 3  operations to combine the four pertinent 

rules by maximization to a single fuzzy output set 
5. 13 • 2 operations to find the first moment  of area 

of the fuzzy output  set 
6. 13 operations to find the area of the fuzzy output 

set 
7. 15 operations (typically) to find the non-fuzzy 

controller output  by centre of area defuzzification 
8. For self-adaptive control, one operation is 

required to check performance table and one 
operation to change rules (but these can be 
carried out in parallel). 

This implies a total of 107 operations per sample 
period; assuming that one operation takes 10-6 see 
of processor time, then 107 × 10 -6 sac are required 
for completion of each fuzzy controller cycle task 
per sample. So even taking a sample rate of 100 
times greater than the highest system resonant 
frequency, gives an upper plant cut-off frequency 

of 93 Hz. Digitization of error change, and error 
measurements is more likely to be a limiting factor 
than the plant highest resonant frequency. 

Each fuzzy set can be represented as a number 
for storage--8-bit bytes are sufficient. The fuzzy- 
controller storage requirements are: 

1. an array of 7 • 13 bytes membership functions of 
the seven fuzzy sets 

2. an array of 49 bytes to store the rules 
3. 54 bytes directly associated with the rule 

processing 
4. an array of 13 • 13 bytes to store the performance 

table 
5. an array of 1 0 . 3  bytes to store the last 10 rules 

(typically) of most importance, and one byte for 
storing the rule reinforcement. 

Therefore a total dedicated storage of 394 bytes 
(plus space for the programme) is required for 
implementing the three-dimensional fuzzy controller. 

Returning to the demonstration example of (38), 
with f ,  = 10 Hz, a sample rate of 50 Hz is sufficient. 
For a minimum detectable yaw angular error of, 
say, 0.8% this should be just over one-half of a 
quantization level, hence error gain was selected as 
> (0.008 x 2)-1, i.e. about 70. Similarly, since the 
error-rate signal in the rule-based controller was 
found by taking the difference of two successive 
error signals, then the error change gain was set at 
>2(0.008 × 2) - l ,  i.e. about 150. Nineteen levels of 
quantization on each of the seven fuzzy spaces, 
numbered - 9  to +9,  were used. To achieve a 
self-adaptive controller, the performance Table 6 for 
the 19 quantization levels in error, error change was 
utilized in the simulation. 

For a second-order plant with damping ratio 0.5, 
co, = 3 rad/sec, the above rule-based controller was 
initially implemented without initial rules, after four 
control cycles for a positive unit step demand, and 
one with negative unit step demand, the rule base 
converged (i.e. no more rule changes were made) to 
those of Table 7. 

Table 7 

NB 
E 

NB PB 

NM PB 

N$ PB 

AZ PB 

PS PB 

PM PB 

P8 P8 

Converged rule base for ~=0.5, o)n=3 rad/sec 

PB 

P~ 

PB 

PB 

PB 

PM 

AZ 

N$ AZ I~ 

PB PB PB 

PB PM AZ 

PB PM AZ 

PB AZ N8 

AZ NM NB 

AZ NM N8 

NB NB NB 

PM PB 

AZ N8 

N5 NB 

NM N8 

NB N t~ 

NB NB 

N8 NB 

NB ] NB 
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Figure 16 Step response; (=0 ,  co.=3 rad/sec 

The closed-loop response is shown in Figure 15; 
this is essentially identical to an optimal conven- 
tionally designed proportional plus derivative 
controller response. To evaluate the robustness of 
the fuzzy-logic controller, the actual systems 
damping ratio was reduced to 0, and - 1 (see Figures 
16 and 17 respectively) without this prior knowledge 
being provided to the controller database or rule 
base. In both cases the controller adapted its rule 
base well, and provided good transient response 
albeit with additional control effort. The comparable 
conventional two-term controller produced unstable 
responses in both cases. 

Additional simulation tests 35 with additive noise, 

ramp inputs and sinusoidal inputs demonstrate 
similar robust and adaptive performance. 

Next state performance based adaptive controllers 
The majority of controllers are designed on the basis 
of a model or, in the case of fuzzy algorithms, the 
estimated or identified relational matrix R (see 
subsection 'Rule production' ,  item 2.); i.e. find the 
control U(t) that maps the plant state S(t) into a 
desired state S(t+T),  whilst optimizing some 
performance relational matrix P, i.e. 

S(t) x S(t + T) -~ U(t, P) (40) 

provided such an inverse relational matrix exists. 
The predictor/controller system structure is shown 
in Figure 18. 

The performance relation P is composed of a 
static set of rules driven by, say, state errors E(t) 
and error change AE(t); the rules are determined 
by the control-system designer. The output  of the 
performance index is the required next state S(t + T) 
to achieve the desired performance; this is used in 
(40) via the inverse relation R - 1  to compute the 
desired control. Typical performance rules are of 

i0 .0  2.0( 1~ 

~ Input 

O. 1.0(] 

-10.0 0.00 
0.00 0.40 0.80 1.20 1.80 2.00 

Time(s) 

Figure 17 Step response; ~ = - 1 ,  (~n=3 rad/sec 

O e i * t e d  Reciutred 
b e h a v i o u r  * S(t ~ T) 

, 

. 

b 

Figure 18 Self-organizing predictor/controller structure 
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~E 

Table8 Next state performance rule base 

E 
NB NM NS AZ I:~ PM P8 

PB PB AZ N8 NB NB NB NB 

PM P9 PM NM NM MB NB NR 

P$ P8 PM PM NM NM NB NB 

AZ PB PM PM AZ NM N8 NB 

NS PB PB PM PM NM NM NB 

NM PB PB PM PM PM NM NB 

N8 P8 PB P8 P8 P8 AZ N8 

the form: 

Pi: IF (error E(t) is AE) AND (plant state is As) 
THEN (next state S((t + T) is As) ), (41) 

where A(-) are linguistic qualifiers. The relational 
matrix P is constructed similarly to that of Ri in 
(22) and (23); the individual rules are then combined 
(as in (24)) to give the relational matrix P. Given 
non-fuzzy measurements of E(t) and S(t), Eo(t ) and 
So(t) respectively, the fuzzy set So(t + T) is computed 
from P by composition. The rules of P and the 
languages, L(-) (or sets of linguistic qualifiers) are 
selected by the designer to achieve some desired 
closed-loop system behaviour (for example, a step 
response with fast rise time and minimum peak 
overshoot). 

Example 10: Continuation of Example 7 
For the identified (second-order) model R of 
Example 7, the above performance rules are of the 
form: 

Pi: IF (error E(t) is AF,) AND (AE is AE) 
THEN (X 3 is Ax3 ). 

Table 8 illustrates a typical set of performance rules 
that lead to good closed-loop transient behaviour. 

To evaluate the control 3s requires inversion of 
the model relational matrix R (defined by (22)); 
assuming that each rule of this form also implies its 
inverse rule given by 

R ~ :  IF S,(t) AND Si(t+ T) THEN U(t); 

then R 7 1 can be evaluated from: 

#Re ,(S(t), S(t + T), U(t)) 

= min{las,(,(S(t)), Ps,(, + T)(S( t q- T)), #u,(,(U(t))}. 
(42) 

Comparing with (23), by equivalence, for 
i~articular values S(t) and desired S(t + T), say, So(t) 
and So(t+T), Uo(t ) is evaluated directly from R 
using composition. 

PVo(r)(U(t)) = max{min{laso(t)(S(t)), PSo(t + r)(S( t + T)), 

s(t+ T), U(t))}}. 
(43) 

Previous use of this method ~ (and that in the 
previous section) for self-learning control has been 
highly successful, and requires little computational 
effort, and is readily implemented for real-time 
applications (such as an autopilot for large vehicle 
mass changes) via transputer arrays. Unfortunately 
this method requires an even distribution of rules 
within R; when partial or conflicting rules are 
present, the generated controls Uo(t)' are biased 
towards recently updated values of U(t). Since the 
controller also determines what is learnt by the 
model estimator, a coupling between control and 
identification emerges with the controller never 
'teaching' its way out of partial rule situations. 

An alternative numerical method of inverting R, 
that copes well with partial or conflicting rule 
situations (or data), utilizes the model predictor 

So(t + T)= (Uo(t) x So(t))o R 

to compute So(t+ T)' achieved at each of the 
discretization levels of Uo(t)'. Figure 19 shows a 
typical plot of So(t + T)' achieved for variable U(t). 

The control U(t) is given by the intersection of 
So(t + T)' with the desired state vector, through the 
following rules 

1. If one cross-over point occurs, use linear 
interpolation between data points 

2. If more than one zero or no cross-over occurs 
then use least-squares best-fit line to estimate a 
singular cross-over point 

3. If no values of So(t+ T)' exist, then choose Uo(t)' 
at random. 

S(t + T)" 

/ 

o .  / 

• o  

RequireO 

S ( t  4- T )  

h 

U(t) 

"Figure 19 Typical plot of S( t+  T)' achieved for partial rule case 
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To demonstrate the above methodology consider 
again Example 6 second-order unknown plant 
(~ =0.2, co,=4.4 rad see-1), and the performance 
index of Table 8. Although the controller output is 
digital in nature and instantaneous in magnitude 
step changes, we limit the speed at which it can 
change per sample to IAU(t)]=I.0 to represent 
realistic Or feasible actuator demands. The results of 
several simulation runs of simultaneous identification/ 

control are shown in Figure 20(a, b) for variable 
square wave inputs; initially R is unknown. Fast 
identification and well-damped control is achieved 
in Figure 20a. To test the robustness of the method 
and ability to relearn, the actual plant's damping 
ratio was changed from 0.2 to 0.0. The control 
simulation is shown in Figure 20b. Note the 
relatively poor rise time in both cases is determined 
by the constraint ]AU(t)]=I.O. To evaluate the 
controller in the presence of nonlinearities, the 
backlash of width 1.0 (see Figure 21) was introduced 
in front of the linear plant. The simulation response 
is shown in Figures 22(a,b). Again no prior 
knowledge of R was assumed, as is demonstrated 
in the initial transient behaviour of Figure 22a. Note 
in both cases that the learning and controlled 
response is amplitude-dependent owing to the 
presence of the nonlinearity in the control loop. 

DISCUSSION 

This paper has reviewed some applications of fuzzy 
logic to AGV motion control. Clearly, the ability 
to generate decisions or control rules without 
physical models, based entirely on experiential 
evidence, has substantial advantages for complex 
systems. Of even more significance is the ability of 
stich systems to self-organize in response to 
changing system parameters. The initial computer 
simulations of self-adaptive or learning rule-based 
fuzzy-logic controllers indicate fast initial conver- 
gence of the rule base and an ability to cope with 
both large and unknown parametric variations and 
loop nonlinearities. The approach is somewhat 

fJB 

I 

4 

4~ 
U 

Figure 21 System nonlinearity-backlash 
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overcome by using a multi-level resolution control 
strategy; for global control use the above fast highly 
adaptive controller, for local control (say, zero 
steady-state errors) use the global control to 
initialize the local controller then switch over the 
local fine (small discretized levels) control. 

The ability to continuously self-optimize the 
performance of the controller by adapting the 
production rules is a significant characteristic of the 
proposed fuzzy self-learning dual estimation/control 
algorithm. By utilizing this feature, it is envisaged 
that autonomous guided vehicles required to follow 
a path, traverse an obstacle or make turns (during 
docking), will be controlled whilst satisfying 
varying, asymmetric acceleration constraints. 
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approximate, allowing small steady-state errors. 
This is due to large discretization ranges (or 
equivalent few linguistic quantifiers) selected in the 
implementation for the system variables. For the 
target application, Autonomous Guided Vehicles, 
the ability to adapt in real time to rapid system 
changes and system nonlinearities is considered 
more significant than small steady-state errors in 
position or velocity. However, these errors can be 
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