IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996 519

Genetic Algorithms: Concepts and Applications

K. F. Man, Member, IEEE, K. S. Tang, and S. Kwong, Member, IEEE

Abstract—This paper introduces genetic algorithms (GA) as a
complete entity, in which knowledge of this emerging technology
can be integrated together to form the framework of a design tool
for industrial engineers. An attempt has also been made to explain
“why” and “when” GA should be used as an optimization tool.

1. INTRODUCTION

HE USE of genetic algorithms (GA) for problem solving
is not new. The pioneering work of J. H. Holland
in the 1970’s proved to be a significant contribution for
scientific and engineering applications. Since then, the output
of research work in this field has grown exponentially although
the contributions have been, and are largely initiated, from
academic institutions world-wide. It is only very recently
that we have been able to acquire some material that comes
from industry. The concept of this is somehow not clearly
understood. However, the obvious obstacle that may drive
engineers away from using GA is the difficulty of speeding
up the computational process, as well as the intrinsic nature of
randomness that leads to a problem of performance assurance.
Nevertheless, GA development has now reached a stage of
maturity, thanks to the effort made in the last few years by
academics and engineers all over the world. It has blossomed
rapidly due to the easy availability of low-cost but fast-
speed small computers. Those problems once considered to
be “hard” or even “impossible,” in the past are no longer
a problem as far as computation is concerned. Therefore,
complex and conflicting problems that require simultaneous
solutions, which in the past were considered deadlocked
problems, can now be obtained with GA.

Furthermore, the GA is not considered a mathematically
guided algorithm. The optima obtained is evolved from gener-
ation to generation without stringent mathematical formulation
such as the traditional gradient-type of optimizing procedure.
In fact, GA is much different in that context. It is merely a
stochastic, discrete event and a nonlinear process. The obtained
optima is an end product containing the best elements of pre-
vious generations where the attributes of a stronger individual
tend to be carried forward into the following generation. The
rule of the game is “survival of the fittest will win.”

In this sphere, there is an endless supply of literature
describing the use of GA. The sheer number of references
quoted in this paper is an apt indicator of the extensive work
being done in this domain. This does not include the index
finding from [1]. The technical knowledge of “what” GA is and
“how” it works are well reported. This paper tries not to cover
the same ground. Rather, there is room for the introduction of

Manuscript received September 21, 1995; revised November 26, 1995.

The authors are with the City University of Hong Kong, Hong Kong.
Publisher ltem Identifier S 0278-0046(96)03295-9.

GA as a complete entity, in which knowledge of this emerging
technology can be integrated together to form the framework
of a design tool for industrial engineers. Moreover, a brave
attempt has also been made to explain “why” and “when” we
should use GA as an optimization tool. It is anticipated that
there is sufficient materials being generated in this paper to
support this claim.

This paper starts by giving a simple example of GA, as
described in Section II, in which the basic framework of
GA is outlined. This example forms the cornerstone to the
architecture of this paper. For the benefit of newcomers to this
particular field, the essential schema theory and building block
hypothesis of genetic algorithms are briefly given in Section
II1. What makes GA work and how does it improve its evolu-
tion are the essence of GA. There are a number of variations
used to achieve these tasks, and each task has its own merit.
In Section 1V, a range of structural modifications for GA in
order to improve its performance are thus recommended.

Since so much has already been published about what can be
done with GA, a short list of items cataloguing the advantages
of using GA is given in Section V. In Section VI, an account
of what GA “cannot do” is given. The well-known phenomena
of deception and genetic drift are described. In addition, the
problems concerning the real time and adaptiveness of GA
are also reported.

As this paper is targeted at a specific audience, the collection
of practical systems being implemented are introduced in
Section VII, whereas Section VIII outlines the possibility of
integrating GA into emerging technologies such as neural
networks and fuzzy systems. Finally, the conclusions reached
in Section XI and recommendations for future works are also
given.

II. BasiC CONCEPTS OF GENETIC ALGORITHMS

The basic principles of GA were first proposed by Holland
[66]. Thereafter, a series of literature [33], [52], [89] and
reports [10], [11], [102], [118] became available. GA is
inspired by the mechanism of natural selection, a biological
process in which stronger individuals are likely be the winners
in a competing environment. Here, GA uses a direct analogy of
such natural evolution. It presumes that the potential solution
of a problem is an individual and can be represented by a
set of parameters. These parameters are regarded as the genes
of a chromosome and can be structured by a string of values
in binary form. A positive value, generally known as fitness
value, is used to reflect the degree of “goodness” of the
chromosome for solving the problem, and this value is closely
related to its objective value.

0278-0046/96$05.00 © 1996 IEEE

520 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

TABLE 1
ROULETTE WHEEL PARENT SELECTION

o Sum the fitness of all the population members; named as
total fitness (N).

¢ Generatea random number (n) between 0 and total fitness
N

o Return the first population member whose fitness added
to the fitness of the preceding population members, is
greater than or equal to n.

crossover point
)

Pa.rénts Offspring
Fig. 1. Example of one-point crossover.

Throughout a genetic evolution, a fitter chromosome has
the tendency to yield good-quality offspring, which means a
better solution to the problem. In a practical application of
GA, a population pool of chromosomes has to be installed and
they can be randomly set initially. The size of this population
varies from one problem to the other although some guidelines
are given in [83]. In each cycle of genetic operation, termed
an evolving process, a subsequent generation is created from
the chromosomes in the current population. This can only be
successful if a group of those chromosomes, generally called
“parents” or a collection term “mating pool,” are selected via
a specific selection routine. The genes of the parents are to
be mixed and recombined for the production of offspring in
the next generation. It is expected that from this process of
evolution (manipulation of genes), the “better” chromosome
will create a larger number of offspring, and thus has a higher
chance of surviving in the subsequent generation, emulating
the survival-of-the-fittest mechanism in nature.

A scheme called roulette wheel selection [33] is one of
the most commonly used techniques in such a proportionate
selection mechanism. To illustrate this further, the selection
procedure is listed in Table 1.

The cycle of evolution is repeated until a desired termination
criterion is reached. This criterion can also be set by the
number of evolution cycles (computational runs), the amount
of variation of individuals between different generations, or a
predefined value of fitness.

In order to facilitate the GA evolution cycle, two fundamen-
tal operators—crossover and mutation—are required, although
the selection routine can be termed as the other operator.
To further illustrate the operational procedure, a one-point
crossover mechanism is depicted on Fig. 1. A crossover point
is randomly set. The portions of the two chromosomes beyond
this cut-off point to the right is to be exchanged to form
the offspring. An operation rate (p.) with a typical value
of between 0.6-1.0 is normally used as the probability of
crossover.

However, for mutation, the process is applied to each
offspring individually after the crossover exercise. It alters

OB OGO

Original Chromosome

New Chromosome

1L OO, ! O 1 O

Fig. 2. Bit mutation on the fourth bit.

Standard Genetic Algorithm ()
{
// start with an initial time
t:=0;
// initialize a usually random population of individuals
initpopulation P (t);
// evaluate fitness of all initial individuals of population
evaluate P (t);
// test for termination criterion (time, fitness, etc.)
while not done do
// increase the time counter
t:=t+1;
// select a sub-population for offspring production
P := selectparents P (1);
// recombine the "genes" of selected parents
recombine P' (t);
// perturb the mated population stochastically
mutate P' (t);
// evaluate it's new fitness
evaluate P' (t);
// select the survivors from actual fitness
P := survive P,P' (t);
od
1

Fig. 3. Standard genetic algorithm.

each bit randomly with a small probability (p,,) with a typical
value of less than 0.1.

The choice of p,,, p. as the control parameters can be a
complex, nonlinear optimization problem. Furthermore, their
settings are critically dependent upon the nature of the ob-
jective function. This selection issue still remains open to
suggestion although some guidelines have been introduced by
[36] and [59]:

* For large population size (100)

crossover rate, p. =0.6
mutation rate, p,, = 0.001
» For small population size (30)
crossover rate, p. = 0.9
mutation rate, p,, = 0.01

Fig. 3 summarizes the standard genetic algorithm.

A. Example of GA for Optimization

There is no better way to show how GA works than by
going through a real, but simple, example to demonstrate its
effectiveness.

1) Problem: To search the global maximum point of the
following objective function (see Fig. 4):

z = f(77 y) (D

where z,y € [—1, 1].

MAN et al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

z=f(xy)
60~/ -
50J
wl
R
7 o
7 lin\'\\’* i .
A\ 7AW
20 AN
Ay N\
10 I NN 2L
~ I 7 AN
77 """ IN
0% T y

Fig. 4. A multimodal problem.

2) Implementation: The chromosome is to be formed by a
16-bit binary string representing x, and the y coordinates with
8-bit resolution each. One-point crossover and bit mutation
are applied with operation rates of 0.85 and 0.1, respectively.
Population size is set to 4 (In general, this number should be
much larger). Here, only two offspring are generated for each
evolution cycle.

A number of software packages can be utilized for this
exercise, see Appendix. In this example, it is conducted via
simulation based on MATLAB with the Genetic Toolbox [19].
Fig. 5 shows the typical genetic operations and the changes
of the population from first generation to second generation.
Fig. 6 clearly demonstrates that GA is capable of escaping
from local maxima to find the global maximum point.

III. THEORY AND HYPOTHESIS

Having established the fundamental principles of GA in
structure arrangement and operational procedure, we can now
carry on to gain a deeper understanding of GA. Thus far, the
necessary justification of how GA works is yet to be illustrated.
On this front, there are two schools of thoughts for explanation:
schema theory and building block hypothesis.

A. Schema Theory

Short, low-order, above-average schemata receive expo-
nentially increasing trials in subsequent generations of a
genetic algorithm [89].

The design methodology of GA relies heavily on Holland’s
notion of schemata. It simply states that, schemata are sets of
strings (encoded form of the chromosome) that have one or
more features in common. A schema is built by introducing
a “don’t care” symbol “#” into the alphabet of genes, e.g.,
#1101#0. A schema represents all strings (a hyperplane or
subset of the search space), which match it on all positions
other than “#.” It is clear that every schema matches exactly
2" strings, when “r” is the number of don’t care symbols “#”
in the schema template. For example, the set of the schema
#1101#0 is {1110110, 1110100, 0110110, 0110 100}.

Let (S, t) be the number of strings matched by schema
“S” in the tth generation; §(S) be the defining length of the

521
STEP 4: Parent Selection
First Population Objective Value z = f(x,y)
1100110110101000 3.481746
0101010110110101 3.668023
—> | 1000010100110110 6.261380
—> | 1101011111001100 12.864222
STEP 2: CROSSOVER
111010}11111001100| [11010110100110110 |
110000110100110110| — {10000/ 1111001100 |
crossover point
STEP 3: MUTATION
[1101010100110110] [1000011111001100 |
[1111010100100110| 1000011111001100]
z = 8.044649 z = 6.092550
STEP 4 Reinsertion
Second Population | Objective Value z = f(x,y)
—>| 1111010100100110 8.044649
—>| 1000011111001100 6.092550
1000010100110110 6.261380
1101011111001100 12.864222
Fig. 5. Generation to generation.
0.8} e i 4
0.4 /T
y o]
-0.4 _{

Fig. 6. An example of GA.

schema S which is defined as the distance between the outer-
most fixed position; o(-) be the order of schema which is the

522 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

number of fixed positions present in the schema; f(S, t) be
the fitness value of schema S defining as the average fitness
of all strings in the population matched by the schema S; L
be the length of the chromosome; and F(t) be the average
number of occurrences of S.

Taking the effects of proportionate selection, of one-point
crossover and mutation into account, a reproductive schema
growth equation is thus obtained and expressed in (2). A
detailed derivation of this equation can be referred to [89].

f(5,1)
1) >¢(S
(S 1+1) 28,0
6(8
1 — Pe ‘L(f) - O(S)pm (2)
where p., p,, are the operation rate of crossover and mutation,

respectively.

The implicit parallelism lower bound derived by Holland
provides a figure about the number of schemata which are
processed in a single cycle in the order of N3, where N is
the population size.

Despite this formulation, it has limitations that lead to the
restriction of its use. First, the predictions of the GA could
be useless or misleading on some problems [63]. Secondly,
the value of f(S,t) in the current population may differ
significantly from the value of f(S,¢) in the next, since
schema can interfere with one other. Thus, using the average
fitness is only relevant to the first population [60]. After this,
the sampling of strings will become biased and the inexactness
makes it impossible to predict computational behavior.

B. Building Block Hypothesis

A genetic algorithm seeks near-optimal performance
through the juxtaposition of short, low-order, high-
performance schemata, called the building block [89].

The genetic operators we normally refer to crossover and
mutation have the ability to generate, promote, and juxtapose
(side by side) building blocks to form the optimal strings.
Crossover tends to conserve the genetic information present
in the strings. Thus, when the strings for crossover are sim-
ilar, its capacity to generate new building blocks diminishes.
Mutation, however, is not a conservative operator but capable
of generating new building blocks radically.

In addition, parent selection is an important procedure to be
devised. It tends to bias toward building blecks with higher
fitness values, and at the end ensures their representation from
generation (o generation.

IV. STRUCTURE MODIFICATION OF GENETIC ALGORITHMS

Because of the GA mechanism, which is neither governed
by differential equations nor behaves like a continuous func-
tion, it is therefore not difficult to conceive that a simple
structure of GA can be devised for many practical applications
as an optimizer. It is also without doubt that a standard GA is
capable of solving a difficult problem which the conventional
gradient-based or hill-climbing techniques might have trouble
with, even to the extent of causing a complete failure or
breakdown in computation.

However, a standard GA has many limitations. As the
problem becomes complicated, multitasking, and conflicting,
the structure of a GA has to be altered to suit the require-
ment. There are many facets of operational modification to
be introduced on the chromosomes, the operators, and the
implementation. The following operations are recommended
for appropriate modifications of a GA.

A. Chromosome Representations

Bit string encoding [66] is the most classical approach used
by GA researchers because of its simplicity and traceability.
A minor modification is the use of Gray code in the binary
coding. Reference [67] investigated the use of GA for optimiz-
ing functions of two variables and claimed that a Gray code
representation worked slightly better than the normal binary
representation.

Recently, the direct manipulation of real-value chromo-
somes [71], [122] raised some considerable interest. This
representation was introduced especially to deal with real
parameter problems. The work currently taking place by [71]
indicates that the floating point representation would be faster
in computation and more consistent from the basis of run-
to-run. However, the opinion given by [54] suggests that a
real-coded GA would not necessarily yield good results in
some situations, despite many practical problems have been
solved by using real-coded GA. So far, there is insufficient
consensus to be drawn on this argument.

String-based representation may pose difficult and some-
times unnatural answers to some optimization problems. The
use of other encoding techniques, such as order-based repre-
sentation [33] (for bin-patching, graph coloring), embedded
lists [89] (for factory scheduling problems), variable ele-
ment lists [89] (for semiconductor layout), and even LISP
S-expressions [77] can thus be explored.

B. Objective and Fitness Value

The objective function of a problem is a main source
providing the mechanism for evaluating the status of each
chromosome. This is an important link between GA and the
system. It takes the chromosome as input and produces a
number or list of numbers (objective value, generally in least
square form) as a measure to the chromosome’s performance.

However, its range of values varies from problem to prob-
lem. To maintain uniformity over various problem domains,
objective value is rescaled to a fitness value [52], [89].

1) Linear Scaling: The fitness value (f;) of chromosome 4
has a linear relationship with the objective value O; as

fi=a-0;+b 3)

where a, b are chosen to enforce the equality of the average
objective value and the scaled average fitness values, and
cause maximum scaled fitness to be a specified multiple of
the average fitness.

2) Power Law Scaling: The actual fitness value is taken as
the kth power of the objective value, O;

fi =Of C))

MAN er.al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

crossover points
%
G

Parents

Offspring

Fig. 7. Example of multipoint crossover, (1 = 3)

where k is in general problem dependent or even varying
during the run.

3) Sigma Truncation: The fitness value f; of chromosome
i is calculated according to

fi=0i=(0~=c-0) 5)

where ¢ is a small integer, O is the mean of the objective
values, and o is the standard deviation in the population. To
prevent negative value of f, any negative result f < 0 is
arbitrarily set to zero.

C. Selection Mechanisms

To generate good offspring, a proficient parent selection
mechanism is necessary. This is a process used to determine
the number of trials for one particular individual used in
reproduction. The chance of selecting one chromosome as
a parent should be directly proportional to the number of
offspring produced.

Reference [8] presented three measures of performance of
selection algorithms, bias, spread, and efficiency. Bias defines
the absolute difference between actual and expected selection
probabilities of individuals. Spread is the range in the possible
number of trials that an individual may achieved. Efficiency is
related to the overall time complexity of the algorithms.

Roulette wheel selection tends to give zero bias but po-
tentially inclines to spread unlimitedly. It can generally be
implemented with time complexity of the order of N log N
where N is the population size. Stochastic universal sampling
(SUS) is another single-phase sampling algorithm with min-
imum spread, zero bias and the time complexity of SUS is
in the order of N [8]. There are other methods can be used
such as the ranking scheme [7]. This introduces an alternative
to proportional fitness assignment. The chromosomes are se-
lected proportionally to their rank rather than actual evaluation
values. It has been shown to help in the avoidance of premature
convergence and to speed up the search when the population
approaches convergence [117].

D. Crossover Operations

Although one-point crossover was inspired by biological
processes, it has one major drawback in that certain com-
binations of schema cannot be combined in some situations
[89]. A multipoint crossover can be introduced to overcome
this problem. As a result, the performance of generating
offspring is greatly improved. An example of this operation
is depicted in Fig. 7 where multiple crossover points are
randomly selected.

523

0777777 7"
|
[0001110111000111]

Parents <

Mask

v 1
v

v
Offspn'ng<

v

Example of uniform crossover.

v

Fig. 8.

Another approach is the uniform crossover. This generates
offspring from the parents based on a randomly generated
crossover mask. The operation is demonstrated in Fig. 8.

The resultant offspring contains a mixture of genes from
each parent. The number of effective crossing points-is not
fixed, but will be averaged at L/2 (where L is the chromosome
length).

The preference of which crossover techniques to use is
arguable. However, [35] concluded that a two-point crossover
seemed to be an optimal number for multipoint crossover. This
has since been contradicted by [101] as two-point crossover
could perform poorly in a situation where the population has
largely converged because of reduced crossover productivity.
This low-crossover productivity problem can be resolved by
the proposal of reduce-surrogate crossover [12].

Since the uniform crossover exchanges bits rather than
segments, it can combine features regardless of their relative
locations. This ability may outweigh the disadvantage of
destroying building blocks and make uniform crossover a
superior operator for some problems [104]. Reference [39]
reports on several experiments for various crossover opera-
tors. A general comment is that each of these crossovers is
particularly useful for some classes of problems and quite
poor for others, except that one-point crossover is indicated
as a “loser” experimentally.

Some other problem-based crossover techniques have
been proposed. Reference [52] described a partially matched
crossover (PMX) for the order-based problem. Reference
[28] designed an “analogous crossover” for robotic trajectory
generation. Therefore, the use of a crossover technique to
improve the offspring production, is very much problem
oriented. All in all, there is no unified view on this
front.

E. Reordering/Inversion

As stated in the building block hypothesis, the order of
genes on a chromosome is critical. The purpose of reordering
attempts to find gene orders which have better evolutionary
potential. Techniques for reordering the positions of genes
on the chromosome have been suggested. Reference [52]
proposed reversing the order of gene between two randomly
chosen positions within the chromosome. Such a technique is
known as inversion.

524 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

F. Reinsertion

After generating the subpopulation (offspring), there are
several representative strategies to replace the old generation
that can be proposed.

In the case of generation replacement, the chromosomes in
the current population are completely replaced by the offspring
[59]. Therefore, the population with size N will generate an
equal number of offspring in this strategy. Since the best
chromosome of the population may fail to reproduce offspring
in the next generation, it is usually combined with an elitist
strategy such that one or a number of the best chromosomes
can be copied into the succeeding generation. The elitist
strategy may increase the speed of domination of a population
by a super chromosome, but on balance it appears to improve
the performance.

On the contract, when a small number of offspring are
generated in the evolution cycle, a part of the current popula-
tion is replaced by the new generated offspring. Usually, the
worst chromosomes are replaced when new chromosomes are
inserted into the population. However, a direct replacement
of the parents by the corresponding offspring may also be
adopted.

G. Probability Rates Setting

The choice of an optimal probability operation rate for
crossover and mutation is another controversial debate for
both analytical and empirical investigations. The increase of
crossover probability causes the recombination of building
blocks to rise, and at the same time, it also increases the
disruption of good chromosomes. On the other hand, should
the mutation probability increase, this would transform the
genetic search into a random search, but help to reintroduce
the lost genetic material.

As each operator probability may vary through the gener-
ations, Davis [30] suggested a linear variation in crossover
and mutation probability, with a decreasing crossover rate
during the run while the mutation rate increases. Syswerda
[105] imposed a fixed schedule for both cases but Booker
[12] utilized a dynamically variable crossover rate which is
dependent upon the spread of fitness. References [32] and [33]
modified the operator probabilities according to the success
of generating good offspring. Despite all these suggested
methods, the recommendation made by [36] and [59] is the
yardstick to apply.

H. Techniques for Changing Environments

There are many instances where GA may be used to
optimize the time-variant system characteristics. Should it be
adaptive to dynamic signal behavior and/or should it be able to
sustain environmental disturbance? Whichever it is, GA has to
cope with the requirement such that the time-dependent optima
are reached. This is not easy for a standard GA to handle. To
ensure that GA responds properly for a changing environment,
two basic strategies have been developed.

The first strategy is to expand the memory of the GA in
order to build up a repertoire of ready responses for environ-
mental conditions. A typical example is triallelic representation

[51]. Triallelic representation consists of a diploid chromo-
some and a third allelic structure for deciding dominance.
The recessive genes provide additional information for the
changing environment.

Random immigrants mechanism [62], Triggered hypermu-
tation mechanism [22], [23], and statistical process control
[108] are grouped as another type of strategy. This ap-
proach increases diversity in the population to compensate
for changes encountered in the environment. The random
immigrants mechanism replaces a fraction of the GA’s popu-
lation by randomly generated new individuals. It works well
in environments where there are occasional, large changes
in the location of the optimum. The triggered hypermuta-
tion mechanism is an adaptive, mutation-based mechanism to
adopt the environmental change. This mechanism temporarily
increases the mutation rate to a high value whenever the
best time-average performance of the population deteriorates.
Statistical process control would then be devised to monitor
the best performance of the population such that the GA-based
optimization system adapts to the continuous, time-dependent
nonstationary environment.

L Parallel GA

One of the major criticisms of using GA must be the time
spent in computation. Sometimes, this can be painfully long.
This is understandable as GA is not a mathematically guided
solution to the problem. It is merely a stochastic, discrete,
nonlinear, and highly dimensional search algorithm. To use
GA for practical applications, particularly in control and signal
processing areas, the problem of computing overrun time
requires much attention before it can be resolved.

Considering that GA already has an intrinsic parallelism ar-
chitecture, in a nutshell, it requires no extra effort to construct
a parallel computational framework. Rather, GA can be fully
exploited in its parallel structure to obtain the speed required
for practical uses.

There are a number of GA-based parallel methods capable
of enhancing the computational speed [15], [18]. The methods
of parallelization can be classified as global, migration, and
diffusion. These categories reflect different ways in which
parallelism can be exploited in GA, as well as the nature of
the population structure and recombination mechanisms used.

Global GA treats the entire population as a single breeding
mechanism. It can be implemented on a shared memory
multiprocessor or distributed memory computer. On a shared
memory multiprocessor, chromosomes are stored in the shared
memory. Each processor evaluates the particular assigned
chromosomes. On a distributed memory computer, it is based
on the master—slave relationship shown in Fig. 9. One dis-
advantage of this method is that the slave sits idly by while
the master is handling its job. A successful application of this
global GA approach can be found in [29] and [37].

Migration GA (coarse grained parallel GA) divides the
population into a number of subpopulations, each of which
is treated as a separate breeding unit under the control of
a conventional GA. To encourage the proliferation of good
genetic material throughout the whole population, individual

MAN et al.. GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

GA Master

Selection
Fimess Assignment

Slave 1 Slave 2 Slavek

Recombination Recombination e o ® Recombination
Mutation Mutation Mutation
Function Evaluation Punction Evaluation Function Evaluation

Fig. 9. Global GA.

TABLE 11
Pseupo CODE OF MIGRATION GA

~Each node (GA;)
WHILE not finish
SEQ
... Selection
... Reproduction
... Reproduction
... Evaluation
PAR
... Send emigrants
... Receive immigrants

migration between the subpopulations occurs from time to
time. A pseudo code is expressed in Table II

Figs. 10-12 show three different topologies in migration.
Fig. 10 shows the ring migration topology, where individuals
are transferred between directionally adjacent subpopulations.
A similar strategy, known as neighborhood migration, is
shown on Fig. 11, where migration can be made between
nearest neighbors bidirectionally. Unrestricted migration topol-
ogy is depicted on Fig. 12. Here, individuals may migrate
from any subpopulation to another. The individual migrants
are then determined according to the appropriate selection
strategy.

The topology model of the migration GA is well suited to
parallel implementation on multiple instruction multiple data
(MIMD) machines. The architecture of hypercubes [24], [112]
and rings [56] are commonly used for this purpose. Given the
range of possible population topologies and migration paths
between them, efficient communications networks should thus
be possible on most parallel architecture. This applies to small
multiprocessor pathforms or even the clustering of networked
workstations.

Diffusion GA (fine grained parallel GA), as indicated in
Fig. 13, considers the population as a single continuous struc-
ture. Usually, for a connection of massively parallel computers,
each individual is assigned to a processing unit which is placed
on a 2-D grid topology. Some different topologies have also
been studied in this area [3], [9].

The individuals are allowed to breed with individuals con-
tained in a small local neighborhood. This neighborhood
is usually chosen from immediately adjacent individuals on
the population surface and is motivated by the practical

525

G4,

Fig. 10. Ring migration topology.

Fig. 11. Neighborhood migration topology.

communication restrictions of parallel computers. The pseudo
code is listed on Table III.

Reference [85] introduces a massive parallel GA architec-
ture with population distributed with a 2-D mesh topology.
Selection and mating are only possible with neighboring indi-
viduals. In addition, [57] and [91] introduce an asynchronous
parallel GA, ASPARAGOS system. In this configuration, the
GA was implemented on a connected ladder network using
transputers with one individual per processor. The practical
application of diffusion GA to solve a 2-D bin packing
problem has been reported in [78], and the same technique has
been implemented to tackle a job shop scheduling problem
[106].

526 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

Fig. 12. Unrestricted migration topology.

o

OO

G
LFH S E g
[T

1 1 [

208

B

Fig. 13. Diftusion GA.

TABLE III
Pseupo CopE OF DIFrusioN GA

—Each node (I ;)
Initialize
WHILE not finished
SEQ
... Evaluate
PAR
... Send self to neighbours
... Receive neighbours
... Select mate
... Reproduce

J. Multiobjective GA

Sometimes in everyday life, we seldom experience the
luxury of optimizing a single and perfect solution from an
objective function. One of the nicer niches of using GA is
its capability of solving multiobjective problems [44]. This
is particularly useful for meeting system design specifications
that are complex, conflicting, and sometimes mathematically
difficult.

ZAB..N

control genes

L

neuron control bit
x : don't care state
0 :inactive slate

z l B - ':-0—:' - —| Layer contro} bit
1 : aclive state

1 x|t
0 --ix'- 10
1 CX 0
A N
(@
J.%Ompm

»[E=2)

@ Active neuron [wy, w;,w,,7]

3 - Input
= O T-active neuron.
Inpst Layer Hiddea Layer Ouiput
(b)
\ wl,w,,w],‘tx,w,,wj,wﬁ,‘tz,w7,w,,w,,1$,...]

cormection genes

©

Fig. 14. SGTNN structure. (a) Control genes. (b) Topology of the network
by control genes. (c) Associated weighting connection genes.

The solution set of a multiobjective optimization problem
consists of all those vectors such that their components can-
not all be simultaneously improved. This is known as the
concept of Pareto-optimality, and the solution set is known
as the Pareto-optimal set [42]. Pareto-optimal solutions are
also called nondominated, or noninferior, solutions. Some-
times, a Pareto-optimal set of solutions requires a trade-off
with different objective performances. Nevertheless, GA has
demonstrated its power in obtaining the Pareto-optimal set
instead of a single solution [42], [44], [69].

Of course, a simply way to handle this multiobjective
optimization problem is to combine and aggregate the ob-
jectives. Several applications using this approach have been
reported. The most noted examples of applications are the
simple weighted sum approach [70] and the target vector
optimization [120].

K. Structured GA

The structured genetic algorithm (SGA) was first proposed
by [26]. The chromosome is formulated in a hierarchical
structure. Higher-level nodes in the structure govern the acti-
vation of the lower-level genes. The deactivated genes provide
additional information that allow it to react to a changing
environment [27].

SGA has been further developed as a structure optimizer.
It has been used for the optimization of structure, like the
number of membership sets or rules in fuzzy logic, order of
the transfer function [110], and the topology in neural networks
(NN) [109]. Fig. 14 illustrates how SGA can be used for NN
topology optimization.

The multiple objective approach can be incorporated into
SGA (MOSGA) which gives the flexibility of structure
optimization. To maintain population diversity and enable
searching between different structures, the population is
formulated by a number of subgroups [109]. Each subgroup

MAN et al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

stores up chromosomes that have a particular class of
structure.

V. ADVANTAGES OF GA: WHY IS GA USED?

Afier discussing the modification of the GA, some insight
into why GA has become more and more popular should be
given. GA is attractive for a number of reasons.

« It can handle problem constraints by simply embedding

them into this chromosome coding.

» Multiobjective problem can be addressed by means of the
approach stated in Section IV.

« Since it is a technique independent of the error sur-
face, it is ready to solve multimodal, nondifferientable,
noncontinuous, or even NP-complete problems [47].

» Structured GA provides a tool to optimize the topology
or the structure in parallel with the parameters of the
solution for a particular problem.

« It is a very easy-to-understand technique with very few
(or even none) mathematics.

e It can be easily interfaced to existing simulations and
models.

VI. SHORTCOMINGS OF GENETIC
ALGORITHMS: PROBLEMS AND DIFFICULTY

Of course, there are some things that GA just cannot or
finds difficult to do. The following three phenomena are often
encountered.

A. Deception

Some objective functions may be very difficult to optimize
by GA. Such functions are referred as GA-deceptive functions
[34], [50]. Depending on the nature of the objective functions,
very bad chromosomes can be generated by combining good
building blocks. This causes the failure of the building block
hypothesis.

To illustrate this point in a mathematical fashion, the sim-
plest GA-deceptive function is the minimal deceptive problem
[52]. For example, assume that (1, 1) represents the optimal
solution for a two-bit objective function, f, and let

f(1, 1) > £(0,0) > f(0,1) > f(1, 0).

The schemata (0, #) does not contain the optimal string
(1, 1) as an instance and that leads the GA away from the
solution (1, 1). This is only a minimally deceptive problem
that is considered to be a partially deceptive function. In a
fuller deceptive problem, all low-order schemata containing a
suboptimal solution are better than other competing schemata
[34].

Three approaches were proposed to deal with deception
[89]. The first one is to modify the coding in an appropri-
ated way. This method assumed the prior knowledge of the
objective function, which is not always the case. The second
approach uses the inversion operation. The last one is the use
of messy genetic algorithm [53], [55].

527

B. Genetic Drift (Bias)

There is no guarantee of obtaining the global optimal point -
by using GA although it has the tendency to do so. This
possibility is reduced if there is a loss of population diversity.
As GA seeks out a suboptimal point, the population may
converge toward this point and premature convergence occurs.
In this case, the global optimal solution can only be obtained
by the exploration of mutation in the genetic operations.
Such a phenomenon is known as genetic drift [12] and can
easily occur when the GA is set with a small population size.
Furthermore, this problem is also confronted with when GA
is used for solving multiobjective problems for which a single
optimal solution is sought instead of a set of Pareto solutions.

A number of techniques have been proposed to limit the
effect of genetic drift and maintain population diversity. These
include preselection [82], crowding [35], [52], and fitness
sharing [45].

C. Real-Time and On-Line Issues

Similar to the other artificial intelligence (AI) techniques
and heuristics, the GA is not suited for analyses that would
provide guaranteed response times [39], [99]. Moreover, the
variance of the response time for an GA system is much larger
than the conventional methods. This unfavorable nature limits
the use of GA in the real-time problem.

Another characteristic that limits GA’s application in on-
line application for control is its randomness. In the evolution
cycle, it has been noticed that a fitness value is evaluated
for each offspring. Since GA has the property of exploring
the searching domain, the performance is not guaranteed for
one particular offspring. The population may become better
and better but the same cannot be said about an individual.
Therefore, it is unwise to apply GA directly to a real system
without any simulation model.

VII. APPLICATIONS

Thus far, the pros and cons of using GA have been ad-
dressed. Now, we can proceed, with our aim to draw your
attention by bringing out some practical examples for which
GA has been successfully implemented in the area of industrial
electronics. This is by no means an exhaustive list, but merely
an indicator to realize the trend and potential growth in the
future.

A. Parameter and System Identification

In the systems-design phase for both control engineering
and signal processing, an adequate but efficient mathematical
model is desirable. To obtain such a model, the research
work in the area of parameter and system identification has
been very active for the last 30 years. The required model,
generally in the form of a transfer function or infinite impulse
response (IIR) filter, is dominantly addressed. Because of
the multimodal error surface of IIR together with its system
stability criterion are to be met simultaneously, the gradient
type of optimization algorithms would have the problem to
obtain an adequate solution. Whereas the use of GA is found

528 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

to be an ideal solution for this problem, as GA has the
ability to solve multimodal problem with relative ease [93],
[121].

The IIR filter in the form of cascade, parallel, or lattice form
can be assigned for optimization using GA. This is because of
the flexibility of structuring of filter’s parameter into the form
of a chromosome that can be arranged in a prefixed manner.
Therefore, for a stable IIR filter in lattice form, the searching
domain of parameters should be set within the range of +1 to
—1 [116]. For the case of parallel or cascade of second-order
form, the coefficients must lie inside the stability triangle [100]
for stability assurance.

One further advantage of using GA for identification is its
capability to find an optimal order of the IIR filter [110]. This
approach of system identification is considered to be a difficult
problem for the gradient type of optimization schemes. Here,
GA can be applied simultaneously for optimizing the order
and coefficient without much effort to alter the chromosome
structure.

The use of GA for the purpose of identification is not
limited to the IIR design; the power of GA also contributes to
nonlinear system identification problems [16]. The GA used
for determining the parameters of the Chua’s chaotic oscillator
[20] proved to be a sound tactic as the temporal series of the
state variables and parameters of another Chua’s oscillators are
inherently known. Synchronization between these two chaotic
systems is achieved and is desired for the use of secure
communication systems [21], [76].

Reference [43] applied GA for term selection in a nonlinear
autoregressive moving average model with exogenous inputs
models. An N-array but order-independent chromosome rep-
resentation is used for the generation of a nonlinear model
with a fixed number of terms. Each chromosome consists of a
number of integers while each represents a particular term.

B. Control

For its use in control systems engineering, GA can be
applied to a number of control methodologies for the im-
provement of the overall system performance. In most of
the controller designs, some parameters are required to be
optimized in order to give a better overall control performance.
Furthermore, the configuration or the order of the controller
may be optimized to reduce the system complexity.

In classical proportional integral derivative (PID) control
problems, the required three-terms-parameters which arc
known as proportional, integral, and derivative gain, should be
optimally determined. Despite the method of Ziegler—Nichols
(ZN) ultimate-cycle tuning scheme, these parameters can be
optimally obtained. Successful implementations are found in
the pH neutralization process [115], and the heat exchanger
system [72].

In the case of robust control, the principal of the H* loop
shaping design procedure (LSDP) [88] is used to design a
precompensator (W) and a postcompensator (Ws) to shape
the nominal plant (G) so that the singular values of the shaped
plant (G, = WoGW1) have a desired open-loop shape. GA
may be incorporated into the LSDP for searching the shaping

function space in order to find a suitable robust controller so
that an explicit close-loop performance is met.

The advantage of GA in robust controller design are two-
fold. First, the configurations of the shaping function Wy, W5
do not necessarily have to be predefined. The optimization
of both order and parameter of the shaping function can be
undergone simultaneously [48]. This offers the flexibility to
search for the parameters of controllers of different degrees
of complexity and at the same time it provides a means
of achieving the certain optimality. Secondly, the multiple
objective approach can be also adopted to further enhance the
degree of success of meeting the design criteria of extreme
plants [110].

A number of successful applications have been reported in
this area. Noticeable contributions are found in magnetically
levitated (maglev) vehicles [25], distillation column [110], and
the benchmark problem [58].

It has also been reported that GA is being used for designing
a sliding mode control system [90]. This is another approach
to address the problem of obtaining a static gain matrix in
reaching phase which was vividly described in [64].

C. Robotics

Thus far, to the best of the authors’ knowledge, the ap-
plication of GA in robotics has only found a use in robot
navigating systems. Considering that such navigation is the
art of directing a course for a mobile robot to traverse in a
restricted environment, this navigation scheme should then be
designed to cope with such constraints, so that the robot is
capable of reaching its desired destination without getting lost
or crashing into any objects.

Reference [28] demonstrated the application of GA in
the trajectory of a three-arm-configuration robot. The end
effector’s path is of interest. Final trajectory would consist
of a series of ordered arm-configurations. Since the number
of arm-configurations used is unknown until the solution is
found, the coding of GA must be modified to accommo-
date variable-length and order-dependent strings. Equation (6)
shows the string structure of a trajectory consisting of arm
configurations

n-tuple

-y Ol n (6)

e e
Q15 O1,2, O] n; 21, - -

In-tuples

where each n-tuple represents an arm-configuration.
Michalewicz [89] adopted the order-based coding in his
evolutionary navigator (EN). A chromosome in EN is an
ordered list of path nodes. Each of the path nodes, apart from
the pointer to the next node, consists of z and y coordinates
of an intermediate knot point along the path, and a Boolean
variable b indicating whether the given node is feasible or
not. EN unifies off-line and on-line planning with a simple
map of high-fidelity and efficient planning algorithms. The
off-line planner searches for the optimal global path from the
start to the desired destination, whereas the on-line planner
is responsible for handling possible collisions or previously

MAN er al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

unknown objects by replacing a part of the original global
path by the optimal subtour.

D. Pattern Recognition

The use of GA for pattern recognition has been widely stud-
ied. They can be generalized and grouped into two categories.

1) Extraction: GA is applied to generate the image filters
for a two-stage target recognition system in such a way that
the target image from background clutter is vividly classified
from the imaging data [75]. A linear filter is found in the first
stage (screener) to select subimages while a filter bank (a set
of filters) is being generated in the last stage (classifier) for
class decision. Real-number encoding is adopted in this design.
Such an approach provides a means to generate suitable filters
rapidly with a minimal need for human intervention.

Reference [96] applied GA, based on a minimal subset
representation, to perform primitive extraction from geometric
sensor data. A novel chromosome representation of a primitive
by a minimal subset of member points is proposed. Such a
subset is the smallest number of points necessary to define
a unique instance of a primitive. For example, three-points
is used to define a unique circle; whereas five-points is used
for a unique conic. If there are n geometric data points in
the input that has an associated index say, from 1-n, then
a minimal subset is identified by the indices of its member
points. A fixed-sized template is applied to the geometric data
to count the total number of points inside the template and then
the fitness value is assigned. “Better” would mean a primitive
which has more geometric data points within a template.

2) Recognition: A planar object is taken from two viewing
positions to be considered as a relationship which is governed
by an affine transformation matrix. The transformation param-
eters can be calculated from a triplet of matched dominant
point sets on the boundaries of the images.

However, the factors of different environments, different
apparatus, occlusion, noise interference, and distortions would
lead to insufficient resolution which, at the end, cause a dra-
matic change in the number and distributions of the dominant
points. Furthermore, certain classes of object shapes, a circle
for instance, will result in lacking of prominent dominant
points. Reference [114] suggested using standard GA for the
transformation parameters calculation to replace the current
exhaustive blind searching. The end result is very encouraging
and there is room for future development.

A Faceprint system was designed in New Mexico State
University [14] for reproducing the feature of a suspected
criminal’s face. A binary chromosome is used to code the
five facial features (mouth, hair, eyes, nose, chin) of a face.
Initially, 20 suspects’ faces are generated on a computer
screen. A witness can then rate each face on a 10-point
subjective scale. GA takes that information and follows the
evolution cycle to obtain the optimal solution.

E. Speech Recognition

In an automatic speech recognition system, the spoken
speech patterns (test pattern) are usuvally identified with the
prestored speech patterns (reference patterns). The comparison

529

of speech signals has a number of difficulties as variations in
time and the time scales among them are not fixed. Therefore,
time registration of the test and the reference patterns is one
of the fundamental problems in the area of automatic isolated
word recognition.

The technique of dynamic time warping (DTW) has been
developed for this task. The performance is good and accurate.
However, the nonlinear time alignment of DTW in which the
conflicting issues of optimizing the stringent rule on slope
weighting, the nontrivial computation to obtain the K-best
paths, and the endpoint constraint relaxation, are not easily
solved. The use of GA in this context is the best to apply.
Experimental results have shown that the GA approach has
a very close recognition performance. In addition, GA has
a higher level of confidence in identifying confused input
utterances than the conventional approach of DTW, especially
for confusable words [79].

F. Engineering Designs

It is interesting to note that GA is not applied only to solve
problems that are mathematically oriented in the strictest sense.
GA can also be used for engineering designs that include
optimization of object shaping, circuit layout and many other
applications.

As engineering design is very much an art form, the use
of this to create enhanced designs is an object to pursue. GA
could thus be used as a tool to aid designers for this purpose. It
is anticipated that this method of design is an up-and-coming
technology for the creation of futuristic object designs.

A typical but innovated design is an airfoil shapes optimiza-
tion problem solved by the inverse numerical method [94]. In
this task, the associated target pressure distribution is to be
acquired by the Navier-Stoke solver. Then, GA is applied to
optimize the target pressure distribution so that a supercritical
airfoil shape is obtained via design samples from this method.

Another example is the simultaneous optimization of global
cells placement and routing in a very large scale integration
(VLSI) layout [98]. This is a contrast to the traditional method
of layout design for VLSI-chips where the cell and global
routes are firstly determined. The GA approach maintains a
global view of the layout surface.

On a similar front, [2] introduced GA to find the best
state machine assignment for implementing a synchronous
sequential circuit, which is considered to be an important
step to reducing silicon area or chip count in digital designs.
Experiments have indicated that the GA approach yields good
results which are often comparable to, or better than, those
using established heuristics that embody extensive domain
knowledge.

G. Planning and Scheduling

This is another area where GA can be comfortably applied.
Optimization is often required for the planning of actions,
motions, and tasks. GA has been demonstrated as a power tool
for such problems that can be even NP-completed. The appli-
cations of GA in the travelling salesman problem [51], pump
scheduling in water industry [81], job-shop scheduling [40],

530 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

[92], [123], and production—inventory—distribution system [84]
are typical examples and have been well recorded.

An interesting maintenance-scheduling problem may also
be considered for GA—that is, the activities to be scheduled
within a planned maintenance period which requires that they
be optimally set. GA is an ideal method for solving constraints
problems that are incurred from the complex nature of this
kind of situation, where the conflicting issue arises of which
parts should be taken out for maintenance at a particular time,
especially when time and parts are, in general, interacting
against each other. Some initial work has already been given

in [80].

H. Classifier System

In a large, complex system, where many control parameters
are required to be adjusted in order to keep a system running
in an optimal way, the classifier system is generally applied.
Rules have been developed to control such complex plants.
Such a system involves encoding production rules in string
form (classifiers) and learning such rules on-line during their
interaction with an arbitrary environment. The application of
GA will try to evolve a set of rules to deal with the particular
situation. The fitness of a set of rules may be assessed by
Jjudging their performance either on the real system itself, or
on a computer model of it.

Fogarty [41] used the former method to develop rules for
controlling the optimum gas/air mixture in furnaces. Whereas
Goldberg modeled a gas-pipeline system to determine a set of
rules for pipeline control and gas-leaks detection [52]. Davis
and Coomb used a similar approach to design communication
network links [31]. There are other more successful applica-
tions of GA in this area, like game playing [6] and maze
solving, as well as political and economic modeling [46].
There are certain to be many more uses to come as GA is
inherently well suited for this type of application.

VIII. EMERGING TECHNOLOGY WITH GENETIC ALGORITHMS

GA is considered as one type of emerging technology.
But, to integrate GA with other emerging technologies has
yet to be mentioned, and understandably, it is worth trying.
The reason for this is simple. Thus far, in those emerging
technologies, either in neural network (NN) or in fuzzy logic,
that we normally come across, their intelligence is merely
trying to emulate human brain or behavioral patterns in a
mathematically recognizable fashion. Because of its efficiency
in modeling for such a complex human system, an optimal
model is critical in order to achieve the ultimate goal. At
this point, GA may contribute its usefulness in obtaining
an optimal model. Therefore, it is only natural to engineers
that an integration of GA with either a neural network, or
for that matter, with a fuzzy logic system, or both, be used
to accomplish a so-called intelligent system. This section
attempts to outline some applications of GA in this domain.

A. Integration of Genetic Algorithms and Neural Networks

The use of neural networks (NN) for industrial control has
been well accepted. The most noticeable applications are in

the areas of telecommunication, active noise control, pattern
recognition, prediction and financial analysis, process control,
speech recognition, etc. [5], [119]. Combining GA and NN
[97] can be generally divided into two broad categories in
supportive and collaborative integration.

In supportive integration, GA can assist neural networks in

* selecting features or transforming the feature space used
by a neural net classifier [13], [17];

* selecting the learning rule or the parameters that control

learning in a neural net; and

e analyzing a neural net [103].

In collaborative integration, GA can be used to optimize
NN on the weight parameters and/or topology.

Using GA as a replacement for back propagation for weight
optimization does not seem to be very competitive, especially
where computational speed is concerned. However, it may be
a promising learning method for the reinforcement of training
a fully recurrent NN, or even for training networks that are
with nondifferentiable transfer neurons.

The contribution of GA’s in optimizing a global NN topol-
ogy optimization is also feasible. Here, GA is used to evolve
the network topology and use other local learning methods or
GA to fine tune the weights. The applications of GA on neural
networks can be shown by the optimization of recurrent neural
networks [4] and also feedforward networks [89], [109] where
both topology and weight coefficients are globally optimized.

B. Integration of Genetic Algorithms and Fuzzy Logic

In principle, there is no general rule or method to construct
the fuzzy rules and to define the membership functions. As a
fuzzy concept, the rules and membership functions are defined
by the skilled operators and these, obviously, may not be
optimal. GA working as the global optimizer is hence applied
[73].

References [95] and [107] apply GA to optimize the fuzzy
membership functions while [68] uses GA to optimize to
optimize both fuzzy membership. functions and fuzzy rules
simultaneously. A fuzzy controller optimized by GA has been
designed on pH control [74] and water pump system [107].

IX. CONCLUSION

An attempt to outline the features of GA in terms of the
genetic functionality of operators, the problem formulation, the
inherent capability of GA for solving complex and conflicting
problems, as well as its various practical applications, is
given in this paper. The theme is oriented from an industrial
application basis. The paper’s purpose is to introduce this
emerging technology to engineers who may have little or
no knowledge of GA. It is also reasonable to believe that
this article contains sufficient, useful material to encourage
and awaken the interest to newcomers, so that GA may be
implemented to solve their practical problems.

What remains as a challenge to GA is undoubtedly the real-
time and adaptive capability. The real-time issue is not so
much hinged on the computing speed, since the parallelism
of GA should improve the computational speed quite consid-
erably and comfortably. Rather, it is the unpredictability of

MAN er al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

GA that is the main cause of concern. As GA is a stochastic,
discrete, and nonlinear process, guaranteed response times are
not applicable.

Thus far, applying GA in a time-varying system is still in its
infancy. Due to the factor of population convergence, GA has
difficulty in reacting promptly to the changing environment.
Research work in this direction should be encouraged. One
possible approach to this problem is to monitor the GA process
via some intelligent supervisory scheme.

The integration of GA with other emerging technology
such as neural networks and fuzzy logic systems could be
another challenging area. The combination of these emerging
technologies may not only involve applying GA as a helper
to these two, but could result in the emerging technologies
being able to assist GA applications. Different combinations
may offer us a fruitful result in intelligent system design.

Allin all, the knowledge generated from GA over the last 20
or so years has now become mature. The prospect of applying
GA for practical applications is good. A considerable growth
in the application GA, particularly in the field of industrial
electronics, is anticipated for the future.

APPENDIX
GENETIC OPTIMIZATION TOOLS

The study and evaluation of GA are essentially nonanalytic,
and largely depend on simulation. While they are strongly ap-
plication independent, GA software packages have potentially
a very broad spectrum of applications. Part of the common
software package is briefly introduced and more information
can be found in [65].

A. Genetic Algorithm Toolbox in MATLAB

A GA Toolbox was developed [19] for MATLAB [87]. This
is GA software which is easy to use, practical, and efficient.
It provides a platform for modeling, design, and simulation
with an interactive environment and the associated graphical
facility.

B. GENESIS

The GENEtic Search Implementation System (GENESIS)
was developed by John Grefenstette [61]. It is a function
optimization system based on genetic search techniques. As
the first widely available GA program, GENESIS has been
very influential in stimulating the use of GA, and several other
GA packages are generated because of its capability.

C. GENOCOP

GEnetic Algorithm for Numerical Optimization for COn-
strained Problems (GENOCOP) is developed by Zbigniew
Michalewicz and details can be obtained in [89]. The GENO-
COP system was designed to find the global optimum of
a function with additional linear equalities and inequalities
constraints. Unix and DOS versions are available.

531

D. GENEsYs

GENEsYs [113] is a GENESIS-based GA implementation
which includes extensions and new features for experimental
purposes. Different selection schemes like linear ranking,
Boltzmann, (g, A)-selection, and general extinctive selection
variants are included. Crossover operators and self-adaptation
of mutation rates are also possible. There are additional data-
monitoring facilities, such as recording average, variance, and
skew of object variables and mutation rates, and creating
bitmap-dumps of the population.

E. TOLKIEN

TOLKIEN (TOoLKIt for gENetics-based applications) ver-
sion 1.1 [111] is a C++ class library named in memory of
J. R. R. Tolkien. A collection of reusable objects has been
developed for genetics-based applications. For portability, no
compiler-specific or class library-specific features are used.
The current version has been compiled successfully using Bor-
land C++ Version 3.1 and GNU C++. TOLKIEN contains a
number of useful extensions to the generic GA. For example:

¢ chromosomes of user-definable types; binary, character,
integer, and floating point chromosomes are provided;

» gray code encoding and decoding;

« multipoint and uniform crossover;

« diploidy;

« various selection schemes such as tournament selection
and linear ranking; and

« linear fitness scaling and sigma truncation.

REFERENCES

[1] J. T. Alander, “An indexed bibliography of genetic algorithms: Years
1957-1993,” Dept. Informat. Technol., Production Econ., University of
Vaasa, Finland, Rep. Ser. 94-1, Feb. 1994.

[2] J. N. Amaral, K. Tumer, and J. Ghosh, “Designing genetic algorithms
for the state assignment problem,” IEEE Trans. Syst., Man, Cybern.,
vol. 25, no. 4, Apr. 1995.

[3] E.J. Anderson and M. C. Ferris, “A genetic algorithm for the assembly
line balancing problem,” Comput. Sci. Dept., Univ. Wisconsin-Madison,
Tech. Rep. TR 926, 1990.

[4] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” IEEE Trans. Neural
Networks, vol. 5, pp. 54-65, Jan. 1994.

[5] K. Asakawa and H. Takagi, “Neural networks in Japan,” Communicat.
ACM, vol. 37, no. 3, pp. 106-112, Mar. 1994.

[6] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” Genetic Algorithms and Stimulated Annealing, L. Davis, Ed.
New York: Pitman, 1987, pp. 32-41.

[7] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in
Proc. Ist Int. Conf. Genetic Algorithms. J. J. Grefenstette, Ed., Lawrence
Erlbaum Associates, 1985, pp. 101-111.

, “Reducing bias and inefficiency in the selection algorithm,” in

Proc. 2nd Int. Conf. Genetic Algorithms, J.]. Grefenstette, Ed., Lawrence

Erlbaum Associates, 1987, pp. 14-21.

S. Baluja, “Structure and performance of fine-grain parallelism in genetic

search,” in Proc. 5th Int. Conf. Genetic Algorithms, 1993.

D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic

algorithms: Part 1—Fundamentals,” Univ. Comput., vol. 15, no. 2, pp.

58—69, 1993.

, “An overview of genetic algorithms: Part 2—Research topics,”

Univ. Comput., vol. 15, no. 4, pp. 170-181, 1993.

L. Booker, “Improving search in genetic algorithms,” in Genetic Algo-

rithms and Stimulated Annealing, L. Davis, Ed. New York: Pitman,

1987, pp. 61-73.

F. Z. Brill, D. E. Brown, and W. N. Martin, “Fast genetic selection of

features for neural network classifiers,” IEEE Trans. Neural Networks,

vol. 3, pp. 324-328, 1992.

[8]

<

[10]

[11]
[12]

113

532

[14]

[1s

[16]

[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]
[33]
[34]
[35

[36]

[37]

[38]

[39]
[40]

[41)

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

C. Caldwell and V. S. Johnston, “Tracking a criminal suspect through
face-space with a genetic algorithm,” in Proc. 4th Int. Conf. Genetic
Algorithms, 1991, pp. 416-421.

E. Cantd-Paz, “A summary of research on parallel genetic algorithms,”
Tllinois Genetic Algorithms Lab., Univ. Illinois at Urbana-Champaign,
IIiGAL Rep. 95007, July 1995.

R. C. Caponetto, L. Fortuna, G. Manganaro, and M. G. Xibilia, “Chaotic
system identification via genetic algorithm,” in /st IEE/IEEE Int. Conf.
GA's in Engineering Systems: Innovations and Applications, Sheffield,
UK., 1995, pp. 170-174.

E. J. Chang and R. P. Lippmann, “Using genetic algorithms to improve
pattern classification performance,” Advances in Neural Information
Processing 3, pp. 797-803, 1991.

A. J. Chipperfield and P. J. Fleming, “Parallel genetic algorithms: A
survey,” Univ. Sheffield, ACSE Res. Rep. 518, May 1994.

A. J. Chipperfield, P. J. Fleming, and H. Pohlheim, “A genetic algo-
rithm toolbox for MATLAB,” in Proc. Int. Conf. Systems Engineering,
Coventry, UK., Sept. 6-8, 1994,

L. O. Chua, “The genesis of Chua’s circuit,” Int. J. Electron., Commu-
nicat., vol. 46, no. 4, 1992.

L. O. Chua, K. Eckert, Lj. Kocarev, and M. Itoh, “Experimental chaos
synchronization in Chua’s circuit,” Int. J. Bifurcation, Chaos, vol. 2, no.
3, pp. 705-708, 1993.

H. G. Cobb, “An investigation into the use of hypermutation as
an adaptive operator in genetic algorithms having continuous, time-
dependent nonstationary environments,” NRL Memo. Rep. 6760, 1990.
H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in Proc. 5th Int. Conf. Genetic Algorithms,
1993, pp. 523-530.

J. P. Cohoon, W. N. Martin, and D. S. Richards, “A multi-population
genetic algorithm for solving the k-partition problem on hyper-cubes,”
in Proc. 4th Int. Conf. Genetic Algorithms, 1991, pp. 244-248.

N. V. Dakev and A. J. Chipperfield, “Hoo design of an EMS control
system for a magle vehicle using evolutionary algorithms,” in Ist
IEE/IEEE Int. Conf. GA’s in Engineering Systems: Innovations and
Applications, Sheffield, UK., 1995, pp. 141-145.

D. Dasgupta and D. R. McGregor, “A structured genetic algorithm: The
model and first results,” Univ. Strathclyde, UK., Res. Rep. IKBS-2-91,
Sept. 1991.

. “Nonstationary function optimization using the structured ge-
netic algorithm,” Parallel Problem Solving from Nature, 2. Amster-
dam: North Holland, 1992, pp. 145-154.

Y. Davidor, “A genetic algorithm applied to robot trajectory genera-
tion,” in Handbook of Genetic Algorithms, L. Davis, Ed. 1991, pp.
144-165.

R. Davies and T. Clarke, “Parallel implementation of a genetic algo-
rithm,” Contr. Eng. Practice, vol. 3, no. 1, pp. 11-19, 1995.

L. Davis, “Job shop scheduling with genetic algorithms,” in Proc.
Ist Int. Conf. Genetic Algorithms, J. J. Grefenstette, Ed., 1985, pp.
136-140.

L. Davis and S. Coombs, “Genetic algorithms and communication link
speed design: Theoretical considerations,” in Proc. 2nd Conf. Genetic
Algorithms, 1. J. Grefenstette, Ed., 1987, pp. 252-256.

L. Davis, “Adapting operator probabilities in genetic algorithms,” in 3rd
Int. Conf. Genetic Algorithms, 1989, pp. 61-69.

, Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold, 1991.

K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,”
Tech. Rep. IlliGal 91009, Illigal, Dec. 1991.

K. DeJong, “The analysis and behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975.

K. A. DeJong and W. M. Spears, “An analysis of the interacting
roles of population size and crossover in genetic algorithms,” in Proc.
First Workshop Parallel Problem Solving from Nature. Berlin: Springer
Verlag, 1990, pp. 38-47.

N. Dodd, D. Macfarlane, and C. Marland, “Optimization of artificial
neural network structure using genetic techniques implemented on
multiple transputers,” in Transputing ’91, vol. 2. Amsterdam: I0S
Press, 1991, pp. 687-700.

E. H. Durfee, “A cooperative approach to planning for real-time control”
in Proc. Workshop on Innovative Approaches to Planning, Scheduling,
and Control, Nov. 1990, pp. 277-283.

L. J. Eshelman, R. Caruna, and J. D. Schaffer, “Biases in the crossover
landscape,” in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 10-19.
H.-L. Fang, P. Ross, and D. Corne, “A promising genetic algorithm
approach to job-shop scheduling, rescheduling, & open-shop schedul-
ing problems,” in Proc. 5th Int. Conf. Genetic Algorithms, 1993, pp.
375-382.

T. C. Fogarty, “Rule-based optimization of combustion in multiple
burner furnaces and boiler plants,” Eng. Applicat. Artificial Intell., vol.
1, no. 3, pp. 203-209, 1988.

[42]

[43]

[44])

[45]

[46]

[47]
[48]
[49]
[50]

[51

[52)
(53]
[54]
[55}

[56]

[57]

[58]

[59]

[60]

[61]
(62]

[63]

[64]

[65]

[66]
[67]
[68]

(691

(701

C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjecitve
optimization: Formulation, discussion, and generalization,” in Genetic
Algorithms: Proc. Fifth Int. Conf., S. Forrest, Ed. San Mateo, CA:
Morgan Kaufmanon, 1993, pp. 416-423.

C. M. Fonseca, E. M. Mendes, P. J. Fleming, and S. A. Billings, ”"Non-
linear model term selection with genetic algorithms,” in Workshop on
Natural Algorithms in Signal Processing, Chelmsford, Essex, Nov. 1993,
pp. 27/1-27/8.

C. M. Fonseca and P. J. Fleming, “An overview of evol.utionary
Algorithms in multiobjective optimization,” Dept. of Automatic Control
and Systems Eng., University of Sheffield, UK., Res. Rep. 527, 1994.
, “Multiobjecitve genetic algorithms made easy: Selection, shar-
ing, and mating restriction,” in Ist IEE/IEEE Int. Conf. GA’s in Engi-
neering Systems: Innovations and Applications, Sheffield, U.X., 1995,
pp. 45-52. .

S. Forrest and G. Mayer-Kress, “Genetic algorithms, nonlinear dynam-
ical systems, and models of international security,” in Handbook of
Genetic Algorithms, L. Davis, Ed. New York: Van Nostrand Reinhold,
1991, pp. 166-185.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman 1979.
S. J. Goh, D. W. Gu, and K. F. Man, “Multi-layer genetic algorithms
in robust control system design,” Control *96, UK., Sept. 1996.

D. E. Goldberg, “Alleles, locis, and the TSP,” in Proc. Ist Int. Conf.
Genetic Algorithms, 1985, pp. 154-159.

, “Simple genetic algorithms and the minimal deceptive problem,”
in Genetic Algorithms and Stimulated Annealing, L. Davis, Ed. New
York: Pitman, 1987, pp. 74-88.

D. E. Goldberg and R. E. Smith, “Nonstationary function optimization
using genetic dominance and diploidy,” in Proc. 2nd Int. Conf. Genetic
Algorithms, 1987, pp. 59-68.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

., “Messy genetic algorithms: Motivation, analysis, and first re-
sults,” Complex Systems, vol. 3, pp. 495-530, 1989.

_ ., “Real-coded genetic algorithms, virtual alphabets, and block,”
Univ. Illinois, Tech. Rep. 90001, Sept. 1990.

D. E. Goldberg, K. Deb, and B. Korb, “Do not worry, be messy,” in
Proc. 4th Int. Conf. Genetic Algorithms, 1991.

V. Gordon and D. Whitley, “Serial and parallel genetic algorithms as
function optimizer,” in Proc. 5th Int. Conf. Genetic Algorithms, 1993,
pp. 177-183.

M. Gorges-Schleuter, “ASPARAGOS an asynchronous parallel genetic
optimization strategy,” in Proc. 3rd Int. Conf. Genetic Algorithms, 1989,
pp. 422-427.

S. F. Graebe, “Robust and adaptive control of an unknown plant: A
beachmark of new format,” in JFAC World Congr. Proc., 1993, vol. 3,
pp. 165-168.

J. J. Grefenstette, “Optimization of control parameters for genetic algo-
rithms,” IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 122-128,
Jan./Feb. 1986.

I. J. Grefenstette and J. Baker, “How genetic algorithms work: A critical
look at implicit parallelism,” in Proc. 3rd Int. Conf. Genetic Algorithm,
1989.

J. J. Grefenstette, A User’s Guide to GENESIS v5.0, Naval Res. Lab.,
Washington, D.C., 1990.

, “Genetic algorithms for changing environments,” Parallel Prob-
lem Solving from Nature, 2. Amsterdam: North Holland, 1992, pp.
137-144.

, “Deception considered harmful,” in Foundations of Genetic
Algorithms, 2, L. D. Whitley, Ed. San Mateo, CA: Morgan Kaufmann,
1993, pp. 75-91.

B. S. Heck, S. V. Yallapragada, and M. K. H. Fan, “Numerical methods
to design the reaching phase of output feedback variable structure
control,” Automatica, 1993.

J. Heitkoetter and D. Beasley, Eds. (1994). The Hitch-Hiker’s Guide to
Evolutionary Computation: A list of Frequently Asked Questions (FAQ).
[Online]. Available: USENET:comp.ai.genetic.

J. H. Holland, Adaption in Natural and Artificial Systems.
MA: MIT Press, 1975.

R. B. Hollstien, “Artificial genetic adaptation in computer control
systems,” Ph.D. dissertation, University of Michigan, Ann Arbor, 1971.
A. Homaifar and E. McCormick, “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms,”
IEEE Trans. Fuzzy Syst., vol. 3, pp. 129-139, May 1995.

J. Horn and N. Nafpliotis, “Multiobjective optimization using the niched
Pareto genetic algorithm,” Univ. Illinois at Urbana-Champaign, Urbana,
IL, IliGAL Rep. 93005.

W. Jakob, M. Gorges-Schleuter, and C. Blume, “Application of genetic
algorithms to task planning and learning,” Parallel Problem Solving
from Nature, 2, pp. 291-300, 1992.

Cambridge,

MAN ez al.: GENETIC ALGORITHMS: CONCEPTS AND APPLICATIONS

(711

[72]

(731
[74]

[75]

[76]

[77]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

(861

[87
[88]

(89]
[90]
o1

[92]
(93]

[94]
[95]

196]

C. Z. Janikow and Z. Michalewicz, “An experimental comparison of
binary and floating point representations in genetic algorithms,” in Proc.
4th Int. Conf. Genetic Algorithms, July 1991, pp. 31-36.

A. H. Jones and P. B. De Moura Oliveira, "Genetic auto-tuning of PID
controllers,” in Ist IEE/IEEE Int. Conf. GA’s in Engineering Systems:
Innovations and Applications, Sheffield, UK., 1995, pp. 141-145.

C. L. Karr, “Genetic algorithms for fuzzy controllers,” Al Expert, vol.
6, no. 2, pp. 26-33, 1991.

C. L. Karr and E. J. Gentry, “Fuzzy control of pH using genetic
algorithms,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 46-53, 1993.

A. J. Katz and P. R. Thrift, “Generating image filters for target
recognition by genetic learning,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 16, pp. 906-910, Sept. 1994.

Lj. Kocarev, K. S. Halle, K. Eckert, U. Parlitz, and L. O. Chua,
“Experimental demonstration of secure communications via chaos syn-
chronization,” Int. J. Bifurcation, Chaos, vol. 2, no. 3, pp. 709-713,
1992.

J. Koza, “Bvolution and co-evolution of computer programs to control
independently-acting agents,” in Animals to Animals, J. A. Ineger and
S. W. Willson, Eds. Cambridge, MA: MIT Press/Bradford Books,
1991.

B. Kroger, P. Schwenderling, and O. Vornberger, “Parallel genetic
packing on transputers,” in Parallel Genetic Algorithms: Theory and
Applications. Amsterdam: TOS Press, 1993, pp. 151-185.

S. Kwong, A. C. L. Ng, and K. F. Man, “Improving local search in
genetic algorithms for numerical global optimization using modified
GRID-point search technique,” in /st IEE/IEEE Int. Conf. on GA’s
in Engineering Systems: Innovations and Applications, Sheffield, U.K.,
1995, pp. 419-423.

W. B. Langdon. (1995). Scheduling
nance of the (U.K.) National Grid.
cs.ucl.ac.uk:/genetic/papers/grid_aisb-95.ps.

G. Mackle, D. A. Savic, and G. A. Walters, “Application of genetic
algorithms to pump scheduling for water supply,” in /st [EE/IEEE Int.
Conf. on GA’s in Engineering Systems: Innovations and Applications,
Sheffield, U.K,, 1995, pp. 400-405.

S. W. Mahfoud, “Crowding and preselection revisited,” Dept. Comput.
Sci., Univ. Illinois at Urbana-Champaign, IIiGAL Rep. 92004, Apr.
1992.

Planned Mainte-
[Online]. Available:

, “Population sizing for sharing methods,” Dept. Comput. Sci.,
Univ. [llinois at Urbana-Champaign, IIIGAL Rep. 94005, Aug. 1994.

K. L. Mak and Y. S. Wong, “Design of integrated production-inventory-
distribution systems using genetic algorithm,” in /st IEE/IEEE Int.
Conf. on GA’s in Engineering Systems: Innovations and Applications,
Sheffield, U.K., 1995, pp. 454-460.

B. Manderick and P. Spiessens, “Fine-grained parallel genetic algo-
rithms,” in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 428-433.
V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,” IEEE Trans. Neural Networks, vol. 5, pp. 39-33,
Jan. 1994.

MATLAB User’s Guide. The MathWorks, 1991.

D. McFarlane and K. Glover, “Robust controller design using nor-
malized coprime factor plant descriptions,” in Information and Control
Sciences. Berlin: Springer-Verlag, 1990.

7. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Program, 2nd Ed. Berlin: Springer-Verlag, 1994.

N. H. Moin, A. S. L. Zinober, and P. J. Harley, “Sliding mode control
design using genetic algorithms,” in /st IEE/IEEE Int. Conf. GA’s in
Engineering Systems: Innovations and Applications, Sheffield, UK.,
1995, pp. 238-244.

H. Miihlenbein, “Parallel genetic algorithms, population genetics,
and combinatorial optimization,” in Parallelism, Learning, Evolution.
Berlin: Springer-Verlag, 1989, pp. 398-406.

R. Nakano, “Conventional genetic algorithms for job-shop problems,”
in Proc. 4th Int. Conf. Genetic Algorithms, 1991, pp. 474-479.

R. Nambiar and P. Mars, “Adaptive IIR filtering using natural al-
gorithms,” in Workshop on Natural Algorithms in Signal Processing,
Chelmsford, Essex, Nov. 1993, pp. 20/1-20/10.

S. Obayashi, “Genetic algorithm for aerodynamic inverse optimization
problems,” in Ist IEE/IEEE Int. Conf. GA’s in Engineering Systems:
Innovations and Applications, Sheffield, U.K,, 1995, pp. 7-12.

D. Park, A. Kandel, and G. Langholz, “Genetic-based new fuzzy
reasoning models with application to fuzzy control,” /EEE Trans. Syst.,
Man, Cybern., vol. 24, pp. 3947, 1994.

G. Roth and M. D. Levine, “Geometric primitive extraction using a
genetic algorithm,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16,
pp. 901-905, Sept. 1994.

J. D. Schaffer, D. Whitley, and L. J. Eshelman, “Combinations of genetic
algorithms and neural networks: A survey of the state of the art,” in Proc.
COGANN-92 Int. Workshops on Combination of Genetic Algorithms and
Neural Networks, Baltimore, MD, June 6, 1992.

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]
[106]

[107]

[108]

[109]

[110]

[111]
[112]
[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

533

V. Schnecke and O. Vornberger, “Genetic design of VLSI-layouts,” in
Ist IEE/IEEE Int. Conf. GA’s in Engineering Systems: Innovations and
Applications, Sheffield, U.K., 1995, pp. 430-435.

K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline
of computer science and engineering,” in Proc. IEEE, vol. 82, no. 1,
Jan. 1994.

J. J. Shynk, “Adaptive IIR filtering,” JEEE ASSP Mag., pp. 4-21, Apr.
1989.

W. M. Spears and K. DeJong, “An analysis of multi-point crossover,”
in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. 1991, pp.
301-315.

M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” Com-
puter, pp. 17-26, June 1994.

K. Suzuki and Y. Kakazu, “An approach to the analysis of the basins of
the associative memory model using genetic algorithms,” in Proc. 4th
Int. Conf. Genetic Algorithms, 1991, pp. 539-546.

G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc. 3rd
Int. Conf. Genetic Algorithms, 1989, pp. 2-9.

_____., “Schedule optimization using genetic algorithms,” in Handbook
of Genetic Algorithms, pp. 332-349, 1991.

H. Tamaki and Y. Nichikawa, “A paralleled genetic algorithm based
on a neighborhood model and its application to job shop scheduling,”
Parallel Problem Solving from Nature, 2, pp. 573582, 1992.

K. S. Tang, K. F. Man, and C. Y. Chan, “Fuzzy control of water pressure
using genetic algorithm,” in Proc. IFAC Workshop on Safety, Reliability,
and Applications of Emerging Intelligent Control Technologies, Hong
Kong, Dec. 1994, pp. 15-20.

K. S. Tang, K. F. Man, and S. Kwong, “GA approach to time-variant
delay estimation,” in Int. Conf. Control, Information, Hong Kong, June
5-9, 1995.

K. S. Tang, C. Y. Chan, K. F. Man, and S. Kwong, “Genetic structure
for nn topology and weights optimization,” in /st IEE/IEEE Int. Conf.
GA’s in Engineering Systems: Innovations and Applications, Sheffield,
UK., 1995, pp. 250-255.

K. S. Tang, K. F. Man, and D. W. Gu, “Structured genetic algorithm
for robust Hoo control system design,” JEEE Trans. Ind. Electron., this
issue, pp. 575-582.

Y. C. Tang, Tolkien Reference Manual, Dept. Comput. Sci., Chinese
Univ. Hong Kong, 1994,

R. Tanse, “Distributed genetic algorithms,” in Proc. 3rd. Int. Conf.
Genetic Algorithms, 1989, pp. 434-439.

B. Thomas, Users Guide for GENEsYs, System Analysis Research
Group, Dept. Comput. Sci., Univ. Dortmund, 1992.

P. W. M. Tsang, “A genetic algorithm for affine invariant object shape
recognition,” in /st IEE/IEEE Int. Conf. GA’s in Engineering Systems:
Innovations and Applications, Sheffield, UK., 1995, pp. 293-2938.

P. Wang and D. P. Kowk, “Optimal design of pid process controllers
based on genetic algorithms,” Contr. Eng. Practice, vol. 2, no. 4, pp.
641-648, 1994.

M. S. White and S. J. Flockton, “A comparative study of natural algo-
rithms for adaptive IIR filtering,” in Workshop on Natural Algorithms in
Signal Processing, Chelmsford, Essex, Nov. 1993, pp. 22/1-22/8.

D. Whitley, “The GENITOR algorithm and selection pressure: why
rank-based allocation of reproductive trials is best,” in Proc. 3rd Int.
Conf. Genetic Algorithms, J. D. Schaffer, Ed., 1989, pp. 116-121.

, “A genetic algorithm tutorial,” Dept. Comput. Sci, Colorado
State Univ., Tech. Rep. CS-93-103, Nov. 1993.

B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural networks:
Applications in industry, business, and science,” Communicat. ACM,
vol. 37, no. 3, pp. 93105, Mar. 1994.

D. Wienke, C. Lucasius, and G. Kateman, “Multicriteria target vector
optimization of analytical procedures using a genetic algorithm. Part
I. Theory, numerical simulations, and application to atomic emission
spectroscopy,” Analytica Chimica Acta, vol. 265, no. 2, pp. 211-225,
1992.

P. B. Wilson and M. D. Macleod, “Low implementation cost IR
digital filter design using genetic algorithms,” in Workshop on Natural
Algorithms in Signal Processing, Chelmsford, Essex, Nov. 1993, pp.
4/1-4/8.

A. H. Wright, “Genetic algorithms for real parameter optimization,”
Foundations of Genetic Algorithms, J. E. Rawlins, Ed. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 205-218.

T. Yamada and R. Nakano, “A genetic algorithm applicable to large-
scale job-shop problems,” Parallel Problem Solving From Nature, 2, pp.
281-290, 1992.

. Man (M’91), for a photograph and biography, see this issue, p. 518.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 43, NO. 5, OCTOBER 1996

K. S. Tang received the B.Eng. degree (Hons.)
in electrical and electronics engineering from the
University of Hong Kong in 1988 and the M.Sc.
degree from City University of Hong Kong in 1992.
He is currently working toward the Ph.D. degree
in the Department of Electronic Engineering, City
University of Hong Kong. His research interests
inciude genetic algorithms, active noise control,
chaotic and nonlinear system control.

S. Kwong (M’93) received the M.A.Sc. degree
in electrical engineering from the University of
Waterloo, Canada, in 1985.

He joined Control Data Canada as a diagnostic
engineer and participated in the design and de-
velopment of diagnostic software for the Cyber
mainframe computer series. In 1987, he joined Bell
Northern Research as a Member of Scientific Staff
responsible for the development of the telecommu-
nication systems in both voice and data network. In
1989, he joined City University of Hong Kong as a
Lecturer in the Department of Electronic Engineering and later on moved to
the Department of Computer Science. He is involved actively in both academic
and industrial projects and publishes widely in the areas of speech processing,
computer system, pattern recognition, and Chinese computing.

