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Adaptive Fuzzy Systems for Backing 
up a Truck-and-Trailer 
Seong-Gon Kong and Bart Kosko, Member, IEEE 

Absfrucf- This paper develops fuzzy control systems and 
neural-network control systems for backing up a simulated 
truck, and truck-and-trailer, to a loading dock in a parking lot. 
The supervised back-propagation learning algorithm trained the 
neural network systems. We tested the robustness of the neural 
systems by removing random subsets of training data in learning 
sequences. The neural systems performed well but required 
extensive computation for training. The fuzzy systems performed 
well until we removed over 50% of their fuzzy-associative- 
memory (FAM) rules. They also performed well when we replaced 
the key FAM equilibration rule with destructive, or “sabotage,” 
rules. Unsupervised differential competitive learning (DCL) and 
product-space clustering adaptively generated FAM rules from 
training data. The original fuzzy control systems and neural 
control systems generated trajectory data. The DCL system 
rapidly recovered the underlying FAM rules. Product-space 
clustering converted the neural truck systems into structured sets 
of FAM rules that approximated the neural system’s behavior. 

I. FUZZY AND NEURAL CONTROL SYSTEMS 

E construct fuzzy and neural control systems directly W from control data, but from different types of control 
data. Fuzzy systems use a small number of structured linguistic 
input-output samples from an expert or from some other 
adaptive estimator. Neural systems use a large number of 
numeric input-output samples from the control process or 
from some other data base. Adaptive fuzzy systems also use 
numeric control data. Fig. 1. illustrates this difference. The 
neural system estimates function f : X + Y from several 
numerical point samples (xi, yi). The fuzzy system estimates 
f from a few fuzzy set samples or fuzzy associations (L4i. Bi). 

Fuzzy and neural systems offer a key advantage over 
traditional control approaches. They offer model-free estima- 
tion of the control system. The user need not specify how 
the controller’s output mathematically depends on its input. 
Instead, the user provides a few common-sense associations 
of how the control variables behave. Or the user provides a 
statistically representative set of numerical training samples. 
Even if a math-model controller is available, fuzzy or neural 
controllers may prove more robust and easier to modify. 
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Fig. 1. Geometry of neural and fuzzy function estimation. The neural 
approach (a) uses several numerical point samples. The fuzzy approach 
(b)  uses a few fuzzy set samples. 

The type of system, fuzzy or neural, that performs bet- 
ter for a particular control problem depends on the type 
and availability of sample data. If experts provide structured 
knowledge of the control process or if sufficient numerical 
training samples are unavailable, the fuzzy approach may be 
preferable. We can construct a fuzzy control system with 
comparative ease when experts or fuzzy engineers provide 
accurate structured knowledge. A fuzzy control system seems 
a reasonable benchmark in such cases, even if we can develop 
a neural controller or math-model controller. 

If we have representative numerical data but not structured 
expertise, the neural approach may be perferable. Or a sta- 
tistical regression approach may be more appropriate. The 
data simply tell their own story-if there is a story to tell. 
Yet even here we can use a hybrid fuzzy-neural system, an 
adaptive fuzzy system. We can use the numerical data to 
generate fuzzy associative memory (FAM) rules. Each FAM 
rule defines a patch in the input-output state space, and the 
fuzzy system approximates the unknown function by covering 
its graph with FAM-rule patches [4]. The FAM rules can then 
form the skeleton of a fuzzy control architecture. In short, 
if structured knowledge is unavailable, estimate it. This may 
be more practical than it would appear because of the small 
number of control FAM rules needed to reliably control many 
real-world processes. 

How can we compare fuzzy and neural controllers? Abstract 
comparison proves difficult because both approaches build a 
control black box in different ways. That they build black 
boxes distinguishes them from math-model controllers. It also 
suggests we can compare them, at least approximately, by their 
black-box control performance. 

Each control system generates an output control surface as 
it  ranges over the common input space of parameter values. 
Fig. 5 below shows three-dimensional control surfaces for 
the fuzzy and neural controllers. For control systems with 
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TABLE I 
Fuzzy SET VALUES OF THE FUZZY VARIABLES 4, x, AND 0 

~~ 

RB Right below LE Left NE Negative Big 
RU Right Upper LC Left Center NM Negative Medium 
RV Right Vertical CE Center NS Negative Small 
VE Vertical RC Right Center ZE Zero 
LV Left Vertical RI Right PS Positive Small 
LU Left Upper PM Positive Medium 
LE Left Below PE Positive Big 

few input parameters with moderately quantized ranges, we 
can store both fuzzy and neural controllers-or rather their 
quantized control surfaces-as decision lookup tables. Then 
once we specify a system performance criterion, we can in 
principle quantitatively compare the controllers. 

Comparing system trajectories proved more complicated. In 
the case at hand, we wanted to back up a truck and a truck- 
and-trailer to a loading dock. We can measure and compare 
the quality and quantity of the truck trajectory, perhaps with 
mean-squared error criteria. Intuitively, we preferred smooth, 
short trajectories to jagged, long trajectories. Reaching the 
loading-dock goal was also important. In practive it is the 
most important performance requirement. We must balance 
the trajectory type with the trajectory destination, and this 
reduces to the pragmatic issue of balancing means and ends. 

Below we develop a simple fuzzy control system and a 
simple neural control system for backing up a truck and a 
truck-and-trailer in an open parking lot. The recent neural 
network truck backer-upper simulation of Nguyen and Widrow 
[7] motivated our choice of control problem. 

The fuzzy control system compared favorably with the 
neural controller in terms of black-box development effort, 
black-box computational load, smoothness of truck trajecto- 
ries, and robustness. 

We studied robustness of the fuzzy control systems 
in two ways. We deliberately added confusing FAM 
rules-"sabotage" rules-to the system, and we randomly 
removed different subsets of FAM rules. We studied robustness 
of the neural controller by randomly removing different 
portions of the training data in learning sequences. We also 
converted the neural control systems to structured FAM-bank 
systems. 

11. TRUCK BACKER-UPPER CONTROL SYSTEMS 

A.  Backing up a Truck 

Fig. 2 shows the geometry of the simulated truck and 
loading dock. The truck corresponds to the cab part of the 
truck-trailer in the Nguyen-Widrow neural truck backer- 
upper. The three state variables 4, x, and y determine the 
truck position with 4 specifying the angle of the truck with 
the horizontal. The coordinate pair (5 ,  y) specifies the position 
of the rear center of the truck. 

We wanted the truck to arrive at the loading dock at a right 
angle (q5f = 90') and to align the position ( 5 , ~ )  of the truck 
with the desired loading dock (zf, yf). We considered only 

loading dock (xr , yj) 
I 

rcar 

front 

Fig. 2. Diagram of simulated truck and loading dock. 

backing up. The truck moved backward a fixed distance at 
every stage until the truck hits the border of the loading zone. 
The loading zone corresponded to the plane [0,100] x [0,100], 
and (x f ,  y f )  equaled (50,100). 

At every stage the fuzzy and neural controllers should 
produce the steering angle, 6, that backs up the truck to the 
loading dock from any initial position and from any angle in 
the loading zone. 

B. Fuzzy Truck Backer-Upper System 

We first specified the control as a function of the state. The 
state variables were the truck angle, 4, and the truck x-position 
coordinate, x. The control variable was the steering-angle 
signal, 6. We assumed enough clearance between the truck 
and the loading dock so we could ignore the truck y-position 
coordinate, y. The coordinate 2 ranges from 0 to 100, 4 ranges 
from -90 to 270, and 6 ranges from -30 to 30. Positive values 
of 6 represented clockwise rotations of the steering wheel, and 
negative values represented counterclockwise rotations. We 
discretized all values to reduce computation. The resolution 
of 4 and 6 was 1' each. The resolution of x was 0.1. 

Next we specified the fuzzy-set values of the state and 
control fuzzy variables. The fuzzy sets represented numerical 
values for linguistic terms, the sort of linguistic terms an 
expert might use to describe the control system. We chose 
the fuzzy-set values of the fuzzy variables as in Table I. 

Fuzzy subsets contain elements with degrees of member- 
ship. A fuzzy membership function r n ~  : 2 -+ [0,1] assigns 
a real number between 0 and 1 to every element z in the 
universe of discourse 2. This number rnp(z)  indicates the 
degree to which the object or data z belongs to the fuzzy set 
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Fig. 3 .  Fuzzy membership functions for each linguistic fuzzy-set value. To 
allow finer control, the fuzzy sets that correspond to near the loading dock 
are narrower than the fuzzy sets that correspond to far from the loading dock. 

F .  Equivalently, ~ F ( z )  defines the fit (fuzzy unit) value [3] 
of element z in F .  

Fuzzy membership functions can have different shapes, de- 
pending on the designer’s preference or experience. In practice 
fuzzy engineers have found that triangular and trapezoidal 
shapes simplify computation and help capture the modeler’s 
sense of fuzzy numbers. Fig. 3 shows membership-function 
graphs of the fuzzy subsets above. In the third graph, for 
example, H = 20’ is positive medium to degree 0.5, but 
positive big only to degree 0.3. 

In Fig. 3 the fuzzy sets GE, VE,  and Z E  are narrower 
than the other fuzzy sets. These narrow fuzzy sets permit fine 
control near the loading dock. We used wider fuzzy sets to 
describe the endpoints of the range of the fuzzy variables 4, 
z, and 8. The wider fuzzy sets permitted rough control far 
from the loading dock. 

Next we specified the fuzzy “rule base,” or bank of FAM 
rules. Fuzzy associations or “rules” ( A ,  B )  associate output 
fuzzy sets B of control values with input fuzzy sets A of 
input-variable values. We can write fuzzy associations as 
antecedent-consequent pairs or IF-THEN statements. 

In the truck backer-upper case, the FAM bank contained 
the 35 FAM rules in Fig. 4. For example, FAM rule 1 
(LE .  RB: P S )  corresponds to the following association: 

I F . 7 : = L E  AND $ =  RB, THEN 0 = P S  

FAM rule 18 indicates that if the truck is near the equilibrium 
position, then the controller should not produce a positive or 
negative steering-angle signal. The FAM rules in the FAM- 
bank matrix reflect the symmetry of the controlled system. 

For the initial condition x = 50 and 4 = 270, the fuzzy 
truck did not perform well. The symmetry of the FAM rules 
and the fuzzy sets canceled the fuzzy controller output in 
a rare saddle point. For this initial condition, the neural 
controller (and truck-and-trailer below) also performed poorly. 
Any perturbation breaks the symmetry. For example, the rule 
(if z = 50 and 4 = 270, then 0 = 5) corrected the problem. 

The threerdimensional control surfaces in Fig. 5 show 
steering-angle signal outputs 0 that correspond to all 

Fig. 4. FAM-bank matrix for the fuzzy truck backer-upper controller. 

FAM rule 2 (LC, RB; PM) 

\ 

n 

Fig. 5. (a) Control surface of the fuzzy controller. Fuzzy-set values deter- 
mined the input and output combination corresponding to FAM rule 2 ( IF  
s = LC AND d = RB, THEN B = P-11). (b) Corresponding control surface 
of the neural controller for constant value y = 20. 

combinations of values of the two input state variables q!~ and 
z. The control surface defines the fuzzy controller. In this 
simulation the correlation-minimum FAM inference procedure, 
discussed in [4], determined the fuzzy control surface. If the 
control surface changes with sampled variable values, the 
system behaves as an adaptive fuzzy controller. Below we 
demonstrate unsupervised adaptive control of the truck and 
the truck-and-trailer systems. 

Finally, we determined the output action given the in- 
put conditions. We used the correlation-minimum inference 
method illustrated in Fig. 6. Each FAM rule produced the 
output fuzzy set clipped at the degree of membership deter- 
mined by the input conditions and the FAM rule. Alternatively, 
correlation-product inference [4] would combine FAM rules 
multiplicatively. Each FAM rule emitted a fit-weighted output 
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Fig. 6. Correlation-minimum inference with centroid defuzzification method. 
Then FAM-rule antecedents combined with AND use the minimum fit value to 
activate consequents. Those combined with OR would use the maximum fit 
value. 

fuzzy set, O,, at each iteration. The total output, 0, added 
these weighted outputs: 

0 = 0, 
2 

L 

where f ,  denotes the antecedent fit value, and S, represents the 
consequent fuzzy set of steering-angle values in the i th  FAM 
rule. Earlier fuzzy systems combined the output sets, O,, with 
pairwise maxima. But this tends to produce a uniform output 
set 0 as the number of FAM rules increases. Adding the output 
sets 0, invokes the fuzzy version of the central limit theorem. 
This tends to produce a symmetric, unimodal output fuzzy set 
0 of steering-angle values. 

Fuzzy systems map fuzzy sets to fuzzy sets. The fuzzy 
control system’s output defines the fuzzy set 0 of steering- 
angle values at each iteration. We must “defuzzify” the fuzzy 
set 0 to produce a numerical (point-estimate) steering-angle 
output value 8. 

As discussed in [4], the simplest defuzzification scheme 
selects the value corresponding to the maximum fit value in the 
fuzzy set. This mode-selection approach ignores most of the 
information in the output fuzzy set and requires an additional 
decision algorithm when multiple modes occur. 

Centroid defuzzification provides a more effective proce- 
dure. This method uses the fuzzy centroid, e, as output: 

(3) 

j=1 

where 0 defines a fuzzy subset of the steering-angle 
universe of discourse 0 = (01, . . .  , O p } .  The central- 
limit-theorem effect produced by adding output fuzzy set 
0i benefits both max-mode and centroid defuzzification. 
Fig. 6 shows the correlation-minimum inference and centroid 
defuzzification applied to FAM rules 13 and 18. We used 
centroid defuzzification in all simulations. 

Fig. 7. Sample truck trajectories of the fuzzy controller for initial positions 
(.r%y,d): (a) (20,20,30), (b)  (30,10,220), and (c) (30,40,-10). 

With 35 FAM rules, the fuzzy truck controller produced 
successful truck backing-up trajectories starting from any 
initial position. Fig. 7 shows typical examples of the fuzzy- 
controlled truck trajectories from different initial positions. 
The fuzzy control system did not use (“fire”) all FAM rules 
at each iteration. Equivalently most output consequent sets are 
empty. In most cases the system used only one or two FAM 
rules at each iteration. The system used at most four FAM 
rules at once. 

C.  Neural Truck Backer-Upper System 

The neural truck backer-upper of Nguyen and Widrow 
[7] consisted of multilayer feedforward neural networks 
trained with the back-propagation gradient-descent (stochastic- 
approximation) algorithm. The neural control system consisted 
of two neural networks: the controller network and the 
truck emulator network. The controller network produced an 
appropriate steering-angle signal output given any parking- 
lot coordinates (x, y) and the angle $. The emulator network 
computed the next position of the truck. The emulator network 
took as input the previous truck position and the current 
steering-angle output computed by the controller network. 

We did not train the emulator network since we could not 
obtain “universal” synaptic connection weights for the truck 
emulator network. The back-propagation learning algorithm 
did not converge for some sets of training samples. The num- 
ber of training samples for the emulator network might exceed 
3000. For example, the combinations of training samples of 
a given angle $, x position, y position, and steering angle 
signal 0 might correspond to 3150 (18 x 5 x 5 x 7) samples, 
depending on the division of the input-output product space. 
Moreover, the training samples were numerically similar since 
the neuronal signals assumed scaled values in [0, I] or [-1,1]. 
For example, we treated close values, such as 0.40 and 0.41, 
as distinct sample values. 

Simple kinematic equations replaced the truck emulator 
network. If the truck moved backward from (5, y) to (x’, y’) 
at an iteration, then 

x/ = x + rcos($’) 
y’ = y + rsin($’) 
$/ = $ + 0. 

(4) 
(5) 
(6) 

Here T denotes the fixed driving distance of the truck for all 
backing movements. We used (4)-(6) instead of the emulator 
network. This did not affect the posttraining performance of 
the neural truck backer-upper since the truck emulator network 
back-propagated only errors. 
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Fig. 8. Topology of our neural control system 

(a) (b) (c)  

Fig. 9. Sample truck trajectories of the neural controller for initial positions 
(s. y. 0): (a) (20,20,30), (b)  (30,10,220), and (c) (30, 40, -10). 

We trained only the controller network with back- 
propatation. The controller network used 24 “hidden” neurons 
with logistic sigmoid functions. In the training of the truck 
controller, we estimated the ideal steering-angle signal at 
each stage before we trained the controller network. In the 
simulation, we used the arc-shaped truck trajectory produced 
by the fuzzy controller as the ideal trajectory. The fuzzy 
controller generated each training sample ( 5 ,  y, $, 6’) at each 
iteration of the backing-up process. We used 35 training 
sample vectors needed more than 100 000 iterations to train 
the controller network. 

Fig. 5(b) shows the resulting neural control surface for 
y = 20. The neural control surface shows less structure 
than the corresponding fuzzy control surface. This reflects the 
unstructured nature of black-box supervised learning. Fig. 8 
shows the network connection topology for our neural truck 
backer-upper control system. 

Fig. 9 shows typical examples of the neural-controlled truck 
trajectories from several initial positions. Even though we 
trained the neural network to follow the smooth arc-shaped 
path, some learned truck trajectories were nonoptimal. 

D. Comparison of Fuzzy and Neural Systems 

As shown in Figs. 7 and 9, the fuzzy controller always 
smoothly backed up the truck but the neural controller did not. 
The neural-controlled truck sometimes followed an irregular 
path. 

Training the neural control system was time-consuming. The 
back-propagation algorithm required thousands of back-ups 
to train the controller network. In some cases, the learning 
algorithm did not converge. 

We “trained” the fuzzy controller by encoding our own 
common-sense FAM rules. Once we develop the FAM-rule 
bank, we can compute control outputs from the resulting FAM- 

1 1  J 

(a) (b) 

Fig. 10 The fuzzy truck trajectory after we replaced the key steady-state 
FAM rule 18 by the two worst rules: (a) IF r = C E  AND 0 = \.E, THEN 
0 = P B ,  and (b)  IF .c = C‘E AND 0 = \.E, THEN fl = .yf?. 

I I 

(a) (b) 

Fig. 11. Fuzzy truck trajectory when (a) no FAM rules are removed and 
(b )  FAM rules 7, 13, 18, and 23 are removed. 

bank matrix or control surface. The fuzzy controller did not 
need a truck emulator and did not require a math model of 
how outputs depended on inputs. 

The fuzzy controller was computationally lighter than the 
neural controller. Most computation operations in the neural 
controller involved the multiplication, addition, or logarithm of 
two real numbers. In the fuzzy controller, most computational 
operations involved comparing and adding two real numbers. 

E. Sensitivity Analysis 

We studied the sensitivity of the fuzzy controller in two 
ways. We replaced the FAM rules with destructive, or “sab- 
otage,” FAM rules, and we randomly removed FAM rules. 
We deliberately chose sabotage FAM rules to confound the 
system. Fig. 10 shows the trajectory when two sabotage FAM 
rules replaced the important steady-state FAM rule-FAM 
rule 18: the fuzzy controller should produce zero output when 
the truck is nearly in the correct parking position. Fig. 11 
shows the truck trajectory after we removed four randomly 
chosen FAM rules (7, 13, 18, and 23). These perturbations did 
not significantly affect the fuzzy controller’s performance. 

We studied robustness of each controller by examining 
failure rates. For the fuzzy controller we removed fixed 
percentages of randomly selected FAM rules from the system. 
For the neural controller we removed training data. Fig, 12 
shows performance errors averaged over ten typical back-ups 
with missing FAM rules for the fuzzy controller and missing 
training data for the neural controller. The missing FAM rules 
and training data ranged from 0% to 100% of the total. In 
Fig. 12(a), the docking error equaled the Euclidean distance 
from the actual final position (q5,x, y) to the desired final 
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and (b )  trajectory error. 
Fig. 12. Comparison of the robustness of the controllers: (a) docking error 
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Fig. 13. Topology of the laterally inhibitive DCL network. 
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position (4f, : ~ f .  yf ) :  

docking error = d(qhf - qh)* + (xf - z)* + (yf - Y ) ~ .  

(7) 

In Fig. 12(b), the trajectory error equaled the ratio of the 
actual trajectory length of the truck divided by the straight 
line distance to the loading dock: 

trajectory error = 
o 3 i o i s r n n ~ o n  length of truck trajectory 

distance(initia1 position, desired final position) ' 
FAM rules 

( b) 

Fig. 14. (a) Input data distribution. (b )  Synaptic-vector histogram. Differ- 
ential competitive learning allocated synaptic quantization vectors to FAM 
cells. The steady-state FAM cell (CE, CrE; Z E )  contained the most synaptic 
vectors. 

111. ADAPTIVE FUZZY TRUCK BACKER-UPPER 
CONTROLLER SYSTEMS 

quantize the pattern space R". The p synaptic vectors mj 

define the p columns of the synaptic connection matrix M .  
M interconnects the n input or linear neurons in the input 
neuronal field, F x ,  to the p competing nonlinear neurons in 
the output field, Fy . 

Learning algorithms estimate the unknown probability den- 
sity funct.ion p ( z ) ,  which describes the distribution of patterns 
in R". More synaptic vectors arrive at more probable regions. 

A .  Stochastic Competitive Learning Algorithms 

Product-space clustering [4] is a form of stochastic adap- 
tive vector quantization. Adaptive vector quantization (AVQ) 
systems adaptively quantize pattern clusters in R". Stochastic 
competitive learning systems are neural AVQ systems. Neu- 
rons compete for the activation induced by randomly sampled 
patterns. The corresponding synaptic fan-in vectors adaptively 
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Fig. 15. (a) DCL-estimated FAM bank. (b)  Corresponding control surface. 
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Fig. 16. (a) FAM bank generated by the neural control surface. (b)  Control 
surface of the neural BP-AFAM system in (a). 

Where sample vectors 5 are dense or sparse, synaptic vectors 
mj should be dense or sparse. The local count of synaptic 
vectors then gives a nonparametric estimate of the volume 

( b) 

Fig. 17. (a) Absolute difference of the FAM surface in Fig. 5(a) and the 
DCL-estimated FAM surface in Fig. 14(b). (b)  Absolute difference of the 
FAM surface in Fig. 5(a) and the neural-estimated FAM surface in Fig. 15(h). 

probability P ( V )  for volume V c RTL: 

P ( V )  = p ( z ) d z  (9) 

(10) 

\ -  J’ 
number of m3 E V 

P 
N N 

In the extreme case where V = R”, this approximation gives 
P ( V )  = p / p  = 1. For improbable subsets V ,  P ( V )  = O / p  = 
0. 

The metaphor of competing neurons reduces to nearest- 
neighbor classification. The AVQ system compares the current 
vector random sample z( t )  in Euclidean distance to the p 
columns of the synaptic connection matrix M ,  with the p 
synaptic vectors ml(t), . . . ,mp( t ) .  If the j th  synaptic vector 
m,(t) is closest to z( t ) ,  then the j t h  output neuron “wins” the 
competition for activation at time t .  In practice we sometimes 
define the nearest N synaptic vectors as winners. Some 
scaled form of z( t )  - m,(t)  updates the nearest or “winning” 
synaptic vectors. “Losers” remain unchanged: m,(t + 1) = 
m, ( t ) .  Competitive synaptic vectors converge to pattern-class 
centroids exponentially fast [ 5 ] .  

The following three-step process describes the competi- 
tive AVQ algorithm, where the third step depends on which 
learning algorithm updates the winning synaptic vectors. 

Competitive AVQ Algorithm 
1) Initialize synaptic vectors: m,(O) = z( i ) ,  i = 1 , . . . , p  . 

Sample-dependent initialization avoids many patholo- 
gies that can distort nearest-neighbor learning. 
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- BP-AFAM (dashed) : mean = 6.6863, s.d. = 1.0665 
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- DCL-AFAM (solid) : mean = 1.1075, s.d. = 0.0839 
- BP-AFAM (dashed) : mean = 1.1453, s.d. = 0.1016 

( b) 

Fig. 18. Docking errors of the DCL-AFAM and BP-AFAM control systems: (a) docking error; (b)  trajectory error. 

For random sample ~ ( t ) ,  find the closest or “winning” 
synaptic vector m,(t): 

S,(y,), synaptic and signal velocities. S,(yJ) measures the 
competitive status of the j th  competing neuron in FIT. Usually 
S, approximates a binary threshold function. For example, S, 

l l r n ~ ( ‘ )  - z ( t ) I l  = nl!n I l r n z ( t )  - s ( t ) l l ,  (11) may equal a steep binary logistic sigmoid, 

(14) 
1 

1 + e-cyj ’ s - (  .) = ~ 

3 Y, where 11z)12 = z: + . . .  + z: defines the squared 
Euclidean vector norm of 2. We can define the N 
synaptic vectors closest to z as “winners”. 
Update the winning synaptic vector(s) mj(t) with an 
appropriate learning algorithm. 

for some constant c > 0. The j th  neuron wins the laterally 
inhibitive competition if Sj = 1 and loses if Sj = 0. 

For discrete implementation, we use the DCL algorithm as 
a stochastic difference equation [ 2 ] :  

B. Differential Competitive Learning 

peting “neuron” changes its competitive status [6]: 
Differential competitive “synapses” learn only if the com- 

(12) m..  - s. 
t J  - .7(Y.7)[si(zi) - m Z 3 1 >  

or, in vector notation, 

hJ = Sj (Yj ) [S (4  - 4, (13) 

where S(z) = (S1(:r l ) , . . . .S , (xn))  and mj = ( m l , , . . . ,  
rriTLj). The quantity mij denotes the synaptic weight between 
the ith neuron in input field F x  and the j th  neuron in 
competitive field Fl,. Nonnegative signal functions Si and Sj 
transduce the real-valued activations xi and y j  into bounded 
monotone nondecreasing signals Si (xi) and Sj (yj). The sym- 
bols m;j and Sj(yj) denote the time derivatives of mij and 

mj(t + 1) = mj(t) + CtAsj(yj(t))[S(z(t)) - mj(t)] 
if the j th  neuron wins (15) 

m;(t + 1) = mi@) if the ith neuron loses. (16) 

ASj(yj( t ) )  denotes the time change of the j t h  neuron’s 
competition signal Sj (yj) in the competitive field Fr-: 

We define the signum operator sgn(s) as 

1 i f x > O  

-1 if z < 0. 
(18) 

The symbol { c t }  denotes a slowly decreasing sequence 
of learning coefficients, such as ct = 0.1 (1 - t / N )  for 
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Fig. 20. Membership graphs of the three fuzzy-set values of fuzzy 
Fig. 19. Diagram of the simulated truck-and-trailer system. variable 0 , .  

N training samples. Stochastic approximation [ 11 requires 
a decreasing gain sequence { c t }  to suppress random dis- 
turbances and to guarantee convergence to local minima of 
mean-squared performance measures. The learning coefficients 
should decrease slowly, 

but not too slowly, 

t = l  

Harmonic-series coefficients, ct = l / t ,  satisfy these con- 
straints. 

We approximate the competitive signal difference ASl  as 
the activation difference Ay,: 

Input neurons in feedforward networks usually behave lin- 
early: S , ( r f )  = n.,, or S ( z ( t ) )  = z( t ) .  Then we update the 
winning synaptic vector m,(t) with 

For linear signal functions S, ,  the first sum in (24) reduces 
to an inner product of sample and synaptic vectors: 

n 

zL.i(t)7riZj(t) = zT(t)mj(t) .  (25) 
2 

Then positive learning tends to occur (AmfJ  > 0) when 2: is 
close to the j t h  synaptic vector, mi. 

The p x p matrix W contains the F,. within-field synap- 
tic connection strengths. Diagonal elements w;; are posi- 
tive, off-diagonal elements negative. Winning neurons excite 
themselves and inhibit all other neurons. Fig. 13 shows the 
connection topology of the laterally inhibitive DCL network. 

C. Product-Space Clustering to Generate FAM Rules 

Adaptive FAM (AFAM) systems generate FAM rules di- 
rectly from training data. A one-dimensional FAM system, 
S :  I" + I", defines a FAM rule, a single association of the 
form (A4L. B;) .  In this case the input-output product space 
equals I" x I". As discussed in [4], a FAM rule (A; ,Bi )  
defines a patch or cluster or ball of points in the product- 
space cube I" x IJ' centered at the point (A t .  B;). Adaptive 
clustering algorithms can estimate the unknown FAM rule 
( A L ,  B;)  from training samples in R2. We used differential 
competitive learning (DCL) to recover the bank of FAM rules 
that generated the truck training data. 

We generated 2230 truck samples from seven different 
initial positions and varying angles. We chose the initial 
positions (20,20), (30,20), (45,20), (50,20), (55,20), (70,20), 
and (80,20). We changed the angle from -60" to 240" at each 
initial position. At each step, the fuzzy controller produced 
output steering angle 0. The training vectors (2; .  4.0) defined 
points in a three-dimensional product space. z had five fuzzy 
set values: LE, LC, C E ,  RC, and RI. 4 had seven fuzzy set 
values: RB, RU, RV, V E ,  LV, LU, and LB. B had seven 
fuzzy set values: N B ,  N M ,  N S ,  Z E ,  P S ,  P M ,  and PB. 
So there were 245 (5 x 7 x 7) possible FAM cells. 

We defined FAM cells by partitioning the effective product 
space. FAM cells near the center were smaller than outer FAM 
cells because we chose narrow membership functions near 
the steady-state FAM cell. Uniform partitions of the product 
space produced poor estimates of the original FAM rules. 
As in Fig. 3, this reflected the need to judiciously define the 
fuzzy-set values of the system fuzzy variables. 

We divided the space 0 5 z 5 100 into five nonuniform 
intervals: [U. 32.51, [32.5.47.5], [47.5.52.5], [52.5.67.5], and 
[67.5.100]. Each interval represented the five fuzzy-set values 
LE,  LC, C E ,  RC, and RI. This choice corresponded to the 
nonoverlapping intervals of the fuzzy membership function 
graphs ~ ( L c )  in Fig. 3. Similarly, we divided the space -90 5 
(i, 5 270 into seven nonuniform intervals: [-90.01, [0,66.5], 
[66.5,86], [86,94], [94.113.5], 1133.5.182.51, and [182.5;270], 
which corresponded, respectively, to RB, RU, RV, V E ,  LV,  
LU, and LB. We divided the space -30 5 H 5 30 into seven 
nonuniform intervals: [-30. -201, [-20. -7.51, [-7.5. -2.51, 
[-2.5.2.51, [a.;, 7.51, [7.5,20], and [20;30], which corre- 
sponded to N B ,  N M ,  N S ,  ZE ,  PS,  P M ,  and PB. 

DCL classified each input-output data vector into one of 
the FAM cells. We added a FAM rule to the FAM bank if 
the DCL-trained synaptic vector fell in the FAM cell. In the 
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Fig. 21. FAM bank of the fuzzy truck-and-trailer control system 

(a )  (b) (c) (a) (b) (c) 

Fig. 22. Sample truck-and-trailer trajectories from the fuzzy controller for 
initial positions ( . r .  y. ot . a.): (a) (25,30, -20,30), (b) (80,30,210, -40), 
and (c) (70,30,200,30). 

Fig. 23. Sample truck-and-trailer trajectories of the BP-trained controller for 
initial positions (s. y. &. or): (a) (25,30, -20,30), (b)  (80,30,210, -40), 
and (c) (70,30,200,30). 

case of ties we chose the FAM cell with the most densely 
clustered data. 

For the BP-AFAM generated from the neural control surface 
in Fig. 16, we divided the rectangle [0,100] x [-go, 2701 into 
35 nonuniform squares with the same divisions defined above. 
Then we added and averaged the control surface values in the 
square. We added a FAM rule to the FAM bank if the averaged 
value correponded to one of the seven FAM cells. 

Fig. 14(a) shows the input sample distribution of ( x ,4 ) .  
We did not include the variable 0 in the figure. Training data 
clustered near the steady-state position (x = 50 and q5 = 
YO"). Fig. 14( b) displays the synaptic-vector histogram after 
DCL classified 2230 training vectors for 35 FAM rules. Since 
successful FAM system generated the training samples, most 
training samples, and thus most synaptic vectors, clustered in 
the steady-state FAM cell. 

DCL product-space clustering estimated 35 new FAM rules. 
Fig. 15 shows the DCL-estimated FAM bank and the corre- 
sponding control surface. The DCL-estimated control surface 
visually resembles the underlying unknown control surface 
in Fig. 5. The two systems produce nearly equivalent truck- 
backing behavior. This suggests that adaptive product-space 
clustering can estimate the FAM rules underlying expert 
behavior in many cases, even when the expert or fuzzy 
engineer cannot articulate the FAM rules. 

We also used the neural control surface in Fig. 5(b) to 
estimate FAM rules. We divided the input-output product 
space into FAM cells as in the fuzzy control case. If the 
neural control surface intersected the FAM cell, we entered 
the corresponding FAM rule in a FAM bank. We averaged 

all neural control-surface values in a square region over the 
two input variables x and 4. We assigned the average value 
to one of seven output fuzzy sets. Fig. 16 shows the resulting 
FAM bank and corresponding control surface generated by the 
neural control surface in Fig. 5(b). This new control surface 
resembles the original fuzzy control surface in Fig. 5 more 
than it resembles the neural control surface. Note the absence 
of a steady-state FAM rule in the FAM matrix in Fig. 5(a). 

Fig. 17 compares the DCL-AFAM and BP-AFAM control 
surfaces with the fuzzy control surface in Fig. 5(a). Fig. 17 
shows the absolute difference of the control surfaces. As 
expected, the DCL-AFAM system produced less absolute error 
than the BP-AFAM system produced. 

Fig. 18 shows the docking errors of the DCL-AFAM and 
BP-AFAM control systems. The DCL-AFAM system pro- 
duced less docking error than the BP-AFAM system produced 
for 100 arbitrary backing-up trials. The two AFAM systems 
generated similar backing-up trajectories. This suggests that 
black-box neural estimators can define the front end of FAM- 
structured systems. In principle we can use this technique to 
generate structured FAM rules for any neural application. We 
can then inspect and refine these rules and perhaps replace the 
original neural system with the tuned FAM system. 

IV. TRUCK-AND-TRAILER CONTROL SYSTEMS 

A. Fuzzy Truck-and-Trailer Control System 

We added a trailer to the truck system, as in the original 
Nguyen-Widrow model. Fig. 19 shows the simulated truck- 
and-trailer system. We added one more variable (cab angle, 
4,-) to the three state variables of the trailerless truck. In this 
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Fig. 24. Comparison of robustness of the two truck-and-trailer controllers: (a) docking error and (b)  trajectory error 
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DCL-estimated FAM bank for the AFAM truck-and-trailer system Fig. 25. 

case a FAM rule takes the form 

The four state variables 2 ,  y. &, and dC determined the 
position of the truck-and-trailer system in the plane. Fuzzy 
Fuzzy variable qbt corresponded to q?~ for the trailerless truck. 
Fuzzy variable & specified the relative cab angle with respect 
to the center line along the trailer (4c ranged from -90” to 
90”). The extreme cab angles 90” and -90” corresponded 
to two “jackknife” positions of the cab with respect to the 
trailer. A positive & value indicated that the cab resided on 
the left-hand side of the trailer. A negative value indicated 
that it resided on the right-hand side. Fig. 19 shows a positive 
angle value of &. 

Fuzzy variables z, &, and 4c defined the input variables. 
Fuzzy variable p defined the output variable. /3 measured the 
angle that we needed to update the trailer at each iteration. 
We computed the steering-angle output 0 with the following 
geometric relationship. With the output p value computed, the 
trailer position (z, y) moved to the new position (z’. y’): 

z’ = x + T C O S ( 4 t  + p )  (26) 

where r denotes a fixed backing distance. Then the joint of the 
cab and the trailer ( U ,  U) moved to the new position (U’. d): 

71’ = T’ - 1 cos( q5t + @) 
71’ = y’ - 1 sin( $t + /$) 

(28) 
(29) 

where 1 denotes the trailer length. We updated the directional 
vector (dir U.dir V), which defined the cab angle, by 

dir U‘ = dir U + AU 
dir V’ = dir V + AV. 

(30) 
(31) 

where AIL = U’ - U ,  and AV = v’ - v.  The new directional 
vector (dir U’. dir V’) defines the new cab angle 4;. Then we 
obtain the steering angle value as 0 = 4L,h - 4c .h ,  where $hc,h 

denotes the cab angle with the horizontal. We chose the same 
fuzzy-set values and membership functions for /j as we chose 
for 0. /3 ranged from -30’ to 30’. We chose the fuzzy set 
values of q5c as N E ,  ZR, and PO as in Fig. 20. 

Fig. 21 displays the five FAM-rule matrices in the FAM 
bank of the fuzzy truck-and-trailer system. In Fig. 21 we fixed 
the fuzzy variable x as LE, LC, CE,  RC, and RI. There were 
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x = R C  

x = R C  x = RI 

( b) 

Fig. 26. (a) Original control surfaces and (b) DCL-estimated control surfaces for the truck-and-trailer system. 

735 (7 x 5 x 7 x 3) possible FAM rules and only 105 actual 
FAM rules. 

Fig. 22 shows typical backing-up trajectories of the fuzzy 
truck-and-trailer control system from different initial positions. 
The truck-and-trailer backed up in different directions, depend- 
ing on the relative position of the cab with respect to the 
trailer. The fuzzy control systems successfully controlled the 
truck-and-trailer in jackknife positions. 

B. Neural Truck-and-Trailer Control System 

We added the cab-angle variable & as to the back- 
propagation-trained neural truck controller as an input. The 
controller network contained 24 hidden neurons with output 
variable p. The training samples consisted of five-dimensional 
space of the form (z, y, 4t, qbc, p). We trained the controller 
network with 52 training samples from the fuzzy controller: 
26 samples for the left half of the plane, 26 samples for 
the right half of the plane. We used (26)-(31) instead of 
the emulator network. Training required more than 200 000 
iterations. Some training sequences did not converge. The 
BP-trained controller performed well except in a few cases. 

Fig. 23 shows typical backing-up trajectories of the BP truck- 
and-trailer control system from the same initial positions used 
in Fig. 22. 

We performed the same robustness tests for the fuzzy and 
BP-trained truck-and-trailer controllers as in the trailerless 
truck case. Fig. 24 shows performance errors averaged over 
ten typical back-ups from ten different initial positions. These 
performance graphs resemble closely the performance graphs 
for the trailerless truck systems in Fig. 12. 

C. Adaptive Fuzzy Truck-and-Trailer Control System 

We generated 6250 truck-and-trailer data usign the original 
FAM system in Fig. 21. We backed up the truck-and-trailer 
from the same initial positions as in the trailerless truck case. 
The trailer angle, q&, ranged from -60' to 240°, and the cab 
angle, $c, assumed only the three values: -45', O", and 45'. 
The training vectors (2, &, &, 0) defined points in the four- 
dimensional input-output product space. We nonuniformly 
partitioned the product space into FAM cells to allow narrower 
fuzzy-set values near the steady-state FAM cell. 
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(a) (b) 

Fig. 27. Sample trajectory of (a) the original and (b)  the DCL-AFAM sys- 
tem from the initial position ,r = 30, y = 30, of = 10, and or = 43. 

We used DCL to train the AFAM truck-and-trailer con- 
troller. The total number of FAM cells equaled 735 (7 x 5 x 
7 x 3) .  We used 735 synaptic quantization vectors. The DCL 
algorithm classified the 6250 data into 105 FAM cells. Fig. 25 
shows the estimated FAM bank by the DCL algorithm. Fig. 26 
shows the original and DCL-estimated control surfaces for the 
fuzzy truck-and-trailer systems. 

Fig. 27 shows the trajectories of the original FAM and the 
DCL-estimated AFAM truck-and-trailer controllers from the 
initial position ( . E .  y, 4t .  4,) = (30,30. 10.45). The original 
FAM and DCL-estimated AFAM systems exhibited compar- 
able truck-and-trailer control performance except in a few 
cases, where the DCL-estimated AFAM trajectories were 
irregular. 

V. CONCLUSION 
We quickly engineered fuzzy systems to successfully back 

up a truck and truck-and-trailer system in a parking lot. 
We used only common-sense and error-nulling intuitions to 
generate sufficient banks of FAM rules. These systems per- 
formed well until we removed over 50% of the FAM rules. 
This extreme robustness suggests that, for many estimation 
and control problems, different fuzzy engineers can rapidly 
develop prototype fuzzy systems that perform similarly and 
well. 

The speed with which the DCL clustering technique recov- 
ers the underlying FAM bank further suggests that we can 
similarly construct fuzzy systems for more complex, higher- 
dimensional problems. For these problems we may have access 

approximates the neural system’s behavior. We can then tune 
the fuzzy system by refining the FAM-rule bank with fuzzy- 
engineering rules of thumb and with further training data. 
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